

Instructions for use

Title A Study on Mixed Precision Iterative Refinement using Low Precision Krylov Methods

Author(s) ZHAO, Yingqi

Citation 北海道大学. 博士(情報科学) 甲第15998号

Issue Date 2024-03-25

DOI 10.14943/doctoral.k15998

Doc URL http://hdl.handle.net/2115/91870

Type theses (doctoral)

File Information ZHAO_Yingqi.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

A Study on Mixed Precision Iterative

Refinement using Low Precision Krylov

Methods

Yingqi ZHAO

Graduate School of Information Science and Technology,

Hokkaido University

February, 2024

Preface

Numerical linear algebra has wide applications in many aspects of life and is at
the heart of important computational aspects of practical application problems.
Numerical methods, often used to solve linear algebra problems, e.g., linear
systems, eigenvalue problems, singular value decompositions, etc., in engineering
and information sciences, play a key role and attract much attention. Among
them, linear solvers for solving linear systems Ax = b are of vital importance
in scientific computation and their computational time usually attracts much
attention. An efficient linear solver can help accelerate practical applications.
Therefore, the optimization of numerical methods and linear solvers is essential.

Double-precision floating-point (also called FP64) has been regarded as a
standard in most scientific computation for a long time. However, due to the
reason of power budgets, the performance of FP64 has become more and more
challenging and difficult to improve. Within recent years, some newly appeared
hardware shows potentially high ability of low precision computing, some of
which are equipped with specified units that can provide great performance in
low precision computing, and have already been used in practical applications
that do not strictly require high precision computing and accept low precision
computing, i.e., machine learning. These circumstances promote the development
of low precision computing while the output accuracy needs to be guaranteed.
To handle this issue, one important strategy is to develop mixed precision (MP)
algorithms that efficiently combine different precisions and achieve the same
accuracy as the traditional method using only FP64.

In this study, I focus on linear solvers and develop mixed precision algorithms
for solving linear systems Ax = b whose coefficient matrix A is large, sparse,
and non-symmetric. For this problem, the Krylov subspace methods are widely
used in the field of numerical linear algebra. Some studies on mixed precision
computing for the Krylov subspace methods have already been reported. However,
there are still many issues that need to be investigated. This study aims to provide
new insights into mixed precision computing using the Krylov subspace methods,
which will contribute to improving the computation performance of various
applications that need liner solvers. In this study, two typical Krylov subspace
methods, which are commonly used to solve non-symmetric linear systems, are
considered. One is GMRES(m) method, and the other is BiCGSTAB method.
Based on these two algorithms, I develop two mixed precision algorithms and
conduct comprehensive numerical experiments using 26 test matrices selected

1

from the SuiteSparse Matrix Collection. Through numerical experiments, I
investigate the numerical characteristics and evaluate the effectiveness of the
developed mixed precision algorithms in detail.

In Chapter 3, a mixed precision variant of the GMRES(m) method using FP64
and FP32, which is called MP-GMRES(m), is investigated. Using the number of
the inner iterations as restart frequency m, I have studied its numerical behavior
through comprehensive experiments with different m from both theoretical
and practical aspects. A detailed comparison with the traditional GMRES(m)
method using only FP64 is also made. Detailed analysis and comparison of
the obtained results are given from the following three aspects: the maximum
attainable accuracy, the number of iterations, and the execution time. From the
obtained results, MP-GMRES(m) has almost the same problem-solving ability
as GMRES(m), and there is almost no difference in the final attainable accuracy
if both two algorithms can not solve the problems. Although MP-GMRES(m)
requires more number of iterations than GMRES(m), it provides a shorter
execution time for most cases. I have also found some differences between these
two methods; for example, as m increases, the number of iterations tends to
decrease in GMRES(m) while increasing in MP-GMRES(m).

In Chapter 4, a mixed precision variant of iterative refinement using BiCGSTAB
algorithm (MP-IR using BiCGSTAB) is developed and investigated in detail.
In this algorithm, low precision(FP32) BiCGSTAB is employed as an inner
solver in mixed precision iterative refinement, and two approaches are used for
determining the restart: the number of the inner iterations m and the decrease
of the residual 2-norm ϵ in the inner BiCGSTAB loop. Several sets of experi-
ments are conducted, and the obtained results are analyzed and compared with
the traditional BiCGSTAB method, as well as the MP-GMRES(m) method,
which is studied in Chapter 3. The experiment results show that MP-IR using
BiCGSTAB sometimes outperforms MP-GMRES(m) and is the fastest among
all methods, especially for problems with small condition numbers, although
MP-IR using BiCGSTAB is sensitive to a target problem. Similar to Chapter 3,
comprehensive experimental results on the maximum attainable accuracy, the
number of iterations, and the execution time are also provided and analyzed in
this chapter.

The rest of the thesis is organized as follows. In Chapter 1, I introduce
the research background, purposes, and main contributions. The structure of
the thesis is also briefly described. Chapter 2 summarizes the related work,
including mixed precision computing, the Krylov subspace methods, and some
recent research on applying mixed precision computing to the Krylov subspace
methods. Chapter 5 provides an overall summary of my research and discusses
future work.

In summary, the thesis aims to investigate the numerical characteristics and
effectiveness of the mixed precision algorithms and show the applicability of
mixed precision computing in numerical linear solvers. This study will provide
options to accelerate the applications that need linear solvers and give some new
insights into using the high ability of low precision computing, which hopes to
promote further development of mixed precision linear solvers.

2

Acknowledgment

First, I would like to express my sincere thanks to everyone who ever helped me
with this thesis.

I would like to express my sincere gratitude to my supervisors, Prof. Iwashita
and Prof. Fukaya, for helping me greatly in my research. They have supported
me with patient guidance, inspiration, and encouragement, from the selection
of the research topic, research idea, and experiment demonstration to thesis
revision. When I encountered difficulties during my research, their kind guidance
and suggestions gave me great encouragement. It is my great honor and joy to
study under their supervision. Furthermore, I have also benefited from their
personality and diligence, which I will cherish my whole life.

I also would like to express my sincere gratitude to my master’s supervisor,
Prof. Zhang Linjie. Under her patient guidance, I developed a strong interest in
academic research. And thanks to her introduction, I had the opportunity to
study my Ph.D. course in my current laboratory. Her attitudes towards research
and life have deeply influenced me.

I also greatly appreciate Prof. Munetomo and Prof. IIda for their suggestions
on revising the draft of this thesis, as well as for pointing out the problems that
should be addressed during the thesis revision and presentation. With their
suggestions and comments, I could further clarify my thoughts on the revision
of the thesis and was able to improve my thesis.

In addition, I would also like to thank Prof. Iwashita, Prof. Fukaya, and
other faculty staff for helping me with aspects of my life in Japan. I would also
like to express my deep gratitude to the university for providing scholarship
support. Their help made me feel at ease in a new environment and allowed
me to devote myself to my research in a foreign country. I also thank my fellow
laboratory students, who created a strong academic atmosphere that positively
impacted the research.

Finally, I would also like to express my heartfelt thanks and love to my family
and friends, who gave me a lot of financial support and encouragement and
whom I love and care about.

3

Contents

List of Figures 6

List of Tables 7

1 Introduction 9
1.1 Research Background . 9
1.2 Research Purpose and Contributions 11

1.2.1 Research Purpose . 11
1.2.2 Research Contribution . 12

1.3 Structure of the thesis . 12

2 Related Work 14
2.1 Mixed Precision Computing . 14
2.2 Krylov Subspace Methods . 16
2.3 Studies on Mixed Precision Computing for Krylov Subspace Methods 18

3 Numerical Investigation of The Mixed Precision GMRES(m)
Method 20
3.1 Introduction . 20
3.2 Iterative Refinement and its Mixed Precision Variant 21
3.3 Review of GMRES(m) and Mixed Precision GMRES(m) Method 22

3.3.1 The GMRES(m) Method 22
3.3.2 The Mixed Precision GMRES(m) Method 24

3.4 Theoretical Analysis of Mixed Precision GMRES(m) Method . . 26
3.4.1 Analysis on the Numerical Behavior 26
3.4.2 Memory Footprint on Standard CPU Platform 29
3.4.3 Estimation on the Expected Speedup 30

3.5 Numerical Results . 31
3.5.1 Problem Settings . 32
3.5.2 Experiment Settings . 32
3.5.3 Analysis on the Maximum Attainable Accuracy 33
3.5.4 Analysis on the Total Number of Iterations 33
3.5.5 Analysis on the Execution Time 36
3.5.6 Case Study . 41

3.6 Conclusion . 46

4

CONTENTS

4 Numerical Investigation of Mixed Precision Iterative Refine-
ment using the BiCGSTAB Method 52
4.1 Introduction . 52
4.2 Review of the BiCGSTAB method and its Employment in Mixed

Precision Iterative Refinement . 53
4.2.1 The BiCGSTAB Method 53
4.2.2 Employment of BiCGSTAB in Mixed Precision Iterative

Refinement . 56
4.3 Theoretical Analysis of Mixed Precision Iterative Refinement using

BiCGSTAB Method . 56
4.3.1 Analysis on the Numerical Behavior 57
4.3.2 Theoretical Estimation on the Expected Speedup of MP-IR

using BiCGSTAB over MP-GMRES(m) 57
4.4 Numerical Results . 58

4.4.1 Experiment Settings . 59
4.4.2 Analysis on the Maximum Attainable Accuracy 60
4.4.3 Analysis from the Total Number of Iterations 60
4.4.4 Analysis from Execution Time 63
4.4.5 Case Study . 66

4.5 Conclusion . 68

5 Conclusion and Future Work 81
5.1 Conclusion . 81
5.2 Future Work . 82

References 84

5

List of Figures

1.1 Overview of my research. 11

2.1 The format of standard precision(FP64), single precision(FP32),
and half precision(FP16). 15

2.2 Mixed precision computing based on iterative refinement. 16

3.1 The change of the total number of inner iterations in FP64-
GMRES(m) and MP-GMRES(m) for memplus. 39

3.2 Relative residual 2-norm history for appu. 42
3.3 Relative residual 2-norm history for memplus. 43
3.4 Relative residual 2-norm history for ns3Da. 44
3.5 Relative residual 2-norm history for Zhao1. 45
3.6 Relative residual 2-norm history for airfoil 2d. 47
3.7 Relative residual 2-norm history for TSOPF RS b39 c7. 48
3.8 Relative residual 2-norm history for garon2. 49

4.1 The maximum attainable accuracy of FP64-GMRES(m), MP-
GMRES(m), BiCGSTAB and MP-IR using BiCGSTAB within
the iteration limit . 61

4.2 Relative residual 2-norm history for epb1 with different min and ϵin. 69
4.3 Relative residual 2-norm history for wang3 with different min and

ϵin: data is plotted halfway due to the breakdown of the method
in some cases. 70

4.4 Relative residual 2-norm history for ns3Da with different min and
ϵin : data is plotted halfway due to the breakdown of the method
in some cases. 71

4.5 Relative residual 2-norm history for memplus with different min

and ϵin : data is plotted halfway due to the breakdown of the
method in some cases. 72

4.6 Relative residual 2-norm history of the first inner BiCGSTAB
loop in MP-IR using BiCGSTAB for memplus 73

4.7 Relative residual 2-norm history for chipcool1 : including FP64-
BiCGSTAB and FP64-/MP-IR using BiCGSTAB with different
min and ϵin, data is plotted halfway due to the breakdown of the
method in some cases. 74

6

List of Tables

3.1 Comparison of memory footprint (in bytes) between FP64-GMRES(m)
and MP-GMRES(m) method. 30

3.2 Rough estimation of the memory access cost (in bytes) in the
m-step Arnoldi process in FP64 and FP32. 31

3.3 Information of the computational platform used in the numerical
experiments. 33

3.4 Basic information of the test matrices selected from the SuiteS-
parse Matrix Collection. 34

3.5 Attainable accuracy of FP64-GMRES(m) and MP-GMRES(m)
within the iteration limit . 35

3.6 Total number of inner iterations of FP64-GMRES(m) for attaining
the convergence criterion . 37

3.7 Total number of inner iterations of MP-GMRES(m) for attaining
the convergence criterion . 38

3.8 Execution time of FP64-GMRES(m) and MP-GMRES(m) in
multi-threaded execution using 40 threads 40

3.9 Comparison of the speedup ratio of MP-GMRES(m) over FP64-
GMRES(m) between the actual and estimated results 41

4.1 Rough estimation of the memory access cost (in bytes) per itera-
tion of the FP32-BiCGSTAB and m-iteration GMRES in FP32. . 58

4.2 The overall results on the total number of inner iterations for at-
taining the convergence criterion for matrices with small condition
number (κ2(A) ≤ O(103)) . 64

4.3 The overall results on the total number of inner iterations for at-
taining the convergence criterion for matrices with large condition
number (κ2(A) ≥ O(104)) . 65

4.4 The total number of inner iterations for attaining the convergence
criterion in FP64-/MP-IR using BiCGSTAB stopped by min:
ϵin = 10−10, ”—” represents that the method did not attain the
criterion by the iteration limit. 75

4.5 The total number of inner iterations for attaining the convergence
criterion in FP64-IR using BiCGSTAB stopped by ϵin: min = n,
”—” represents that the method did not attain the criterion by
the iteration limit. 76

7

LIST OF TABLES

4.6 The total number of inner iterations for attaining the convergence
criterion in MP-IR using BiCGSTAB stopped by ϵin: min = n,
”—” represents that the method did not attain the criterion by
the iteration limit. 77

4.7 The execution time for attaining the convergence criterion (∥b−
Ax∥2/∥b∥2 ≤ 10−10) . 78

4.8 The estimated speedup of MP-IR using BiCGSTAB and MP-
GMRES(m) . 79

4.9 The Comparison of estimated and actual speedup among BiCGSTAB,
MP-IR using BiCGSTAB and MP-GMRES(m) 80

8

Chapter 1

Introduction

1.1 Research Background

Linear algebra has a wide range of applications in many aspects of life and
is the core of critical computational aspects of practical application problems.
In engineering applications, linear algebra can help us better simulate and
analyze when dealing with complex mathematical models and huge amounts of
data. In information science applications, we can understand and even optimize
algorithms through linear algebra. Even in the fields of finance, medicine, and
other fields, linear algebra has significant applications, such as price prediction,
medical modeling, and so on. In many practical applications, numerical methods
have been frequently used to solve linear algebra problems, such as systems of
linear equations, eigenvalue problems, singular value decomposition, etc. An
excellent numerical method can help us improve the computational efficiency.
Among them, linear solvers, which solve systems of linear equations, are one of
the most important building blocks in scientific computing. It has an impact
on both the quality and time of problem-solving and is the bottleneck of the
computational process. Therefore, it is crucial to find more and more efficient
linear solvers to accelerate application programs.

Traditionally, double-precision floating-point number (FP64 or float64) has
been widely used as a standard in scientific computations, especially in applica-
tions requiring standard precision scientific computation, engineering simulations,
etc. In general, Floating-point Operations Per Second, which is called FLOPS for
short, has been used to evaluate the performance of computer systems. However,
due to the limitation of the power budget, the performance of FP64 becomes
more and more difficult to improve. In recent years, low precision computing that
uses FP32 or FP16 has attracted much attention. And some new hardware with
specific units for low precision computing appears, and some of them show the
possibility of strong performance in low precision computing. Additionally, low
precision computing has already been accepted and used in some new practical
applications, such as AI, machine learning, high performance computing.

9

CHAPTER 1. INTRODUCTION

There is no doubt that low precision computing (e.g., FP32 or FP16) has
advantages compared with standard precision computing (e.g., FP64). One
is the memory cost for storage. Take FP32 as an example. It uses 32 bits
to store data, which requires less memory than FP64, thus reducing the cost
of data storage. Besides, less memory footprint allows better cache memory
utilization and improves performance, especially for environments with limited
memory resources. The other is in terms of computations. Computations in FP32
format require less data transfer costs than those in FP64 and can accelerate
the computation process. Also, the number of elements that can be executed in
a single instruction is increased, which can also improve the performance. These
advantages will be even greater when programs are performed using hardware
suitable for low precision computing.

In many practical applications, a great amount of data and complex computa-
tional tasks need to be dealt with. The computation results also have a standard
precision requirement. In order to ensure output accuracy, the computations are
generally carried out by standard precision computing. Therefore, although it is
true that low precision computing can bring a lot of benefits, it is not suitable to
simply replace all data and computations with low precision computing, which
may lead to the final results failing to meet the application requirements.

Under these situations, it is crucial to determine how to use low precision
computing appropriately while ensuring that the output accuracy meets the
requirements of practical applications. One possible solution to this issue is to
develop new algorithms that use low precision computing and provide results
that meet the accuracy requirements (see Figure 1.1). The key idea here is
mixed precision(MP) computing [1, 29], which effectively combines both standard
precision computing and low precision computing. In this case, standard precision
computing is used for critical computations to ensure the accuracy of inputs
and outputs, and low precision computing is used for computations that do not
strictly require high accuracy during problem-solving. By using such a mixed
precision algorithm, we can use and benefit from low precision computing while
providing the final results with the same accuracy as traditional algorithms using
only standard precision.

In this research, the target problem is a system of linear equations Ax = b
in which the coefficient matrix is large, sparse, and non-symmetric. For this
problem, iterative refinement and Krylov subspace methods are commonly used
in numerical linear algebra. Iterative refinement(IR) [36, 50, 17, 28], proposed
by James H. Wilkinson, is an iterative method for improving the accuracy
of numerical solutions for linear systems. It is worth noting that iterative
refinement is suitable for mixed precision computing. As for Krylov subspace
methods [8, 58, 66], they are a class of iterative methods that solve systems of
linear equations. For example, the conjugate gradient(CG) method is a typical
algorithm for solving symmetric linear systems. And the Generalized Minimal
RESidual(GMRES) method [57] and its restart variant GMRES(m) method,
as well as the BiConjugate Gradient STABilized(BiCGSTAB) method [65, 66],
are often used to solve non-symmetric linear systems. Some studies on mixed
precision computing for Krylov subspace methods have been studied [12, 13, 31,

10

CHAPTER 1. INTRODUCTION

����������
� ����������	
���
����
��������
��
������������

� �������������	
���
���������

��
�����
�

	

��
���������������������������
���
����
� ��		��������
����
���
���������

��
�����
�

� ������	
�������
�
���������������
	��
����

�

� �� � � ���������	�

� �� � ��

� � � �Σ�
�

������
������������������������������
� ��
������������������������
����

�

� ����
���
���
���������

��
�����
����������������

�

Figure 1.1: Overview of my research.

30, 3, 4, 44, 45, 46, 21, 2, 69].
I consider two Krylov subspace methods that are commonly used to solve

the non-symmetric linear system for the target problem: the GMRES(m) and
BiCGSTAB methods. Based on the structure of mixed precision iterative
refinement(MP-IR), I develop numerical methods using mixed precision com-
puting, which combines FP64 and FP32, and study their numerical charac-
teristic in depth [73, 72]. For the GMRES(m) method, since the traditional
GMRES(m) method has the structure of IR [34], its mixed precision variant,
which we called MP-GMRES(m), can be reasonably regarded as MP-IR using
GMRES(m). And the MP-GMRES(m) method has already been reported and
studied [64, 3, 4, 44, 45, 73].

1.2 Research Purpose and Contributions

1.2.1 Research Purpose

The purpose of my research is to develop efficient mixed precision algorithms
for solving a linear system Ax = b, where A is large, sparse, and non-symmetric.
By exploiting the high ability of low precision computing, I aim to gain insights
into the new research direction in numerical linear algebra and high performance
computing(HPC) and provide new options for accelerating practical applications
that need linear solvers. Specifically, research will be conducted from the following
two aspects.

• Develop mixed precision algorithms based on iterative refinement and
implement them using FP64 and FP32 on a standard CPU platform.

• Conduct comprehensive numerical experiments to investigate the charac-
teristics of the mixed precision algorithms, including numerical behavior

11

CHAPTER 1. INTRODUCTION

(e.g., accuracy of computed results) and performance (e.g., computational
time).

1.2.2 Research Contribution

Mixed precision computing is one of the most recent topics in numerical linear
algebra and HPC, and only a few cases studied have been reported. My research
contribution lies not only in introducing low precision computing into algorithms
but also in finding the algorithms suitable for mixed precision. And there are
three main contributions.

• First, I investigate the detailed characteristics and effectiveness of MP-
GMRES(m). By conducting comprehensive experiments, I clarify what
class of problem can be solved by MP-GMRES(m) and investigate its
numerical behavior and performance. A detailed comparison between
MP-GMRES(m) and GMRES(m) is also made.

• Another contribution is to propose the MP-IR using BiCGSTAB method
and investigate its characteristics and effectiveness. There are few reports
on using low precision BiCGSTAB in MP-IR; only an attempt in an
application [15]. In my research, I describe how to introduce low precision
BiCGSTAB into MP-IR and conduct numerical experiments to evaluate
its characteristics and effectiveness.

• Thirdly, my research shows the applicability of mixed precision comput-
ing in numerical linear solvers, and its main impact will be accelerating
applications that need linear solvers. Besides, reducing the time of the
simulation program will also significantly impact data science applications
because simulation is now one of the important data generators.

1.3 Structure of the thesis

This thesis consists of five chapters. The brief descriptions of other chapters are
as follows.

• Chapter 2 Related work

This chapter introduces mixed precision computing, Krylov subspace meth-
ods, and the recent research background of applying mixed precision
computing in Krylov subspace methods, including their definitions, recent
related research, and applications.

• Chapter 3 Numerical Investigation of The Mixed Precision GMRES(m)
Method

In this chapter, the GMRES(m) method and its mixed precision variant,
MP-GMRES(m) method, are studied, including the introduction of meth-
ods, theoretical analysis, detailed experiment results, and comparison with

12

CHAPTER 1. INTRODUCTION

traditional GMRES(m). Detailed analysis and comparison are given from
three aspects: the maximum attainable accuracy, the number of iterations,
and the execution time.

• Chapter 4 Numerical Investigation of The Mixed Precision Itera-
tive Refinement using the BiCGSTAB Method

The research on MP-IR using BiCGSTAB is presented in this chapter.
First, the BiCGSTAB method is introduced. Then, how the BiCGSTAB
method is employed in a mixed precision variant of IR is explained. Finally,
detailed numerical experiment results and their analysis and comparison
with traditional BiCGSTAB, as well as MP-GMRES(m), are provided.

• Chapter 5 Conclusion and Future Work

In this chapter, an overall summary and contributions of the research are
given, as well as future work.

