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Abstract 

 

Introduction: Early diagnosis and initiation of treatment for fresh osteoporotic lumbar 

vertebral fractures (OLVF) are crucial to maintain the fresh OLVF patient’s activities of daily 

living and quality of life. Magnetic resonance imaging (MRI) is generally performed to 

differentiate fresh and old OLVF. However, MRI is a high-cost exam that burdens patients 

with severe back pain by forcing them to maintain their body position during long 

examinations. Furthermore, it could be difficult to perform in an emergency. MRI should 

therefore be performed in appropriately selected patients with a high suspicion of fresh 

fractures. As radiography is the first-choice imaging examination for the diagnosis of OLVF, 

improving screening accuracy with radiographs will optimize the decision of whether MRI is 

performed. In recent years, deep learning methods such as convolutional neural network 

(CNN) and Gradient-weighted Class Activation Mapping (Grad-CAM) have been used to 

solve various problems in the field of medical imaging. One of the most important features 

of CNN is high image classification performance based on high feature extraction capability. 

Grad-CAM can visualize the basis of CNN classification, which may be able to deepen our 

understanding of the CNN classification process. This study aimed to evaluate a method to 

automatically determine the presence of OLVF and classify old and fresh OLVF using a CNN 

model with radiographs, and the areas of interest to our CNN model based on Grad-CAM.  

Materials and Methods: 523 in Institution 1 and 140 in Institution 2 patients with suspected 

OLVF who underwent both lumbar vertebrae (LV) radiography and MRI were included. A 

total of 3481 LV images in Institution 1 for training, validation, and testing and 662 LV images 

in Institution 2 for external validation images were collected. Visual evaluation with MRI 

images by two radiologists determined the ground truth of LV conditions such as normal, old, 

and fresh OLVF. Automatic object detection with you only look once at version 5 (YOLOv5) 
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was trained to recognize each lumber vertebral body and used to create the sample images for 

CNN classification. Three CNNs, Resnet-50, DenseNet-161, and ResNeXt-50, were 

ensembled to determine the final classification result. The classification performance on the 

LV conditions was calculated. Grad-CAM images were quantitatively evaluated and analyzed 

for the areas of interest in image classification by CNN. 

Results: The interobserver agreement value for visual evaluation by two radiologists was 

0.801. The intraobserver agreement values for raters 1 and 2 were 0.821 and 0.861, 

respectively. The detection performance of YOLOv5 was mAP (0.5) of 0.995 and mAP (0.5: 

0.95) of 0.993 for the validation dataset and mAP (0.5) of 0.982 and mAP (0.5: 0.95) of 0.835 

for the test dataset. The accuracy, sensitivity, specificity, and area under the curve in receiver 

operating characteristic analysis were 0.894, 0.836, 0.920, and 0.912 in the test and 0.867, 

0.674, 0.866, and 0.855 in the external validation, respectively. Grad-CAM images had higher 

pixel values around the center of the image. The CNN classification was correctly based on 

the characteristics of the vertebral body rather than on background areas. There was a definite 

difference in the areas of interest to our CNN model in each group, normal vertebra, old, and 

fresh OLVF. 

Conclusions: The proposed CNN-based method demonstrated high performance in 

determining the presence of OLVF and classifying old or fresh OLVF on radiography without 

manual procedures. Utilizing objective classification results from our CNN is expected to 

improve the accuracy of fresh OLVF screening. This may lead to appropriate decisions on the 

indication for close examination with MRI. The quantitative evaluation of Grad-CAM images 

allowed us to identify the areas of interest for the CNN model created in this study, which 

were found to be mainly the anterior vertebral wall and endplates. Further detailed Grad-

CAM analysis might provide new knowledge for OLVF evaluation with the human eye in 

clinical practice in the future. 
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Abbreviations 

 

OLVF  osteoporotic lumbar vertebral fracture 

ADL  activities of daily living 

QOL  quality of life 

MRI  magnetic resonance imaging 

DL  deep learning 

CNN  convolutional neural network 

Grad-CAM Gradient-weighted Class Activation Mapping 

YOLOv5 you only look once at version 5 

STARD  Standards for Reporting Diagnostic Accuracy Studies  

FPD  flat panel detector 

SID  source-to-image receptor distance  

AEC  auto exposure control 

NNC  Neural Network Console 

mAP  mean average precision 

IoU  intersection over union 

ROC  receiver operating characteristic 

CI  confidence intervals 

SVM  support vector machine 
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Preface 

 

This article describes a new study that attempted to determine the presence of 

osteoporotic lumbar vertebral fracture (OLVF) and classify old or fresh OLVF from 

radiographs by utilizing deep learning techniques. In this preface, we briefly describe the 

background and the significance of the study, and the deep learning techniques used. 

 In recent years, Japan's population has been aging rapidly, and the increase in the number 

of osteoporotic patients has become a significant problem. Osteoporosis is a very 

common disease that affects 20-30% of men and 30-50% of women at least once in their 

lifetime. One of the most common complications of osteoporosis is osteoporotic vertebral 

fracture, which is a serious problem in the health care of vertebral fracture patients, 

especially the elderly, because its progression significantly reduces the activities of daily 

living (ADL) and quality of life (QOL) of patients. Currently, the definitive diagnosis of 

new-onset vertebral fractures is mainly made by magnetic resonance imaging (MRI), but 

this is problematic due to resource and time constraints in clinical practice and the high 

burden on the patient. Considering the medical environment in Japan and the actual 

situation of vertebral fracture patients, we attempted to develop a new vertebral fractures 

evaluation method that combines deep learning techniques with radiographs, which are 

easy to obtain images with low burden. This method is expected to enable quicker and 

more efficient diagnosis of lumbar vertebral fractures by accurately identifying the 

fractured vertebra and its old or fresh without relying on experience or knowledge of 

physicians, and by providing objective indicators to physicians. In addition, as the number 

of osteoporosis patients is expected to continue to increase with further lengthening of 

life expectancy, the significance of this study will be further enhanced, considering that 
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early detection of vertebral fractures has a significant impact on patients' QOL and ADL. 

