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1. Introduction

1.1 Using light in therapy

Pharmacotherapy involves the administration of drugs to treat diseases and alleviate
symptoms.' The advancement in pharmacotherapy has greatly provided humanity with
a higher quality of life. However, the development of pharmacotherapy is constrained
by one main factor: the poor selectivity of drugs, which originates from the drug affinity
for targets other than indeed” as well as the spatial and temporal uncontrolled drug
efficacy. Such poor drug selectivity will lead to many problems such as side effect’ or

drug resistance.*

To improve the spatial and temporal selectivity of drugs, recently, some strategies
have emerged aiming at establishing an external modality using the irradiation of light.>"
8 The combination of light and therapeutic effects has long captured the interest of
humanity for thousands of years.” Since light is the most readily available natural
energy source, and light can serve as a non-invasive regulatory tool, delivering stimuli
precisely with negligible toxicity or pollution. Till now, one major strategy,
photodynamic therapy (PDT) has already been used in clinical treatment achieving
spatial and temporal control (Figure 1a). Under the action of photosensitizer, energy is
transferred from >0, to 'O, upon light irradiation.!%!! However, such strategy shows no
target selectivity in the irradiated region since the generated 'O, will kill both normal
and abnormal cells. Another example of such strategies is photoreactive caged-
compounds (Figure 1b).!%!* The drug molecules caged with photocleavable leaving
group are initially inactive, upon light irradiation they will cleavage and release the
bioactive parts. But still, the problems of this method are that it’s not able to switch the
drug activity reversibly between a high efficacy state and a low efficacy state, as well

as the release of potentially harmful leaving groups.
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Figure 1. Figure showing two methods combining light with therapy: (a) photodynamic
therapy (PDT) and (b) photocleavable drugs.

1.2 Photopharmacology

Now photopharmacology, another strategy combining light as regulatory tool, is
raising more and more attentions to overcome the aforementioned drawbacks. The
principle of photopharmacology is to introduce a photoswitching motif into the
bioactive molecules, endowing the molecules with photoswitchability.!> That is, the
bioactivity of molecules can be freely switched on and off by light irradiation (Figure
2a). Consequently, dynamic regulation of bio-systems can be accomplished in any time
and space. For example, Feringa and co-workers reported a photoswitching antibiotic
by incorporating an azobenzene motif into quinolones (Figure 2b).'® When the
antibiotic was applied to Micrococcus luteus, the minimum inhibitory concentration
(MIC) can be switched reversibly from 16 pg/ml in initial state to 2 ug/ml after light
irradiation. Also, in our group, Mafy and co-workers reported a photoswitchable
inhibitor of CENP-E to control the mitotic process reversibly (Figure 2c).!” There are
hundreds of works have already been reported using such strategy in cell and animal
model experiments, however, challenges remain when it comes to clinical treatment.'®-
1% One major challenge is that currently no favourable photoswitches can be used in

applications of photopharmacology.



(a) Inactive state

&Light

Photoswitching

ligand

(b) 0 o
Oy
N=N N ==
OIJ N
\
N
(©) Moy
o uv

Vis

>7 é
]
/ZI
[

(@)

Active state

Figure 2. (a) Figure showing principle of photopharmacology. (b) Photoswitching
antibiotic reported by Feringa et al. (c¢) Photoswitching CENP-E inhibitor reported by

Matfy et al.

1.3 Photoswitches

To contribute to the development of photopharmacology, there is a growing demand

in optimizing the new photoswitches with good photoswitching abilities. The

performance of a photoswitch is determined based on distinct factors such as the

absorption maximum wavelength (Amax), quantum yield (®), relative abundance of £

and Z isomers at the photostationary state (PSS), thermal stability of the isomers, and

fatigue-resistant photoswitching cycle.?°

Among those reported photoswitches,



azobenzenes (Figure 3a) fulfill most of the requests mentioned above than other
occasionally used photoswitches including diarylethenes, spiropyrans, stilbenes (Figure
3b, 3c and 3d).?!** Since 1930s, zzobenzenes are usually considered as the most reliable
photoswitching motifs.?> Azo-based photoswitches absorb specific wavelengths of light
and undergo reversible conversion between their trans (E) and cis (£) isomers with
large structural changes, which have been utilized for diverse applications in biology,?*"
2% and pharmacology.'> 332 However, azobenzene has one fatal drawback: its
photoisomerization requires excitation with ultraviolet light (UV). UV irradiation, as it
known to all, has short wavelength with high energy and penetrates poorly in tissue.
For conventional azobenzene photoswitches, one method for tuning the spectral
characteristics and thereby altering photoswitch properties is to substitute suitable

functional groups on the phenyl rings.>*>*° But still, the redshift in the absorption bands

always accompanied by a significant decrease in the half-lives.
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Figure 3. Figure showing often used photoswitches. (a) Azobenzene, (b) diarylethene,
(c) spiropyran, (d) stilbene.



1.4 Heteroaryl azo-photoswitches

“Heteroaryl azo”-based photoswitches have recently received considerable attention
owing to their photophysical characteristics originating from the heterocyclic aryl
motifs.* Photoswitches with a five-membered heteroaryl motif exhibit distinct
photophysical properties, steric profiles, and molecular geometries.*** Many drug
molecules possess a five-membered heteroaryl motif;**** hence, their photoswitchable
analogs can be used in the field of photopharmacology, provided that the photoswitch
isomerizes when exposed to visible light.’*>! Pyrrole, pyrazole, imidazole, isoxazole,
triazole, and thiophene are considered as the five-membered heteroaryl motifs that have
been used in the development of photoswitches (Figure 4a).>>% Some of these

52, 56b

photoswitches have shown exceptionally long half-lives, while arylazooxazole

shows interesting switching properties in solid state.’

However, they require
ultraviolet-light irradiation for E—Z isomerization. In the case of thiophene-based
photoswitches, both E—Z (365 nm) and Z— E (285 nm) isomerizations require UV
irradiation.”® Conversely, azobenzazoles can be isomerized using visible light, albeit
with relatively short half-lives of the Z isomers (e.g., 0.4 s for benzothiazole).®*¢! Our
interest was to investigate novel thiazole-based photoswitches as a new class of
“heteroaryl azo” compounds with isomerization induced by visible light and relatively
long half-lives of the Z isomers. Previously, a visible-light switchable p38a kinase
inhibitor comprising 4,5-disubstituted phenylazothiazole (PAT) was reported; however,
the azo moiety was reduced to hydrazine in the presence of dithiothreitol (DTT).%
Recently in our laboratory, they reported a visible-light switchable Rho kinase inhibitor
based on a pyridine-appended PAT that was stable in the presence of DTT and

lutathione (Figure 4b).®* Motivated by this finding, in the present study, I focused on
g g Y

the fundamental properties and substituent effects of PAT compounds, aiming to



establish a new category of visible-light photoswitches. I envisioned that the electron-
donating sulfur heteroatom of thiazole should have a favorable effect to reduce the
energy gap of m—n* transitions, enabling isomerization via visible-light absorption. I
indeed found that PAT photoswitches generally isomerize reversibly under visible-light
irradiation, resulting in an excellent composition of £ and Z isomers at the PSS and
reasonably long thermal half-lives of the Z isomers. Interestingly, electron-donating or
withdrawing substituents at the ortho or para positions on the phenyl ring of the
photoswitch compound resulted in a further shift of the Amax to longer wavelengths with
a smaller thermal stability compensation effect for some PAT derivatives. 1 also
demonstrated the unusual T-shaped geometry of the Z isomer of PAT using X-ray
crystal analysis. In addition, PAT photoswitches without strong electron-withdrawing

substituents showed excellent stability against DTT and glutathione reductants.
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Figure 4. (a) Hetero azo-photoswitches containing five-membered rings reported
previously. (b) Photoswitching Rho kinase inhibitor reported by Tamaoki’s group.