13

Chapter 2

Related Work

2.1 Mixed Precision Computing

Mixed precision computing is the technique that combines different precisions
and achieves the same computational accuracy as using standard precision
computing. By mixed precision computing, we can reduce the cost of data storage
and transfer in computations, as well as increase the arithmetic performance.
In mixed precision computing, the commonly used precision includes standard
precision (generally FP64, also called high precision in this thesis), single precision
(generally FP32), half precision (generally FP16), etc. The formats of the above
three floating points [23] are shown in Figure 2.1. The core idea is to use standard
precision, such as FP64, for some parts of the computation to maintain numerical
stability and the computation results accuracy while using lower precision, e.g.,
FP32 or FP16, for others to improve the computation efficiency.

Mixed precision computing has a wide range of applications in scientific
computation, numerical linear algebra, AI, deep learning, and other fields. It is
often used to accelerate the model training process and computation process, etc.,
and its effectiveness has been confirmed in many practical applications [48, 39, 55].
In recent years, with the appearance and development of some hardware suitable
for low precision computing, such as NVIDIA GPU with Tensor Cores, its
effectiveness is expected to be further improved.

In the field of scientific computing and numerical linear algebra, J. Sun
et al. used mixed precision computing to improve the performance of direct
solvers on FPGAs [62]. They proposed a new architecture for a mixed precision
solver and confirmed its effectiveness on FPGAs by analyzing the performance
of different precisions and mixed precision iterative refinement. Marc Baboulin
et al. [5] gave the derivation of mixed precision variants for direct and iterative
methods, and experiments showed that mixed precision algorithms could enhance
performance when solving linear systems using dense/sparse direct methods
and sparse iterative methods. Hiroyuki Ootomo and Rio Yokota [54] study
a matrix-matrix multiplication implementation using FP16 and FP32 Tensor

14

CHAPTER 2. RELATED WORK

�

����
�������	

����	

����	���

����	

����

�������	

���	

����	���

����	

����
�������	

���	

�� �� �

�� �� �

�� �

����	���

����	

��

����

����

����

Figure 2.1: The format of standard precision(FP64), single precision(FP32), and
half precision(FP16).

Cores, respectively, and achieve excellent throughput. Iterative refinement is a
commonly used method in numerical linear algebra, which iteratively improves
the approximate solution. And mixed precision computing is often combined
with this method, which is shown in Figure 2.2. The basic idea behind it is to
compute the correction term by low precision computing (e.g., single or half
precision), and its solution is updated and checked by double precision. More
related works of mixed precision computing in these fields can be found in
Section 2.3.

In addition to the field of scientific computation and numerical linear algebra,
the effectiveness of mixed precision computing has also been demonstrated in
other fields as well.

In the field of natural language processing(NLP), mixed precision computing
techniques can be used to accelerate the training process of large language models.
Oleksii Kuchaiev et al. introduced a toolkit based on Tensorflow featuring mixed
precision that can greatly accelerate the training process of neural networks and
illustrated its effectiveness through some tasks on machine translation and speech
recognition [39]. Houwen Peng et al. presented a new FP8 mixed precision
framework to train large language models and demonstrated that this new
framework can reduce memory and speed up operation [55].

Besides, T. Ichimura et al. successfully applied mixed precision computing to
earthquake simulation and achieved a significant speedup by combining double,
single, and half precision [32]. T. Kurth et al. used FP16 in NVIDIA V100
Tensor Core GPUs to identify extreme weather in climate analysis [41].

15

CHAPTER 2. RELATED WORK

����������		���
�����	�

�

�����������	��

���

���������������
����
��

���������	��

���

Figure 2.2: Mixed precision computing based on iterative refinement.

Mixed precision technique is also one of the popular topics in the AI and deep
learning field. For example, the technique is used to accelerate training models
such as deep neural networks. Some related reports can be found [24, 47, 48].
NVIDIA has given a report on Mixed precision training with a brief introduction
of three effective mixed precision training techniques [47]. Detailed description
and results were reported in [48]. In [48], Paulius Micikevicius et al. described
a technique for training deep neural networks (DNNs) using half precision and
demonstrated that the technique is effective in reducing memory consumption
and works well for a wide range of deep network models.

2.2 Krylov Subspace Methods

The Krylov subspace method, listed as one of the Top 10 Algorithms of the 20th
century [14], is one of the important research topics in the field of numerical
linear algebra and scientific computation. The subspace was first introduced by
Russian applied mathematician and naval engineer Alexei Krylov in 1931 [38],
and its applications to iterative methods, that is, the Krylov subspace method,
gradually appeared. The Krylov subspace methods play a vital role in science
and engineering and are commonly used to solve a large and sparse linear system
Ax = b, where A is a large and sparse coefficient matrix. The basic idea behind
these methods is to find an approximate solution which satisfies the accuracy
requirement in a Krylov subspace with a smaller dimension.

For a general linear system Ax = b, let x0 be an initial guess, and a k-
dimensional Krylov subspace can be defined as

Kk(A, r0) = span
{
r0, Ar0, A

2r0, . . . , A
k−1r0

}
, (2.1)

where r0 = b−Ax0. In general, We can find the k-th approximate solution xk as

xk = x0 + zk, zk ∈ Kk(A, r0). (2.2)

When choosing zk, different conditions derive different methods. For example,
the Conjugate Gradient (CG) method [27] is derived from the condition

rk ⊥ Kk(A, r0), (2.3)

16

CHAPTER 2. RELATED WORK

where rk = b−Axk, while the Generalized Minimum RESidual (GMRES) method
is derived from the condition

rk ⊥ AKk(A, r0). (2.4)

Other common Krylov subspace methods include the Biconjugate Gradient
Stabilized (BiCGSTAB) method, the Minimal Residual (MINRES) method, and
so on.

Studies on the Krylov subspace method and its variants have been reported.
In [8, 19, 18], some chapters give introductions to several Krylov subspace
methods such as CG, MINRES, BiCG, BiCGSTAB, QMR, including their
derivation, implementation, and some optimizations. A summary of known
convergence results for the CG, MINRES, and GMRES methods is summarized
and provided by Liesen, J. et al. [43]. The convergence bounds of each of these
three methods, such as residual norm, are discussed one by one. Saad Youcef
provided a study on implementing Krylov subspace methods on vector and
parallel computers [56]. Besides, Sleijpen, G. L. et al. confirmed the multiple
implementations of BiCGSTAB(l), which allow the combinations of BiCG with
arbitrary polynomial methods [60]. L. T. Yang et al. presented an improved
variant of the BiCGSTAB method, which is called the IBiCGStab. This variant
avoids the increase in computational cost while maintaining the advantages of
the original method [70].

Preconditioning and parallelization techniques are good choices for improving
the performance of Krylov subspace methods, aiming to accelerate the iterative
convergence process and reduce the computational complexity of solving linear
systems. R. Barrett et al. provided a detailed description of preconditioning in
iterative methods, including why and how to preconditioning, as well as some
typical preconditioning such as Jacobi preconditioning, symmetric successive over-
relaxation (SSOR) preconditioning, Incomplete Factorization preconditioners
(e.g., ILU(0)) and some others [8]. An effective preconditioning technique can
enhance the effectiveness of Krylov subspace methods in practical applications
[22]. R. Barrett et al. [8] introduced preconditioning and gave some typical
preconditioners. Several studies showed the effectiveness of preconditioners, e.g.,
ILU and the preconditioner based on IGO (incomplete Givens orthogonalization),
in subspace methods such as GMRES method [49, 6]. Some preconditioners
are also reported in the studies of application in BiCGSTAB, including some
applications for solving practical problems [59, 61]. In [59], the Scheduled
Relaxation Jacobi (SRJ) method is applied as a preconditioner in BiCGSTAB
method. Other preconditioners, such as Sparse Approximate Inverses, can also
be found [37].

High-performance parallelization also plays a great role in the optimization
of Krylov subspace methods. Vuik, C. et al. described a parallel implementation
of GMRES using ILU preconditioner for the discretized incompressible Navier-
Stokes equations problem [67]. Xu applied OpenMP parallel into ILU(0) GMRES,
which occupies most of the computations, and improved the performance of
simulations on incompressible fluid flows [68].

17

CHAPTER 2. RELATED WORK

Through the effective use of preconditioning and parallelization techniques,
we are able to utilize the computational resources better, thus improving the
solution efficiency in solving large-scale problems.

2.3 Studies on Mixed Precision Computing for
Krylov Subspace Methods

In recent years, mixed precision computing has attracted much attention in
the field of numerical linear algebra, as well as the field of high-performance
computing. Abdelfattah et al. [1] and Higham et al. [29] provided some reports
on mixed precision computing, which include a review and discussion of the
latest trends in computational hardware.

In numerical linear algebra, mixed precision computing techniques, including
the combination of standard precision (generally FP64) and higher precision,
are often used in conjunction with iterative refinement (IR), which means the
mixed precision variant of iterative refinement. This mixed precision variant
plays an important role in solving linear systems and contributes to improving
the accuracy of the solution, especially for ill-conditioned problems [17, 28].
Additionally, similar cases are also reported in the problems of eigenvalue, inverse
LU, and QR factorization [51, 52, 53].

As low precision computing continues evolving, its high ability has attracted
widespread attention. In the late 2000s, the wide application of GPGPU pro-
moted the further development of mixed precision computing. Mixed precision
computing that combines both standard and low precision computing attracted
much attention and in-depth research and was applied to the field of numerical
linear algebra to achieve high performance and accelerate practical problems.

In dealing with dense linear systems, early works and a summary are provided
[42, 11, 5]. As for sparse linear systems, the performance of the iterative
refinement using the sparse LU factorization in FP32 was presented [10]. In
addition, more studies, including the efficiency of the Krylov subspace method
using a preconditioner in FP32, have also attracted attention [10, 63, 33]. Similar
attempts are also made on GPU [25].

Some theoretical studies are also reported. The GMRES-IR, proposed by
Carson and Higham, is obtained based on a new rounding error analysis [12].
They also analyzed the GMRES-IR method using three precisions (FP64, FP32,
FP16) from the theoretical aspect [13]. In addition, this method was subsequently
extended to general linear systems [31] and symmetric positive definite problems
[30].

The introduction of NVIDIA GPU with Tensor cores has further advanced
the development of low precision computing, including half precision, which
is expected to promote more research on mixed-precision methods. For exam-
ple, Haidar et al. provided the performance using FP16 provided by Tensor
Cores [26]. Error analysis of FMA operations using mixed precision blocks
provided by Tensor Cores is also presented [9]. Moreover, a new benchmark,

18

CHAPTER 2. RELATED WORK

called HPL-AI, is proposed. This benchmark is used to evaluate the ability of
low precision computing of supercomputer systems and has been executed on
many supercomputers, e.g., Summit, Fugaku [40].

Turner and Walker provided the early works of the mixed precision variant
of the GMRES(m) method using FP64 and FP32 [64]. Its performance on early
GPU was reported by Anzt et al. [3, 4]. Detailed discussions on mixed precision
GMRES(m) method with or without a preconditioner on both CPU and GPU
platforms were made [44, 45, 46]. As for the BiCGSTAB method, low precision
computing was attempted to be applied in a QCD problem [15].

In addition to the above studies on GMRES(m) and BiCGSTAB, other
subspace methods are also studied. For instance, some attempts to employ low
precision computing into the CG method were made [21, 2, 69].

The studies mentioned above mainly focus on successful results and practical
applications. Compared with these studies, our study has two main contributions.
One is the detailed discussion on numerical characteristics of mixed precision
algorithms from the viewpoints of attainable accuracy, execution time, etc.
The other is proposing a mixed precision algorithm based on mixed precision
iterative refinement and BiCGSTAB. Detailed analysis and comparison are also
given in this study. Our study helps provide a clearer and more comprehensive
understanding of the performance of mixed precision computing in Krylov
subspace methods and provides some new sights in applications.

19

Chapter 3

Numerical Investigation of
The Mixed Precision
GMRES(m) Method

In this chapter, the GMRES(m) method and its mixed precision variant are
investigated. First, a general introduction to this part of the research is given.
Then, iterative refinement, the GMRES(m) method, and their mixed precision
variants are introduced. Next, the methods are analyzed from the theoretical
aspect. Finally, detailed analysis and comparison are given.

3.1 Introduction

The GMRES(m) method is one of the well-known Krylov methods, which is a
restart variant of the GMRES method. It is often used to solve problems of
sparse and non-symmetric linear systems. Currently, mixed precision computing
has been successfully applied to the GMRES(m) method and has been studied
by many scholars [64, 34, 3, 4, 44, 45, 46]. From these studies and reports, there
is strong evidence that shows the effectiveness of mixed precision computing for
some test problems or applications. For some problems, using the mixed precision
GMRES(m) solver can also satisfy the accuracy requirement and even show a
shorter execution time on the CPU or GPU platforms, which helps improve
performance. However, many studies and reports are conducted for specified
applications. The numerical behavior of the mixed precision GMRES(m) method
and the class of problems that can be solved have not been clarified in detail.

The research on the mixed precision GMRES(m) method aims to investigate
the numerical behavior from the viewpoints of, for example, attainable accuracy,
execution time, etc. With multiple sets of parameter settings, comparative
experiments are conducted for various test problems (matrices) to study the
mixed precision GMRES(m) method in depth and compare it with the traditional

20

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

GMRES(m) method using only FP64. Besides, the convergence process of the
algorithm is also one of the research interests, which helps us better understand
the algorithm process and the experiment results. Thus, for some typical cases,
the histories of the relative residual 2-norm are investigated and analyzed. The
presented results and conclusions will contribute to a deeper understanding and
effective application of the method.

3.2 Iterative Refinement and its Mixed Precision
Variant

Iterative refinement(IR) [36, 50, 17, 28], proposed by James H. Wilkinson, is a
long-standing method, and the solution x can be iteratively improved and reach
the required accuracy by it. The scheme consists of the following three steps:
Let x̃ be the current approximate solution, then

• Step 1: Compute the residual r = b−Ax̃.

• Step 2: Solve the error equation Ae = r and obtain an approximate
solution ẽ.

• Step 3: Update the solution x̃ = x̃+ ẽ.

These three steps are repeated. If the convergence criterion is satisfied, the
iteration is stopped; otherwise, return to Step 1 and perform more iterations
using the latest approximate solution until convergence.

In Step 2, different numerical methods are selected depending on the charac-
teristics of the error equation. If the approximate solution x̃ can be improved in
Step 2, like

∥b−A(x̃+ ẽ)∥2 < ∥b−Ax̃∥2, (3.1)

we can eventually obtain a sufficiently accurate solution.
Iterative refinement is very suitable for mixed precision computing, and

we can introduce low precision computing to it. In mixed precision iterative
refinement(MP-IR), Step 1 and Step 3 are performed with high precision (or
standard precision), and Step 2 is performed with low precision. The choice of
precision is determined by their influence on the final accuracy. For Step 1, if
the residual is computed in low precision, the accuracy will limit the subsequent
error correction. Also, the approximate solution needs to be updated in high
precision to avoid round-off caused by low precision and to perform convergence
checks.

In contrast, the computation in Step 2 does not strictly require high precision
computing. First, it is known that the solution can potentially achieve the
same accuracy that high precision computing does for some certain problems.
And second, reducing the computational accuracy in this step does not limit
the maximum attainable accuracy. If the approximate solution is not accurate
enough in this iteration, more iterations can be performed until the convergence
criterion is satisfied.

21

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Due to these reasons, we can obtain the mixed precision iterative refinement,
whose details are shown in Algorithm 1.

Algorithm 1 Mixed Precision Iterative Refinement (MP-IR)

Input: x(= x0): initial guess, A: coefficient matrix, b: right-hand side vector, ϵ:
convergence criterion

1: A(L) = Low(A) ▷ convert A to low precision data
2: repeat
3: r = b−Ax
4: if ∥r∥2/∥b∥2 ≤ ϵ then return x
5: r(L) = Low(r) ▷ convert r to low precision data
6: Solve A(L)e(L) = r(L) ▷ solve by low precision arithmetic
7: e = Std(e(L)) ▷ convert e(L) to standard precision data
8: x = x+ e
9: until attain other conditions (e.g., limit of the total iterations)

Output: x: (approximate) solution vector

In the algorithm, variables with the suffix “(L)” are stored in low precision,
and Low(·) and Std(·) represent the operation of converting a variable from
standard precision to low precision and from low precision to standard precision,
respectively. The accuracy of the returned solution is checked by standard
precision (in Line 4), which uses relative residual 2-norm for the check. In
this research, FP64 and FP32 are used as standard precision and low precision,
respectively.

3.3 Review of GMRES(m) and Mixed Precision
GMRES(m) Method

3.3.1 The GMRES(m) Method

The Generalized Minimal RESidual(GMRES) method [58] is an iterative method
for solving systems of linear equations with a large, sparse, and non-symmetric
coefficient matrix. The method was proposed by Saad and Schultz [57] in 1986
and is one of the famous Krylov subspace methods. In the case of setting the
initial guess x0 = 0, the key idea is to construct a Krylov subspace and find an
approximate solution in that subspace. In this research, the target problem is
the system of linear equations

Ax = b, (3.2)

where A ∈ Rn×n is the coefficient matrix, x ∈ Rn is the solution vector and
b ∈ Rn is the right-hand side vector.

Let xk be an approximate solution of the linear system (3.2), which is obtained
at the k-th iteration of the GMRES method. The GMRES method consists of
the following steps.

22

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Step 1: Construct the Krylov subspace.

Give an initial guess x0 and compute residual r0 = b−Ax0, and construct
the Krylov subspace Kk(A, r0) = span{r0, Ar0, A

2r0, . . . , A
k−1r0}. GMRES

method can be described as finding an approximate solution xk ∈ x0+Kk(A, r0)
that satisfies the condition rk ⊥ AKk(A, r0), where rk = b−Axk.

Step 2: Obtain an orthogonal matrix Vk and Hessenberg matrix H̃k

using Arnoldi process.

The Arnoldi process is the process of computing a set of orthogonal bases of
a Krylov subspace. In the GMRES method, this process is used to project and
orthogonalize the coefficient matrix A into the Krylov subspace, which involves
the modified Gram-Schmidt orthogonalization (MGS) and sparse matrix vector
multiplication (SpMV).

Through Arnoldi process, an orthogonal matrix Vk =
[
v1 v2 · · · vk

]
∈

Rn×k, whose column vectors form an orthogonal basis of Kk(A, r0), and an
(k + 1)-by-k upper Hessenberg matrix

H̃k =


h1,1 h1,2 · · · h1,k

h2,1 h2,2 · · · h2,k

h3,2 · · · h3,k

. . .
...

hk+1,k

 ∈ R(k+1)×k (3.3)

are obtained. The relation between Vk and H̃k is

AVk = Vk+1H̃k. (3.4)

These two matrices are used to approximately represent the subspace and thus
used to solve the subsequent least squares problem.

Step 3: Solve least squares problem

After step 2, the approximate solution can be written as

xk = x0 + Vkyk, (3.5)

and the problem reduces to finding a vector yk, which minimizes the 2-norm
of the residual rk = b− Axk. In other words, that is solving the least squares
problem

yk = argmin
y∈Rk

∥rk∥2

Using (3.5), we have

yk = argmin
y∈Rk

∥rk∥2

= argmin
y∈Rk

∥b−A(x0 + Vky)∥2

= argmin
y∈Rk

∥r0 −AVky∥2. (3.6)

23

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

By the relation (3.4), the minimization problem (3.6) can be transformed as
follows:

min
y∈Rk

∥r0 −AVky∥2 ⇔ min
y∈Rk

∥r0 − Vk+1H̃ky∥2

⇔ min
y∈Rk

∥V ⊤
k+1r0 − H̃ky∥2

⇔ min
y∈Rk

∥βu− H̃ky∥2, (3.7)

where β = ∥r0∥2 and u = [1, 0, . . . , 0]⊤ ∈ Rk+1. Then, the minimization
problem (3.7) is solved by the QR factorization based on the Givens rotation.

Finally, the approximate solution can be obtained.
The GMRES method is suitable for large, sparse, and non-symmetric linear

systems and has good convergence. By iterative computations, the solution
can be gradually improved.it can obtain a solution that approximates the exact
solution. However, as the number of iterations increases, storage and computation
costs also increase at each iteration step. Thus, when the number of iterations
is quite large and reaches the memory limitation, the GMRES method may
gradually lose its competitiveness. Due to this fact, some variants of the GMRES
method have been explored, and the restart GMRES method [58], which is
known as the GMRES(m) method, is one of them.

The outline of the GMRES(m) method is shown in Algorithm 2. In GMRES(m),
m represents the restart frequency, and the method consists of the following two
main steps:

• Step 1: Solve Ax = b by the m-iteration GMRES with the initial guess
x0 and obtain the approximate solution xm.

• Step 2: Update the initial guess: x0 = xm.

These two steps are repeated until the algorithm converges.
As seen from Line 6 in Algorithm 2, GMRES(m) includes m-step Arnoldi

process, which is also an iterative process. Therefore, it has a nested loop
structure. For a better description, we use inner iteration to represent the
number of iterations of m-step Arnoldi process in GMRES(m) method.

Compared with the GMRES method, the GMRES(m) method uses a restart
strategy to keep the number of iterations and the dimension of the subspace
within an acceptable range (e.g., restart frequency m), which is helpful in
reducing the storage and computation cost and may improve the performance
for some problems. For the choice of restart frequency, the discussion will be
given in later sections.

3.3.2 The Mixed Precision GMRES(m) Method

In the standard GMRES(m) method, all computations are in high precision.
Thus, which part of the computations is suitable for low precision computing is

24

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Algorithm 2 GMRES(m)

Input: x0: initial guess, ϵ: convergence criterion, A; coefficient matrix, b: right-
hand side vector, m: restart frequency, maximum number of total inner
iterations

1: repeat
2: r0 = b−Ax0

3: β = ∥r0∥2
4: if β/∥b∥2 ≤ ϵ then return x0

5: v1 = r0/β
6: Compute Vm+1 and H̃m by the m-step Arnoldi process with A and v0.
7: Compute ym from β and H̃m.
8: xm = x0 + Vmym
9: x0 = xm

10: until attain the maximum number of total inner iterations
Output: x0

necessary to be identified to derive a mixed precision variant of the GMRES(m)
method.

As mentioned in the section 3.3.1, the GMRES(m) method has a similar loop
structure to IR. And the relation between GMRES(m) and IR has been pointed
out by Imakura et al. [34], that is, the following computation in GMRES(m):

• Step 1: Solve Ax = b by the m-iteration GMRES with the initial guess
x0 and obtain the approximate solution xm.