Three deep learning techniques are used in this study. The first is automatic lumbar 

vertebrae detection and cropping. These deep learning techniques are very important in 

the creation of the input images to convolutional neural network (CNN) to shorten the 

time and eliminate manual procedures bias. In this process, each of the five lumbar 

vertebrae was recognized individually, and each vertebral body image was created from 

the original radiograph based on the detected coordinate information. The second is the 

classification of vertebral fracture conditions using CNN. This is the main task of this 

study. The format of this study was to classify the input vertebral body images into three 

classes: normal, old, and fresh fractures. In addition, a method was employed to determine 

the final result based on the output results of the three CNNs to further improve the 

classification accuracy. The third is Gradient-weighted Class Activation Mapping 

(Grad-CAM) image analysis. Generally, the problem with CNN-based image 

classification is that the basis for the classification is unclear. We believe that the 

evaluation of the important areas for classification will deepen our understanding of the 

CNN classification process, improve its reliability, and may provide new knowledge for 

diagnosis with the human eye in clinical practice. 

The background and the deep learning techniques used in this study described in this 

chapter will be discussed in detail in subsequent chapters. 
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1. Introduction 

 

Osteoporotic lumbar vertebral fracture (OLVF) is one of the most common 

complications in osteoporotic patients. The main factors associated with OLVF are a 

decrease in bone density, bone quality deterioration, and bone microstructure 

degeneration caused by osteoporosis [1,2]. Since the risk of osteoporosis increases with 

age, the number of patients with osteoporosis and those who develop OLVF will continue 

to increase as life expectancy increases [3–5]. 

As OLVF progresses, chronic severe pain, decreased vertebral body height, a round back, 

gait difficulty, decreased pulmonary function, and increased mortality significantly lead 

to a decrease in activities of daily living (ADL) and quality of life (QOL) [6,7]. Although 

the progression of these symptoms is often stabilized in patients with old OLVF, the 

prognosis of fresh OLVF is poor unless appropriate intervention is provided early. 

Therefore, when OLVF is confirmed, it is crucial to confirm the diagnosis of fresh OLVF 

as early as possible, relieve pain, and prevent the progression of crushing to maintain 

ADL and QOL in fresh OLVF patients [8–10]. 

Generally, magnetic resonance imaging (MRI) is used to determine whether OLVF is 

old or fresh [11]. The presence of fresh OLVF is indicated by low signal intensity on T1-

weighted images and high signal intensity on T2-weighted and short tau inversion 

recovery images, which reflect vertebral edema. MRI is a highly sensitive and specific 

method to determine whether an OLVF is old or fresh [12]. MRI can also detect 

subclinical fractures and identify the site of injury. MRI is an important tool for 

diagnosing OLVF because it allows for more detailed treatment strategy decisions [13,14]. 

On the other hand, MRI is a high-cost exam that burdens patients with severe back pain 
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by forcing them to maintain their body position during long examinations. MRI also has 

drawbacks, such as the difficulty of emergency examinations and the limited number of 

examinations that can be performed in a day [11,13,15,16]. MRI should therefore only be 

performed on appropriately selected patients with a high suspicion of fresh OLVF who 

are most likely to require therapeutic intervention [15]. 

Currently, when fresh OLVF is suspected, the first-choice imaging examination is 

radiography, which is superior in image acquisition time, simplicity, low exposure dose, 

and low cost [10,17,18]. Radiography can screen for the presence of OLVF by capturing 

morphological changes in the vertebral body. However, due to its characteristics, it is 

difficult to diagnose fine fractures with few morphological changes immediately after 

onset and to accurately determine the stage of OLVF even when a decrease in vertebral 

height is observed [13,15,19,20]. It is also known that the probability of developing 

multiple OLVFs is higher in patients who have developed OLVF once in the past [21,22]. 

In patients with multiple OLVFs, especially when there are both old and fresh fractures 

in a radiograph, it is more difficult to visually identify the causative vertebrae from their 

morphology and determine whether MRI is indicated. In such cases, an old or fresh OLVF 

diagnosis may significantly depend on the physician’s experience and ability. To optimize 

the decision of the indication for MRI, it is therefore necessary to improve the accuracy 

of OLVF screening in radiography and develop a new automatic evaluation method that 

is not easily influenced by differences in the physicians’ experience and ability. 

In recent years, deep learning (DL) methods based on network structures called 

convolutional neural networks (CNNs) have been used to solve various problems in the 

field of medical imaging. One of the most important features is high image classification 

performance based on high feature extraction capability [23,24]. In this study, we utilize 
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DL techniques of object detection, 3-class classification based on CNNs, and Gradient-

weighted Class Activation Mapping (Grad-CAM) image analysis. The object detection 

algorithm used in this study is "you only look once" at version 5 (YOLOv5). It has been 

reported that YOLO has high efficiency and detection accuracy and meets the 

requirements for use in clinical practice [25–28]. Grad-CAM is a CNN-based technique 

to visualize the areas of interest in image classification by CNN [29]. Generally, the 

problem with CNN-based image classification is that the basis for the classification is 

unclear. Grad-CAM is the method that can solve that problem. 

In a previous study that attempted to identify fresh vertebral compression fractures using 

radiography, the CNN model was designed for a 2-class classification of fresh and old 

fractures but could not identify normal vertebrae [30]. Therefore, it was necessary to 

manually select vertebrae with suspected fractures before applying the CNN model. To 

the best of our knowledge, this is the first study to be able to classify not only fresh and 

old vertebrae but also normal vertebrae. A 3-class classification allows all vertebrae to be 

included without prior selection. This reduces the burden of selecting the target vertebrae 

and the risk of missing a fresh fracture in another vertebra other than the target vertebra. 