2. Results and discussion
2.1 Synthesis of Phenylazothiazoles

I synthesized compounds 1-5 and 9 from the corresponding phenyl hydrazine
hydrochlorides via thiazoline cyclization followed by oxidation (Figure 1a, Scheme 1-
5).%% The yield (<10%) of the oxidation reaction of 4,5-dihydrothiazole to azothiazole
was enhanced (>30%) using silver dioxide as the oxidizing agent instead of air. For 6—
8, a nitro-appended PAT derivative was selectively reduced to an amine using zinc,
which was then methylated using methyl iodide (Figure 5a). Compounds 10 and 11
were synthesized from aminothiazole via a direct azo coupling reaction (Figure 5Sa,
Scheme 1-5). The compounds were unambiguously characterized using a variety of
analytical methods (‘H NMR, *C NMR, and mass spectroscopy; Figures 6-38). The
synthesis of 1 was reported previously without any study on its photophysical

properties.®’

(@) PAT ortho-substituent para-substituent
S/_/\N : S/_/\N S/=/\N /=/\N S/=/\N S/=/\N
Y Y h h Y
N\\ N\\ Nt'N N\\N NQN
: X1 =F, Cl, Xz = NH, CN (Eez OMe
Br, | NHMe, NMeE
1 2-5 6-8 9 10 11
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S e U
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Figure 5. (a) Molecular structures of un [1], ortho- (F [2], CI [3], Br [4], I [5], NH2 [6],
NHMe [7], NMe> [8]) and para- (CN [9], NMe; [10], OMe [11]) substituted PAT. (b)
Scheme showing the reversible isomerization of 1 using visible-light irradiation having
different wavelengths.
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Scheme 1. Reagents and conditions. (a) NH4SCN, EtOH/H20 (9:1 v/v), 25<C; (b)
BrCH2CH2NH; HBr, iPrOH, 110<C, then NaHCOs; (c) Na.COs3 [or Ag.0], EtOH,
110<C; (d) Zn, NH4Cl, MeOH, 25<C; (e) Mel, DMF, 30<C (f) Concentrated H2SO4,

NaNOz, 0<C (g) Concentrated HCI, agueous NaNO2, 0<C; (h) K.COs, DMF, then
dimethyl sulfate, 25<C.
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2.1.1 NMR spectra (‘H, 3C) and Mass spectra of PAT 1-11.

"H NMR spectra of PAT 1-11.
OCUITON—OL IO ) 8
Sooocoww S © :
€0 00 00 00 00 00 M I N N - <
e | |
)
SYN
8.1 8.0 79 78 77 7.6 75 74 I
f1 (ppm)
T b,
© ©O
o — O
5 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00

f1 (ppm)
Figure 6: 'H NMR of PAT 1 in CDCl;. '"H NMR (400 MHz, CDCls) 5 8.06 (d, J = 3.2 Hz,
1H), 8.04 — 8.01 (m, 2H), 7.56 — 7.51 (m, 3H), 7.44 (d, J= 3.2 Hz, 1H).
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Figure 7: "H NMR of PAT 2 in CD3;CN. 'H NMR (400 MHz, CD3CN) 6 8.08 (d, J=3.2 Hz,

1H), 7.90 — 7.85 (td, J= 1.6, 8.0, 7.6 Hz, 1H), 7.68 (d, J = 3.2 Hz, 1H), 7.67 — 7.63 (m, 1H), 7.43—
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7.37 (ddd, J=0.8, 8.4 Hz, 1H), 7.37-7.33 (tdd, /= 0.4, 1.2, 7.2 Hz, 1H).
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Figure 8: '"H NMR of PAT 3 in CDCls. 'H NMR (400 MHz, CDCls) 5 8.09 (dd, J = 3.2, 0.8
Hz, 1H), 7.93 (dt, J = 1.2, 8.4 Hz, 1H), 7.61 (dt, J = 1.2, 8.0 Hz, 1H), 7.48 — 7.46 (m, 2H), 7.40—
7.36 (tt, J = 1.2, 7.2 Hz, 1H).
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Figure 9: '"H NMR of PAT 4 in CDCls. 'H NMR (400 MHz, CDCls) & 8.08 (d, J = 3.2 Hz,

1H), 7.91 — 7.88 (m, 1H), 7.80 — 7.77 (m, 1H), 7.49 — 7.48 (d, J= 3.2 Hz, 1H), 7.44-7.37 (m, 2H).
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Figure 10: '"H NMR of PAT 5 in CDCl3. 'H NMR (400 MHz, CDCl;) & 8.09-8.05 (m, 2H),
7.86 —7.84 (td, J = 8.4, 1.2 Hz, 1H), 7.49 — 7.43 (m, 2H), 7.24-7.22 (m, 1H).
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Figure 11: '"H NMR of PAT 6 in CDCls. '"H NMR (400 MHz, CDCl3): § 7.93 (d, J =
3.6 Hz, 1H), 7.82 (dd, J= 1.6, 8.4 Hz, 1H), 7.31 (d, J=3.6 Hz, 1H), 7.25 (m, 1H), 6.83
—6.79 (m, 1H), 6.75 - 6.73 (dd, J= 1.2, 8.4 Hz, 1H), 6.42 (br, 2H).
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Figure 12: '"H NMR of PAT 7 in CDCls. '"H NMR (400 MHz, CDCl3): 6 9.23 (br, 1H),
7.90-7.89 (d,J=3.6 Hz, 1H), 7.82 —7.79 (dd, J = 1.6, 8.8 Hz, 1H), 7.39 — 7.34 (tdd,
J=04,20,7.2Hz 1H), 7.29 — 7.28 (d, J = 3.6 Hz, 1H), 6.83 — 6.79 (m, 2H), 3.05-
3.04 (d, J=5.2 Hz, 3H).
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Figure 13: '"H NMR of PAT 8 in CDCl;. '"H NMR (400 MHz, CDCIl3): 6 7.96 — 7.94
(m, 2H), 7.37 — 7.32 (td, J = 1.6, 8.4 Hz, 1H), 7.30 —7.29 (d, J = 3.2 Hz, 1H), 6.97 —
6.95 (dd, /= 0.8, 8.8Hz, 1H), 6.81 — 6.77 (td, J= 1.2, 8.4 Hz, 1H), 3.23 (s, 6H).
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Figure 14: 'H NMR of PAT 9 in CDCls. 'H NMR (400 MHz, CDCl3)  8.14 —8.13 (d, J=3.2
Hz, 1H), 8.12 — 8.09 (dt, /= 8.8, 2.0 Hz, 2H), 7.87 — 7.84 (dt, J= 9.2, 1.6 Hz, 2H), 7.55 — 7.54 (d,

J=3.2 Hz, 1H).
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Figure 15: '"H NMR of PAT 10 in DMSO-ds. '"H NMR (400 MHz, DMSO-ds) & 7.95 (d, J =
3.2 Hz, 1H), 7.83 — 7.81 (dt, J = 2.0, 3.2, 9.6 Hz, 2H), 7.68 (d, J = 3.6 Hz, 1H), 6.89 — 6.87 (dt, J =