• Step 2: Update the initial guess: x0 = xm.

is mathematically equivalent to the following computations:

• Step 1: Solve Ae = r by the m-iteration GMRES with the initial guess
e0 = 0 and obtain the approximate solution em, where r = b−Ax0.

• Step 2: Update the initial guess: x0 = x0 + em.

This equivalent transformation suggests that the GMRES(m) method can
be reasonably viewed as an iterative refinement that solves the error equation
by the m-iteration GMRES method. Thus, based on the structure of MP-IR, a
mixed precision variant of iterative refinement using m-iteration GMRES method
can be derived, which can also be regarded as the mixed precision variant of
GMRES(m) method.

The mixed precision GMRES(m) method can be described as following steps:

• Step 1: Compute the residual r = b−Ax̃ in high precision.

• Step 2: Solve the error equation Ae = r by the m-iteration GMRES and
obtain an approximate solution ẽ in low precision.

• Step 3: Update the solution x̃ = x̃+ ẽ in high precision.

25

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

And Algorithm 3 shows the outline of the mixed precision GMRES(m)
method. Similar as Algorithm 1, the suffix “(L)” means that variables are stored
in low precision, and Low(·) and Std(·) represent the operation of converting
a variable from standard precision to low precision and from low precision to
standard precision, respectively.

Algorithm 3 Mixed Precision GMRES(m)

Input: x0: initial guess, ϵ: convergence criterion, A; coefficient matrix, b: right-
hand side vector, m: restart frequency, maximum number of total inner
iterations

1: A(L) = Low(A)
2: repeat
3: r0 = b−Ax0

4: β = ∥r0∥2
5: if β/∥b∥2 ≤ ϵ then return x0

6: v1 = r0/β
7: β(L) = Low(β)

8: v
(L)
0 = Low(v0)

9: Compute V
(L)
m+1 and H̃

(L)
m by the m-step Arnoldi process with A(L) and

v
(L)
0 . ▷ using low precision arithmetic

10: Compute y
(L)
m from β(L) and H̃

(L)
m . ▷ using low precision arithmetic

11: z
(L)
m = V

(L)
m y

(L)
m ▷ using low precision arithmetic

12: zm = Std(z
(L)
m)

13: xm = x0 + zm
14: x0 = xm

15: until attain the maximum number of total inner iterations
Output: x0

3.4 Theoretical Analysis of Mixed Precision GMRES(m)
Method

In this section, the mixed precision GMRES(m) using FP64 and FP32 is derived
from the theoretical aspect, including the details of the method, analysis of
numerical behavior, estimation of the speedup, and memory cost. Then, it
is compared with the traditional GMRES(m) method using only FP64. For
simplicity in description, we denote the traditional GMRES(m) method by
“FP64-GMRES(m)” and mixed precison GMRES(m) by “MP-GMRES(m)”.

3.4.1 Analysis on the Numerical Behavior

The MP-GMRES(m) method has already been proposed, and some related
research can be found [64, 3, 4, 44, 45]. However, the numerical behavior of

26

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

the method is not clear, which is also one of my research objectives. Here,
Algorithm 4 presents the details of the MP-GMRES(m) method and some
analysis of the numerical behavior from the theoretical aspect is given.

In Algorithm 4, variables with the suffix “(FP32)” are stored in FP32, and
lines with the comment ”by FP32” are computed by the FP32 arithmetic. ktotal
counts the total number of inner iterations.

Next, the numerical behavior of the MP-GMRES(m) method is analyzed
following the steps of MP-GMRES(m) and compared with the FP64-GMRES(m)
method.

• Step 1: Compute residual in high precision.

In Line 7, the residual r is obtained using A and b stored in FP64. And
the residual itself is also stored in FP64. This step is in the same condition
as FP64-GMRES(m).

• Step 2: Solve error equation in low precision

In the m-iteration GMRES computation, that is lines 11-33, low precision
is used for all variables and computations. However, owing to the compar-
atively limited computational capabilities of low precision computing, the
MP-GMRES(m) method is expected to exhibit a lower refinement ratio of
the approximate solution for the same number of iterations(i.e., with the
same restart frequency m). Therefore, MP-GMRES(m) may require more
outer iterations(line 6-37) to achieve convergence.

However, the MP-GMRES(m) method is able to converge as long as the
approximate solution can be improved in each iteration

∥b−Axk∥2 < ∥b−Ax0∥2, (3.8)

even though sometimes the improvement is only a little.

• Step 3: Update approximate solution in high precision

Both the approximate solution updating and convergence check are per-
formed in FP64, which is the same as the FP64-GMRES(m) method. There-
fore, the result is as accurate as those obtained by the FP64-GMRES(m)
method if the MP-GMRES(m) method finally converges.

In addition, a new phenomenon may occur in this step. In Step 2, the
relative residual 2-norm is also checked in each inner iteration (Line 30).
When the convergence criterion is satisfied, it jumps out of the loop and
goes directly to Step 3. The problem, however, is that the computation
and check in Step 2 are performed in FP32. As a result, there may be a
situation where the approximate solution that passes the inner convergence
check (Line 30) does not satisfy the outer convergence criterion (Line 9).
In this case, more iterations are required, which also leads to an increase
in the total number of iterations.

In addition, the MP-GMRES(m) method differs from the FP64-GMRES(m)
method in terms of the subspace and the requirement of restart frequency.

27

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Algorithm 4 MP-GMRES(m) investigated in this research

Input: x0: initial guess, ϵ: convergence criterion, A; coefficient matrix, b: right-
hand side vector, m: restart frequency, kmax: maximum number of total
inner iterations

1: A(FP32) = ToFP32(A)
2: ζ = ∥b∥2
3: ζ(FP32) = ToFP32(ζ)
4: ϵ(FP32) = ToFP32(ϵ)
5: ktotal = 0
6: repeat
7: r0 = b−Ax0

8: β = ∥r0∥2
9: if β/ζ ≤ ϵ then return x0

10: v1 = r0/β
11: β(FP32) = ToFP32(β)

12: v
(FP32)
1 = ToFP32(v1)

13: u(FP32) = [u
(FP32)
1 , . . . , u

(FP32)
k+1]⊤ = [β(FP32), 0, . . . , 0]⊤

14: for k = 1, 2, . . . ,m do
15: ktotal = ktotal + 1
16: w(FP32) = A(FP32)v

(FP32)
k ▷ by FP32

17: for j = 1, 2, . . . , k do

18: h
(FP32)
j,k = v

(FP32)
j

⊤
w(FP32) ▷ by FP32

19: w(FP32) = w(FP32) − h
(FP32)
j,k v

(FP32)
j ▷ by FP32

20: end for
21: h

(FP32)
k+1,k = ∥w(FP32)∥2 ▷ by FP32

22: v
(FP32)
k+1 = w(FP32)/h

(FP32)
k+1,k ▷ by FP32

23: for j = 1, 2, . . . , k − 1 do

24:

(
h
(FP32)
j,k

h
(FP32)
j+1,k

)
=

(
c
(FP32)
j s

(FP32)
j

−s
(FP32)
j c

(FP32)
j

)(
h
(FP32)
j,k

h
(FP32)
j+1,k

)
▷ by FP32

25: end for

26: c
(FP32)
k = h

(FP32)
k,k /

√
h
(FP32)
k,k

2
+ h

(FP32)
k+1,k

2
▷ by FP32

27: s
(FP32)
k = h

(FP32)
k+1,k /

√
h
(FP32)
k,k

2
+ h

(FP32)
k+1,k

2
▷ by FP32

28:

(
u
(FP32)
k

u
(FP32)
k+1

)
=

(
c
(FP32)
k s

(FP32)
k

−s
(FP32)
k c

(FP32)
k

)(
u
(FP32)
k

u
(FP32)
k+1

)
▷ by FP32

29:

(
h
(FP32)
k,k

h
(FP32)
k+1,k

)
=

(
c
(FP32)
k s

(FP32)
k

−s
(FP32)
k c

(FP32)
k

)(
h
(FP32)
k,k

h
(FP32)
k+1,k

)
▷ by FP32

30: if |u(FP32)
k+1 |/ζ(FP32) ≤ ϵ(FP32) then goto 32 ▷ by FP32

31: end for

32: y
(FP32)
k =


h
(FP32)
1,1 · · · h

(FP32)
1,k

. . .
...

h
(FP32)
k,k


−1

u
(FP32)
1
...

u
(FP32)
k

 ▷ by FP32

33: z
(FP32)
k =

[
v
(FP32)
1 · · · v

(FP32)
k

]
y
(FP32)
k ▷ by FP32

34: zk = ToFP64(z
(FP32)
k)

35: xk = x0 + zk
36: x0 = xk

37: until ktotal > kmax

Output: x0

28

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

• In the MP-GMRES(m) method, the generated Krylov subspace is Kk(A
(FP32), v

(FP32)
1),

while Kk(A, v1) is generated in FP64-GMRES(m).

• The error equation solved in MP-GMRES(m) method is different from
that of FP64-GMRES(m). MP-GMRES(m) solves

A(FP32)e = r
(FP32)
0 (= β(FP32)v

(FP32)
1), (3.9)

while FP64-GMRES(M) solves

Ae = r0(= βv1). (3.10)

Therefore, the requirement for restart frequency m during the iteration
process is also different. In general, MP-GMRES(m) requires a larger m.
And the discussion about restart frequency m is given in detail in the
subsequent sections based on the experimental results.

3.4.2 Memory Footprint on Standard CPU Platform

On standard CPU platforms, both FP64 and FP32 are available data types,
and the conversion of variables between these two types is straightforward. For
example, in the C language, one can use double and float to represent FP64
and FP32, respectively, and type cast can be used to realize the transformation
between the two. Thus, the MP-GMRES(m) algorithm can theoretically be
implemented on CPU platforms. However, it is crucial to be mindful of the
associated memory costs.

Compared to the FP64-GMRES(m) method, the MP-GMRES(m) method
needs to convert the data in the coefficient matrix A to low precision and store
it in a new array A(FP32)(Line 1 in Algorithm 4), which leads to more memory
consumption. However, MP-GMRES(m) also benefits from reduced memory

consumption. By replacing Vm+1 with V
(FP32)
m+1 , the memory consumption can

be reduced. And, Vm+1 is not required in the MP-GMRES(m) method, further
contributing to a positive impact on memory footprint reduction.

In our research, the CSR (Compressed Sparse Row) format is used to store
a sparse matrix. The CSR format generally consists of three one-dimensional
arrays: val, col ind and row ptr. The specific representation is as follows.

• val: used to store the values of non-zero elements in the matrix.

• col ind: used to store the column indices of all non-zero elements.

• row ptr: used to store the position indices of the first non-zero element
in each row in val array.

For the MP-GMRES(m) method, only val needs to be stored in FP32 addition-
ally.

The memory footprint of the FP64-GMRES(m) method and MP-GMRES(m)
method is compared in Table 3.1, where Nnz denotes the number of non-zero

29

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Table 3.1: Comparison of memory footprint (in bytes) between FP64-GMRES(m)
and MP-GMRES(m) method.

FP64 MP

A val (FP64) 8Nnz 8Nnz

col ind (INT32) 4Nnz 4Nnz

row ptr (INT32) 4n 4n
val (FP32) – 4Nnz

V (FP64) 8(m+ 1)n –
(FP32) – 4(m+ 1)n

Total 12Nnz + (8m+ 12)n 16Nnz + (4m+ 8)n

elements in the matrix A. In Table 3.1, the change in memory footprint from
FP64-GMRES(m) to MP-GMRES(m) is

(16Nnz + (4m+ 8)n)− (12Nnz + (8m+ 12)n) = 4Nnz − 4mn− 4n

= 4n

(
Nnz

n
− (m+ 1)

)
. (3.11)

This equation shows that if the average of the number of non-zero elements
per row (Nnz/n) in A is smaller than the restart frequency m, that is

Nnz

n
< m, (3.12)

the memory footprint does not increase. And this condition is often satisfied in
practical applications.

3.4.3 Estimation on the Expected Speedup

Besides numerical behavior and memory footprint, another critical aspect is
whether the MP-GMRES(m) method obtains improvement in execution time.
This subsection discusses the estimated speedup using a simple model.

The model primarily focuses on the m-step Arnoldi process and ignores other
computational costs. Also, the analysis and modeling do not consider the impact
of the cache memory in order to simplify the comparison of the m-step Arnoldi
process in FP64 and FP32.

The m-step Arnoldi process mainly consists of SPMV and MGS operations
for m vector, both of which can be assumed as memory-bound computations.
Table 3.2 roughly estimates the memory access cost in the m-step Arnoldi process.
For SpMV, we consider the memory access cost for two vectors, as well as the
cost of storing the matrix in CSR format.

The number of iterations required for the m-iteration GMRES process also
differs in FP64-GMRES(m) and MP-GMRES(m) and effects the estimated
speedup. Let γ donate the ratio of the number of repetitions of the m-iteration

30

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Table 3.2: Rough estimation of the memory access cost (in bytes) in the m-step
Arnoldi process in FP64 and FP32.

FP64 FP32

SpMVs (12Nnz + 20n)m (8Nnz + 12n)m
MGS 8 · 1

2m
2n 4 · 1

2m
2n

Total 4m2n+ 12mNnz + 20mn 2m2n+ 8mNnz + 12mn

GMRES process in MP-GMRES(m) over that in FP64-GMRES(m). In general,
it is expected to be greater than 1. The acceleration of MP-GMRES(m) compared
to FP64-GMRES(m) is estimated as follow

(Speedup) =
4m2n+ 12mNnz + 20mn

γ(2m2n+ 8mNnz + 12mn)

=
2m+ 6Nnz

n + 10

γ
(
m+ 4Nnz

n + 6
)

≃ 2ρ+ 6

γ(ρ+ 4)
, (3.13)

where ρ = m/(Nnz/n). From

1.5 <
2ρ+ 6

ρ+ 4
< 2, (3.14)

we can draw the following assumptions:

• If γ = 1.0, indicating no convergence behavior degradation. Due to the
ratio of bytes of FP64 and FP32, the maximum speedup is up to 2.0.

• If γ < 1.5, MP-GMRES(m) has the potential to accelerate.

• If γ > 2.0, which means that MP-GMRES(m) requires at least twice as
many m-iteration GMRES as FP64-GMRES(m). And MP-GMRES(m)
is likely to require more execution time than FP64-GMRES(m) using the
same m.

• As ρ becomes larger, the expected speedup increases.

3.5 Numerical Results

In this section, comprehensive numerical experiments are conducted to illustrate
the numerical behavior of MP-GMRES(m) from a practical perspective. Using
various matrices in the SuiteSparse Matrix Collection [16], detailed analysis
and comparison with the FP64-GMRES(m) are made from three aspects: the
maximum attainable accuracy, the number of iterations for attaining convergence
criterion, and the execution time. Additionally, some interest cases are discussed
in this section as well.

31

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

3.5.1 Problem Settings

Consider the linear system
Ax = b, (3.15)

where A ∈ Rn×n is the coefficient matrix and is large, sparse, and non-symmetric,
which often occurs in practice. x ∈ Rn is the solution vector and b ∈ Rn is the
right-hand side vector.

With mixed precision computing techniques, most computations in MP-
GMRES(m) are performed in FP32, while the input for the original problem
and the output for the approximate solution are maintained in FP64.

For both FP64-GMRES(m) and MP-GMRES(m) methods, we use relative
residual 2-norm, defined as

∥r∥2
∥b∥2

or
∥b−Ax∥2

∥b∥2
, (3.16)

to check whether the convergence criterion is satisfied, where both data and
computations are conducted in FP64.

3.5.2 Experiment Settings

The FP64-GMRES(m) and MP-GMRES(m) methods are experimented on a
single computational node of the supercomputer system Grand Chariot operated
at Hokkaido University. The specific configuration of the platform is shown in
Table 3.3. The operating system is Red Hat Enterprise Linux Server release 7.6.
The programming language is C language, and the compilation environment is
icc (ver. 19.1.3.304). Besides, OpenMP is used for parallelization.

The experiments include three parts of evaluation: the maximum attainable
accuracy, the total number of inner iterations, and the execution time. Among
them, maximum attainable accuracy and the number of iterations are evaluated
using serial code. On the other hand, the evaluation of execution time is
performed using OpenMP parallelism, where SpMV and MGS kernels in the
Arnoldi process are paralleled using OpenMP.

Selected from the SuiteSparse Matrix Collection, the basic information of the
matrices is shown in Table 3.4. In order to investigate the numerical behavior of
the MP-GMRES(m) method on various problems, 26 matrices whose 2-norm
condition number κ2(A)(= ∥A∥2∥A−1∥2) in the range from O(101) to O(108)
are selected, and are stored in the CSR format in the experiments. Out of these
26 matrices, the value of Nnz/n of 23 matrices is smaller than 50, which is the
minimum value of restart frequency in this research. The value of the other three
matrices is smaller than 150. These data basically satisfy the condition (3.12) in
our experiments.

The other settings in the experiment are listed as follows.

• Initial guess: x0 = [0, 0, . . . , 0]⊤

• Right-hand side vector: b = [1, 1, . . . , 1]⊤

32

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Table 3.3: Information of the computational platform used in the numerical
experiments.

Item Description

CPU No. Xeon Gold 6148
Number of cores 20
Frequency 2.4 GHz

Node Number of CPUs 2
Memory size 384 GB

• Convergence criterion:
∥b−Ax∥2

∥b∥2
≤ 10−10

• Iteration limit: (total number of inner iterations) ≤ n

• Candidates of m: 50, 100, 200, 300, 400, 500

And the relative residual 2-norm is computed with A, b, and x in FP64, which
is the same as that in FP64-GMRES(m). And the total number of iterations is
the sum of iterations in m-iteration GMRES in each restart.

3.5.3 Analysis on the Maximum Attainable Accuracy

By introducing mixed precision computing, whether MP-GMRES(m) is still able
to solve the problems that FP64-GMRES(m) can solve is one of our concerns.
Table 3.5 provides the maximum attainable relative residual 2-norm in FP64-
GMRES(m) and MP-GMRES(m). In the table, we use log10 (∥b−Ax∥2/∥b∥2)
to show the results, and “-11” means that the method attains the convergence
criterion within iteration limits.

From Table 3.5, FP64-GMRES(m) and MP-GMRES(m) both converge or do
not converge in 23 out of 26 matrices. In three cases (airfoil 2d, chipcool1 and
TSOPF RS b39 c7), only the FP64-GMRES(m) method can converge. However,
when both two methods fail to converge, there is almost no difference in the final
attainable accuracy. It is worth noting that in some cases with large condition
numbers, the initial solution is not greatly improved after a series of iterations.
This suggests the potential necessity for additional optimization techniques, such
as preconditioning, which is one of our directions in further research.

3.5.4 Analysis on the Total Number of Iterations

For each matrix, experiments are conducted with each m. The results of FP64-
GMRES(m) and MP-GMRES(m) are shown in Tables 3.6 and 3.7, respectively.
In the tables, “—” represents that the method did not satisfy the convergence
criterion within the iteration limit.

First and foremost, both of the FP64-GMRES(m) method and MP-GMRES(m)
method can converge, except for airfoil 2d, chipcool1 and TSOPF RS b39 c7.

33

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Table 3.4: Basic information of the test matrices selected from the SuiteSparse
Matrix Collection.

κ2(A) Name n Nnz Kind

O(101) cage10 11,397 150,645 Directed weighted graph

O(102)

appu 14,000 1,853,104 Directed weighted random graph
Zhao1 33,861 166,453 Electromagnetics problem
FEM 3D thermal1 17,880 430,740 Thermal problem
ns3Da 20,414 1,679,599 Computational fluid dynamics

O(103)
poisson3Da 13,514 352,762 Computational fluid dynamics
wang3 26,064 177,168 Semiconductor device problem
epb1 14,734 95,053 Thermal problem

O(104)
coupled 11,341 98,523 Circuit simulation problem
af23560 23,560 484,256 Computational fluid dynamics
Zhao2 33,861 166,453 Electromagnetics problem

O(105)
memplus 17,758 126,150 Circuit simulation problem
wang4 26,068 177,196 Semiconductor device problem
viscoplastic2 32,769 381,326 Materials problem

O(106)

airfoil 2d 14,214 259,688 Computational fluid dynamics
inlet 11,730 328,323 Model reduction problem
jan99jac040sc 13,694 82,842 Economic problem
chipcool1 20,082 281,150 Model reduction problem

O(107)

TSOPF RS b39 c7 14,098 252,446 Power network problem
sme3Da 12,504 874,887 Structural problem
garon2 13,535 390,607 Computational fluid dynamics
shermanACb 18,510 145,149 2D/3D problem

O(108)

powersim 15,838 67,562 Power network problem
circuit 3 12,127 48,137 Circuit simulation problem
e40r0100 17,281 553,562 2D/3D problem
rajat15 37,261 443,573 Circuit simulation problem

34

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

T
ab

le
3.
5:

A
tt
ai
n
ab

le
ac
cu
ra
cy

of
F
P
64
-G

M
R
E
S
(m

)
an

d
M
P
-G

M
R
E
S
(m

)
w
it
h
in

th
e
it
er
at
io
n
li
m
it
:
⌊l
o
g
1
0
(∥
b
−
A
x
∥ 2
/∥

b∥
2
)⌋

w
h
en

th
e
so
lv
er

at
ta
in
s
th
e
it
er
at
io
n
li
m
it
or

th
e
co
n
v
er
g
en
ce

cr
it
er
io
n
(“
-1
1
”
co
rr
es
p
o
n
d
s
to

th
is

ca
se
)
is

li
st
ed
.