We have developed an efficient evaluation method with high detection capability by 

combining radiography’s quick image acquisition with CNNs high image classification 

performance. The use of CNNs to accurately detect fresh OLVF in previously difficult 

cases to visually evaluate with radiography makes it possible to more accurately 

determine the indication for further examination using MRI, regardless of the experience 

or specialty of the attending physician. In addition, the evaluation of the important areas 

for classification will deepen our understanding of the CNN classification process, 

improve its reliability, and may provide new knowledge for diagnosis with the human eye 
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in clinical practice. This study, therefore, aims to evaluate our method to automatically 

determine the presence of OLVF and classify old and fresh OLVF using a CNN model 

with radiographs, and the areas of interest to our CNN model based on Grad-CAM images. 

 

2. Materials and Methods 

 

2.1. Overview of this study 

The overview of this study is shown in Figure 1. In this study, we first automatically 

detected each lumbar vertebra from lateral radiographs. Then, after preliminary image 

processing, each vertebra was classified into normal, old, or fresh OLVF using three 

CNNs. Accuracy evaluation using external data was also performed for both (detection 

and classification) DL methods. 
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Figure 1. Overview of this study. LV means lumber vertebrae. 

 

Normal, normal vertebra; Old, old osteoporotic lumbar vertebral fractures; Fresh, fresh 

osteoporotic lumbar vertebral fractures 

 

This manuscript was constructed according to the Standards for Reporting Diagnostic 

Accuracy Studies (STARD) 2015 guidelines [31]. 

 

2.2. Subjects 

Patients who underwent both lumbar vertebrae radiography and MRI were included in 

this study. Radiographs for our DL method were collected at two institutions (Institutions 

1 and 2). Institutional review boards approved this study in both institutions (institution 

1: No. 20-00457, September 2020, and institution 2: No. 020-0342, March 2021). 

Informed consent in this retrospective study was obtained from all subjects by the opt-out 
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method. 

We collected lateral lumbar vertebral radiographs. In Institution 1, if anterior and 

posterior flexion imaging were acquired in addition to lateral lumbar vertebrae 

radiography, both images were also included. They were used as sample images to detect 

each lumbar vertebra automatically. Each lumbar vertebra image, after automatic 

cropping from lateral radiographs, was used as a sample image for CNN classification. 

Furthermore, in patients with thoracic vertebrae imaging, lumbar vertebrae included in 

the lateral thoracic vertebrae radiographs were also used for CNN classification. 

In Institution 1, 523 consecutive patients with suspected OLVF who underwent 

radiography and MRI from March 2010 to December 2021 were included. In patients 

with fresh OLVF, lumbar vertebrae MRI was performed with a mean of 3.7 ± 17.0 days 

after radiography. Each vertebra (the first to the fifth lumbar vertebrae) was blinded to 

patient information and independently visually evaluated by two radiologists (14 and 12 

years of experience) and classified as normal, old, or fresh OLVF. When the evaluation 

by two radiologists did not agree, the classification group was determined by consensus. 

In addition, for lumbar vertebrae that were determined to be fresh, the radiologists 

evaluated whether they were OLVF or pathological fractures. Pathological fractures are 

those resulting from bone weakness caused by primary or metastatic bone tumors. 

Ninety-three patients whose visual evaluation showed that all the lumbar vertebrae from 

the first to the fifth were normal were excluded from this study because they may be 

different in the presence or absence of osteoporosis, that is, in the background of bone 

density, compared to patients with OLVF. To further improve the accuracy of the 

determination of freshness, the date of injury onset was confirmed for all patients with 

OLVF judged fresh in the visual evaluation. Of the 430 patients with fresh or old OLVF 
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in one or more vertebrae, 12 fresh and three old OLVF patients were excluded due to 

exclusion reasons such as severe crush, foreign substance, poor positioning, poor image 

quality, injury onset date unknown, or only pathological fracture (if there was OLVF other 

than pathological fractures, those patients were included). In this study, the criterion for 

severe crush was a more than 40% reduction in post-fracture vertebral body height 

compared to pre-fracture vertebral body height, based on Genant’s criteria [32]. 

Exclusion reason 1 focused only on the condition of the fractured vertebrae in 

radiographs, while exclusion reason 2 covered all images of each vertebra after cropping 

from radiographs. As a result, 415 subjects were employed in this study (Figure 2a). 

In Institution 2, 140 patients who underwent radiography and MRI from January 2011 

to December 2021 and were diagnosed with OLVF in MRI interpretation reports by 

radiologists in daily practice were included in this study. In patients with fresh OLVF, 

lumbar vertebrae MRI was performed with a mean of 8.1 ± 10.9 days after radiography 

was acquired. After image collection, two fresh and one old OLVF patient were excluded 

based on the same exclusion criteria as in Institution 1. As a result, 137 subjects were 

employed in this study (Figure 2b). 
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Figure 2. The number of subjects in Institutions 1 (a) and 2 (b). 

 

Normal, normal vertebra; Old, old osteoporotic lumbar vertebral fractures; Fresh, fresh 

osteoporotic lumbar vertebral fractures 

 

 

 



- 14 - 

 

2.3. Image Acquisition 

In Institution 1, radiographs were acquired using either the flat panel detector (FPD) of 

the CALNEO Smart C77 or the CALNEO MT (FUJIFILM Medical Co., Ltd., Tokyo, 

Japan). CALNEO Smart C77 uses CsI scintillators, and CALNEO MT uses GOS 

scintillators. For both FPDs, a real grid (8:1 grid ratio) (Mitaya Manufacturing Co., Ltd., 

Saitama, Japan) was used for scattered radiation removal instead of a scattered radiation 

correction process such as a virtual grid (FUJIFILM Medical Co., Ltd., Tokyo, Japan). 