2.4,3.2,9.6 Hz, 2H), 3.13 (s, 6H).
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Figure 16: 'H NMR of PAT 11 in CDCls. 'H NMR (400 MHz, CDCl3) & 8.03 — 7.99 (m,
3H), 7.37 (dd, J= 3.2, 0.8 Hz, 1H), 7.04 (d, J = 8.8 Hz, 2H), 3.92 (s, 3H).
3C NMR spectra of PAT 1-11.
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Figure 17:°C NMR of PAT 1 in CDCls. 3C NMR (400 MHz, CDCl3) & 177.16, 151.55,

143.94, 132.94, 129.34, 123.94, 121.43.
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Figure 18:°C NMR of PAT 2 in CDCls. 3C NMR (400 MHz, CDCl3) & 177.15, 161.97,

159.34, 144.18, 139.69, 134.76, 124.62, 122.07, 118.22, 117.49.
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Figure 19: °C NMR of PAT 3 in CDCls. '3C NMR (400 MHz, CDCls) & 147.66, 144.27,

136.82, 133.67, 131.07, 127.49, 122.30, 118.15.
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Figure 20: °C NMR of PAT 4 in CDCls. '3C NMR (400 MHz, CDCl3) & 176.98, 148.60,

144.30, 134.16, 133.83, 128.17, 127.29, 122.37, 118.35.
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Figure 21: >°C NMR of PAT 5 in CDCls. 13C NMR (400 MHz, CDCl3) & 176.71, 150.49,
14434, 140.34, 134.04, 129.12, 122.43, 118.02, 104.11.
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Figure 22: 1*C NMR of PAT 6 in CDCl;. 13C NMR (400 MHz, CDCI3): & 178.36,

143.25, 143.12, 135.85, 134.37, 130.90, 119.82, 117.52, 117.14.
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Figure 23: 3C NMR of PAT 7 in CDCls. Peak at § 29.72 was not assigned. *C NMR

(600 MHz, CDCl3) 6 178.73, 144.55, 142.85, 135.40, 134.92, 134.42, 119.32, 116.18,
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Figure 24: ’C NMR of PAT 8 in CDCls. Peak at § 29.72 was not assigned. 13C NMR
(600 MHz, CDCI13) 6 178.63, 151.58, 143.51, 140.61, 134.13, 119.58, 118.62, 118.26,

117.55, 45.27.
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Figure 25:"°C NMR of PAT 9 in CDCls. 3C NMR (400 MHz, CDCls) & 176.23, 153.34,

144.78, 133.40, 124.21, 122.89, 118.09, 115.63.
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Figure 26: 3C NMR of PAT 10 in DMSO-ds. 3C NMR (400 MHz, CDCl3)  178.75, 153.66,
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Figure 27:3C NMR of PAT 11 in CDCl;. 3C NMR (400 MHz, CDCls) & 177.66, 163.71,

146.00, 143.56, 126.22, 120.55, 114.58, 55.74.
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Mass spectra of PAT 1-11.

L]
e
=
o
L]
oo 72863
30
=
2
=
2
5
80
70
€0
)
3
=3
E S50
40
30
20
u
= 2
& B =
o o H il
b B o -
L B © & g
g 5 J |l 2 = = .
-— o W o ) fra3
- T = e . N | 1 E 4 @ L i
g8 Z g 1H = E 2 5 - o
w = = o B 5 = =
= (] - = L g E
[y - L l | n L L |.I.. L i Lk Al
35.0 1756 2602 340 8 4214 502.0
Maza (miz}

Figure 28: High-resolution mass spectra (MALDI-TOF) of PAT 1. m/z [M+Na]*
calcd for CoH7N3S: 212.03, found: 212.05.
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Figure 29: High-resolution mass spectra (ESI) of PAT 2. m/z [M+Na]" calcd for
CoHeFN;S: 230.02, found: 230.02.
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Figure 30: High-resolution mass spectra (ESI) of PAT 3. m/z [M+Na]" caled for
CoHgCIN:S: 245.99, found: 245.99.

100
80
40
20
200.93881 | 292.93628
301.14062 309.20324
276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310

m;

Figure 31: High-resolution mass spectra (ESI) of PAT 4. m/z [M+Na]" caled for
CoHeBrN3S: 289.94, found: 289.93 and 291.93.

T: FTMS + p ESI Full ms [150.0000-2000.0000]

10 337.92244
8
6
4
2 338.92580
w2783 32010406 1% 3091005 330.91827 349.06058
L B e e e L s o e o e L A s e e o e e e B S A s e s o e s B
326 328 330 332 334 336 338 340 342 344 346 348 350 352 354

Figure 32: High-resolution mass spectra (ESI) of PAT 5. m/z [M+Na]" caled for
CoH6IN3S: 337.92, found: 337.92.
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Figure 33: High-resolution mass spectra (ESI) of PAT 6. m/z [M+Na]" caled for
CoHgN4S: 227.04, found: 227.04.
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Figure 34: High-resolution mass spectra (ESI) of PAT 7. m/z [M+Na]" caled for
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CioH10N4S: 241.05, found: 241.05.
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Figure 35: High-resolution mass spectra (ESI) of PAT 8. m/z [M+Na]" caled for
C11Hi12N4S: 255.07, found: 225.07.
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Figure 36: High-resolution mass spectra (ESI) of PAT 9. MS (ESI) m/z [M-H]" calcd
for C10HsN4S: 213.03, found: 213.02.
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Figure 37: High-resolution mass spectra (MALDI-TOF) of PAT 10. m/z [M+H]*

calcd for C11H12N4S: 233.09, found: 233.12.
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Figure 38: High-resolution mass spectra (ESI) of PAT 11. m/z [M+Na]" calcd for
C10H9N3OS: 242.04, found: 242.04.
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2.2 Photoisomerization and photophysical properties of Phenylazothiazoles

I studied the photoswitching ability of PAT derivatives using absorption
spectroscopy in acetonitrile solution at 25°C (Figures 35 and 45-51). As synthesized 1
exhibited two absorption bands (Amax = 364 and 459 nm) assignable to the n—n* and
n—7* electronic transitions, respectively. The Amax value (m—n*) of the £ isomer of 1
was redshifted by ~47 nm compared with the £ isomer of azobenzene (Figure 40).
Owing to the redshifted spectral features of 1, I could induce photoisomerization using
visible-light irradiation. Under 405 nm light irradiation, the absorption band intensities
were considerably altered to reach the PSS (405pss) with 83% Z isomers (determined
using '"H NMR; Figure 41 and Table 1). The E—Z isomerization also occurred under
430 nm light irradiation, although with a reduced Z isomer composition (~52%) at the
PSS (Figure 49). Under 525 nm light irradiation (525pss), an opposite trend was
observed for the change in the absorption bands, resulting in an £ isomer composition
of 81% (Figure 39a). I then studied the effect of substituents at the ortho or para
positions on the phenyl component of PAT. Electron-withdrawing F, Cl, Br, I, and CN
substituents marginally affected the absorption spectra of 2—5, and 9, respectively, with
a slight red-shift in the Amax values compared with 1 (Table 1), and the compounds
underwent reversible photoisomerization similar to that of parent 1 (Figures 39b—e, 42—
46, and Table 1). Interestingly, 3 and 4 with bulky Cl and Br at the phenyl ortho
positions, respectively, presented highly efficient E—Z photoisomerization compared
with 1, resulting in 96% Z isomers at 405pss (Figures 39¢). However, the n—n* spectral
band of the Z isomers partially overlapped with that of the E isomers, causing less
efficient Z—FE photoisomerization and providing only 65% E isomers at 525pss (Figure
39c and Table 1). The electron-donating NH» (6), NHMe (7), NMe> (8 and 10), and