κ
2
(A

)
M
at
ri
x
N
am

e
m

=
50

m
=

1
0
0

m
=

2
0
0

m
=

3
0
0

m
=

4
0
0

m
=

5
0
0

F
P
64

M
P

F
P
6
4

M
P

F
P
6
4

M
P

F
P
6
4

M
P

F
P
6
4

M
P

F
P
6
4

M
P

O
(1
01
)

ca
ge
10

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

O
(1
02
)

ap
p
u

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

Z
h
ao
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

F
E
M

3D
th
er
m
al
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

n
s3
D
a

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

O
(1
03
)

p
oi
ss
on

3D
a

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

w
an

g3
-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

ep
b
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

O
(1
04
)

co
u
p
le
d

-2
-2

-9
-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

af
23
56
0

-1
-1

-1
-1

-1
-1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

Z
h
ao
2

-1
-1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

O
(1
05
)

m
em

p
lu
s

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

w
an

g4
-1

-1
-1

-1
-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

v
is
co
p
la
st
ic
2

-1
-1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

O
(1
06
)

ai
rf
oi
l
2d

-8
-3

-8
-3

-9
-4

-9
-3

-9
-5

-1
1

-9
in
le
t

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

ja
n
99
ja
c0
40
sc

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

ch
ip
co
ol
1

-1
-1

-1
-2

-4
-9

-1
0

-3
-1
1

-6
-1
1

-4

O
(1
07
)

T
S
O
P
F

R
S
b
39

c7
-1

-1
-1

-1
-1
1

-1
-1
1

-1
-1
1

-1
-1
1

-1
sm

e3
D
a

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-2
-1

ga
ro
n
2

-1
-1

-1
-1

-2
-2

-3
-3

-3
-3

-3
-3

sh
er
m
an

A
C
b

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

O
(1
08
)

p
ow

er
si
m

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

ci
rc
u
it

3
-1

-1
-1

-1
-1

-1
-1

-2
-2

-2
-2

-2
e4
0r
01
00

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

ra
ja
t1
5

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
0

35

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

This result indicates that if practice problems can be solved by FP64-GMRES(m),
MP-GMRES(m) is also expected to solve the problems.

Next, for the same restart frequency m, MP-GMRES(m) method requires
almost the same (especially when m is small) or even more number of iterations
as FP64-GMRES(m) does in most cases. This is consistent with the theoretical
analysis in Section 3.4.1.

Moreover, the increase of m also impacts the trend of the total number
of iterations. When m is small, the total numbers of iterations of the FP64-
GMRES(m) and MP-GMRES(m) methods are basically the same. However, asm
increases, there is a difference between the two methods. For FP64-GMRES(m),
the number of iterations decreases as m increases, while for MP-GMRES(m), an
increase sometimes occurs(e.g., cage10, poisson3Da). We speculate that this
trend is related to the decrease in the relative residual 2-norm after each restart,
which is possibly influenced by two factors: the difference in computational
capability between FP64 and FP32, and the matrix itself.

Take memplus for an example, Figure 3.1 shows the change of the total number
of iterations in FP64-GMRES(m) and MP-GMRES(m). This figure shows
that the number of iterations decreases in FP64-GMRES(m), whereas, in MP-
GMRES(m), it first decreases and then increases. This trend is consistent with
the previous discussion. Additionally, when m = 50 and 100, MP-GMRES(m)
requires less number of iterations which need further study.

Furthermore, in addition to the general trends mentioned above, there are
also some special cases. For cage10 and Zhao1, FP64-GMRES(m) converges
within one restart. However, no such cases in MP-GMRES(m) are found in our
experiments. Due to the fact that the computation is performed in FP32 in one
restart, this result is acceptable.

3.5.5 Analysis on the Execution Time

Table 3.8 shows the performance of FP64-GMRES(m) and MP-GMRES(m) in
terms of the execution time. OpenMP parallelism is used in these experiments,
and the number of threads is 40. To better compare the execution time, only
cases where both FP64-GMRES(m) and MP-GMRES(m) converge are presented
in the table. And the underlined data is the shortest execution time of each
method among different m of one matrix.

Compared among different values ofm in one algorithm, both FP64-GMRES(m)
and MP-GMRES(m) show short execution time when m is small, and even pro-
vide the shortest execution time in some cases.

Compared between FP64-GMRES(m) and MP-GMRES(m), the MP-GMRES(m)
method is faster than FP64-GMRES(m) method in most cases. When m is
small, the number of iterations of FP64-GMRES(m) and MP-GMRES(m) are
almost the same, as analyzed in Section 3.5.4, and MP-GMRES(m) shows an
advantage in execution time.

Additionally, the superiority of MP-GMRES(m) is reflected by the fact
that although more iterations are needed in MP-GMRES(m) in some cases, its
execution time is still shorter. Take wang4 as an example; the shortest execution

36

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Table 3.6: Total number of inner iterations in FP64-GMRES(m) for attaining
the convergence criterion (∥b− Ax∥2/∥b∥2 ≤ 10−10): “—” represents that the
method did not attain the convergence criterion by the iteration limit.

κ2(A) Matrix Name
m

50 100 200 300 400 500

O(101) cage10 26 26 26 26 26 26

O(102)

appu 114 110 108 108 108 108
Zhao1 43 43 43 43 43 43
FEM 3D thermal1 318 270 260 250 250 250
ns3Da 2,310 1,983 1,993 1,791 1,945 1,522

O(103)
poisson3Da 306 260 184 184 184 184
wang3 937 670 486 319 313 313
epb1 1,994 1,781 1,516 1,290 1,153 1,095

O(104)
coupled — — 1,846 1,450 1,025 872
af23560 — — — 4,799 4,305 4,442
Zhao2 — 3,878 3,488 2,868 2,880 2,929

O(105)
memplus 5,900 3,030 1,942 1,532 1,459 1,352
wang4 — — 1,741 1,101 738 688
viscoplastic2 — 2,061 1,530 1,409 1,375 1,299

O(106)

airfoil 2d — — — — — 8,172
inlet — — — — — —
jan99jac040sc — — — — — —
chipcool1 — — — — 13,626 9,636

O(107)

TSOPF RS b39 c7 — — 392 488 588 688
sme3Da — — — — — —
garon2 — — — — — —
shermanACb — — — — — —

O(108)

powersim — — — — — —
circuit 3 — — — — — —
e40r0100 — — — — — —
rajat15 — — — — — —

37

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Table 3.7: Total number of inner iterations in MP-GMRES(m) for attaining
the convergence criterion (∥b− Ax∥2/∥b∥2 ≤ 10−10): “—” represents that the
method did not attain the convergence criterion by the iteration limit.

κ2(A) Matrix Name
m

50 100 200 300 400 500

O(101) cage10 59 110 211 311 411 511

O(102)

appu 114 151 251 351 451 551
Zhao1 73 123 223 323 423 523
FEM 3D thermal1 318 270 300 399 511 611
ns3Da 2,316 1,984 1,989 1,790 1,945 1,522

O(103)
poisson3Da 320 270 446 651 833 1,018
wang3 896 663 587 719 957 1,150
epb1 1,881 1,786 1,517 1,302 1,153 1,272

O(104)
coupled — 9,873 2,094 1,441 1,091 1,324
af23560 — — — 4,777 4,283 4,351
Zhao2 — 3,611 3,494 2,846 2,880 2,932

O(105)
memplus 4,521 2,943 2,044 2,404 3,265 3,108
wang4 — — 1,896 1,423 1,477 1,792
viscoplastic2 — 1,969 1,658 1,700 2,046 2,274

O(106)

airfoil 2d — — — — — —
inlet — — — — — —
jan99jac040sc — — — — — —
chipcool1 — — — — — —

O(107)

TSOPF RS b39 c7 — — — — — —
sme3Da — — — — — —
garon2 — — — — — —
shermanACb — — — — — —

O(108)

powersim — — — — — —
circuit 3 — — — — — —
e40r0100 — — — — — —
rajat15 — — — — — —

38

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

0 50 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

FP64-GMRES(m)

MP-GMRES(m)

Figure 3.1: The change of the total number of inner iterations in FP64-
GMRES(m) and MP-GMRES(m) for memplus.

time of FP64-GMRES(m) and MP-GMRES(m) is 3.34 × 100 and 1.69 × 100

while the corresponding numbers of iterations are 738 and 1896, respectively.
About 2.6 times the iteration is required in MP-GMRES(m), MP-GMRES(m)
is still faster.

The speedup ratio is used to better evaluate the impact of mixed precision
computing and compare FP64-GMRES(m) with MP-GMRES(m). Here, the
comparison of the speedup ratio of MP-GMRES(m) over FP64-GMRES(m)
between the actual and estimated results is listed in Table 3.9. Only the cases
where FP64-GMRES(m) and MP-GMRES(m) obtain the shortest execution time
with the same m are included. It is validated against the previously mentioned
theoretical model and indicates the consistency of the experimental results with
the theoretical analysis.

In this research, the actual speedup is computed as

(Speedup) =
Execution time of FP64−GMRES(m)

Execution time of MP −GMRES(m)
. (3.17)

And the estimated speedup is calculated using (3.13), where γ uses the actual
number of iterations in Tables 3.6 and 3.7.

As seen from Table 3.9, MP-GMRES(m) is able to accelerate in most cases.
Meanwhile, the estimated speedup is acceptable as it does not differ much from
the actual speedup in most cases. These results indicate the effectiveness of
MP-GMRES(m).

39

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

T
ab

le
3.
8:

E
x
ec
u
ti
on

ti
m
e
of

F
P
64
-G

M
R
E
S
(m

)
an

d
M
P
-G

M
R
E
S
(m

)
in

m
u
lt
i-
th
re
ad

ed
ex
ec
u
ti
on

u
si
n
g
40

th
re
ad

s:
th
e
re
su
lt

w
it
h
u
n
d
er
li
n
e
is
th
e
fa
st
es
t
a
m
o
n
g
d
iff
er
en
t
se
tt
in
g
s
o
f
m
,
a
n
d
“
—
”
m
ea
n
s
th
a
t
th
e
m
et
h
o
d
d
id

n
o
t
a
tt
a
in

th
e
co
n
v
er
g
en
ce

cr
it
er
io
n
.

κ
2
(A

)
M
at
ri
x
N
am

e
M
et
h
o
d

m
=

5
0

m
=

1
0
0

m
=

2
0
0

m
=

3
0
0

m
=

4
0
0

m
=

5
0
0

O
(1
0
1
)

ca
ge
10

F
P
64

1
.0
3
×
1
0
−
2

1
.2
2
×

1
0
−
2

1.
1
0
×

1
0
−
2

1.
2
5
×

1
0−

2
9.
4
9
×
1
0
−
3

1
.1
4
×
1
0
−
2

M
P

1
.4
3
×
1
0
−
2

3
.4
0
×

1
0
−
2

9.
8
5
×

1
0
−
2

2.
0
1
×

1
0−

1
4.
0
9
×
1
0
−
1

5
.4
3
×
1
0
−
1

O
(1
0
2
)

ap
p
u

F
P
64

4
.3
4
×
1
0
−
2

6
.3
1
×

1
0
−
2

6.
7
0
×

1
0
−
2

7.
3
6
×

1
0−

2
6.
8
0
×
1
0
−
2

7
.5
8
×
1
0
−
2

M
P

4
.5
8
×
1
0
−
2

8
.3
3
×

1
0
−
2

1.
7
2
×

1
0
−
1

2.
9
6
×

1
0−

1
4.
7
8
×
1
0
−
1

7
.2
7
×
1
0
−
1

Z
h
ao
1

F
P
64

3
.3
8
×
1
0
−
2

3
.7
7
×

1
0
−
2

3.
7
2
×

1
0
−
2

3.
7
9
×

1
0−

2
3.
2
7
×
1
0
−
2

3
.4
9
×
1
0
−
2

M
P

2
.9
0
×
1
0
−
2

7
.7
5
×

1
0
−
2

3.
0
3
×

1
0
−
1

7.
6
2
×

1
0−

1
1.
3
9
×
1
0
0

2
.1
8
×
1
0
0

F
E
M

3D
th
er
m
al
1

F
P
64

1
.0
8
×
1
0
−
1

1
.6
9
×

1
0
−
1

3.
0
5
×

1
0
−
1

4.
6
4
×

1
0−

1
4.
5
3
×
1
0
−
1

4
.7
8
×
1
0
−
1

M
P

6
.3
6
×
1
0
−
2

9
.2
9
×

1
0
−
2

1.
7
1
×

1
0
−
1

3.
2
4
×

1
0−

1
6.
0
0
×
1
0
−
1

9
.1
2
×
1
0
−
1

n
s3
D
a

F
P
64

1
.2
1
×
1
0
0

1
.7
4
×

1
0
0

3.
4
5
×

1
0
0

5.
3
3
×

1
00

7.
7
0
×
1
0
0

7
.8
9
×
1
0
0

M
P

9
.5
9
×
1
0
−
1

1
.1
5
×

1
0
0

1.
7
7
×

1
0
0

2.
3
4
×

1
00

3.
4
9
×
1
0
0

3
.6
2
×
1
0
0

O
(1
0
3
)

p
oi
ss
on

3D
a

F
P
64

8
.9
4
×
1
0
−
2

1
.2
9
×

1
0
−
1

1.
7
1
×

1
0
−
1

1.
6
5
×

1
0−

1
1.
6
9
×
1
0
−
1

1
.8
0
×
1
0
−
1

M
P

8
.3
2
×
1
0
−
2

9
.3
5
×

1
0
−
2

2.
3
4
×

1
0
−
1

4.
4
4
×

1
0−

1
8.
4
3
×
1
0
−
1

1
.3
4
×
1
0
0

w
an

g3
F
P
64

4
.3
9
×
1
0
−
1

6
.4
5
×

1
0
−
1

9.
6
5
×

1
0
−
1

1.
1
5
×

1
00

1.
2
6
×
1
0
0

1
.3
5
×
1
0
0

M
P

2
.3
5
×
1
0
−
1

3
.2
0
×

1
0
−
1

4.
8
1
×

1
0
−
1

9.
3
5
×

1
0−

1
1.
8
1
×
1
0
0

2
.7
9
×
1
0
0

ep
b
1

F
P
64

6
.0
9
×
1
0
−
1

9
.6
5
×

1
0
−
1

1.
5
9
×

1
0
0

2.
1
9
×

1
00

2.
8
1
×
1
0
0

3
.5
0
×
1
0
0

M
P

3
.2
4
×
1
0
−
1

5
.1
9
×

1
0
−
1

8.
0
9
×

1
0
−
1

9.
9
6
×

1
0−

1
1.
2
4
×
1
0
0

1
.5
0
×
1
0
0

O
(1
0
4
)

co
u
p
le
d

F
P
64

—
—

1
.4
5
×

1
0
0

1.
7
7
×

1
00

1.
6
6
×
1
0
0

1
.9
0
×
1
0
0

M
P

—
—

8
.6
5
×

1
0
−
1

9.
1
0
×

1
0−

1
8.
8
7
×
1
0
−
1

1
.2
6
×
1
0
0

af
23
56
0

F
P
64

—
—

—
1
.4
7
×

1
01

1.
7
8
×
1
0
1

2
.4
6
×
1
0
1

M
P

—
—

—
5
.8
9
×

1
00

7.
3
5
×
1
0
0

9
.9
1
×
1
0
0

Z
h
ao
2

F
P
64

—
5.
1
2
×

1
0
0

1.
0
8
×

1
0
1

1.
4
5
×

1
01

1.
9
3
×
1
0
1

2
.4
8
×
1
0
1

M
P

—
2.
4
4
×

1
0
0

4.
3
6
×

1
0
0

6.
5
1
×

1
00

9.
0
6
×
1
0
0

1
.2
0
×
1
0
1

O
(1
0
5
)

m
em

p
lu
s

F
P
64

2
.3
2
×
1
0
0

2
.1
2
×

1
0
0

2.
6
9
×

1
0
0

3.
4
9
×

1
00

4.
3
6
×
1
0
0

5
.1
6
×
1
0
0

M
P

1
.3
0
×
1
0
0

1
.2
3
×

1
0
0

1.
3
0
×

1
0
0

2.
1
8
×

1
00

3.
3
7
×
1
0
0

4
.1
4
×
1
0
0

w
an

g4
F
P
64

—
—

3
.5
3
×

1
0
0

3.
6
2
×

1
00

3.
3
4
×
1
0
0

3
.6
5
×
1
0
0

M
P

—
—

1
.6
9
×

1
0
0

2.
0
0
×

1
00

2.
8
5
×
1
0
0

4
.5
5
×
1
0
0

v
is
co
p
la
st
ic
2

F
P
64

—
3.
1
2
×

1
0
0

4.
6
9
×

1
0
0

6.
6
7
×

1
00

8.
8
9
×
1
0
0

1
.0
1
×
1
0
1

M
P

—
1.
5
9
×

1
0
0

2.
2
2
×

1
0
0

3.
1
7
×

1
00

4.
6
8
×
1
0
0

6
.6
0
×
1
0
0

40

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Table 3.9: Comparison of the speedup ratio of MP-GMRES(m) over FP64-
GMRES(m) between the actual and estimated results

κ2(A) Matrix Name m Nnz/n ρ γ
Actual
Speedup

Estimated
Speedup

O(102)
appu 50 132 0.38 1.00 0.95 1.54
FEM 3D thermal1 50 24 2.08 1.00 1.70 1.67
ns3Da 50 82 0.61 1.00 1.26 1.56

O(103)
poisson3Da 50 26 1.92 1.07 1.08 1.56
wang3 50 7 7.14 0.96 1.87 1.90
epb1 50 6 8.33 0.94 1.88 1.94

O(104)
coupled 200 9 22.22 1.06 1.68 1.82
af23560 300 21 14.29 1.00 2.50 1.90
Zhao2 100 5 20.00 0.97 2.10 1.97

O(105)
memplus 100 7 14.29 1.02 1.73 1.86
viscoplastic2 100 12 8.33 0.97 1.96 1.90

3.5.6 Case Study

This subsection presents some interesting cases and provides the history of
relative residual 2-norm in some figures. A mark represents a restart in these
figures, and the corresponding relative residual 2-norm is computed in FP64.
The following analysis will be provided based on whether the methods converge
or not.

I. Cases that both FP64-GMRES(m) and MP-GMRES(m) attain the
convergence criterion.

• Cases for appu, memplus and ns3Da. Figures 3.2, 3.3 and 3.4 show the
history of relative residual 2-norm for appu, memplus, ns3Da, respectively.
It is observed that the numbers of iterations of FP64-GMRES(m) decrease
as m increases. However, the number of iterations of MP-GMRES(m)
increases in some cases. For example, it keeps on increasing when m
increases for appu. For memplus, the number of iterations first decreases and
then increases, with the minimum value occurring at m = 200 (Figure 3.3b).
The number of iterations for ns3Da tends to decrease with increasing m,
but it also shows a slight increase at m = 400.

• Cases for appu and Zhao1. FP64-GMRES(m) can converge in one restart
in the cases for appu(Figure 3.2a) and Zhao1(Figure 3.5a)., e.g., m ≥ 200
in appu, m ≥ 50 in Zhao1. However, seen from Figures 3.2b and 3.5b, the
relative residual 2-norm is reduced limitedly within the first restart(up to
around 10−5) in MP-GMRES(m).

41

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

0 100 200 300 400 500 600
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(a) FP64-GMRES(m)

0 100 200 300 400 500 600
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(b) MP-GMRES(m)

Figure 3.2: Relative residual 2-norm history for appu.

42

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

0 1000 2000 3000 4000 5000 6000
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(a) FP64-GMRES(m)

0 1000 2000 3000 4000 5000 6000
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(b) MP-GMRES(m)

Figure 3.3: Relative residual 2-norm history for memplus.

43

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

0 500 1000 1500 2000 2500
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(a) FP64-GMRES(m)

0 500 1000 1500 2000 2500
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(b) MP-GMRES(m)

Figure 3.4: Relative residual 2-norm history for ns3Da.

44

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

0 100 200 300 400 500 600
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(a) FP64-GMRES(m)

0 100 200 300 400 500 600
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(b) MP-GMRES(m)

Figure 3.5: Relative residual 2-norm history for Zhao1.

45

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

II. Cases that FP64-GMRES(m) can attain while MP-GMRES(m)
cannot attain the convergence criterion.

• Cases for airfoil 2d and TSOPF RS b39 c7. From Figures 3.6 and 3.7,
FP64-GMRES(m) can converge while the MP-GMRES(m) cannot. How-
ever, the maximum attainable accuracy shows a different trend. From
Figure 3.6b, although MP-GMRES(m) cannot converge in airfoil 2d,
the attainable accuracy is very close to the convergence criterion. Thus, it
is expected to converge if more iterations can be performed.

On the other hand, for TSOPF RS b39 c7, the relative residual 2-norm does
not reduce in MP-GMRES(m) (Figure 3.7b). These two cases show two
quite different convergence behaviors.

III. Cases that neither FP64-GMRES(m) nor MP-GMRES(m) cannot
attain the convergence criterion.

• Case for garon2. From Figure 3.8, neither FP64-GMRES(m) nor MP-
GMRES(m) cannot converge. And their histories of relative residual
2-norm follow a similar trend.

3.6 Conclusion

Using 26 matrices whose condition number range from O(101) to O(108) as
experimental subjects, experiments are conducted in both FP64-GMRES(m)
and MP-GMRES(m) methods. By observing and analyzing three characteristics
(the maximum attainable accuracy, the numerical behavior, and execution time)
with various matrices and different settings of m, the numerical behavior and
effectiveness of the MP-GMRES(m) are clarified. Specifically, the impact of m
and the history of relative residual 2-norm are also investigated.

From the experimental results and analysis, one important conclusion can be
drawn that if a problem can be solved by FP64-GMRES(m), MP-GMRES(m)
can also be effective except for a few cases. This is crucial for us to consider the
replacement of FP64-GMRES(m) with MP-GMRES(m) in practical applications.
Through this study, for problems that have been successfully solved by FP64-
GMRES(m), adopting the MP-GMRES(m) method is a highly worthwhile
consideration to enhance problem-solving efficiency.

Besides, our study also obtains other conclusions. As mentioned before,
MP-GMRES(m) is not a new method and has been thoroughly studied by many
scholars [64, 3, 4, 44, 45]. Some of our results are consistent with some previous
studies, while others bring some new findings.

The consistent results are as follows.

• Convergence: it is observed that if a problem can be solved by the FP64-
GMRES(m), the MP-GMRES(m) method can generally solve it as well.

46

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

0 5000 10000 15000
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(a) FP64-GMRES(m)

0 5000 10000 15000
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(b) MP-GMRES(m)

Figure 3.6: Relative residual 2-norm history for airfoil 2d.

47

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

0 5000 10000 15000
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(a) FP64-GMRES(m)

0 5000 10000 15000
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(b) MP-GMRES(m)

Figure 3.7: Relative residual 2-norm history for TSOPF RS b39 c7.

48

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

0 5000 10000 15000
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(a) FP64-GMRES(m)

0 5000 10000 15000
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m=50

m=100

m=200

m=300

m=400

m=500

(b) MP-GMRES(m)

Figure 3.8: Relative residual 2-norm history for garon2.

49

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

• The number of iterations: when m is small, the number of iterations of
MP-GMRES(m) is almost the same as that of FP64-GMRES(m). For
example, the results with m = 10 in [64, 3], as well as the results in our
study (e.g., m = 50, m = 100 for FEM 3D thermal1, epb1).