The acquired image size was 10 × 12 inches, the pixel size was 0.15 mm, and the 

grayscale depth was 14 bits. The source-to-image receptor distance (SID) was 110 cm, 

the tube voltage was 85 kV, and the current value was automatically determined by the 

auto exposure control (AEC) system according to the patient’s body thickness. The X-ray 

generator was RAD Speed Pro (SHIMADZU Corporation, Kyoto, Japan). All MRI 

images were acquired using a 1.5 Tesla MRI system from Ingenia (Philips Healthcare, 

Best, The Netherlands). 

In Institution 2, radiographs were acquired using either of three FPDs. The X-ray 

generator and FPD in each room are shown in Table 1. The scattered radiation removal 

was performed on a real grid with a grid ratio of 8:1 or 10:1. The acquired image size was 

14 × 17 inches, the pixel size was 0.15 mm, and the grayscale depth was 14 bits. The SID 

was 130 cm, the tube voltage was 90 kV, and the AEC system automatically determined 

the current value. An MRI was performed in a total of five rooms. The imaging equipment 

and magnetic field strength in each room are shown in Table 2. 
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Table 1. Radiography imaging equipment used in institution 2. 

 Examination room1 Examination room2 Examination room3 

X-ray generator BENEO RAD speed Pro Radnext 80 

 FUJIFILM Medical 

Corporation 
SHIMADZU Corporation 

FUJIFILM Healthcare 

Corporation 

    

X-ray detector  

(scintillator) 
BENEO(a-Se) CALNEO MT(GOS) 

CALNEO C 1717 

wireless SQ (CsI) 

 FUJIFILM Medical 

Corporation 

FUJIFILM Medical 

Corporation 

FUJIFILM Medical 

Corporation 

    
Scattered Radiation 

Correction 
Real Grid Real Grid Real Grid 

Grid ratio 10:1 8:1 8:1 

 Mitaya Corporation Mitaya Corporation Mitaya Corporation 

    
 

 

Table 2. MRI imaging equipment and magnetic field strength used in institution 2. 

 Examination 

room1 

Examination 

room2 

Examination 

room3 

Examination 

room4 

Examination  

room5 

      

MRI system 
MAGNETOM 

Avanto 

Discovery 

MR750w 3.0T 

TRILLIUM 

OVAL 

Achieva 

dStream 

Ingenia 

Elition 3.0T 

      
 SIEMENS 

Healthcare 
GE Healthcare 

FUJIFILM 

Healthcare 

Philips 

Healthcare 

Philips 

Healthcare 

Magnetic field 

strength (T) 
1.5 3.0 3.0 1.5 3.0 

      
 

 

2.4. Deep Learning Techniques 

Three deep learning techniques were used in this study. The first is automatic lumbar 

vertebrae detection and cropping. The second is the classification of vertebral fracture 

conditions using CNN. The third is Grad-CAM image analysis. 
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2.4.1. Vertebral Body Detection with You Only Look Once 

The automatic object detection algorithm used in this study was YOLOv5. It was trained 

to recognize each lumber vertebral body. There are five main models available to the 

public: YOLOv5 n/s/m/l/x. The main differences between versions are the automatic 

detection accuracy and calculation load. In this study, YOLOv5x (the largest) was 

selected and finetuned in training. Training and validation were conducted using 5728 

training images and 1432 validation images (8:2 ratio), with a 10-fold augmentation of 

716 radiographs from 415 patients in Institution 1. The image augmentation was 

performed using Imgaug, a Python library. Details of the image augmentation process are 

shown in Table 3. A total of six image processing steps were combined to create the 

processed image. The intensity of each process was randomly determined between the 

maximum and minimum values. Eighty radiographs were randomly selected out of 137 

radiographs from 137 patients in Institution 2 and used for the test. One radiological 

technologist manually set the ground truth bounding box using the free software labelImg. 

All sample images were converted to 8-bit PNG images of 640 × 640 pixels. The 

following parameters were determined by hyperparameter evolution, a method of 

hyperparameter optimization using a genetic algorithm included in the YOLOv5 system: 

epochs, 300; batch size, 4; initial learning rate, 0.00967; momentum, 0.92755; weight 

decay, 0.00057. 

 

Table 3. Details of the image augmentation process by imgaug. 

 

 

 

 

 

 

 

 Parameter Range 
 Min Max 

Dropout 0.0 0.1 

Gaussian Blur 0.0 0.5 

Enhance Sharpness 0.0 2.5 

Gamma Contrast 0.5 2.0 

Gaussian Noise 0 0.05 × 255 

Edge Detect 0.05 0.3 
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Samples and Datasets Creation 

Each lumbar vertebra was automatically cropped based on the bounding box coordinates 

detected by YOLOv5. After cropping, a histogram flattening process was applied. The 

image resolution was resized and padded as necessary to 166 (W) × 140 (H) pixels (Figure 

3). In this sample creation phase, 99 and 23 sample images were excluded from 

Institutions 1 and 2, respectively, due to the adverse conditions shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The flow of sample image creation. The vertebral number and the confidence 

value of automatic detection accompany bounding boxes detected by YOLOv5. 

 

In Institution 1, 228, 68, and 52 sample images, or about 1/10 of the total images in the 

normal, old, and fresh OLVF groups, were divided, and the number of divided old and 

fresh OLVF images was tripled and quadrupled to resolve the imbalance in the number 

of images among each group. As a result, 228, 204, and 208 sample images were prepared 

in the normal, old, and fresh OLVF groups, respectively, as the test dataset images. After 
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the test dataset image division, a total of 6833 sample images (2056 normal, 2432 old, 

and 2345 fresh sample images) were divided in the ratio of training 8: validation 2. In 

Institution 2, no augmentation of the number of sample images was performed. As a result, 

436, 135, and 91 sample images were prepared in the normal, old, and fresh OLVF groups, 

respectively. The sample images in Institution 2 were used for external validation (Figure 

4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Datasets creation for the CNN classification. 

 

Normal, normal vertebra; Old, old osteoporotic lumbar vertebral fractures; Fresh, fresh 

osteoporotic lumbar vertebral fractures 

 

A total of four datasets were prepared: training, validation, test, and external validation. 