OMe (11) substituents considerably affected the absorption spectra, with a 20—161 nm
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red-shift in the Amax values compared with 1 (Figure 391). Importantly the E—Z and
Z—FE photoisomerizations occurred under longer wavelengths of 470 or 525 nm and
625 nm light irradiation, respectively, for 6, 7, and 10 (Figures 39d, 53 and 54). Because
of the fast thermal relaxation kinetics of 7 and 10, I also conducted laser flash photolysis,
which showed a sudden decrease in absorbance at 508 nm (for 7) and 476 nm (for 10)
and an increase in absorbance at 550 nm (for 10) followed by a slow recovery of the
original absorbance (Figures 39g, 39h, and 56). To my surprise, 11 showed the best

forward E—Z (92%) and reverse Z—E (88%) photoisomerization abilities, which is

probably attributable to the optimum spectral separation of the m—n* (AAdmax = 53 nm)

and n—7* (AAmax = 5 nm) transition bands of the £ and Z isomers, respectively (Figure

52 and Table 1). Compounds 1-6, 9, and 11 underwent reversible E—Z
photoisomerization for many cycles with no degradation, indicating high fatigue
resistance (Figures 39a—f insets), which is required for photopharmacological
applications. However, 8 with NMe, substituents at the phenyl ortho position
decomposed after light irradiation (Figure 55). I measured the quantum yields (®) of
1-5,9, and 11 at 405 nm for the E—Z photoisomerization using ferrioxalate actinometry.
For the Z—F photoisomerization, the ® values were calculated to be in the ranges of
0.17-0.45 (E—Z) and 0.31-0.78 (Z—E) (Table 1-8 and Figures 57-63). The half-lives
of the Z isomers and the Z—FE thermal isomerization kinetics were studied using
absorption spectroscopy or laser flash photolysis in acetonitrile solution at 25°C (Table
1). Compounds 1-6, 9, and 11 followed first-order thermal isomerization kinetics, and
their half-lives (#12) were calculated from the rate constants (Table 1 and Figures 64—
119). I observed a reasonably stable Z isomer of parent 1 (#12 = 2.8 h) and a
destabilization effect when the electron-donating OMe substituent was present, as in

the case of 11 (#12 = 14.8 min). In contrast, electron-withdrawing halogen substituents
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at the phenyl ortho position further stabilized the Z isomers. Compound 4 with a Br
substituent showed the longest half-life (z12 = 7.2 h) among all the PAT photoswitches
studied (Table 1). Interestingly, despite its strong electron-withdrawing character, the Z
isomer of 9 with CN substituents at the phenyl para position destabilized (t12 = 1.7 h)
compared with parent 1 (Table 1). Importantly, the #1» values for the Z isomers of 6, 7,
and 10 were 45, 6, and 2 s, respectively, which were much longer than those of green-
light switchable azobenzene derivatives. For instance, the #1,» value of the Z isomer of
4-dimethylamino-4’-nitroazobenzene, which isomerizes when exposed to >470 nm
irradiation, is in the order of milliseconds.’® Compounds 6, 7, and 10 underwent E—Z
photoisomerization when exposed to 525 nm irradiation, but their 712 values were in the
order of seconds. To maintain a Z-rich state in photophamacological applications, no
light irradiation or less frequent flashes are enough for compounds with Z isomers
showing #1» values in the order of hours or tens of minutes, whereas continuous
irradiation of an active light is necessary for those showing 12 values in the order of
seconds. The activation energy (E.), enthalpy (AH%), entropy (4S%), and Gibbs free
energy (AG*) were determined using the Arrhenius and Eyring plots of the Z—E
thermal isomerization kinetics in acetonitrile solution at five different temperatures

(5°C -35°C) (Table 1 and Figures 64-119).

The effect of water in the solvent on the photophysical and thermal isomerization
properties was also studied for 1, 6, 7, and 11. Although the water in the media had little
effect on 1 and 11, the #1» values of 6 and 7 with amino substituents decreased after
changing the solvent from acetonitrile to an acetonitrile/water (50/50, v/v) mixture

(Figure 120 and Table 10).
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Figure 39. (a—f) UV-visible absorption spectra of 1-3, 6, 9, and 11 in acetonitrile at
25°C before irradiation (BI, black lines), the PSS of 405 nm or 470 nm (405pss, 470pss,
red lines) and 525 nm or 625 nm irradiation (525pss, 625pss, blue lines). Absorbance
changes at Amax obtained by repeated irradiation at the PSS (insets). (g, h) Absorbance
changes of 7 and 10 at 508 nm and 476 nm, respectively, obtained using laser flash
photolysis (fit, red curve). (i) Graph of Amax values of 1-11 showing the shift of their
Amax to longer wavelengths.
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Table 1. Spectral and kinetic data for 1-11.

—x* (E) n-=* (E) Conversion (%) e ASH AGF o o
PAT Amax £ Amax & E~Z Z=E |@@5°0) & aH | ok | @5°C) | gz | zag
nm M-1cm-1 nm |M-1cm-1| (405 nm) (525 nm) h kJ mol-' | kJ mol-! K-1 KkJ/mol
1 364 | 19723 | 459 | 769 85 81 28 | 879 | 854 | -384 | 968 | 024 | 078
2 369 | 18592 | 458 | 969 90 77 55 | 942 | 917 | 208 | 979 | 031 | 043
3 371 | 12738 | 471 | 692 % 62 66 | 945 | 920 | -23.0 | 988 | 045 | 031
4 375 | 14903 | 477 | 666 %6 62 72 | 905 | 880 | -87.7 | 993 | 027 | 044
5 375 | 12521 | 498 | 389 o1 72 36 | 868 | 844 | 438 | 974 | 017 | 061
351 .
6 prd 1902%% - - jg, :;Zg ::; 597" @25nm)| 455 | 764 | 731 | 327 | 834 » -
353 | 11262 | _ 587 wronm) | _gqn _ _ _ _ _ _
7 508 | 14591 541" (525 nm) |00 €280m)| 6
8 365 | 3675 | _ ~ _ ~ _ ~ _ ~ _ _ _
525 | 3278
9 371 | 23049 | 468 | 653 88 76 1.7 | 748 | 722 | -786 | 956 | 021 | 0.7
10 484 | 28830 | - —  [>88 @700 | oot gosnm)| 2 = = = - = -
>52" (525 nm)
1 384 | 25944 | - - 92 86 025 | 808 | 783 | —416 | 907 | 034

* Conversion at the PSS was estimated based on the NMR results except for 6, 7, 10,
and 11, for which the absorbance spectra were used. Half-life was calculated from the
absorbance changes at thermal Z—E isomerization except for 7 and 10, for which laser
flash photolysis was used.
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Figure 40: Absorption spectra of PAT 1 (red) showing a redshift compared to the
absorption spectra of azobenzene (black) in CH3CN at 25 °C.
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2.2.1 Measurement of isomer conversion at PSS by NMR (PAT 1-5, 9 and 11).
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Figure 41: '"H NMR spectra (400 MHz, CD3CN) of PAT 1 obtained before irradiation
(BI) and after irradiations at PSS of 405 nm (405pss) and 525 nm (525pss) at room

temperature.
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Figure 42: '"H NMR spectra (400 MHz, CD3CN) of PAT 2 obtained before irradiation
(BI) and after irradiations at PSS of 405 nm (405pss) and 525 nm (525pss) at room

temperature.
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Figure 43: '"H NMR spectra (400 MHz, CD3CN) of PAT 3 obtained before irradiation