Besides, FP64-GMRES(m) can attain the convergence criterion within one
restart, while MP-GMRES(m) requires more iterations. More details can
be seen in the case of cage10, Zhao1 in our study and paper [44].

• Execution time: MP-GMRES(m) is faster than FP64-GMRES(m), which
is consistent with the research in the papers [64, 3, 4, 44]

Additionally, our research also obtained some new findings:

• Almost no difference in maximum attainable accuracy.

MP-GMRES(m) method is able to maintain the same attainable accu-
racy as FP64-GMRES(m) in most cases. By analyzing the history of
relative residual 2-norm, the accuracy is compared. In cases where FP64-
GMRES(m) and MP-GMRES(m) both converge or do not converge, their
accuracy is basically the same. However, for some matrices, the MP-
GMRES(m) may fail to converge when FP64-GMRES(m) converges, and
the convergence history also shows differences.

• Theoretical and practical analysis on the number of iterations and execution
time.

The characteristics of MP-GMRES(m) are analyzed from theoretical and
practical aspects. And the theoretical analysis and experimental results
are generally consistent. The MP-GMRES(m) requires the same or more
number of iterations and it is faster than FP64-GMRES(m) in most cases.
In particular, in some cases, MP-GMRES(m) is still faster than FP64-
GMRES(m) even if it requires more iterations.

• The impact of m: different trends of numerical behavior as m increases.

The changing trend of numerical behavior is analyzed with different set-
tings of m. In terms of the number of iterations, they are basically the
same in FP64-GMRES(m) and MP-GMRES(m) when m is small. As m
increases, the trends are different; the number of iterations decreases in
FP64-GMRES(m), while that in MP-GMRES(m) sometimes increases.

As for execution time, except for some problems that can only be solved
by a larger m, most of the problems basically achieve the fastest execution
time with a small m.

• Typical cases are studied via relative residual 2-norm. These illustrate the
convergence process of the methods, which helps us better understand and
optimize the method.

50

CHAPTER 3. NUMERICAL INVESTIGATION OF THE MIXED
PRECISION GMRES(m) METHOD

Our study demonstrates the potential of MP-GMRES(m) and provides a
detailed investigation of MP-GMRES(m), as well as the comparison with FP64-
GMRES(m). In our study, an in-depth understanding of the restart parameter
m, performance, and applicability are also provided, which gives new insights
for further study and optimization.

51

Chapter 4

Numerical Investigation of
Mixed Precision Iterative
Refinement using the
BiCGSTAB Method

In this chapter, the BiCGSTAB method and its employment in mixed precision
iterative refinement are studied. First, a brief introduction is given. Then,
the detail of BiCGSTAB and how it is employed in mixed precision iterative
refinement is introduced. Next, comparisons among different algorithms, which
also include MP-GMRES(m), are made. Finally, the results are summarized
and conclusions are given.

4.1 Introduction

The BiConjugate Gradient STABilized (BiCGSTAB) method is another famous
Krylov subspace method used to solve large, sparse, and non-symmetric linear
systems. Although the BiCGSTAB method seems more sensitive and unstable to
a problem than the GMRES(m) method, it is known to be as effective and fast
as the GMRES(m) method for certain problems. Inspired by MP-GMRES(m)
method, whether mixed precision computing and the BiCGSTAB method can be
effectively combined and then obtain improvement is a challenging and interesting
topic. Currently, few studies on this topic have been reported [15], only an
attempt in an application. And we conduct research to explore its possibility
and effectiveness.

In this research, a new mixed precision algorithm is developed based on the
mixed precision iterative refinement (MP-IR), namely mixed precision iterative
refinement using BiCGSTAB (MP-IR using BiCGSTAB). Similar to the research
on MP-GMRES(m) in Chapter 3, the new mixed precision algorithm is investi-

52

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

gated, and its numerical characteristics are evaluated in terms of the attainable
accuracy, the number of iterations, and the execution time. Additionally, the
comparison with MP-GMRES(m) is also given. Some interest cases are also
described.

There are two differences in the MP-IR using BiCGSTAB compared with
the traditional BiCGSTAB method: the iterative refinement and low precision
computing. Therefore, three sets of experiments are respectively conducted on
BiCGSTAB, FP64-IR using BiCGSTAB, and MP-IR using BiCGSTAB to better
study the impacts of these two factors.

The study in Chapter 4 helps to deepen the researchers’ understanding of the
employment of the BiCGSTAB method in mixed precision iterative refinement
and also provides a reference for further optimization and application of the
algorithm. Besides, the comparison between MP-IR using BiCGSTAB and MP-
GMRES(m) helps select an appropriate method based on the target problem in
practice applications.

4.2 Review of the BiCGSTAB method and its
Employment in Mixed Precision Iterative
Refinement

In this section, the introduction of the BiCGSTAB method is first given. Then,
how BiCGSTAB is employed in mixed precision iterative refinement is explained
in detail.

4.2.1 The BiCGSTAB Method

The BiConjugate Gradient STABilized(BiCGSTAB) method [66] is another
iterative method used to solve large, sparse, and non-symmetric linear systems.
The method was proposed by van der Vorst [65] in 1992 and is a variant of
the biconjugate gradient method (BiCG) [20, 8, 58, 66]. Both the BiCGSTAB
and BiCG methods belong to the Krylov subspace methods. Next, a brief
introduction to the BiCG method is given, followed by an explanation of how
BiCGSTAB is derived from the BiCG method.

The brief steps of the BiCG method are as follows:

Step 1: Construct two Krylov subspaces.

Let x0 be an initial guess and construct two Krylov subspaces Kk(A, r0) and
Kk(A

⊤, r∗0), where Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , A

k−1r0} and Kk(A
⊤, r∗0) =

span{r∗0 , A⊤r∗0 , (A
⊤)2r∗0 , . . . , (A

⊤)k−1r∗0}. In the subspaces, r0 = b − Ax0 and
r∗0 is an arbitrary vector satisfying r⊤0 r

∗
0 ̸= 0. The BiCG method then can be

described as finding an approximate solution xk ∈ x0 + Kk(A, r0) that satisfies
the condition rk ⊥ Kk(A

⊤, r∗0), where rk = b−Axk.

Step 2: Obtain matrices Vk and Wk, and a tridiagonal matrix T̃k by
the BiLanczos process.

53

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

The BiLanczos process is the process of simultaneously finding the basis of
subspaces such that the two sets of bases are orthogonal to each other. Through
BiLanczos process, two matrices Vk =

[
v1 v2 · · · vk

]
∈ Rn×k and Wk =[

w1 w2 · · · wk

]
∈ Rn×k are obtained, where column vectors respectively

form an orthogonal basis of Kk(A, r0) and Kk(A
⊤, r∗0). And a (k + 1)-by-k

tridiagonal matrix

T̃k =



α1 β1

γ1
. . .

. . .

. . .
. . . βk−1

γk−1 αk

γk

 ∈ R(k+1)×k (4.1)

is also obtained. And Vk, Wk and Tk satisfy the relation

W⊤
k AVk = Tk, (4.2)

where Tk ∈ Rk×k is the matrix consisting of the first k row of the matrix T̃k.

Step 3: Solve miniaturization problem.

Through the BiLanczos process in step 2, the approximate solution can be
expressed as

xk = x0 + Vkyk, (4.3)

and the problem reduces to finding a vector yk that satisfy rk ⊥ Kk(A
⊤, r∗0).

Then, we have

0 = W⊤
k rk

= W⊤
k (b−Axk)

= W⊤
k (b−A(x0 + Vkyk))

= W⊤
k (r0 −AVkyk)

= W⊤
k r0 −W⊤

k AVkyk. (4.4)

Using the relation (4.2), we have

W⊤
k r0 −W⊤

k AVkyk = 0 ⇔ βW⊤
k v1 − Tkyk = 0 (4.5)

Thus, yk is the solution of the following linear system

Tkyk = βW⊤
k v1, (4.6)

which can be solved by LU factorization.
However, the BiCG method is generally less stable than the GMRES method.

The residual 2-norm does not decrease all the time during the iteration process.
Thus, the convergence curve is irregular, which brings difficulties in investigating
the convergence. Besides, A⊤ is used in the BiCG method, but in practical

54

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

applications, A⊤ or the product of A⊤ and a vector are not easy to obtain. This
also brings difficulty in implementing the method. Therefore, we would like to
avoid using A⊤ as much as possible during the computing.

As a variant of the BiCG method, the BiCGSTAB method [66], proposed by
H. A. van der Vorst [65], gains improvements in stability and convergence speed.
The basic idea is presenting the k-th residual vector as

rk = Qk(A)rBiCG
k , (4.7)

where rBiCG
k is the k-th residual vector in the BiCG method, and Qk(t) is a

polynomial of degree k, which is used to correct the residual 2-norm.
In the BiCGSTAB method, Qk(t) is defined as

Qk(t) = (1− ζk−1t)Qk−1(t), Q0(t) = 1, (4.8)

where ζk−1 is obtained so as to

min
ζk−1

∥rk∥2 ⇔ min
ζk−1

∥Qk(A)rBiCG
k ∥2

⇔ min
ζk−1

∥(I − ζk−1A)Qk−1(A)rBiCG
k ∥2. (4.9)

The outline of the BiCGSTAB method is shown in Algorithm 5. In Algorithm 5,
(·, ·) is the inner product of two vectors, e.g., (x, y) = x⊤y.

Algorithm 5 The BiCGSTAB method

Input: x0: initial guess, A; coefficient matrix, b: right-hand side vector, ϵ:
convergence criterion, m: iteration limit

1: r0 = b−Ax0

2: Set an arbitrary vector satisfying (r∗0 , r0) ̸= 0 to r∗0 . ▷ e.g., r∗0 = r0
3: β−1 = 0
4: for k = 0, 1, . . . ,m do
5: if ∥rk∥2/∥b∥2 ≤ ϵ then return xk

6: pk = rk + βk−1(pk−1 − ζk−1Apk−1)
7: αk = (r∗0 , rk)/(r

∗
0 , Apk)

8: tk = rk − αkApk
9: ζk = (Atk, tk)/(Atk, Atk)

10: xk+1 = xk + αkpk + ζktk
11: rk+1 = tk − ζkAtk
12: βk = (αk/ζk) · ((r∗0 , rk+1)/(r

∗
0 , rk))

13: end for
Output: xk: (approximate) solution vector

Compared to the BiCG method, the BiCGSTAB method shows faster and
smoother convergence behavior. And it does not require A⊤, which is required
in the BiCG method. This is also an advantage of BiCGSTAB and makes it
easy to implement in a wide range of applications. In computation cost, the
BiCGSTAB method contains two SPMVs (Apk and Atk), as much as the BiCG
method.

55

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

4.2.2 Employment of BiCGSTAB in Mixed Precision Iter-
ative Refinement

Inspired by the MP-GMRES(m) method, the BiCGSTAB method is introduced
into mixed precision iterative refinement, and a new mixed precision variant
of iterative refinement using BiCGSTAB algorithm is developed, which we call
MP-IR using BiCGSTAB for short. The structure of mixed precision iterative
refinement is explained in section 3.2, and we choose the BiCGSTAB method
to solve the error equation Ae = r in Step 2 of IR or MP-IR. And the MP-IR
using BiCGSTAB algorithm is obtained by applying the BiCGSTAB with low
precision computing to Step 2, that is Line 6 in Algorithm 1. The MP-IR using
BiCGSTAB algorithm consists of the following steps:

• Step 1: Compute the residual r = b−Ax̃ in high precision.

• Step 2: Solve the error equation Ae = r by low precision BiCGSTAB and
obtain an approximate solution ẽ in low precision.

• Step 3: Update the solution x̃ = x̃+ ẽ in high precision.

It is found that MP-IR using BiCGSTAB has a nested loop structure, the
same as MP-GMRES(m). We respectively use inner and outer to represent the
loop in BiCGSTAB and the loop of MP-IR.

Compared with the traditional BiCGSTAB method, MP-IR using BiCGSTAB
algorithm has two differences. One is the restart led by iterative refinement, and
the other is low precision computing. In order to distinguish the influence of
these two factors, it is necessary to conduct separate experiments for each factor.
Therefore, experiments are conducted on BiCGSTAB, FP64-IR using BiCGSTAB,
and MP-IR using BiCGSTAB. By comparing FP64-IR using BiCGSTAB with
BiCGSTAB method, the impact of restart is evaluated, and the comparison
between MP-IR using BiCGSTAB and FP64-IR using BiCGSTAB indicates the
impact of low precision computing.

Another important point is the restart strategy, which also impacts the
convergence. There are various restart strategies, some of which have been
discussed in GMRES [44]. In the study related to BiCGSTAB, this means how
to stop (inner) BiCGSTAB in one restart cycle of FP64-IR or MP-IR (Step
2). We consider two restart strategies. One is the number of iterations m, and
the other is the accuracy ϵ. For each of the above algorithms, multiple sets of
experiments are conducted using these two restart strategies to learn more about
the performance of MP-IR using BiCGSTAB algorithm.

4.3 Theoretical Analysis of Mixed Precision Iter-
ative Refinement using BiCGSTAB Method

In this section, the MP-IR using BiCGSTAB algorithm is analyzed from a
theoretical aspect. First, the impacts that restart and low precision computing

56

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

may bring to numerical behavior are evaluated. Then, the speedup ratio of
MP-IR using BiCGSTAB over MP-GMRES(m) is roughly estimated.

4.3.1 Analysis on the Numerical Behavior

MP-IR using BiCGSTAB algorithm differs from the traditional BiCGSTAB
method in terms of restart and low precision computing. Here, the impacts of
these two factors on the performance of the algorithm are theoretically analyzed.

From the aspect of the restart, if an algorithm can not solve the problem due
to memory limitation, too slow convergence rate, and so on, using a restart can
help the algorithm jump out of the current iteration and re-initialize its state.
In this way, most of the memory used in the previous computations can be freed
and reused in the next restart. The algorithm will continue to find the solution
in another Krylov subspace, which may converge. Thus, there is a possibility for
the algorithm to improve the convergence process with an appropriate restart.
However, using a restart too often also tends to bring more number of iterations
and reduce the convergence rate since the algorithm will return to the initial
state several times [44]. Therefore, choosing the appropriate restart strategy
and frequency is challenging and needs to be adjusted based on algorithms and
practical applications.

In terms of low precision computing, all computations of BiCGSTAB are
performed in FP32 in MP-IR using BiCGSTAB. Since the computational ability
of FP32 is limited compared to FP64, the MP-IR using BiCGSTAB is expected
to require more number of iterations than FP64-IR using BiCGSTAB under the
same conditions.

4.3.2 Theoretical Estimation on the Expected Speedup of
MP-IR using BiCGSTAB over MP-GMRES(m)

Execution time is also important in practical applications. In this subsection, a
simple model is roughly developed based on theoretical analysis, and the acceler-
ation of MP-IR using BiCGSTAB over MP-GMRES(m) is roughly estimated.

The model is built based on the assumption that both BiCGSTAB and
GMRES are memory-bound, which means that the memory access cost primarily
determines the computation time. This assumption is the same as the model in
subsection 3.4.3.

In MP-IR using BiCGSTAB algorithm, BiCGSTAB is performed in FP32
and two SPMVs are included in one single iteration, where the sparse matrix is
stored in the CSR format. In one SPMV, it requires 4Nnz from FP32 for values
(val vector) and 4Nnz from INT4 for column indices (col ind vector) for each
non-zero elements, and 4n from INT4 for the information of the row partitioning
(row ptr vector) is also required. Besides, input and output vectors require 4n
from FP32.

In MP-GMRES(m) method, the average memory access cost in m-iteration
GMRES is roughly obtained in Table 3.2.

57

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

Table 4.1: Rough estimation of the memory access cost (in bytes) per iteration
of the FP32-BiCGSTAB and m-iteration GMRES in FP32.

FP32-BiCGSTAB m-iteration GMRES in FP32

M
(FP32)
bicgstab M

(FP32)
m-gmres

SpMVs (8Nnz + 12n) (8Nnz + 12n)

MGS 4 · 1
2m

2n · 1
m

Total 2(8Nnz + 12n) 8Nnz + 12n+ 2mn

Table 4.1 presents the rough estimation of the memory access cost per
iteration of the FP32-BiCGSTAB and m-iteration GMRES in FP32.

Let γ = Nnz/n donate the average of the number of nonzero elements per
row; the acceleration of MP-IR using BiCGSTAB over MP-GMRES(m) in one
iteration is estimated as follows

(Speedup) =
M

(FP32)
bicgstab

M
(FP32)
m-gmres

=
2(8Nnz + 12n)

8Nnz + 12n+ 2mn

=
8γ + 12

4γ +m+ 6
. (4.10)

From (4.10), we can obtain

M
(FP32)
bicgstab

M
(FP32)
m-gmres

≤ 1 ⇔ 4γ + 6 ≤ m. (4.11)

This relation indicates that the computation cost per iteration in FP32-
BiCGSTAB is expected to be smaller than m-iteration GMRES using FP32 if
inequality (4.11) holds. Therefore, we can obtain the following assumptions:

• If (4.11) holds and MP-IR using BiCGSTAB requires less number of
iterations than MP-GMRES(m), its execution time is expected to be
shorter.

• If (4.11) does not hold and MP-IR using BiCGSTAB requires more number
of iterations than MP-GMRES(m), the execution time of MP-GMRES(m)
is expected to be shorter.

4.4 Numerical Results

The experiments on BiCGSTAB, FP64-IR using BiCGSTAB, and MP-IR using
BiCGSTAB are conducted on a CPU platform. The obtained numerical results

58

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

are first analyzed and then compared with those of the MP-GMRES(m) method.
Some interest cases are also presented. It is worth noting that the problem
settings in the research on BiCGSTAB are the same as those on MP-GMRES(m)
in subsection 3.5.1.

4.4.1 Experiment Settings

The BiCGSTAB method with FP64, FP64-IR using BiCGSTAB with FP64, and
MP-IR using BiCGSTAB with FP64 and FP32 are experimented with multiple
matrices. These three algorithms are investigated from the viewpoints of the
maximum attainable accuracy, total number of iterations, and execution time.
The program is executed in serial mode in the experiments on the maximum
attainable accuracy and total number of iterations. For the evaluation of the
execution time, OpenMP parallelization is used, where SPMV is parallelized.

All experiments are conducted on a single computational node of the super-
computer system Grand Chariot operated at Hokkaido University, which is the
same as the previous research on MP-GMRES(m). The specific configuration
of the platform is shown in Table 3.3 in section 3.5.2. The operating system is
Red Hat Enterprise Linux Server release 7.6. The programming language is C
language, and the compilation environment is icc (ver. 19.1.3.304). In addition,
the option -qopenmp is used for parallel implementations.

The basic information of the test matrices is given in Table 3.4 in section 3.5.2.
In order to better investigate the numerical characteristics and applicability of
the MP-IR using BiCGSTAB, 26 matrices are selected from the SuiteSparse
Matrix Collection and their condition numbers are in the range from O(101) to
O(108). The other settings are as follows.

• Initial guess: x0 = [0, 0, . . . , 0]⊤

• Right-hand side vector: b = [1, 1, . . . , 1]⊤

• Convergence criterion:
∥b−Ax∥2

∥b∥2
≤ 10−10

• Iteration limit: (total number of inner iterations) ≤ n

Here, the convergence criterion corresponds to ϵ in Line 4 of Algorithm 1. In
the BiCGSTAB method with FP64, the total number of iterations means the
iteration number for a single BiCGSTAB execution. To better compare with
MP-GMRES(m) method, the test matrices and settings used in experiments are
also the same as our previous experiment on MP-GMRES(m)

In FP64-IR using BiCGSTAB and MP-IR using BICGSTAB algorithms,
BiCGSTAB is used to solve the error equation Ae = r, and we call inner
BiCGSTAB or FP32-BiCGSTAB for distinction. In inner BiCGSTAB, the
initial guess is set as e0 = [0, 0, . . . , 0]⊤. Two stopping conditions for the
inner BiCGSTAB (or the restart strategies for FP64-/MP-IR using BiCGSTAB
algorithms) are considered.

59

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

1. One is the limit of the iterations, represented by min. The candidates of
min are 50, 100, 200, 300, 400, 500.

2. The other is the accuracy, represented by ϵin, which is the decrease of
the relative residual 2-norm. The candidates of ϵin are 10−10, 10−9, 10−8,
10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1.

Experiments are separately carried out using these two restart strategies. In
the experiment on min, ϵin = 10−10, and the total number of iterations is the sum
of inner iterations of each inner BiCGSTAB in FP64-/MP-IR using BiCGSTAB
algorithms. In the experiment on ϵin, min = n, the total number of iterations is
the number of inner iterations of each inner BiCGSTAB in FP64-/MP-IR using
BiCGSTAB algorithms.

4.4.2 Analysis on the Maximum Attainable Accuracy

The problem-solving ability of the algorithm is one of the concerns after intro-
ducing low precision computing. Figure 4.1 provides the maximum attainable
accuracy of FP64-GMRES(m), MP-GMRES(m), BiCGSTAB and MP-IR using
BiCGSTAB. We use log10 (∥b−Ax∥2/∥b∥2) to show the results, and the data is
rounded toward negative infinity. “log10 (∥b−Ax∥2/∥b∥2) ≤ −11” means that
the method attains the convergence criterion within the iteration limits.

From the figure, BiCGSTAB and MP-IR using BiCGSTAB can attain the
same or similar convergence results in 23 out of 26 matrices. In this case,
BiCGSTAB and MP-IR using BiCGSTAB can reach ”-11” in 10 of them, while
neither can converge in 13 of them. Besides, compared with GMRES(m) and
MP-GMRES(m), if all algorithms can not solve the problem, there are almost
no differences in the final attainable accuracy.

4.4.3 Analysis from the Total Number of Iterations

Experiments are conducted for each matrix using multiple min and ϵin. Table 4.2
and Table 4.3 provide the overall results on the total number of iterations. For
FP64-/MP-IR using BiCGSTAB and FP64-/MP-GMRES(m) methods, the best
results among all candidates of min and ϵin are listed. The number in parentheses
is the value of min or ϵin that algorithms obtain the best results. For FP64 and
MP-GMRES(m), min is used instead of m for the consistency with FP64-/MP-IR
using BiCGSTAB.