The training datasets were used to create the model to automatically determine the 

presence of OLVF and classify old and fresh OLVF, while the validation datasets were 

used to adjust the hyperparameters. The test dataset was used to evaluate the classification 
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performance by using images with the same characteristics as those used for training and 

validation, while external validation was an evaluation of the classification performance 

on completely unknown images. The important point is that the images in the test and 

external validation datasets were not used for training or validation. The robustness of the 

model created in this study was evaluated in more detail by also performing external 

validation. The parameter settings were the same as in YOLOv5 training (Table 3). 

Examples of processed images are shown in Figure 5. 

 

 

 

 

 

 

 

 

 

Figure 5. Examples of processed images by imgaug. A total of six image processing steps 

were combined to create the processed image. 

 

2.4.2. CNN Classification 

In this study, a 3-class CNN classification was performed. All sample images are 

classified into normal, old, or fresh OLVF groups. The CNNs output the probability that 

the input image is normal, old, or fresh OLVF. An ensemble model using three CNNs was 

employed in this study. An ensemble approach was used in which the predictive 

probabilities output by the three CNNs were summed for each group. The class with the 
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highest sum of the predictive probabilities output by three CNNs for each classification 

group was determined as the result of the CNN classification. The CNNs used were 

Resnet-50, DenseNet-161, and Res-NeXt-50. Each CNN was pre-trained with initial 

weights trained on ImageNet, a large image dataset on Neural Network Console (NNC) 

(Sony Network Communications Inc., Tokyo, Japan). Each pre-trained CNN model is 

available at https://nnabla.readthedocs.io/en/latest/python/api/models/imagenet.html 

(accessed on 15 May 2021). Before the training process, three layers were inserted just 

below the input layer in each CNN. The first is the “Broadcast” layer to change the color 

channel of input images from 1 to 3. This allows the use of grayscale images for input in 

CNN trained with color images. The second is the “MulScalarX” layer to divide pixel 

values by 255 to normalize pixel values. The third is the “ImageAugmentation” layer to 

pseudo-enhance the number of sample images to reduce overfitting due to the insufficient 

number of images. This image augmentation process included scaling, rotation, 

brightness, and contrast changes. The details of each enhancement process are shown in 

Table 4. The learning rates of Resnet-50, DenseNet-161, and ResNeXt-50 were set to 0.01, 

0.001, and 0.01, respectively. The following training parameters were common to all three 

CNNs: 100 epochs; batch size, 4; optimizer, Nesterov. 

 

Table 4. Details of the image enhancement process by the ImageAugmentation layer on NNC. 

 Parameter Range 
 Min Max 

Image scaling 0.8 1.05 

Image rotation -20° +20° 

Brightness change -0.2 +0.2 

Contrast change 1/1.5 1.5 
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2.4.3. Gradient-weighted Class Activation Mapping 

In Grad-CAM images, the areas of interest to the CNN are represented in redder colors. 

In this study, Grad-CAM images were acquired using the plug-in function of NNC. The 

dataset and CNN model used to create the Grad-CAM images were the test dataset and 

the 5th classification result in 5-fold cross-validation of DenseNet-161, which had the 

highest classification accuracy among all classification results, respectively. Each Grad-

CAM image was divided into three groups: groups 0, 1, and 2. Groups 0, 1, and 2 contain 

images classified as normal vertebra, old, and fresh OLVF images by CNN classification, 

respectively. For example, group 0 contains correctly classified normal vertebra images, 

as well as old and fresh OLVF images misclassified as normal. The Grad-CAM images 

were then divided into 6 rows and 8 columns, for a total of 48 sections (Figure 6a), and 

the red element of each divided Grad-CAM image was extracted. The pixel values of the 

red element images were measured (Figure 6b). Each location of divided Grad-CAM 

images was numbered from 1 to 48 as shown in Figure 6c.  
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Figure 6. (a) The Grad-CAM images were then divided into 6 rows and 8 columns. 

(b) RGB color channel split and the pixel values measurement. (c) Location number of 

divided images. 

 

2.5. Devices and Software for Deep Learning Techniques 

The development environment for DL in this study was Windows 10 Pro (64bit), Intel® 

Core™ i7-10700KF, NVIDIA® GeForce RTX™ 3080, Python version 3.8.8, PyTorch 

version 1.8.1, and NNC version 2.1.0. 
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2.6. Statistical Analysis 

Quantitative data were expressed as the mean and standard deviation. Interobserver and 

intraobserver visual assessment for the vertebrae condition classification were evaluated 

by weighted kappa values using the Landis and Koch criteria (0.0–0.2: slight agreement, 

0.21–0.40: fair agreement, 0.41–0.60: moderate agreement, 0.61–0.80: substantial 

agreement, 0.81–1.0: almost perfect agreement) [33]. The second visual evaluation for 

intraobserver calculation was performed more than one month after the first assessment, 

and radiographs of 50 randomly selected patients from a total of 523 patients were used. 

All weighted kappa values were calculated using R (version 4.2.0) and the package “irr” 

(ver0.84.1). 

The detection accuracy of the YOLOv5 model developed in this study was evaluated by 

the mean average precision (mAP). The mAP is the score representing the degree of 

agreement between the coordinates of the detected bounding box and the ground truth 

bounding box and is defined as follows: 

 

mAP =
1

n
∑APk

k=n

k=1

  

 

APk is the average precision of class k and n represents the number of classes. In this 

study, the mAP (0.5) and the mAP (0.5: 0.95) were used as evaluation indices. The mAP 

(0.5) is the mAP when the intersection over union (IoU) is set to 0.5, and the mAP (0.5: 

0.95) is the average of the mAP obtained by changing IoU from 0.5 to 0.95 in 0.05 steps. 

IoU is an index indicating the overlap degree between the detected bounding box by 

YOLO and the ground truth bounding box and is calculated by dividing the common part 

of the two regions by the sum set. 
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For CNN classification, we evaluated the classification performance using 5-fold cross-

validation. In this method, the datasets are divided into five groups, one of which is the 

validation data, and the remaining four groups are the training data, and the classification 

performance is evaluated. All five groups are assigned to the validation data one at a time. 