(BI) and after irradiations at PSS of 405 nm (405pss) and 525 nm (525pss) at room

temperature.
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Figure 44: "H NMR spectra (400 MHz, CD3CN) of PAT 4 obtained before irradiation

(BI) and after irradiations at PSS of 405 nm (405pss) and 525 nm (525pss) at room
temperature.
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Figure 45: 'H NMR spectra (400 MHz, CD3CN) of PAT 5 obtained before irradiation
(BI) and after irradiations at PSS of 405 nm (405pss) and 525 nm (525pss) at room
temperature.
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Figure 46: 'H NMR spectra (400 MHz, CD3CN) of PAT 9 obtained before irradiation
(BI) and after irradiations at PSS of 405 nm (405pss) and 525 nm (525pss) at room

temperature.
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Figure 47: '"H NMR spectra (400 MHz, CD3CN) of PAT 11 obtained before irradiation

(BI) and after irradiations at PSS of 405 nm (405pss) and 525 nm (525pss) at room

temperature.
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2.2.2 Measurement of isomer conversion at PSS by absorption spectra (PAT 11)

Due to short half-life of PAT 11 (14 min at 25 °C), the isomer ratios at PSS obtained by
NMR analysis were inaccurate and hence used the absorption spectroscopy for isomer
ratios calculation at PSS. When the extinction coefficient of Z isomer of PAT 11 (e7) at

Amax (384 nm) was zero, then the isomer ratios at PSS was calculated using the equation:

_ 4o
XE = Apss
XE E isomer ratio at PSS
Ao Absorbance at initial state at Amax
Apss Absorbance at PSS at Amax
- —BI Abs at 384 nm: 0.766
0.8 4 —405F,3S Abs at 384 nm: 0.060

—— 525, Abs at 384 nm: 0.655

0.7 4

Absorbance

0.0

360 . 460 l 560 600
Wavelength / nm
Figure 48: Absorption spectra of PAT 11 in CH3CN before (BI) and after irradiations

at PSS of 405 nm (405pss) and 525 nm (525pss) at room temperature. Calculated isomer
ratios were 8:92 (E:Z) at 405pss and 86:14 (E:Z) at 525pss.
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2.2.3 Absorption spectra of PAT derivatives
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Figure 49: Absorption spectra of PAT 1 in CH3CN before (BI) and after irradiations at
PSS of 430 nm (430pss) and 470 nm (470pss) at room temperature.
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Figure 50: Absorption spectra of PAT 4 in CH3CN before (BI) and after irradiations at
PSS 0f 405 nm (405pss) and 525 nm (525pss) at room temperature. Absorbance changes
at Amax obtained by repeated irradiations (inset)
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Figure 51: Absorption spectra of PAT 5 in CH3CN before (BI) and after irradiations at

PSS 0f 405 nm (405pss) and 525 nm (525pss) at room temperature. Absorbance changes

at Amax obtained by repeated irradiations (inset)
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Figure 52: Graph showing the change in absorbance at Amax of PAT 6 over time. Blue
curve represents the change in absorbance at Amax observed after irradiation of 625 nm
to the non-irradiated solution. Orange curve represents change in absorbance at Amax
observed after irradiation of 625 nm to the pre-irradiated solution at PSS of 470 nm
(470pss). This experiment was conducted to ensure the accuracy of trans and cis isomers
composition at 625 nm PSS minimizing the artifacts from Z—-E thermal back
isomerization.
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Figure 53: Absorption spectra of PAT 7 before irradiation (BI, black), while in situ
irradiation with 470 nm (470pss, red) followed by 625 nm (625pss, blue). The change
in absorption spectra indicates the photoconversion between cis and trans isomers of

PAT 7.
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Figure 54: Absorption spectra of PAT 10 before irradiation (BI, black), while in situ

irradiation with 470 nm (470pss, red) followed by 625 nm (625pss, blue). The change
in absorption spectra indicates the photoconversion between cis and trans isomers of

PAT 10.

40



0.4 — Bl
—525nm 10 s
—0525nm 20 s
—525nm40 s
0.3 —625nm 10 s
—625nm 20 s
——625nm40s

Absorbance

T T r T 1
500 600 700

Wavelength / nm

I ' I
300 400

Figure 55: Absorption spectra of PAT 8 in CH3CN before (BI) and after irradiations at
PSS of 525 nm (405pss) and 625 nm (525pss) at room temperature. A decrease of
absorbance was observed after irradiation and the irradiated solution became colorless

indicating the photodecomposition.
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2.2.4 Laser flash photolysis

6 Model

Equation

ExpDec1

y = Al%exp(-x/t1) + yO

Reduced Chi-S

5 qr
Adj. R-Square

4 B y0
B A1

B

AAbs
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M I
0 5000

Figure 56: Flash photolysis experiment of PAT 10 at monitoring wavelength of 550
nm (25.0 °C). Black and red curves represent experimental flash photolysis curve and

exponential fitting curve, respectively.
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2.2.5 Isomerization quantum yields

1 | Equation y=a+b'x
9 Weight No Weighting
Residual Sum 0.01221 -
J | of Squares
Pearson's r 0.99969
— 8 | Adi. R-Square 0.99876
o Value Standard Error
E Intercept 0.52965 0.14544
w,\\ 7 8 Slope 0.24481 0.0061
o |
-—
X 6 [
e}
O 4
£ 54
el
a 4
[}
E 4+
o
R) 4
N 3]
b |
9 10 15 20 25 30 35

Photons absorbed (x 10™) / mol

Figure 57: Graph showing the amount of Z-isomer of PAT 1 formed for the different
light intensity (0.15-0.56 W/cm?). Photons absorbed by PAT 1 were calculated and the
slope of the graph gives the quantum yield for the £—Z isomerization of PAT 1.

XE ZZ‘ €E ‘ €z ‘ &'y &'y ‘ ¢E—Z‘¢Z—E
0.15| 0.85] 19723| 59 | 5138 | 279 | 0.24 | 0.78

Table 2: Table showing the calculated values and E~Z and Z—F isomerization quantum
yields of PAT 1 at 405 nm light irradiation.
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= | Equation y=a+b

18 | | Weight No Weighting
Residual Sum 0.04255 [
1 | of Squares e
16 < | Pearson'st 0.99985 //
J | Adj. R-Square 0.9994 p /
° Value Standard Error e
£ 14 S Intercept -0.38751 0.2175 /
- 48 Slope 0.31352 0.00545 //
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o ] el
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Figure 58: Graph showing the amount of Z-isomer of PAT 2 formed for the different
light intensity. Photons absorbed by PAT 2 were calculated and the slope of the graph
gives the quantum yield for the E~Z isomerization of PAT 2.

XE XZ‘ €E ‘ €z ‘ &'k &'y ‘ ¢E—Z‘¢Z—E
0.1 | 09 | 18592| 247 | 7492 | 598 | 0.31 | 0.43

Table 3: Table showing the calculated values and E~Z and Z—F isomerization quantum
yields of PAT 2 at 405 nm light irradiation.
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- | Equation y=a+b'x
Weight No Weighting
Residual Sum 0.00158
25 = | of Squares -
Pearson's r 0.99962 //’
Adj. R-Square 0.99849 g
_O Value Standard Error
E & Intercept -0.38314 0.05337
- Sl 0.45462 0.0125 p
= 20
L pd
o
A ‘/
yd
X g
- 1.54
(0]
£
8 -
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E U ”//,
o] yd
2 ’
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Figure 59: Graph showing the amount of Z-isomer of PAT 3 formed for the different
light intensity. Photons absorbed by PAT 3 were calculated and the slope of the graph
gives the quantum yield for the E-Z isomerization of PAT 3.