First and foremost, if a problem can be solved by BiCGSTAB, MP-IR
using BiCGSTAB can also solve it except coupled, airfoil 2d. This indicates
that the problem-solving ability of BiCGSTAB and MP-IR using BiCGSTAB
is almost the same. However, when comparing with GMRES(m) and MP-
GMRES(m) method, it can be found from Figure 4.1 and Tables 4.2, 4.3
that GMRES(m) shows better robustness than BiCGSTAB and FP64-IR using
BiCGSTAB, which means GMRES(m) can solve more problems, even for the
matrics whose condition number is large. Comparison between MP-GMRES(m)
and MP-IR using BiCGSTAB also shows the same tendency.

60

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

GMRES(m) BiCGSTAB MP-GMRES(m) MP-IR using

 BiCGSTAB

Methods

cage10

appu

Zhao1

FEM_3D_thermal1

ns3Da

poisson3Da

wang3

epb1

coupled

af23560

Zhao2

memplus

wang4

viscoplastic2

airfoil_2d

inlet

jan99jac040sc

chipcool1

TSOPF_RS_b39_c7

sme3Da

garon2

shermanACb

powersim

circuit_3

e40r0100

rajat15

M
a

tr
ix

-8

-9

-9

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-1

-1

-11

-11

-2

-3

-1

-1

-2

-1

-1

-11

-11

-11

-11

-11

-11

-11

-11

-11

0

0

-11

-11

0

-11

0

0

0

-2

-2

0

0

0

0

0

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-11

-1

-1

-1

-1

-3

-1

-1

-2

-1

-1

-14

-12

-13

-12

-13

-13

-12

-11

-2

0

0

-11

-11

0

0

0

0

-11

0

-1

0

0

0

-1

0

0
-14

-12

-10

-8

-6

-4

-2

0

Figure 4.1: The maximum attainable accuracy of FP64-GMRES(m), MP-
GMRES(m), BiCGSTAB and MP-IR using BiCGSTAB within the iteration
limit: ⌊log10 (∥b−Ax∥2/∥b∥2) ≤ −11⌋ means it converged.

61

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

However, the BiCGSTAB (or FP64-IR using BiCGSTAB) requires less number
of iterations than GMRES(m) method. This trend can also be found between
MP-IR using BiCGSTAB and MP-GMRES(m). In particular, 7 out of 8 cases
show this trend for matrices whose condition number is less than O(103). This
suggests that the employment of low precision BiCGSTAB into MP-IR is effective
for matrices with small condition numbers. Thus, it is expected to benefit from
MP-IR using BiCGSTAB if small condition numbers can be obtained by some
techniques, such as preconditioning.

Another important point we can obtain from Table 4.3 is that FP64-IR using
BiCGSTAB seems to be more sensitive to low precision computing (FP32) than
GMRES(m) when the matrix condition number is large. For coupled, memplus,
and wang4, there are some cases where FP64-IR using BiCGSTAB restarted by
min or ϵin can converge, but MP-IR using BiCGSTAB restarted by min or ϵin
cannot. On the contrary, both GMRES(m) and MP-GMRES(m) methods can
converge.

Next, the comparison among BiCGSTAB, FP64-IR using BiCGSTAB and
MP-IR using BiCGSTAB is given. Tables 4.4, 4.5 and 4.6 list the number of
iterations of FP64-/MP-IR using BiCGSTAB which is stopped by min and ϵin,
respectively. As the matrices with κ2(A) ≥ O(107) are not solved by FP64-/MP-
IR using BiCGSTAB, we do not list them in these three tables. In the above
three tables, ”—” represents that the method did not attain the convergence
criterion.

Since the MP-IR using BiCGSTAB is different from BiCGSTAB in restart
and low precision computing, the obtained results are analyzed from the following
two aspects.

I. Impacts of restart and restart strategies(min and ϵin).

The impacts of restart are first analyzed by comparison between traditional
BiCGSTAB and FP64-IR using BiCGSTAB. Next, the discussion on restart
strategies is given by analyzing the results of FP64-/MP-IR using BiCGSTAB.

First, after introducing the restart, FP64-IR using BiCGSTAB requires
almost the same number of iterations as BiCGSTAB does for most cases in
Tables 4.2, 4.3. In Section 4.3.1, we theoretically analyzed the advantages and
disadvantages of the restart, which may affect the convergence or increase the
number of iterations. Cases that are consistent with this analysis can be found
in the experiments. For example, the convergence rate is improved in the case
of memplus, while the number of iterations increases for airfoil 2d. Besides,
for chipcool1, the traditional BiCGSTAB method does not converge, but the
FP64-IR using BiCGSTAB does.

Then, we discuss the impacts of min and ϵin. From Tables 4.2, 4.3, MP-IR
using BiCGSTAB can solve more problems when stopped by min, e.g., memplus,
wang4, chipcool1. However, when FP64-/MP-IR using BiCGSTAB stopped by
both min and ϵin satisfy the convergence criterion, it is found that the same or
less number of iterations are required when stopped by ϵin. The only exception
is chipcool1 in FP64-IR using BiCGSTAB.

62

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

However, the suitable restart frequencies for FP64-IR using BiCGSTAB and
MP-IR using BiCGSTAB are different. Observed from Tables 4.4, 4.5 and 4.6,
a small min is suitable for MP-IR while a large one is in FP64-IR. For ϵin, it
is the opposite. A large ϵin, e.g., ϵin = 10−1 or 10−2, is suitable for MP-IR
while a small one is preferred in FP64-IR. These results are reasonable since the
computations in MP-IR are performed in FP32.

II. Impacts of low precision computing.

By comparing the results between FP64-IR using BiCGSTAB and MP-IR using
BiCGSTAB, it is clear that MP-IR using BiCGSTAB requires more number of
iterations and it is consistent with previous theoretical analysis. This is also
similar in GMRES(m) and MP-GMRES(m).

Besides, MP-IR using BiCGSTAB is more sensitive to min and ϵin than FP64-
IR using BiCGSTAB. For example, the convergence behavior among different
min or ϵin are quite different in MP-IR using BiCGSTAB for memplus. Only a
few cases in MP-IR can converge while all cases in FP64 does. This indicates
that after introducing low precision computing, MP-IR using BiCGSTAB has
higher requirements for the choice of restart frequency. Detailed analysis of this
case is given in Section 4.4.5 later.

4.4.4 Analysis from Execution Time

This section provides the analysis and comparison among traditional FP64-
BiCGSTAB, MP-IR using BiCGSTAB, and MP-GMRES(m) in terms of the
execution time.

Table 4.7 lists the execution time for attaining the convergence criterion.
For MP-IR using BiCGSTAB and MP-GMRES(m), the best results among all
candidates of min or ϵin are listed. Table 4.8 provides the estimated speedup
calculated by the theoretical modeling in Section 4.3.2, where the number of
iterations is the best result obtained in Table 4.2. The comparison of the speedups
among BiCGSTAB, MP-IR using BiCGSTAB, and MP-GMRES(m) is listed in
Table 4.9.

From Tables 4.7 and 4.9, it is found that MP-IR using BiCGSTAB is faster
than traditional FP64-BiCGSTAB except for ns3Da and poisson3Da. In partic-
ular, a significant speedup is obtained in MP-IR using BiCGSTAB for cage10,
appu, Zhao1 and FEM 3D thermal1. This indicates that applying low precision
BiCGSTAB to MP-IR is helpful in improving the performance for problems with
small condition numbers (around O(103)).

When comparing MP-IR using BiCGSTAB with MP-GMRES(m), MP-IR
using BiCGSTAB outperforms MP-GMRES(m) for seven out of eight matri-
ces, except for ns3Da. From Table 4.9, the actual speedups of MP-IR using
BiCGSTAB over MP-GMRES(m) are basically consistent with the estimated
speedups, which shows the potential of MP-IR using BiCGSTAB to have a better
convergence rate than MP-GMRES(m) in solving practical problems with small
condition numbers.

63

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

T
a
b
le

4
.2
:
T
h
e
to
ta
l
n
u
m
b
er

o
f
in
n
er

it
er
a
ti
o
n
s
o
f
m
a
tr
ic
es

w
it
h
sm

a
ll
co
n
d
it
io
n
n
u
m
b
er

(κ
2
(A

)
≤

O
(1
0
3
))

fo
r
a
tt
a
in
in
g
th
e

co
n
ve
rg
en
ce

cr
it
er
io
n
(∥
b
−
A
x
∥ 2
/∥
b∥

2
≤

10
−
1
0
):

”—
”
re
p
re
se
n
ts

th
at

th
e
m
et
h
o
d
d
id

n
ot

at
ta
in

th
e
cr
it
er
io
n
b
y
th
e
it
er
at
io
n

li
m
it
,
th
e
n
u
m
b
er

in
p
a
re
n
th
es
es

is
th
e
va
lu
e
o
f
m

in
o
r
ϵ i
n
th
a
t
a
lg
o
ri
th
m
s
o
b
ta
in

th
e
b
es
t
re
su
lt
s.

(*
m
ea
n
s
th
a
t
th
er
e
a
re

m
u
lt
ip
le

p
ar
am

et
er
s
th
at

p
ro
v
id
e
th
e
b
es
t
re
su
lt
;
th
e
sm

al
le
st

m
in

or
th
e
la
rg
es
t
ϵ i
n
is

p
ro
v
id
ed

),
th
e
re
su
lt
s
on

G
M
R
E
S
(m

)
ar
e

ob
ta
in
ed

fr
om

T
ab

le
s
3.
6
an

d
3.
7.

κ
2
(A

)
M

a
tr
ix

N
a
m
e

B
iC

G
S
T
A
B

IR
u
si
n
g
B
iC

G
S
T
A
B

G
M

R
E
S
(m

)
F
P
6
4

F
P
6
4

M
P

F
P
6
4

M
P

m
in

ϵ i
n

m
in

ϵ i
n

m
in

m
in

O
(1
01
)

ca
ge
10

2
7

2
3

1
7

6
0

1
9

2
6

5
9

(5
0
*
)

(1
0
−
5
)

(5
0
*
)

(1
0−

2
)

(5
0
*
)

(5
0
)

O
(1
02
)

ap
p
u

7
6

7
3

6
6

1
0
0

7
3

1
0
8

1
1
4

(1
0
0
*
)

(1
0
−
5
)

(5
0
)

(1
0
−
1
)

(2
0
0
*
)

(5
0
)

Z
h
ao
1

4
6

4
6

3
1

1
5
0

3
2

4
3

7
3

(5
0
*
)

(1
0
−
3
)

(5
0
)

(1
0
−
2
)

(5
0
*
)

(5
0
)

F
E
M

3D
th
er
m
al
1

1
8
4

1
7
0

1
6
0

2
0
0

1
6
8

2
5
0

2
7
0

(2
0
0
*
)

(1
0−

2
*
)

(5
0
*
)

(1
0−

2
)

(3
0
0
*
)

(1
0
0
)

n
s3
D
a

4
3
5
6

5
1
0
0

4
0
8
8

5
4
5
0

2
4
9
6
3

1
5
2
2

1
5
2
2

(3
0
0
)

(1
0
−
2
)

(5
0
)

(1
0
−
8
)

(5
0
0
)

(5
0
0
)

O
(1
03
)

p
oi
ss
on

3D
a

1
3
1

1
3
1

1
3
1

2
0
0

1
8
4

1
8
4

2
7
0

(2
0
0
*
)

(1
0
−
1
0
)

(5
0
*
)

(1
0−

2
)

(2
0
0
*
)

(1
0
0
)

w
an

g3
2
2
1

2
2
4

2
2
4

4
0
0

4
0
0

3
1
3

5
8
7

(3
0
0
*
)

(1
0
−
1
0
)

(1
0
0
)

(1
0−

2
)

(4
0
0
*
)

(2
0
0
)

ep
b
1

5
4
0

8
0
0

5
4
0

1
0
0
0

9
3
7

1
0
9
5

1
1
5
3

(4
0
0
)

(1
0
−
1
0
)

(2
0
0
)

(1
0−

1
)

(5
0
0
)

(4
0
0
)

64

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

T
a
b
le

4
.3
:
T
h
e
to
ta
l
n
u
m
b
er

o
f
in
n
er

it
er
a
ti
o
n
s
o
f
m
a
tr
ic
es

w
it
h
la
rg
e
co
n
d
it
io
n
n
u
m
b
er

(κ
2
(A

)
≥

O
(1
0
4
))

fo
r
a
tt
a
in
in
g
th
e

co
n
ve
rg
en
ce

cr
it
er
io
n
(∥
b
−
A
x
∥ 2
/∥
b∥

2
≤

10
−
1
0
):

”—
”
re
p
re
se
n
ts

th
at

th
e
m
et
h
o
d
d
id

n
ot

at
ta
in

th
e
cr
it
er
io
n
b
y
th
e
it
er
at
io
n

li
m
it
,
th
e
n
u
m
b
er

in
p
a
re
n
th
es
es

is
th
e
va
lu
e
o
f
m

in
o
r
ϵ i
n
th
a
t
a
lg
o
ri
th
m
s
o
b
ta
in

th
e
b
es
t
re
su
lt
s.

(*
m
ea
n
s
th
a
t
th
er
e
a
re

m
u
lt
ip
le

p
ar
am

et
er
s
th
at

p
ro
v
id
e
th
e
b
es
t
re
su
lt
;
th
e
sm

al
le
st

m
in

or
th
e
la
rg
es
t
ϵ i
n
is

p
ro
v
id
ed

),
th
e
re
su
lt
s
on

G
M
R
E
S
(m

)
ar
e

ob
ta
in
ed

fr
om

T
ab

le
s
3.
6
an

d
3.
7.

κ
2
(A

)
M

a
tr
ix

N
a
m
e

B
iC

G
S
T
A
B

IR
u
si
n
g
B
iC

G
S
T
A
B

G
M

R
E
S
(m

)
F
P
6
4

F
P
6
4

M
P

F
P
6
4

M
P

m
in

ϵ i
n

m
in

ϵ i
n

m
in

m
in

O
(1
04
)

co
u
p
le
d

2
9
6
3

4
5
0
0

2
7
8
2

—
—

8
7
2

1
0
9
1

(5
0
0
)

(1
0−

5
)

(5
0
0
)

(4
0
0
)

af
23
56
0

—
—

—
—

—
4
3
0
5

4
2
8
3

(4
0
0
)

(4
0
0
)

Z
h
ao
2

—
—

—
—

—
2
8
6
8

2
8
4
6

(3
0
0
)

(3
0
0
)

O
(1
05
)

m
em

p
lu
s

2
5
1
3

1
8
0
0

1
5
9
7

3
8
0
0

—
1
3
5
2

2
0
4
4

(2
0
0
*
)

(1
0−

1
)

(1
0
0
)

(5
0
0
)

(3
0
0
)

w
an

g4
5
6
6

8
0
0

5
8
8

1
3
0
0

—
6
8
8

1
4
2
3

(2
0
0
*
)

(1
0−

1
0
)

(1
0
0
)

(5
0
0
)

(3
0
0
)

v
is
co
p
la
st
ic
2

—
—

—
—

—
1
2
9
9

1
6
5
8

(5
0
0
)

(2
0
0
)

O
(1
06
)

ai
rf
oi
l
2d

2
1
5
5

1
0
4
0
0

3
0
0
6

—
—

8
1
7
2

—
(4
0
0
)

(1
0−

5
)

(5
0
0
)

in
le
t

—
—

—
—

—
—

—

ja
n
99
ja
c0
40
sc

—
—

—
—

—
—

—

ch
ip
co
ol
1

—
1
0
5
0
0

1
8
4
8
6

1
6
4
0
0

—
9
6
3
6

—
(3
0
0
)

(1
0−

5
)

(2
0
0
)

(5
0
0
)

O
(1
07
)

T
S
O
P
F

R
S
b
39

c7
—

—
—

—
—

3
9
2

—
(2
0
0
)

sm
e3
D
a

—
—

—
—

—
—

—

ga
ro
n
2

—
—

—
—

—
—

—

sh
er
m
an

A
C
b

—
—

—
—

—
—

—

O
(1
08
)

p
ow

er
si
m

—
—

—
—

—
—

—

ci
rc
u
it

3
—

—
—

—
—

—
—

e4
0r
01
00

—
—

—
—

—
—

—

ra
ja
t1
5

—
—

—
—

—
—

—

65

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

As a remark, the case of cage10 with min and case of ns3Da with ϵin do
not converge in the experiments of execution time, which are different from the
results of the number of iterations. We speculate that this might stem from the
rounding errors caused by parallelization. For instance, changes in the order of
computations could influence the convergence results.

4.4.5 Case Study

When low precision computing is introduced, the convergence behavior of FP64-
IR using BiCGSTAB and MP-IR using BiCGSTAB show differences. Some
typical and interesting cases are analyzed. In the figures, all the data plotted
are computed with FP64 data and computations at each restart timing.

I. Cases where the matrix condition number is small(κ2(A) ≤ O(103)):
epb1, ns3Da

• Case of epb1 (κ2(A) = O(103))

Figure 4.2 provides the history of relative residual 2-norm for epb1. Com-
pared with FP64-IR using BiCGSTAB, it is found that the decrease of
relative residual 2-norm slows down in MP-IR using BiCGSTAB regardless
of whether min or ϵin is used. This happens due to the use of low precision
computing in the inner BiCGSTAB computations of MP-IR, which results
in more number of iterations. And it is consistent with previous theoretical
analyses.

In the experiment on min, FP64-IR using BiCGSTAB tends to obtain
better results with larger min while MP-IR using BiCGSTAB does not
show this trend. In the experiment on ϵin, MP-IR using BiCGSTAB tends
to obtain better results with larger ϵin, while FP64-IR using BiCGSTAB
prefers smaller ϵin.

Besides, an interesting phenomenon occurs in MP-IR using BiCGSTAB
with ϵin. Seen from Figure 4.2d, when ϵin is less than 10−4, the computed
relative residual 2-norm obtained in the first inner BiCGSTAB loop can
satisfy the convergence accuracy ϵin. However, the actual relative residual
2-norm computed in the outer loop using FP64 is different, only around
10−3, which fails to achieve the corresponding ϵin. This happens due to
the rounding errors. And it means that the first inner BiCGSTAB loop
requires more number of iterations to achieve 10−3 as the ϵin becomes more
and more smaller than 10−4. A similar situation is not found in FP64-IR
using BiCGSTAB.

• Case of wang3 (κ2(A) = O(103))

Figure 4.3 shows the history of relative residual 2-norm of wang3. From this
case, it is clear to see the different impact of min and ϵin on FP64-/MP-IR
using BiCGSTAB. For FP64-IR using BiCGSTAB, a large min or a small
ϵin is prefer. On the contrary, a small min or a large ϵin is better for MP-IR

66

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

using BiCGSTAB. Additionally, after the first inner BiCGSTAB loop, the
actual relative residual 2-norm in FP64 also fails to attain the given ϵin
when ϵin ≤ 10−5, which also occurs in the case of epb1.

• Case of ns3Da (κ2(A) = O(102))

The numerical behavior for ns3Da is quite different from other matrices
whose condition number is less than O(103). The history of relative residual
2-norm is shown in Figure 4.4. In the experiments on min, there are some
cases in which the relative residual 2-norm does not decrease as the iteration
increases. And MP-IR using BiCGSTAB fails to converge in some of these
cases due to the appearance of NaN. As for the experiments on ϵin, despite
the fact that the relative residual 2-norm decreases as iteration increases,
MP-IR using BiCGSTAB still fails to converge except for the case where
ϵin = 10−8. By checking the computed relative residual 2-norm in the inner
BiCGSTAB, it is found that NaN appears, thus resulting in the breakdown.
The detailed mechanism causing these results is not clear and needs further
study.

Besides, the case of ns3Da is also analyzed in the research on GMRES(m).
Both GMRES(m) and MP-GMRES(m) show better convergence behavior
than FP64-/MP-IR using BiCGSTAB, which reflects that BiCGSTAB is
more sensitive to a target problem than GMRES.

II. Cases where the matrix condition number is large(κ2(A) ≥ O(104)):
memplus, chipcool1

• Case of memplus (κ2(A) = O(105))

The history of the relative residual 2-norm is shown in Figure 4.5. From
the figure, FP64-IR using BiCGSTAB can converge with each min and ϵin.
However, only when min = 50, 100, MP-IR using BiCGSTAB can converge,
while it breaks down in other situations due to NaN. This shows the great
difference in the choice of min and ϵin between FP64-IR and MP-IR using
BiCGSTAB, and MP-IR using BiCGSTAB has a higher demand for the
choices.

To better clarify the convergence behavior, the computed relative residual
2-norm obtained in the inner BiCGSTAB loop is provided. For MP-IR
using BiCGSTAB, it breaks down in the first inner BiCGSTAB loop when
ϵin = 10−2, and Figure 4.6 provides the detailed convergence process.
The data plotted in the figure is computed by the formula in Line 11
of Algorithm 5. Probably due to the influence of rounding error, the
history of relative residual 2-norm shows an increasing trend. MP-IR
using BiCGSTAB then fails to converge because of NaN. This case again
confirms that BiCGSTAB is very sensitive to rounding errors; the change
in accuracy or parameter value may lead to the breakdown, especially
when dealing with problems with large condition numbers. Under this

67

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

situation, some techniques such as preconditioning may be necessary to
apply MP-IR using BiCGSTAB to practical problems.

• Case of chipcool1 (κ2(A) = O(106))

For chipcool1, the most significant behavior is that the traditional FP64-
BiCGSTAB does not converge while both FP64-IR using BiCGSTAB and
MP-IR using BiCGSTAB converge. The history of relative residual 2-norm,
including FP64-BiCGSTAB, FP64-IR using BiCGSTAB, and MP-IR using
BiCGSTAB is shown in Figure 4.7. The decrease of the relative residual
2-norm in FP64-BiCGSTAB is slow; sometimes, there is a drastic increase
or stagnation probably due to the rounding errors. Therefore, although the
relative residual 2-norm is decreasing overall, FP64-BiCGSTAB can not
converge within the iteration limit. However, introducing a restart improves
this phenomenon in FP64-/MP-IR using BiCGSTAB. The convergence
rate is improved and becomes faster; therefore, FP64-IR using BiCGSTAB
and MP-IR using BiCGSTAB can converge in some cases. And the sharp
increase in FP64-BiCGSTAB also brings difficulties for the convergence of
MP-IR using BiCGSTAB with ϵin.

4.5 Conclusion

We apply BiCGSTAB with low precision computing (FP32) as an inner solver of
mixed precision iterative refinement(MP-IR), which can combine high precision
and low precision and provide the solution with the same accuracy as that by
the method using only FP64, and propose a MP-IR using BiCGSTAB algorithm.
To clarify the performance and application prospects of the MP algorithm, we
investigate its numerical behavior from both theoretical and practical perspectives
and compared it with the MP-GMRES(m) method.