Training and validation were performed five times in each CNN per cross-validation 

component, for a total of 15 results. 

The accuracy, sensitivity, specificity, false positive rate, and false negative rate were 

calculated for the classification performance. These classification performances were 

calculated by considering either normal, old, or fresh OLVF as positive and the others as 

negative. The name of the group considered positive was appended to each classification 

performance. The overall classification performance is the average of the values 

calculated when each group is considered positive. For example, when normal is 

considered positive, old and fresh OLVF are considered negative, and the accuracy is 

shown as accuracynormal. Accuracyall is the average of accuracynormal, accuracyold, and 

accuracyfresh. 

In addition, receiver operating characteristic (ROC) curves were plotted, and the area 

under the curve (AUC) values were calculated. They were plotted and calculated by 

scikit-learn, one of the Python libraries. 

A total of 95% confidence intervals (CI) for the classification performance and AUC 

were calculated using scikit-learn and statsmodels in the Python libraries, respectively. 

 The Kruskal-Wallis test and the Steel-Dwass test were performed in the assessment of 

the pixel values of the red element in divided Grad-CAM images, to generate the 

significant deference and the assessment of the group which CNN had higher interest, 

respectively. P < 0.05 was considered to indicate a statistically significant difference. The 
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boundary of the areas with significant differences between the two groups in each 

combination was determined by the support vector machine (SVM) method using scikit-

learn. 

 

3. Results 

 

In Institution 1, a total of 716 lateral lumber vertebrae radiographs of 415 OLVF patients 

were employed. The subjects consisted of 280 fresh OLVF patients with a mean age of 

78.5 ± 11.4 years and 135 old OLVF patients with a mean age of 77.1 ± 9.3 years. No 

significant difference in mean age between fresh and old OLVF patients was observed (p 

> 0.05). In 280 fresh OLVF patients, radiography in 200 patients (71.4%) was performed 

within 14 days from the injury onset. 

In Institution 2, a total of 137 lateral lumber vertebrae radiographs of 137 OLVF patients 

were employed. The subjects consisted of 77 fresh OLVF patients with a mean age of 

69.6 ± 13.7 years and 60 old OLVF patients with a mean age of 70.8 ± 11.1 years. No 

significant difference in mean age between fresh and old OLVF patients was observed (p 

> 0.05). In 77 fresh OLVF patients, radiography was performed in 48 patients (62.3%) 

within 14 days from the injury onset. 

 

3.1. Agreement Rate in the Visual Evaluation of Each Vertebral Body 

The interobserver agreement value for visual evaluation by two radiologists was 0.801. 

The intraobserver agreement values for raters 1 and 2 were 0.821 and 0.861, respectively. 

The agreement in all evaluations was almost perfect. Consensus was required in 141 of 

523 cases because of inconsistent evaluation of at least one vertebra. 
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3.2. YOLOv5 

The detection performance of YOLOv5 was mAP (0.5) of 0.995 and mAP (0.5: 0.95) of 

0.993 for the validation dataset and mAP (0.5) of 0.982 and mAP (0.5: 0.95) of 0.835 for 

the test dataset in terms of detection for lumber vertebrae. Using automatic cropping 

based on the bounding box detected by YOLOv5, vertebra images of 2284 normal, 676 

old, and 521 fresh OLVF were produced in Institution 1. Similarly, vertebra images of 

436 normal, 135 old, and 91 fresh OLVF were produced in Institution 2. The breakdown 

of vertebral body numbers is shown in Table 5. 

 

Table 5. The breakdown of each vertebral body number in this study. 

 Institution 1   Institution 2   

 Normal Fresh Old Normal Fresh Old 

The number of 

all vertebra 

images 

2284 521 676 436 91 135 

L1 (%) 322 (14.1) 175 (33.6) 211 (31.2) 63 (14.4) 26 (28.6) 43 (31.9) 

L2 (%) 467 (20.4) 118 (22.6) 124 (18.3) 83 (19.0) 23 (25.3) 27 (20.0) 

L3 (%) 464 (20.3) 106 (20.3) 131 (19.4) 87 (20.0) 19 (20.9) 28 (20.7) 

L4 (%) 486 (21.3) 76 (14.6) 129 (19.1) 97 (22.2) 15 (17.0) 23 (17.0) 

L5 (%) 545 (23.9) 46 (8.8) 81 (12.0) 106 (24.3) 8 (8.8) 14 (10.4) 

 

Normal, normal vertebra; Old, old osteoporotic lumbar vertebral fractures; Fresh, fresh 

osteoporotic lumbar vertebral fractures 

 

3.3. Classification Performance by CNNs 

The confusion matrix in this classification is shown in Figure 7. The classification 

performance was as follows: The accuracyall, sensitivityall, specificityall, false positive 

rateall, false negative rateall, and AUCall was 0.894 [CI: 0.870–0.917], 0.836 [CI: 0.790–

0.882], 0.920 [CI: 0.894–0.946], 0.161 [CI: 0.111–0.211], 0.077 [CI: 0.053–0.100], and 

0.912 [CI: 0.861–0.963] in the test dataset, and 0.867 [CI: 0.841–0.892], 0.674 [CI: 
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0.603–0.743], 0.866 [CI: 0.832–0.898], 0.288 [CI: 0.217–0.363], 0.111 [CI: 0.079–0.144], 

and 0.855 [CI: 0.767–0.943] in the external validation dataset, respectively. A high 

accuracyall of 0.86 or higher in both datasets were achieved. The ROC curves for each 

dataset are shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The confusion matrix in CNN classification in the test (a) and external 

validation (b) datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. ROC curve for the test (a) and external validation (b) datasets. 
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Normal, normal vertebra; Old, old osteoporotic lumbar vertebral fractures; Fresh, fresh 

osteoporotic lumbar vertebral fractures 

 

The classification performances in both datasets were summarized in Table 6. 