XE XZ‘ €E ‘ €z ‘ &'y &'y ‘ ¢E—Z‘¢Z—E
0.04 | 096 | 12738| 617 | 6738 | 407 | 0.45 | 0.31

Table 4: Table showing the calculated values and £~Z and Z—F isomerization quantum
yields of PAT 3 at 405 nm light irradiation.
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16

Equation y=a+bx
1 | Weight No Weighting
Residual Sum 0.00508 a
14 of Squares A~
Adj. R-Square 0.99977 /
_O d Value Standard Error -
= 5 Intercept 1.30684 0.10117 7
= - Slope 0.27043 0.00291 /
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Figure 60: Graph showing the amount of Z-isomer of PAT 4 formed for the different
light intensity. Photons absorbed by PAT 4 were calculated and the slope of the graph
gives the quantum yield for the E~Z isomerization of PAT 4.

XE ZZ‘ €E ‘ €z ‘ &'y &'y ‘ ¢E—Z‘¢Z—E
0.06 | 0.94 | 14903| 326 | 8521 | 333 | 0.27 | 0.44

Table 5: Table showing the calculated values and E~Z and Z—F isomerization quantum
yields of PAT 4 at 405 nm light irradiation.
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Equation y=a+b*x
94 Weight No Weighting n
4 | Residual Sum 0.08346 /
of Squares
8 | Adj. R-Square 0.99246
© Value Standard Error S
e 7 B Intercept 0.00827 0.38695 Y g
-~ — p
— Slope 0.16741 0.0103 /,/
b //’
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Figure 61: Graph showing the amount of Z-isomer of PAT S formed for the different
light intensity. Photons absorbed by PAT 5 were calculated and the slope of the graph
gives the quantum yield for the E~Z isomerization of PAT 5.

XE XZ‘ €E ‘ €z ‘ &'k &'y ‘ ¢E—Z‘¢Z—E
0.09| 091 | 12521 386 | 8637 | 239 | 0.17 | 0.6l

Table 6: Table showing the calculated values and E~Z and Z—F isomerization quantum
yields of PAT 5 at 405 nm light irradiation.
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2.0 4 |Equation y=a+b

Weight No Weighting
Residual Sum 0.00186
1.8 |of Squares ™
J |Pearson'sr 0.99904 /
-_— Adj. R-Square 0.99618
g 1.6 4 Value Standard Erro
-~ b Intercept -0.17836 0.06412
B
s 1.4 Slope 0.34244 0.01498
O /
x 1 -
X 1.2
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m -
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L2 ]
¢ 0.8
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Figure 62: Graph showing the amount of Z-isomer of PAT 9 formed for the different
light intensity. Photons absorbed by PAT 9 were calculated and the slope of the graph
gives the quantum yield for the E-Z isomerization of PAT 9.

XE Zz‘ €E ‘ €z ‘ &'y &'y ‘ ¢E—Z‘¢Z-E
0.12 | 0.88 | 14632| 361 | 7234 | 356 | 0.34 | 0.94

Table 7: Table showing the calculated values and £~Z and Z—F isomerization quantum
yields of PAT 9 at 405 nm light irradiation.
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= | Equation y=a+b*x
2.4 4 We|9ht No Weighting
Residual Sum 0.00288 -
q  of Squares yd
2.2 - | Pearson's r 0.99879 /./
— 4 | Adj. R-Square 0.99518 ///
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Figure 63: Graph showing the amount of Z-isomer of PAT 11 formed for the different
light intensity. Photons absorbed by PAT 11 were calculated and the slope of the graph
gives the quantum yield for the E—Z isomerization of PAT 11.

XE ZZ‘ g ‘ &z ‘ &'y e'y ‘ ¢E—Z‘¢Z—E
<0.08\ >0.92\ 25944| - \21000\ - 1034 ] -

Table 8: Table showing the calculated values and E—Z isomerization quantum yield of
PAT 11 at 405 nm light irradiation. Z—E isomerization quantum yield was difficult to
estimate due to the effect of thermal back isomerization.
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2.2.6 Kinetics for half-lives, Arrhenius plots and Eyring Plots.

Equation y=a+bx
Weight No Weighting
Residual Sum  9.84881E-5
of Squares
0.0 '\ Adj. R-Square 0.99882
“ Value Standard Error
\\ Intercept -0.00273 0.00359
0.1 " |B Slope 1.92884E-5  2.9654E-7
£
<
3
® -0.24
< k(15°C)=1.93x 107 s”
< 03l t,,(15°C) = 598.4 min Y
IS b
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Time /s

Figure 64: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 15 °C (PAT 1). Rate constant k£ (= slope) and calculated #1/» are mentioned.

Equation y=a+b*
Weight No Weighting
Residual Sum  5.59698E-4
0.0- " of Squares
Adj. R-Square 0.99661
| Value Standard Error
-0.14 Intercept -0.00704 0.00856
c ] \ B Slope 3.61375E-5  9.42555E-7
| SR -
£ 02 N
[{o] ] \
™
9 -0.3 4
< ] k(20°C)=361x10°s" =
< .04 oy .
T 04 t,,(20 °C) = 319.6 min \
-0.54 \\
. N
b+ 77777
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Time/s

Figure 65: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 20 °C (PAT 1). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+bx
Weight No Weighting
0.1 5 Residual Sum 2.76127E-4
] of Squares
0.0 Adj. R-Square 0.99873
] .\ Value Standard Erro
-0.1 4 - Intercept 0.00109 0.00601

- 4 '\B Slope -6.92808E-5 1.1034E-6
0.2 \
Iy
_0,4: k(25°C)=6.93x10°s" \\
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Time /s

Figure 66: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 25 °C (PAT 1). Rate constant k£ (= slope) and calculated 7> are mentioned.

Equation y=a+b
Weight No Weighting
0.05 Residual Sum 9.304E-5
- of Squares
0.00 4 \ Adj. R-Square 0.99877
y N Value Standard Error
-0.05 1 \\ Intercept -0.00133 0.00349
B Slope -1.22517E-4 1.92147E-6

-0.10-

0154 \,
10.20- \-
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Figure 67: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 30 °C (PAT 1). Rate constant & (= slope) and calculated #1» are mentioned.
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Figure 68: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 35 °C (PAT 1). Rate constant k£ (= slope) and calculated #1/2 are mentioned.
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Figure 69: Arrhenius plot of PAT 1. Calculated activation energy (£,) is mentioned.
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Equation y=a+b*
Weight No Weighting
Residual Sum 0.00344
of Squares
-14.04 Adj. R-Square 0.99867
] '\ Value Standard Error
145 \ 5 Intercept 19.13611 0.62967
- Slope -10273.61624 187.68356
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Figure 70: Eyring plot of PAT 1. Calculated entropy of activation (45%), enthalpy of
activation (4H’) and Gibbs free energy (4G?) are mentioned.

Equation y=a+b
Weight No Weighting
Residual Sum 2.89305E-4
of Squares
0.0 Adj. R-Square 0.9962
Value Standard Erro
T Intercept 0.00379 0.00616
™ B Slope -1.22759E-5  3.38827E-7
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Figure 71: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 15 °C (PAT 2). Rate constant k£ (= slope) and calculated #1/» are mentioned.