Using the same matrix dataset as the research on MP-GMRES(m), a series of
comprehensive experiments are conducted on a CPU platform, and the obtained
results are analyzed and compared with MP-GMRES(m) from the viewpoints
of the maximum attainable accuracy, number of iterations, and execution time.
Since a restart and low precision computing are introduced in the MP-IR using
BiCGSTAB, the impact of these two factors is also discussed.

By comparing the results of traditional BiCGSTAB, FP64-IR using BiCGSTAB,
and MP-IR using BiCGSTAB, we can observe the following results:

• The MP-IR using BiCGSTAB can provide a solution with the same accuracy
as those by traditional BiCGSTAB using only FP64.

• The MP-IR using BiCGSTAB is faster than BiCGSTAB for most cases,
especially for the problems with small condition numbers.

• By introducing restart, FP64-/MP-IR using BiCGSTAB has the possibility
to solve the problems that BiCGSTAB cannot solve, for example, the case
of chipcool1.

68

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

0 500 1000 1500 2000
10

-15

10
-10

10
-5

10
0 50

100

200

300

400

500

(a) FP64-IR using BiCGSTAB with different min

0 500 1000 1500 2000
10

-15

10
-10

10
-5

10
0

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(b) FP64-IR using BiCGSTAB with different ϵin

0 500 1000 1500 2000
10

-15

10
-10

10
-5

10
0

50

100

200

300

400

500

(c) MP-IR using BiCGSTAB with different min

0 500 1000 1500 2000
10

-15

10
-10

10
-5

10
0

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(d) MP-IR using BiCGSTAB with different ϵin

Figure 4.2: Relative residual 2-norm history for epb1 with different min and ϵin.

69

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

0 200 400 600 800 1000 1200
10

-15

10
-10

10
-5

10
0

50

100

200

300

400

500

(a) FP64-IR using BiCGSTAB with different min

0 200 400 600 800 1000 1200
10

-15

10
-10

10
-5

10
0

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(b) FP64-IR using BiCGSTAB with different ϵin

0 200 400 600 800 1000 1200
10

-15

10
-10

10
-5

10
0

50

100

200

300

400

500

(c) MP-IR using BiCGSTAB with different min

0 200 400 600 800 1000 1200
10

-15

10
-10

10
-5

10
0

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(d) MP-IR using BiCGSTAB with different ϵin

Figure 4.3: Relative residual 2-norm history for wang3 with different min and
ϵin: data is plotted halfway due to the breakdown of the method in some cases.

70

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

0 0.5 1 1.5 2 2.5 3

10
4

10
-15

10
-10

10
-5

10
0

10
5

10
10

10
15

50

100

200

300

400

500

(a) FP64-IR using BiCGSTAB with different min

0 0.5 1 1.5 2 2.5 3

10
4

10
-15

10
-10

10
-5

10
0

10
5

10
10

10
15

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(b) FP64-IR using BiCGSTAB with different ϵin

0 0.5 1 1.5 2 2.5 3

10
4

10
-15

10
-10

10
-5

10
0

10
5

10
10

10
15

50

100

200

300

400

500

(c) MP-IR using BiCGSTAB with different min

0 0.5 1 1.5 2 2.5 3

10
4

10
-15

10
-10

10
-5

10
0

10
5

10
10

10
15

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(d) MP-IR using BiCGSTAB with different ϵin

Figure 4.4: Relative residual 2-norm history for ns3Da with different min and
ϵin : data is plotted halfway due to the breakdown of the method in some cases.

71

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10
-10

10
0

10
10

50

100

200

300

400

500

(a) FP64-IR using BiCGSTAB with different min

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10
-10

10
0

10
10

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(b) FP64-IR using BiCGSTAB with different ϵin

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10
-10

10
0

10
10

50

100

200

300

400

500

(c) MP-IR using BiCGSTAB with different min

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10
-10

10
0

10
10

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(d) MP-IR using BiCGSTAB with different ϵin

Figure 4.5: Relative residual 2-norm history for memplus with different min and
ϵin : data is plotted halfway due to the breakdown of the method in some cases.

72

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

0 500 1000 1500 2000 2500 3000 3500 4000
10

-5

10
0

10
5

10
10

10
15

10
20

Figure 4.6: Relative residual 2-norm history of the first inner BiCGSTAB loop
in MP-IR using BiCGSTAB for memplus: the plotted data is computed by the
recurrence formula (Line 11 of Algorithm 5) in FP32-BiCGSTAB.

• For the choice of min and ϵin, IR using BiCGSTAB prefers a large min and
a small ϵin, while the MP-IR using BiCGSTAB favors a small min and a
large ϵin.

Besides, the following observations are found by comparing MP-IR using
BiCGSTAB and MP-GMRES(m):

• The MP-GMRES(m) has better robustness than MP-IR using BiCGSTAB.

• The MP-IR using BiCGSTAB sometimes outperforms MP-GMRES(m) in
both the number of iterations and execution time, especially for problems
whose condition number is small.

As one of the possible improvements for robustness, some preconditioners,
which can be used to get a sufficiently small condition number, are expected to
benefit the problem-solving ability of MP-IR using BiCGSTAB. Through this re-
search, MP-IR using BiCGSTAB shows a strong potential for its implementation
into practical applications and is expected to obtain good results.

73

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

0 0.5 1 1.5 2 2.5 3 3.5

10
4

10
-15

10
-10

10
-5

10
0

10
5

FP64-BiCGSTAB

50

100

200

300

400

500

(a) BiCGSTAB and FP64-IR using BiCGSTAB

0 0.5 1 1.5 2 2.5 3 3.5

10
4

10
-15

10
-10

10
-5

10
0

10
5

FP64-BiCGSTAB

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(b) BiCGSTAB and FP64-IR using BiCGSTAB

0 0.5 1 1.5 2 2.5 3 3.5

10
4

10
-15

10
-10

10
-5

10
0

10
5

FP64-BiCGSTAB

50

100

200

300

400

500

(c) BiCGSTAB and MP-IR using BiCGSTAB

0 0.5 1 1.5 2 2.5 3 3.5

10
4

10
-15

10
-10

10
-5

10
0

10
5

FP64-BiCGSTAB

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

(d) BiCGSTAB and MP-IR using BiCGSTAB

Figure 4.7: Relative residual 2-norm history for chipcool1 : including FP64-
BiCGSTAB and FP64-/MP-IR using BiCGSTAB with different min and ϵin,
data is plotted halfway due to the breakdown of the method in some cases.

74

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

Table 4.4: The total number of inner iterations for attaining the convergence
criterion in FP64-/MP-IR using BiCGSTAB stopped by min: ϵin = 10−10, ”—”
represents that the method did not attain the criterion by the iteration limit.

κ2(A) Matrix Name Precision
min in IR using BiCGSTAB

50 100 200 300 400 500

O(101) cage10
FP64 23 23 23 23 23 23
MP 60 60 60 60 60 60

O(102)

appu
FP64 100 73 73 73 73 73
MP 100 144 144 144 144 144

Zhao1
FP64 46 46 46 46 46 46
MP 150 219 — — 1258 685

FEM 3D thermal1
FP64 200 200 170 170 170 170
MP 200 200 372 423 423 423

ns3Da
FP64 12200 19300 5200 5100 5200 6000
MP 5450 — — — — 5500

O(103)

poisson3Da
FP64 200 200 131 131 131 131
MP 200 200 264 264 264 264

wang3
FP64 600 400 382 224 224 224
MP 550 400 600 1154 — —

epb1
FP64 1200 1000 1000 900 800 1000
MP 1400 1500 1000 1200 1200 1500

O(104)

coupled
FP64 — — — 6000 4800 4500
MP — — — — — —

af23560
FP64 — — — — — —
MP — — — — — —

Zhao2
FP64 — — — — — —
MP — — — — — —

O(105)

memplus
FP64 2750 2000 1800 1800 2000 2000
MP 4150 3800 — — — —

wang4
FP64 2100 1700 800 900 800 939
MP 1500 1300 1400 1500 — —

viscoplastic2
FP64 — — — — — —
MP — — — — — —

O(106)

airfoil 2d
FP64 — — — 10500 10400 13000
MP — — — — — —

inlet
FP64 — — — — — —
MP — — — — — —

jan99jac040sc
FP64 — — — — — —
MP — — — — — —

chipcool1
FP64 — 17800 11400 10500 10800 14500
MP — 19400 16400 — 19600 —

75

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

T
ab

le
4.
5:

T
h
e
to
ta
l
n
u
m
b
er

of
in
n
er

it
er
at
io
n
s
fo
r
at
ta
in
in
g
th
e
co
n
ve
rg
en

ce
cr
it
er
io
n
in

F
P
64

-I
R

u
si
n
g
B
iC

G
S
T
A
B

st
op

p
ed

b
y

ϵ i
n
:
m

in
=

n
,
”—

”
re
p
re
se
n
ts

th
at

th
e
m
et
h
o
d
d
id

n
o
t
a
tt
a
in

th
e
cr
it
er
io
n
b
y
th
e
it
er
a
ti
o
n
li
m
it
.

κ
2
(A

)
M
at
ri
x
N
am

e
ϵ i
n
in

F
P
6
4
-I
R

u
si
n
g
B
iC
G
S
T
A
B

10
−
1
0

10
−
9

1
0
−
8

1
0
−
7

1
0−

6
1
0−

5
1
0−

4
1
0
−
3

1
0
−
2

1
0
−
1

O
(1
01
)

ca
ge
10

23
3
5

3
0

2
6

2
2

1
7

2
2

2
2

1
8

2
0

O
(1
02
)

ap
p
u

73
1
2
6

1
1
4

9
6

7
9

6
6

7
8

7
9

6
7

7
8

Z
h
ao
1

46
8
7

6
9

5
4

4
0

3
5

4
1

3
1

3
3

3
6

F
E
M

3D
th
er
m
al
1

17
0

3
2
9

2
8
4

2
5
6

2
0
4

1
6
0

2
0
4

1
9
9

1
6
0

1
7
3

n
s3
D
a

43
56

71
6
3

6
3
0
4

5
5
8
6

5
0
3
0

4
3
9
0

5
1
8
1

5
2
0
0

4
0
8
8

4
1
2
8

O
(1
03
)

p
oi
ss
on

3D
a

13
1

2
2
5

2
1
0

1
9
0

1
6
1

1
4
5

1
8
8

2
1
0

1
6
6

2
1
0

w
an

g3
22
4

3
8
2

3
6
9

3
3
1

3
1
6

2
6
1

3
6
8

3
9
4

3
6
8

3
8
9

ep
b
1

54
0

9
9
4

9
0
1

8
3
2

7
1
0

6
3
7

7
8
1

8
4
4

7
4
4

7
9
3

O
(1
04
)

co
u
p
le
d

29
30

55
6
2

4
5
3
0

4
0
4
6

3
5
9
5

2
7
8
2

3
9
7
9

4
1
8
8

3
3
0
9

4
1
1
3

af
23
56
0

—
—

—
—

—
—

—
—

—
—

Z
h
ao
2

—
—

—
—

—
—

—
—

—
—

O
(1
05
)

m
em

p
lu
s

25
13

46
5
8

3
5
6
4

3
3
0
0

2
6
3
0

1
9
5
6

2
8
4
7

2
2
2
3

1
7
9
4

1
5
9
7

w
an

g4
58
8

9
8
7

8
9
1

6
5
9

6
5
6

5
9
4

7
2
0

8
1
8

7
9
2

8
0
6

v
is
co
p
la
st
ic
2

—
—

—
—

—
—

—
—

—
—

O
(1
06
)

ai
rf
oi
l
2d

49
78

46
3
9

6
0
3
6

—
3
1
9
8

3
0
0
6

39
5
5

3
4
3
7

4
5
0
7

—

in
le
t

—
—

—
—

—
—

—
—

—
—

ja
n
99
ja
c0
40
sc

—
—

—
—

—
—

—
—

—
—

ch
ip
co
ol
1

—
—

3
0
3
8
8

2
5
0
8
7

2
7
9
1
7

1
8
4
8
6

2
3
3
2
2

3
1
9
0
4

2
3
0
3
5

2
4
8
1
6

76

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

T
ab

le
4.
6:

T
h
e
to
ta
l
n
u
m
b
er

of
in
n
er

it
er
at
io
n
s
fo
r
at
ta
in
in
g
th
e
co
n
ve
rg
en
ce

cr
it
er
io
n
in

M
P
-I
R

u
si
n
g
B
iC
G
S
T
A
B

st
op

p
ed

b
y

ϵ i
n
:
m

in
=

n
,
”—

”
re
p
re
se
n
ts

th
at

th
e
m
et
h
o
d
d
id

n
o
t
a
tt
a
in

th
e
cr
it
er
io
n
b
y
th
e
it
er
a
ti
o
n
li
m
it
.

κ
2
(A

)
M
at
ri
x
N
am

e
ϵ i
n
in

M
P
-I
R

u
si
n
g
B
iC
G
S
T
A
B

10
−
1
0

1
0
−
9

1
0
−
8

1
0
−
7

1
0−

6
1
0−

5
1
0−

4
1
0
−
3

1
0
−
2

1
0
−
1

O
(1
01
)

ca
ge
10

60
5
6

5
3

4
4

3
9

3
5

3
7

2
2

1
9

2
0

O
(1
02
)

ap
p
u

14
4

1
3
4

1
1
5

1
1
1

9
5

8
6

9
4

8
7

7
4

7
3

Z
h
ao
1

92
5

8
9
2

3
8
9
6

6
5
7

5
9

4
8

4
8

3
6

3
2

3
6

F
E
M

3D
th
er
m
a
l1

42
3

3
8
5

3
2
9

2
9
0

2
5
1

2
0
0

23
3

2
1
9

1
6
8

1
7
6

n
s3
D
a

—
—

2
4
9
6
3

—
—

—
—

—
—

—

O
(1
03
)

p
oi
ss
on

3D
a

26
4

2
4
0

2
1
9

2
0
0

2
7
2

2
2
4

19
8

2
0
5

1
8
4

2
2
8

w
an

g3
—

1
0
4
0

8
9
0

7
8
6

7
1
4

6
3
9

62
2

5
0
1

4
0
0

4
4
3

ep
b
1

—
—

1
9
6
4

1
5
9
1

1
3
9
0

1
1
9
9

1
01
3

1
0
1
8

9
6
2

9
3
7

O
(1
04
)

co
u
p
le
d

—
—

—
—

—
—

—
—

—
—

af
23
56
0

—
—

—
—

—
—

—
—

—
—

Z
h
ao
2

—
—

—
—

—
—

—
—

—
—

O
(1
05
)

m
em

p
lu
s

—
—

—
—

—
—

—
—

—
—

w
an

g4
—

—
—

—
—

—
—

—
—

—

v
is
co
p
la
st
ic
2

—
—

—
—

—
—

—
—

—
—

O
(1
06
)

ai
rf
oi
l
2d

—
—

—
—

—
—

—
—

—
—

in
le
t

—
—

—
—

—
—

—
—

—
—

ja
n
99
ja
c0
40
sc

—
—

—
—

—
—

—
—

—
—

ch
ip
co
ol
1

—
—

—
—

—
—

—
—

—
—

77

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

Table 4.7: The execution time for attaining the convergence criterion (∥b −
Ax∥2/∥b∥2 ≤ 10−10): ”—” represents that the method did not attain the criterion
by the iteration limit, for MP-IR using BiCGSTAB and MP-GMRES(m), the
best result among all candidates of min or ϵin is listed.

κ2(A) Matrix Name

BiCGSTAB IR using BiCGSTAB GMRES(m)

FP64 MP MP

min ϵin min

O(101) cage10 1.08× 10−2 — 1.76× 10−3 1.43× 10−2

O(102)

appu 3.86× 10−2 3.47× 10−2 2.17× 10−2 4.58× 10−2

Zhao1 2.26× 10−2 4.22× 10−2 7.55× 10−3 2.90× 10−2

FEM 3D thermal1 6.07× 10−2 4.36× 10−2 2.45× 10−2 6.36× 10−2

ns3Da 1.73× 100 2.80× 100 — 9.59× 10−1

O(103)

poisson3Da 2.93× 10−2 4.45× 10−2 3.74× 10−2 8.32× 10−2

wang3 8.95× 10−2 8.52× 10−2 8.50× 10−2 2.35× 10−1

epb1 9.78× 10−2 8.93× 10−2 8.19× 10−2 3.24× 10−1

78

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

T
ab

le
4.
8:

T
h
e
es
ti
m
at
ed

sp
ee
d
u
p
of

M
P
-I
R

u
si
n
g
B
iC

G
S
T
A
B

an
d
M
P
-G

M
R
E
S
(m

):
T
h
e
es
ti
m
at
ed

sp
ee
d
u
p
is

ob
ta
in
ed

b
y
th
e

es
ti
m
at
ed

m
o
d
el
,
an

d
T
m
p
-i
r-
b
ic
g
st
a
b
an

d
T
m
p
-g
m
re
s
m
ea
n
th
e
es
ti
m
at
ed

co
m
p
u
ta
ti
on

ti
m
e
of

M
P
-I
R

u
si
n
g
B
iC

G
S
T
A
B

an
d
th
at

of
M
P
-G

M
R
E
S
(m

),
re
sp
ec
ti
ve
ly
.
#

of
it
er
.
re
p
re
se
n
ts

th
e
to
ta
l
n
u
m
b
er

o
f
it
er
a
ti
o
n
s.

κ
2
(A

)
M
at
ri
x
N
am

e
γ

M
P
-I
R

u
si
n
g
B
iC
G
S
T
A
B

M
P
-G

M
R
E
S
(m

)
M

(
F
P
3
2
)

b
ic

g
s
t
a
b

M
(
F
P
3
2
)

m
-g

m
r
e
s

T
m

p
-i
r
-b

ic
g
s
t
a
b

T
m

p
-g

m
r
e
s

#
o
f
it
er
.

#
o
f
it
er
.

m

O
(1
01
)

ca
ge
10

13
1
9

5
9

5
0

1
.0
7

0
.3
5

O
(1
02
)

ap
p
u

13
2

7
3

1
1
4

50
1
.8
3

1
.1
7

Z
h
ao
1

5
3
2

7
3

5
0

0
.6
8

0
.3
0

F
E
M

3D
th
er
m
al
1

24
1
6
8

2
7
0

1
00

1
.0
1

0
.6
3

n
s3
D
a

82
5
4
5
0

1
5
2
2

5
00

0
.8
0

2
.8
7

O
(1
03
)

p
oi
ss
on

3D
a

26
1
8
4

2
7
0

1
00

1
.0
5

0
.7
1

w
an

g3
7

4
0
0

5
8
7

2
00

0
.2
9

0
.2
0

ep
b
1

6
9
3
7

1
1
5
3

4
00

0
.1
4

0
.1
1

79

CHAPTER 4. NUMERICAL INVESTIGATION OF MIXED PRECISION
ITERATIVE REFINEMENT USING THE BICGSTAB METHOD

Table 4.9: The Comparison of estimated and actual speedup among BiCGSTAB,
MP-IR using BiCGSTAB and MP-GMRES(m): Tmp-ir-bicgstab and Tmp-gmres

mean the estimated computation time of MP-IR using BiCGSTAB and that of

MP-GMRES(m), respectively; T
(actual)
bicgstab, T

(actual)
mp-ir-bicgstab and T

(actual)
mp-gmres mean the

execution time of BiCGSTAB, MP-IR using BiCGSTAB (the best among two
results) and MP-GMRES(m), respectively.

κ2(A) Matrix Name
Tmp-ir-bicgstab

Tmp-gmres

T
(actual)
mp-ir-bicgstab

T
(actual)
mp-gmres

T
(actual)
mp-ir-bicgstab

T
(actual)
bicgstab

O(101) cage10 0.35 0.12 0.16

O(102)

appu 1.17 0.47 0.56
Zhao1 0.30 0.26 0.33
FEM 3D thermal1 0.63 0.39 0.40
ns3Da 2.87 2.91 1.62

O(103)
poisson3Da 0.71 0.45 1.27
wang3 0.20 0.36 0.95
epb1 0.11 0.25 0.84

80

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The research focuses on mixed precision computing and combining it with Krylov
subspace methods. In this research, I consider the GMRES(m) method and the
BiCGSTAB method, which are typical Krylov subspace methods for sparse and
non-symmetric linear systems. By exploiting the high ability of low precision
computing, I investigate different mixed precision algorithms for solving a linear
system Ax = b, where A is large, sparse, and non-symmetric, and aim to achieve
high performance and accelerate various practical applications. Basically, I have
three contributions.

1. Investigate the characteristics and effectiveness of MP-GMRES(m).

In Chapter 3, I studied the traditional GMRES(m) method and investi-
gated the characteristics and effectiveness of its mixed precision variant,
namely MP-GMRES(m). In this chapter, the traditional GMRES(m) and
MP-GMRES(m) methods are studied from both theoretical and practical
aspects, and I implemented them on a standard CPU platform. Comprehen-
sive experiments on various test matrices with multiple sets of parameter
configurations are conducted. Detailed analysis and comparison between
GMRES(m) and MP-GMRES(m) are given from the aspects of the max-
imum attainable accuracy, the number of iterations, and the execution
time.

2. Propose MP-IR using BiCGSTAB and investigate its characteristics and
effectiveness.

In Chapter 4, I proposed a new mixed precision algorithm, namely MP-IR
using BiCGSTAB, based on BiCGSTAB and mixed precision iterative
refinement. In this chapter, I first introduce the BiCGSTAB method.
Then, I explain how to introduce low precision computing into BiCGSTAB
and implement the developed mixed precision algorithm on a CPU plat-
form. Similar to the research on MP-GMRES(m), the algorithms are

81

CHAPTER 5. CONCLUSION AND FUTURE WORK

studied and analyzed from both theoretical and practical perspectives,
and comprehensive numerical results are analyzed from three aspects. De-
tailed comparisons with the traditional BiCGSTAB method, as well as
MP-GMRES(m), are also provided.

3. Clarify the applicability of mixed precision computing in numerical linear
solvers.

In my research, the MP-GMRES(m) method and the MP-IR using BiCGSTAB
method for sparse and non-symmetric linear systems are investigated. The
obtained results clarify the applicability of mixed precision computing in
numerical linear solvers, which may achieve high performance and acceler-
ate a variety of practical applications requiring linear solvers. In addition,
reducing the time of the simulation program will also significantly impact
data science applications because simulation is now one of the important
data generators.