 

Table 6. The summary of each classification performance. 

 Test External Validation 

  The Group Considered Positive  The Group Considered Positive 

 All Normal Old Fresh All Normal Old Fresh 

Accuracy 0.894 0.930 0.880 0.871 0.867 0.861 0.868 0.872 

Sensitivity 0.836 0.968 0.791 0.748 0.674 0.933 0.550 0.538 

Specificity 0.920 0.908 0.922 0.930 0.866 0.722 0.950 0.925 

False positive rate 0.161 0.146 0.175 0.163 0.288 0.134 0.264 0.465 

False negative rate 0.077 0.019 0.096 0.115 0.111 0.152 0.108 0.074 

AUC 0.912 0.959 0.903 0.875 0.855 0.940 0.790 0.834 

 

Normal, normal vertebra; Old, old osteoporotic lumbar vertebral fractures; Fresh, fresh 

osteoporotic lumbar vertebral fractures 

 

3.4. Grad-CAM image analysis 

 The average pixel value in each group is shown in Figure 9 and Table 7. Focusing on the 

column-by-column variation, Grad-CAM images of all groups had higher pixel values 

around the center of the image (columns 3, 4, 5, and 6) and lower pixel values in the outer 

parts of the image (columns 1, 2, 7, and 8). Focusing on the row-by-row variation, the 

three highest pixel values were in rows 4, 5, and 6 in the normal (0) group, rows 2, 3, and 

4 in the old (1) group, and rows 3, 4, and 5 in the fresh (2) group, respectively. 

The results of the Kruskal-Wallis test and the Steel-Dwass test are shown in Figure 10. 

The sections where significant differences occurred were shown in color. In addition, 

groups with significantly higher values were indicated with the group number: 0, 1, or 2. 
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There was a definite difference in the section with high interest in each group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The average pixel value of each red element image per row. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The results of the Kruskal-Wallis test and the Steel-Dwass test. 

 

Significant differences in the Kruskal-Wallis test were found in the colored section. 

Groups with significantly higher values were indicated with the group number: 0, 1, or 2. 

Groups 0, 1, and 2 contain images classified as normal vertebra, old, and fresh OLVF 

images by CNN classification, respectively. Dotted lines indicate the boundary of the 

areas with significant differences between the two groups in each combination determined 

by the SVM method. 
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Table 7. The average pixel value of each red element image. 

Average pixel value 

Location 

number 
Normal Old Fresh  

Location 

number 
Normal Old Fresh 

1 57.22 35.50 37.66  25 83.68 75.41 77.55 

2 83.00 73.03 76.09  26 125.61 109.69 106.55 

3 97.84 108.34 110.42  27 147.62 132.44 121.83 

4 114.15 123.80 119.80  28 155.54 140.43 132.39 

5 113.37 126.71 118.82  29 159.93 139.19 138.97 

6 97.72 120.30 112.63  30 156.51 129.97 140.97 

7 73.87 106.22 100.10  31 121.20 110.96 132.58 

8 40.06 73.89 69.26  32 68.28 76.14 99.06 

9 69.01 56.41 57.38  33 91.18 77.22 87.90 

10 99.45 98.06 93.38  34 136.85 110.64 119.21 

11 113.73 129.91 118.93  35 165.63 130.00 137.21 

12 137.56 144.51 135.55  36 170.52 140.38 143.04 

13 145.44 148.07 142.38  37 169.08 137.32 145.04 

14 133.70 144.58 137.77  38 158.54 120.00 143.16 

15 108.06 134.21 128.35  39 117.78 97.56 125.02 

16 66.56 98.81 93.39  40 60.41 62.45 84.32 

17 75.80 65.91 66.39  41 85.01 58.78 79.42 

18 108.04 105.10 93.76  42 129.17 85.14 108.32 

19 120.92 131.52 111.57  43 160.10 100.58 123.25 

20 143.47 145.56 132.30  44 163.13 112.86 126.14 

21 154.75 150.45 144.08  45 156.72 107.40 126.28 

22 150.97 146.05 144.54  46 143.37 87.20 121.99 

23 122.78 134.38 135.91  47 105.36 70.01 98.86 

24 77.99 102.59 104.12  48 54.27 46.19 65.06 

 

Normal, normal vertebra; Old, old osteoporotic lumbar vertebral fractures; Fresh, fresh 

osteoporotic lumbar vertebral fractures 

 

4. Discussion 

 

In this retrospective study, we attempted to develop an automatic method to detect OLVF 

and classify old and fresh OLVF by creating a CNN model with lateral lumbar vertebrae 

radiographs. This is the first study to validate the generalization performance of 3-class 

OLVF classification using images from multiple facilities. Some images in the external 
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validation dataset differed from those used in the training and validation regarding 

imaging conditions that affect image quality, such as the tube voltage and grid ratio. The 

fact that our method is effective even for such images may suggest that this model is quite 

versatile. 

Objectivity must be ensured in the sample creation process. In this study, YOLOv5 was 

applied to the sample creation process. This eliminates human bias caused by manual 

procedures and reduces sample creation time. To the best of our knowledge, though one 

study attempted to identify fresh vertebral fractures on radiography using a CNN, that 

study had the limitation that the ROIs to extract the target vertebrae were manually drawn 

[30], which has been overcome in our study. 

Since Grad-CAM images are generally evaluated visually, subjective differences among 

observers occur, and it is difficult to find a specific trend visually from many sample 

images. To solve this problem, we attempted to quantify Grad-CAM images. First, we 

found that the CNN model focuses mainly on the center of the sample images to classify 

the conditions of the vertebral fracture. In this study, padding and image augmentation of 

angle change were used to uniform the sample image size and to increase the number of 

images, respectively. Therefore, the periphery of the sample images includes areas with a 

pixel value of 0 (Figure 11). Although there was concern that these areas would harm 

image classification by CNN, the vertebral body part in the sample images was of 

relatively high interest in this study, and it was considered that the CNN classification 

was correctly based on the characteristics of the vertebral body rather than on background 

areas such as the soft tissue.  
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Figure 11. An example of the sample images includes areas with a pixel value of 0 

(Padding, Angle change). Black areas indicate those with a pixel value of 0. 