53



0.0 1

Weight No Weighting
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Figure 72: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 20 °C (PAT 2). Rate constant k£ (= slope) and calculated #1/> are mentioned.
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Figure 73: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 25 °C (PAT 2). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+b'
Weight No Weighting
Residual Sum 6.5146E-5
of Squares
004 = Adj. R-Square  0.99952
Value Standard Error
0.1 Intercept -0.00265 0.00292
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Figure 74: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 30 °C (PAT 2). Rate constant k£ (= slope) and calculated #1/» are mentioned.
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Figure 75: Graph showing the linear fit of the change in absorbance at 364 nm over
time at 35 °C (PAT 2). Rate constant & (= slope) and calculated #1» are mentioned.
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Figure 76: Arrhenius plot of PAT 2. Calculated activation energy (E,) is mentioned.
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Figure 77: Eyring plot of PAT 2. Calculated entropy of activation (45%), enthalpy of
activation (4H) and Gibbs free energy (4G’) are mentioned.
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Figure 78: Graph showing the linear fit of the change in absorbance at 365 nm over
time at 15 °C (PAT 3). Rate constant &k (= slope) and calculated #1/2 are mentioned.
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Figure 79: Graph showing the linear fit of the change in absorbance at 365 nm over
time at 20 °C (PAT 3). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+b*
Weight No Weighting
Residual Sum 4.05354E-4
of Squares
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Figure 80: Graph showing the linear fit of the change in absorbance at 365 nm over
time at 25 °C (PAT 3). Rate constant k£ (= slope) and calculated #/> are mentioned.

Equation y=a+b%x
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Residual Sum 1.81758E-4
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Figure 81: Graph showing the linear fit of the change in absorbance at 365 nm over
time at 30 °C (PAT 3). Rate constant £ (= slope) and calculated #1» are mentioned.

58



0.0 1

-0.2

-0.4-

In(A,/ A,) @365 nm

-0.6 4

-0.8 1

Equation
Weight

Residual Sum
of Squares

Adj. R-Square

y=a+b*x
No Weighting
5.37919E-4

0.99846

Intercept
Slope

Value
-0.00949
-1.05277E-4

Standard Error
0.00839
1.84807E-6

k(35°C)=1.05x 10" 5'1\‘
t,,(35°C) = 109.7 min

.

Time /s

T T J T T — T T
-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 82: Graph showing the linear fit of the change in absorbance at 365 nm over
time at 35 °C (PAT 3). Rate constant &k (= slope) and calculated #1/> are mentioned.
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Figure 83: Arrhenius plot of PAT 3. Calculated activation energy (£,) is mentioned.
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Figure 84: Eyring plot of PAT 3. Calculated entropy of activation (45%), enthalpy of
activation (4H’) and Gibbs free energy (4G?) are mentioned.
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Figure 85: Graph showing the linear fit of the change in absorbance at 375 nm over
time at 15 °C (PAT 4). Rate constant k£ (= slope) and calculated #1» are mentioned.
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Equation y=a+bx
Weight No Weighting
Residual Sum  4.98174E-6
of Squares
0.00 Adj. R-Square 0.99988
Value Standard Error
. i Intercept -0.00138  8.07695E-4
0.05 B Slope 1.38626E-5  6.66932E-8
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Figure 86: Graph showing the linear fit of the change in absorbance at 375 nm over
time at 20 °C (PAT 4). Rate constant k£ (= slope) and calculated #1/> are mentioned.

Equation y=a+bx
Weight No Weighting
Residual Sum 1.04375E-6
of Squares
0.0 1 Adj. R-Square 0.99999
.\ Value Standard Erro
Intercept -4.1099E-4  3.69705E-4
0.1 B Slope -2.67427E-5 4.07032E-8
£ - \.\
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Figure 87: Graph showing the linear fit of the change in absorbance at 375 nm over
time at 25 °C (PAT 4). Rate constant & (= slope) and calculated #1» are mentioned.
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Figure 88: Graph showing the linear fit of the change in absorbance at 375 nm over
time at 30 °C (PAT 4). Rate constant k£ (= slope) and calculated 71> are mentioned.
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Figure 89: Graph showing the linear fit of the change in absorbance at 375 nm over
time at 35 °C (PAT 4). Rate constant & (= slope) and calculated #1» are mentioned.
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Figure 90: Arrhenius plot of PAT 4. Calculated activation energy (E,) is mentioned.
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Figure 91: Eyring plot of PAT 4. Calculated entropy of activation (45%), enthalpy of
activation (4H) and Gibbs free energy (4G’) are mentioned.
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Equation y=a+bx
Weight No Weighting
Residual Sum  1.21069E-4
of Squares
0.0 - = Adj. R-Square 0.99861
) Value Standard Error
Intercept 8.69524E-4 0.00398
B Slope -1.57389E-5 2.63025E-7
-0.14 .
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Figure 92: Graph showing the linear fit of the change in absorbance at 373 nm over
time at 15 °C (PAT 5). Rate constant &k (= slope) and calculated #/> are mentioned.

Equation y=a+b
Weight No Weighting
Residual Sum 1.06162E-4
of Squares
0.0 1 Adj. R-Square 0.99935
l\~ Value Standard Error
Intercept 0.00426 0.00373
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Figure 93: Graph showing the linear fit of the change in absorbance at 373 nm over
time at 20 °C (PAT 5). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+bx
Weight No Weighting
Residual Sum 2.14289E-4
of Squares
0.0 1 Adj. R-Square 0.99866
\ Value Standard Error
Intercept -0.00163 0.0053
-0.1 4 B Slope -5.3389E-5  8.74824E-7
£ \
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Figure 94: Graph showing the linear fit of the change in absorbance at 373 nm over
time at 25 °C (PAT 5). Rate constant &k (= slope) and calculated #1/> are mentioned.

Equation y=a+b*
Weight No Weighting
- Residual Sum  2.13741E-5
of Squares
0.04 Adj. R-Square 0.99989
T Value Standard Error
-0.14 Intercept 0.00139 0.00167
] 8 Slope 969131E5  4.60483E-7
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Figure 95: Graph showing the linear fit of the change in absorbance at 373 nm over
time at 30 °C (PAT 5). Rate constant & (= slope) and calculated #1» are mentioned.

65



0.0 1

-0.1 1

-0.2 1

-0.3

0.4

In(A,/ A,) @373 nm

-0.54

Equation y=a+b%
Weight No Weighting
Residual Sum = 9.32885E-5
of Squares
Adj. R-Square 0.99938
N Value Standard Error
Intercept 0.00131 0.0035
B Slope -1.72079E-4 1.92404E-6

k(35°C)=1.72x 10" "
t ,(35°C) = 67.2 min

N

0

| ! | v I
1500 2000 2500

Time /s

I ' I !
500 1000

—
3000

Figure 96: Graph showing the linear fit of the change in absorbance at 373 nm over
time at 35 °C (PAT 5). Rate constant &k (= slope) and calculated #1/> are mentioned.
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Figure 97: Arrhenius plot of PAT 5. Calculated activation energy (£,) is mentioned.
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Residual Sum 0.00305
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Figure 98: Eyring plot of PAT 5. Calculated entropy of activation (45%), enthalpy of
activation (4H") and Gibbs free energy (4G?) are mentioned.
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Figure 99: Graph showing the linear fit of the change in absorbance at 482 nm over
time at 16 °C (PAT 6). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+b'

Weight No Weighting
Residual Sum 4.61038E-5
of Squares
0.0 1 Adj. R-Square 0.99988
Value Standard Erro
Intercept -0.00368 0.00246
024 - B Slope -0.00827  4.05779E-5
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Figure 100: Graph showing the linear fit of the change in absorbance at 482 nm over
time at 19 °C (PAT 6). Rate constant k£ (= slope) and calculated #1/» are mentioned.