Detailed analysis and comparisons are made from three aspects: the maximum
attainable accuracy, the number of iterations, and the execution time. The main
conclusions are listed as follows.

1. Problem solving ability.

It is observed that MP-GMRES(m) has almost the same problem-solving
ability as GMRES(m). The same tendency is also found between MP-
IR using BiCGSTAB and BiCGSTAB, especially for matrices with small
condition numbers. When all methods can not solve the problem, the final
attainable accuracy is almost no different. However, MP-GMRES(m) can
solve more problems than MP-IR using BiCGSTAB.

2. In the aspect of the number of iterations.

After employing mixed precision computing, MP-GMRES(m) has almost
the same or more iterations than GMRES(m). As for MP-IR using
BiCGSTAB and FP64-IR using BiCGSTAB, it shows the same trend.
When comparing between the two mixed precision algorithms, MP-IR
using BiCGSTAB requires less number of iterations than MP-GMRES(m)
method for most cases.

3. In the aspect of execution time.

After introducing low precision computing, both MP-GMRES(m) and
MP-IR using BiCGSTAB are able to get improvement in execution time.
MP-IR using BiCGSTAB is, although sensitive to problems, the faster
among the four methods for some problems.

5.2 Future Work

Mixed Precision computing is one of the most recent research topics in numer-
ical linear algebra and high-performance computing. Not only the theoretical

82

CHAPTER 5. CONCLUSION AND FUTURE WORK

and mathematical studies of the algorithms but also the practical studies in
applications are important.

First, I consider extending my research to the applications in other fields,
such as data science and AI. I plan to implement the mixed precision algorithms
developed in my research as numerical libraries for some hardware, such as
State of the art GPUs, so as to be easily and better used in various practical
application programs. In practice, applications in fields such as data science
and AI usually require fast linear algebra computations, which my research is
expected to improve and accelerate. At the same time, some techniques in data
science and AI are also expected to be combined with my research to better
solve the problems of algorithm selection for different problems.

Secondly, from the optimization of the developed mixed precision algorithm
itself, there are also some details in my research that need further study.

1. Employ a preconditioner into MP-IR using BiCGSTAB algorithm.

From the results obtained from this study, a problem with a small condi-
tion number tends to be well solved by MP-IR using BiCGSTAB. Thus,
reducing the condition number by a suitable preconditioner is expected to
achieve better results in the MP-IR using BiCGSTAB algorithm. Besides,
although some studies on MP-GMRES(m) using preconditioners have been
reported, its numerical behavior is still worth to be studied more specifi-
cally. Therefore, further studies of the numerical behavior of MP-IR using
BiCGSTAB and MP-GMRES(m) using a preconditioner are necessary.

2. Implementation of MP-IR using BiCGSTAB on GPU platform.

In this study, MP-IR using BiCGSTAB is investigated on a CPU platform,
but its performance on a GPU platform has not been evaluated yet. By
taking full advantage of the GPU, evaluating the performance of MP-IR
using BiCGSTAB on GPU is valuable for further optimization.

3. More study of restart frequency (min and ϵin).

From the studies of other scholars and our obtained results, the restart
frequency impacts the performance of MP-GMRES(m) and MP-IR using
BiCGSTAB. Its detailed effects are worth further study, which not only
benefits MP-GMRES(m) and MP-IR using BiCGSTAB but also benefits
other Krylov subspace methods. Besides, some ideas and attempts for
restart frequency are studied in GMRES(m) [71, 7, 34, 35]. It is also a
worthwhile direction to exploit these ideas into mixed precision algorithms,
i.e., dynamically adjust the restart frequency according to the convergence
process of the problem.

83

Bibliography

[1] Abdelfattah, A., Anzt, H., Boman, E. G., Carson, E., Cojean, T., Dongarra,
J., Fox, A., Gates, M., Higham, N. J., Li, X. S., Loe, J., Luszczek, P.,
Pranesh, S., Rajamanickam, S., Ribizel, T., Smith, B. F., Swirydowicz,
K., Thomas, S., Tomov, S., Tsai, Y. M. and Yang, U. M.: A survey
of numerical linear algebra methods utilizing mixed-precision arithmetic,
The International Journal of High Performance Computing Applications,
Vol. 35, No. 4, pp. 344–369 (2021).

[2] Angerer, C. M., Polig, R., Zegarac, D., Giefers, H., Hagleitner, C., Bekas, C.
and Curioni, A.: A fast, hybrid, power-efficient high-precision solver for large
linear systems based on low-precision hardware, Sustainable Computing:
Informatics and Systems, Vol. 12, pp. 72–82 (2016).

[3] Anzt, H., Heuveline, V. and Rocker, B.: An Error Correction Solver for
Linear Systems: Evaluation of Mixed Precision Implementations, High
Performance Computing for Computational Science – VECPAR 2010, pp.
58–70 (2011).

[4] Anzt, H., Heuveline, V. and Rocker, B.: Mixed Precision Iterative Refine-
ment Methods for Linear Systems: Convergence Analysis Based on Krylov
Subspace Methods, Applied Parallel and Scientific Computing, pp. 237–247
(2012).

[5] Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou,
J., Luszczek, P. and Tomov, S.: Accelerating scientific computations with
mixed precision algorithms, Computer Physics Communications, Vol. 180,
No. 12, pp. 2526–2533 (2009).

[6] Bai, Z.-Z. and Yin, J.-F.: Modified incomplete orthogonal factorization
methods using Givens rotations, Computing, Vol. 86, pp. 53–69 (2009).

[7] Baker, A. H., Jessup, E. R. and Kolev, T. V.: A simple strategy for
varying the restart parameter in GMRES(m), Journal of Computational
and Applied Mathematics, Vol. 230, No. 2, pp. 751–761 (2009).

[8] Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C. and der Vorst, H. V.: Templates for the

84

BIBLIOGRAPHY

Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, PA (1994).

[9] Blanchard, P., Higham, N. J., Lopez, F., Mary, T. and Pranesh, S.: Mixed
Precision Block Fused Multiply-Add: Error Analysis and Application to
GPU Tensor Cores, SIAM Journal on Scientific Computing, Vol. 42, No. 3,
pp. C124–C141 (2020).

[10] Buttari, A., Dongarra, J., Kurzak, J., Luszczek, P. and Tomov, S.: Us-
ing Mixed Precision for Sparse Matrix Computations to Enhance the
Performance while Achieving 64-bit Accuracy, ACM Transactions on
Mathematical Software, Vol. 34, No. 4, pp. 17:1–17:22 (2008).

[11] Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P. and Kurzak,
J.: Mixed Precision Iterative Refinement Techniques for the Solution of
Dense Linear Systems, The International Journal of High Performance
Computing Applications, Vol. 21, No. 4, pp. 457–466 (2007).

[12] Carson, E. and Higham, N. J.: A New Analysis of Iterative Refinement
and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear
Systems, SIAM Journal on Scientific Computing, Vol. 39, No. 6, pp. A2834–
A2856 (2017).

[13] Carson, E. and Higham, N. J.: Accelerating the Solution of Linear Systems
by Iterative Refinement in Three Precisions, SIAM Journal on Scientific
Computing, Vol. 40, No. 2, pp. A817–A847 (2018).

[14] Cipra, B. A.: The Best of the 20th Century: Editors Name Top 10 Algo-
rithms, SIAM News, Vol. 33, No. 4.

[15] Clark, M. A., Babich, R., Barros, K., Brower, R. C. and Rebbi, C.: Solving
lattice QCD systems of equations using mixed precision solvers on GPUs,
Computer Physics Communications, Vol. 181, No. 9, pp. 1517–1528 (2010).

[16] Davis, T. A. and Hu, Y.: The University of Florida Sparse Matrix Collection,
ACM Transactions on Mathematical Software, Vol. 38, No. 1, pp. 1:1–1:25
(2011).

[17] Demmel, J. W.: Applied Numerical Linear Algebra, Society for Industrial
and Applied Mathematics (1997).

[18] der Vorst, H. A. V.: Iterative Krylov methods for large linear systems,
No. 13, Cambridge University Press (2003).

[19] Dongarra, J. J., Duff, L. S., Sorensen, D. C. and Vorst, H. A. V.: Numerical
Linear Algebra for High Performance Computers, SIAM (1998).

[20] Fletcher, R.: Conjugate gradient methods for indefinite systems, Numerical
Analysis (Watson, G. A., ed.), Lecture Notes in Mathematics, Springer, pp.
73–89 (1976).

85

BIBLIOGRAPHY

[21] Georgescu, S. and Okuda, H.: Automatically Tuned Mixed-Precision Con-
jugate Gradient Solver, Software Automatic Tuning: From Concepts to
State-of-the-Art Results, Springer, New York, NY, pp. 103–119 (2010).

[22] Golub, G. H. and Van Loan, C. F.: Matrix computations, JHU press (2013).

[23] GUPTA, G.: What’s the Difference Between Single-, Double-, Multi- and
Mixed-Precision Computing? 2019, Nov 15.

[24] Gupta, S., Agrawal, A., Gopalakrishnan, K. and Narayanan, P.: Deep Learn-
ing with Limited Numerical Precision, Proceedings of the 32nd International
Conference on Machine Learning (Bach, F. and Blei, D., eds.), Proceedings
of Machine Learning Research, Vol. 37, Lille, France, PMLR, pp. 1737–1746
(2015).

[25] Göbel, F., Grützmacher, T., Ribizel, T. and Anzt, H.: Mixed Precision
Incomplete and Factorized Sparse Approximate Inverse Preconditioning
on GPUs, Euro-Par 2021: Parallel Processing (Sousa, L., Roma, N. and
Tomás, P., eds.), Lecture Notes in Computer Science, Springer International
Publishing, pp. 550–564 (2021).

[26] Haidar, A., Tomov, S., Dongarra, J. and Higham, N. J.: Harnessing GPU
Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative
Refinement Solvers, SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 603–613 (2018).

[27] Hestenes, M. R. and Stiefel, E.: Methods of conjugate gradients for solving
linear systems, Journal of research of the National Bureau of Standards,
Vol. 49, pp. 409–435 (1952).

[28] Higham, N. J.: Accuracy and Stability of Numerical Algorithms, Society
for Industrial and Applied Mathematics, second edition (2002).

[29] Higham, N. J. and Mary, T.: Mixed precision algorithms in numerical linear
algebra, Acta Numerica, Vol. 31, pp. 347–414 (2022).

[30] Higham, N. J. and Pranesh, S.: Exploiting Lower Precision Arithmetic
in Solving Symmetric Positive Definite Linear Systems and Least Squares
Problems, SIAM Journal on Scientific Computing, Vol. 43, No. 1, pp. A258–
A277 (2021).

[31] Higham, N. J., Pranesh, S. and Zounon, M.: Squeezing a Matrix into Half
Precision, with an Application to Solving Linear Systems, SIAM Journal
on Scientific Computing, Vol. 41, No. 4, pp. A2536–A2551 (2019).

[32] Ichimura, T., Fujita, K., Yamaguchi, T., Naruse, A., Wells, J. C., Schulthess,
T. C., Straatsma, T. P., Zimmer, C. J., Martinasso, M., Nakajima, K., Hori,
M. and Maddegedara, L.: A Fast Scalable Implicit Solver for Nonlinear Time-
Evolution Earthquake City Problem on Low-Ordered Unstructured Finite
Elements with Artificial Intelligence and Transprecision Computing, SC18:

86

BIBLIOGRAPHY

International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 627–637 (2018).

[33] Ikuno, S., Kawaguchi, Y., Fujita, N., Itoh, T., Nakata, S. and Watanabe,
K.: Iterative Solver for Linear System Obtained by Edge Element: Variable
Preconditioned Method With Mixed Precision on GPU, IEEE Transactions
on Magnetics, Vol. 48, No. 2, pp. 467–470 (2012).

[34] Imakura, A., Sogabe, T. and Zhang, S.-L.: An Efficient Variant of the
GMRES(m) Method Based on the Error Equations, East Asian Journal on
Applied Mathematics, Vol. 2, No. 1, pp. 19–32 (2012).

[35] Imakura, A., Sogabe, T. and Zhang, S.-L.: A Look-Back-type restart for
the restarted Krylov subspace methods for solving non-Hermitian linear
systems, Japan Journal of Industrial and Applied Mathematics, Vol. 35,
No. 2, pp. 835–859 (2018).

[36] J.H.WILKINSON: Rounding Errors in Algebraic Processes, Prentice Hall,
Englewood Cliffs, N.J. (1963).

[37] Kolotilina, L. Y. and Yeremin, A. Y.: Factorized Sparse Approximate
Inverse Preconditionings I. Theory, SIAM Journal on Matrix Analysis and
Applications, Vol. 14, No. 1, pp. 45–58 (1993).

[38] Krylov, A.: De la résolution numérique de l’équation servant à déterminer
dans des questions de mécanique appliquée les fréquences de petites os-
cillations des systèmes matériels, Bulletin de l’Académie des Sciences de
l’URSS. Classe des sciences mathématiques et na, pp. 491–539 (1931).

[39] Kuchaiev, O., Ginsburg, B., Gitman, I., Lavrukhin, V., Li, J., Nguyen, H.,
Case, C. and Micikevicius, P.: Mixed-precision training for NLP and speech
recognition with openseq2seq, arXiv preprint arXiv:1805.10387 (2018).

[40] Kudo, S., Nitadori, K., Ina, T. and Imamura, T.: Implementation and
Numerical Techniques for One EFlop/s HPL-AI Benchmark on Fugaku, 2020
IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems (ScalA), pp. 69–76 (2020).

[41] Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E.,
Mahesh, A., Matheson, M., Deslippe, J., Fatica, M., Prabhat, P. and Hous-
ton, M.: Exascale Deep Learning for Climate Analytics, SC18: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 649–660 (2018).

[42] Langou, J., Langou, J., Luszczek, P., Kurzak, J., Buttari, A. and Dongarra,
J.: Exploiting the Performance of 32 bit Floating Point Arithmetic in
Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear
Systems), SC ’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, pp. 50–50 (2006).

87

BIBLIOGRAPHY

[43] Liesen, J. and Tichỳ, P.: Convergence analysis of Krylov subspace methods,
GAMM-Mitteilungen, Vol. 27, No. 2, pp. 153–173 (2004).

[44] Lindquist, N., Luszczek, P. and Dongarra, J.: Improving the Performance of
the GMRES Method Using Mixed-Precision Techniques, Driving Scientific
and Engineering Discoveries Through the Convergence of HPC, Big Data
and AI, pp. 51–66 (2020).

[45] Lindquist, N., Luszczek, P. and Dongarra, J.: Accelerating Restarted
GMRES with Mixed Precision Arithmetic, IEEE Transactions on Parallel
and Distributed Systems, Vol. 33, pp. 1027–1037 (2022).

[46] Loe, J. A., Glusa, C. A., Yamazaki, I., Boman, E. G. and Rajamanickam, S.:
Experimental Evaluation of Multiprecision Strategies for GMRES on GPUs,
2021 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 469–478 (2021).

[47] Micikevicius, P.: Mixed-Precision Training of Deep Neural Networks. 2017,
Oct 11.

[48] Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D.,
Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G. et al.: Mixed
precision training, arXiv preprint arXiv:1710.03740 (2017).

[49] Mittal, R. and Al-Kurdi, A.: An efficient method for constructing an ILU
preconditioner for solving large sparse nonsymmetric linear systems by the
GMRES method, Computers & Mathematics with Applications, Vol. 45,
No. 10, pp. 1757–1772 (2003).

[50] Moler, C. B.: Iterative Refinement in Floating Point, Journal of the
Association for Computing Machinery(ACM), Vol. 14, No. 2, pp. 316–321
(1967).

[51] Ogita, T.: Accurate Matrix Factorization: Inverse LU and Inverse QR
Factorizations, SIAM Journal on Matrix Analysis and Applications, Vol. 31,
No. 5, pp. 2477–2497 (2010).

[52] Ogita, T. and Aishima, K.: Iterative refinement for symmetric eigenvalue de-
composition, Japan Journal of Industrial and Applied Mathematics, Vol. 35,
No. 3, pp. 1007–1035 (2018).

[53] Ogita, T. and Aishima, K.: Iterative refinement for symmetric eigenvalue
decomposition II: clustered eigenvalues, Japan Journal of Industrial and
Applied Mathematics, Vol. 36, No. 2, pp. 435–459 (2019).

[54] Ootomo, H. and Yokota, R.: Recovering single precision accuracy from
Tensor Cores while surpassing the FP32 theoretical peak performance,
The International Journal of High Performance Computing Applications,
Vol. 36, No. 4, pp. 475–491 (2022).

88

BIBLIOGRAPHY

[55] Peng, H., Wu, K., Wei, Y., Zhao, G., Yang, Y., Liu, Z., Xiong, Y., Yang,
Z., Ni, B., Hu, J. et al.: FP8-LM: Training FP8 Large Language Models,
arXiv preprint arXiv:2310.18313 (2023).

[56] Saad, Y.: Krylov Subspace Methods on Supercomputers, SIAM Journal on
Scientific and Statistical Computing, Vol. 10, No. 6, pp. 1200–1232 (1989).

[57] Saad, Y. and Schultz, M. H.: GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on
Scientific and Statistical Computing, Vol. 7, No. 3, pp. 856–869 (1986).

[58] Saad, Y.: Iterative Methods for Sparse Linear Systems, Society for Indus-
trial and Applied Mathematics (2003).

[59] Singh, R. and Singh, K. M.: On preconditioned BiCGSTAB solver for MLPG
method applied to heat conduction in 3D complex geometry, Engineering
Analysis with Boundary Elements, Vol. 93, pp. 83–93 (2018).

[60] Sleijpen, G. L., Van der Vorst, H. A. and Fokkema, D. R.: BiCGstab (l)
and other hybrid Bi-CG methods, Numerical Algorithms, Vol. 7, pp. 75–109
(1994).

[61] Speyer, G., Vasileska, D. and Goodnick, S.: Efficient Poisson Solver for
Semiconductor Device Modeling Using the Multi-Grid Preconditioned
BiCGSTAB Method, Journal of Computational Electronics, Vol. 1, pp.
359–363 (2002).

[62] Sun, J., Peterson, G. D. and Storaasli, O. O.: High-Performance Mixed-
Precision Linear Solver for FPGAs, IEEE Transactions on Computers,
Vol. 57, No. 12, pp. 1614–1623 (2008).

[63] Tadano, H. and Sakurai, T.: On Single Precision Preconditioners for Krylov
Subspace Iterative Methods, Large-Scale Scientific Computing, pp. 721–728
(2008).

[64] Turner, K. and Walker, H. F.: Efficient High Accuracy Solutions with
GMRES(m), SIAM Journal on Scientific and Statistical Computing, Vol. 13,
No. 3, pp. 815–825 (1992).

[65] van der Vorst, H. A.: Bi-CGSTAB: A Fast and Smoothly Converging Variant
of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM Journal
on Scientific and Statistical Computing, Vol. 13, No. 2, pp. 631–644 (1992).

[66] van der Vorst, H. A.: Iterative Krylov methods for large linear systems,
Cambridge University Press (2003).

[67] Vuik, C., van Nooyen, R. and Wesseling, P.: Parallelism in ILU-
preconditioned GMRES, Parallel Computing, Vol. 24, No. 14, pp. 1927–1946
(1998).

89

BIBLIOGRAPHY

[68] Xu, X.: OpenMP parallel implementation of stiffly stable time-stepping
projection/GMRES(ILU(0)) implicit simulation of incompressible fluid
flows on shared-memory, multicore architecture, Applied Mathematics and
Computation, Vol. 355, pp. 238–252 (2019).

[69] Yamazaki, I., Carson, E. and Kelley, B.: Mixed Precision s-step Conjugate
Gradient with Residual Replacement on GPUs, 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 886–896
(2022).

[70] Yang, L. and Brent, R.: The improved BiCGStab method for large and
sparse unsymmetric linear systems on parallel distributed memory architec-
tures, Fifth International Conference on Algorithms and Architectures for
Parallel Processing, 2002. Proceedings., pp. 324–328 (2002).

[71] Zhang, L. and Nodera, T.: A new adaptive restart for GMRES(m) method,
Australian and New Zealand Industrial and Applied Mathematics Journa,
Vol. 46, pp. C409–C425 (2005).

[72] Zhao, Y., Fukaya, T. and Iwashita, T.: Numerical Behavior of Mixed
Precision Iterative Refinement Using the BiCGSTAB Method, Journal of
Information Processing, Vol. 31, pp. 860–874 (2023).

[73] Zhao, Y., Fukaya, T., Zhang, L. and Iwashita, T.: Numerical Investigation
into the Mixed Precision GMRES(m) Method Using FP64 and FP32,
Journal of Information Processing, Vol. 30, pp. 525–537 (2022).

90

	List of Figures
	List of Tables
	Introduction
	Research Background
	Research Purpose and Contributions
	Research Purpose
	Research Contribution

	Structure of the thesis

	Related Work
	Mixed Precision Computing
	Krylov Subspace Methods
	Studies on Mixed Precision Computing for Krylov Subspace Methods

	Numerical Investigation of The Mixed Precision GMRES(m) Method
	Introduction
	Iterative Refinement and its Mixed Precision Variant
	Review of GMRES(m) and Mixed Precision GMRES(m) Method
	The GMRES(m) Method
	The Mixed Precision GMRES(m) Method

	Theoretical Analysis of Mixed Precision GMRES(m) Method
	Analysis on the Numerical Behavior
	Memory Footprint on Standard CPU Platform
	Estimation on the Expected Speedup

	Numerical Results
	Problem Settings
	Experiment Settings
	Analysis on the Maximum Attainable Accuracy
	Analysis on the Total Number of Iterations
	Analysis on the Execution Time
	Case Study

	Conclusion

	Numerical Investigation of Mixed Precision Iterative Refinement using the BiCGSTAB Method
	Introduction
	Review of the BiCGSTAB method and its Employment in Mixed Precision Iterative Refinement
	The BiCGSTAB Method
	Employment of BiCGSTAB in Mixed Precision Iterative Refinement

	Theoretical Analysis of Mixed Precision Iterative Refinement using BiCGSTAB Method
	Analysis on the Numerical Behavior
	Theoretical Estimation on the Expected Speedup of MP-IR using BiCGSTAB over MP-GMRES(m)

	Numerical Results
	Experiment Settings
	Analysis on the Maximum Attainable Accuracy
	Analysis from the Total Number of Iterations
	Analysis from Execution Time
	Case Study

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	References