 

Second, there was a definite difference in the section with high interest in each group. 

OLVF can be classified into three categories: wedge, biconcave, and crush. Most of them 

are wedge and biconcave fractures, which are the most common and the second-most 

common, respectively. The wedge fractures are characterized by compression of the 

anterior wall of the vertebral body. In the biconcave fractures, only the middle portion of 

the vertebral body is collapsed, whereas the anterior and posterior walls remain intact 

[34]. From the above, the vertebral body shape is maintained in normal vertebrae, whereas 

the anterior and middle portions may often collapse in many OLVF vertebrae. In a 

comparison between old and fresh groups, the line of the upper endplate that has fallen to 

the vertebral body part in old OLVF, and the line of the lower endplate that retain its shape 

in fresh OLVF were features CNN focused on for classification. These suggests that the 

area where the shape of vertebral body, especially the anterior vertebral wall and endplates, 

differs significantly from that of the comparison group is the point of interest for the CNN. 

Nevertheless, because the only degree of vertebral height reduction does not 
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unconditionally allow to classify vertebrae conditions, the CNN may have uniquely 

determined an additional important factor for correct classification that is not recognized 

by the human eye, in addition to the feature of the anterior vertebral wall and endplates. 

In addition to areas with large deformations that appear more distinctive to humans, areas 

with smaller deformations were also considered to be important features for the CNN. 

The slope of the boundary between the normal vertebrae and the fresh OLVF group was 

greater than that between the normal vertebrae and the old OLVF group, possibly 

reflecting the effect of physiological lordosis because a higher proportion of upper lumbar 

vertebrae in the fresh OLVF than in the old OLVF in this study. 

Although there were several cases in which the correct classification was achieved even 

though the CNN did not focus on the areas with significant high interest section, the 

results acquired in this Grad-CAM image analysis may have identified areas that are 

statistically more noteworthy. 

In this study, we used an ensemble approach in which the predictive probabilities output 

by the three CNNs are summed for each group (Figure 12). Some previous studies had 

used an ensemble model with majority voting to determine the final result [10, 35]. 

However, when classification targets are three groups as in this study, that method cannot 

determine the final result if there is only one classified result for each group. In addition, 

even if there is a high probability output but it is only one vote, that suggestion with the 

high probability output may be ignored. The method used in this study can solve these 

problems and determine more statistically reliable classification results. 
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Figure 12. An ensemble approach in this study method. 

 

A study reported by Strickland et al. (2023) [36] to determine fresh OLVF based on 

findings on radiography showed a sensitivity of 52% and a specificity of 95%. Langdon 

et al. stated that it is not possible to distinguish between fresh and old fractures on 

radiographs [16]. As described above, the human evaluation to determine fresh OLVF 

using radiographs is very difficult. The sensitivity of 84% and 67% and specificity of 92% 

and 87% (test/external validation) were achieved in the proposed method. Compared to 

the diagnostic accuracy by radiographs alone as reported by Strickland et al., the 

sensitivity was at least 15% higher and the specificity was comparable even in the more 

difficult situation, the classification in the external validation dataset. We believe that the 

proposed method combining CNN with radiography has high classification and 

generalization performance and would further improve the usefulness of radiography. 

The implementation of this method may benefit both the physician and the patient. In 
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clinical practice, physicians carefully observe each vertebral body on radiographs to 

determine the diagnosis. By referring to the objective and consistent classification results 

provided by the CNN model developed in this study, physicians could reduce the burden 

associated with the evaluation of radiography and make a diagnosis and therapeutic 

strategy in a shorter time. In addition, the proposed method’s improved fresh OLVF 

screening accuracy prevents missed fresh OLVF and reduces unnecessary MRI imaging. 

As a result, it will enable a more efficient selection of patients who require close 

examination by MRI. Furthermore, the proposed method requires only radiography, one 

of the most widely used imaging exams. This greatly benefits patients by allowing them 

to receive high-accuracy screening at any given facility. The proposed method might be 

more effective when accurate diagnosis is difficult due to the co-existence of old and fresh 

OLVFs on radiographs, even if the physicians are inexperienced in evaluating OLVFs. 

The current challenge for clinical practice is that the target lumbar vertebrae images 

must be extracted from the image storage server and transferred to a device for machine 

learning each time.  

The limitations of this study are as follows: First, cases of lumber vertebrae with 

deformation/crush, strong scoliosis, and metal material implantation were excluded. If 

the lumber vertebrae with such characteristics are input into the CNN created in this study, 

it may be unable to output the correct diagnosis because it was not trained on such images. 

Second, since this study targeted OLVF, it is unclear whether high classification accuracy 

can be guaranteed for pathological fractures caused by bony metastasis. It may be difficult 

to utilize this CNN at facilities with many pathological fracture cases. Third, the number 

of sample images is limited. To create a more accurate and versatile network, it is 

necessary to increase the number of samples, collect image data from more facilities, and 
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conduct training using images with various characteristics. 

 

5. Conclusions 

 

The proposed CNN-based method demonstrated high performance in determining the 

presence of OLVF and classifying old or fresh OLVF on radiography. Utilizing objective 

classification results from our CNN is expected to improve the accuracy of fresh OLVF 

screening. This may lead to appropriate decisions on the indication for close examination 

with MRI.  

In addition, the quantitative evaluation of Grad-CAM images allowed us to identify the 

areas of interest for the CNN model created in this study, which were found to be mainly 

the anterior vertebral wall and endplates. Further detailed Grad-CAM analysis might 

provide new knowledge for OLVF evaluation with the human eye in clinical practice in 

the future. 
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