Equation y=a+bx
Weight No Weighting
Residual Sum 9.73929E-6
of Squares
0.0 Adj. R-Square 0.99998
| .\ Value Standard Erro
. Intercept -0.00182 0.00113
0.2 \ B Slope 001132 2.4867E-5
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Figure 101: Graph showing the linear fit of the change in absorbance at 482 nm over
time at 22 °C (PAT 6). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+b*x

Weight No Weighting
Residual Sum 7.65361E-6
0.0 of Squares
' Adj. R-Square 0.99999
Value Standard Erro
-0.2 4 Intercept -0.00138 0.001
\ B Slope -0.0155  2.20441E-5
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Figure 102: Graph showing the linear fit of the change in absorbance at 482 nm over
time at 25 °C (PAT 6). Rate constant k£ (= slope) and calculated #1/> are mentioned.

Equation y=a+b*x
Weight No Weighting
Residual Sum  2.19443E-5
of Squares
0.0 '\ Adj. R-Square 0.99996
1 N Value Standard Error
024 \\ . Intercept -0.00279 0.0017
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Figure 103: Graph showing the linear fit of the change in absorbance at 482 nm over
time at 28 °C (PAT 6). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+b*x
Weight No Weighting
1 Residual Sum  9.2234E-5
384 of Squares
i Adj. R-Square 0.99988
40 .\ Value Standard Erro
2 5 Intercept 26.51626 0.17249
i Slope -9152.0576 50.89359
4.2 4
-4 .4 4
g -
£ .46
1 E,=76.1kJ/ mol
-4.8 1
504
-5.2

T T T T T T T T T T T
0.00330 0.00333 0.00336 0.00339 0.00342 0.00345
T/ K’

Figure 104: Arrhenius plot of PAT 6. Calculated activation energy (E,) is mentioned.

Equation y=a+b'
Weight No Weighting
-9.4 4 Residual Sum 9.25319E-5
of Squares
Adj. R-Square 0.99987
-9.6 1 .\ Value Standard Erro
1 Intercept 19.82898 0.17276
-9.8 4 B Slope -8856.99967 50.9757
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Figure 105: Eyring plot of PAT 6. Calculated entropy of activation (457), enthalpy of
activation (4H) and Gibbs free energy (4G’) are mentioned.
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Equation y=a+b*
Weight No Weighting
Residual Sum  6.54389E-4
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Figure 106: Graph showing the linear fit of the change in absorbance at 371 nm over
time at 15 °C (PAT 9). Rate constant k£ (= slope) and calculated #1/> are mentioned.
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Figure 107: Graph showing the linear fit of the change in absorbance at 371 nm over
time at 20 °C (PAT 9). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+b*
Weight No Weighting
Residual Sum  6.84022E-4
of Squares
0.0 Adj. R-Square 0.99821
.\\ Value Standard Error
Intercept -0.00973 0.00946
-0.24 B Slope -1.09945E-4 2.08399E-6
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Figure 108: Graph showing the linear fit of the change in absorbance at 371 nm over
time at 25 °C (PAT 9). Rate constant &k (= slope) and calculated 71> are mentioned.

Equation y=a+b'
Weight No Weighting
Residual Sum 0.00147
of Squares
001 = Adj. R-Square 0.99675
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Figure 109: Graph showing the linear fit of the change in absorbance at 371 nm over
time at 30 °C (PAT 9). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+b
Weight No Weighting
Residual Sum 0.00123
of Squares
0.0 1 Adj. R-Square 0.99618
\ Value Standard Error
Intercept -0.01008 0.01271
0.2 B Slope -3.03123E-4 8.39487E-6
e .
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Figure 110: Graph showing the linear fit of the change in absorbance at 371 nm over
time at 35 °C (PAT 9). Rate constant k£ (= slope) and calculated 712 are mentioned.

-8.04

-8.5 4

904

In(4)

-954

-10.0 4

Equation y=a+b*x

Weight No Weighting

Residual Sum 0.00112

of Squares

Adj. R-Squar 0.99943

Value

.\ Intercept 20.97704

i Slope -8974.9077

Standard Erro
0.35888
106.96935

BN

.

S

Ea =74.6 kd / mol

N

-10.5
0.00320

! 1 ' I M I M I v I v 1
0.00325 0.00330 0.00335 0.00340 0.00345 0.00350

T/ K

Figure 111: Arrhenius plot of PAT 9. Calculated activation energy (E.) is mentioned.
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Figure 112: Eyring plot of PAT 9. Calculated entropy of activation (457), enthalpy of
activation (4H’) and Gibbs free energy (4G?) are mentioned.

0.0

-0.14

-0.2 4

-0.34

In(A,/ A,) @384 nm

-0.4-

k(5°C)=7.60x10"s"
t ,(5°C) = 152.1 min

Equation y =a+b*'
Weight No Weighting
Residual Sum =~ 7.09908E-6
of Squares
Adj. R-Square 0.99994
Value Standard Error
Intercept 3.80952E-4 9.64179E-4
B Slope 7.59598E-5  2.65382E-7

0

T T T T ’ T T T T T 1
2000 3000 4000 5000 6000

Time /s

Figure 113: Graph showing the linear fit of the change in absorbance at 384 nm over
time at 5 °C (PAT 11). Rate constant & (= slope) and calculated 1> are mentioned.
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Figure 114: Graph showing the linear fit of the change in absorbance at 384 nm over
time at 10 °C (PAT 11). Rate constant & (= slope) and calculated #1» are mentioned.
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Figure 115: Graph showing the linear fit of the change in absorbance at 384 nm over
time at 15 °C (PAT 11). Rate constant & (= slope) and calculated #1» are mentioned.
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Figure 116: Graph showing the linear fit of the change in absorbance at 384 nm over
time at 20 °C (PAT 11). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+b'
Weight No Weighting
Residual Sum  4.02284E-6
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Figure 117: Graph showing the linear fit of the change in absorbance at 384 nm over
time at 25 °C (PAT 11). Rate constant & (= slope) and calculated #1» are mentioned.
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Equation y=a+bx

Weight No Weighting

Residual Sum 0.00137
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Adj. R-Square 0.99947
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Figure 118: Arrhenius plot of PAT 11. Calculated activation energy (F,) is mentioned.

Equation y=a+b*
Weight No Weighting

-12.5 1 Residual Sum 0.00125
of Squares

] Adj. R-Square 0.99948
-13.0 4 Value Standard Erro
| } Intercept 18.76199 0.37218

B Slope -9423.81042 107.16743
135
' _14.0- \\

AH# = 783 kJ / mol
AS#+ = -41.6J/K / mol

# o) =
150 AG# (25 °C) = 90.7 kJ / mol \.

-16.5

In(k

-14.54

I T ) ' 1 ' 1 ' I 4 I 1
0.00335 0.00340 0.00345 0.00350 0.00355 0.00360
T/ K’

Figure 119: Eyring plot of PAT 11. Calculated entropy of activation (45%), enthalpy of
activation (4H) and Gibbs free energy (4G’) are mentioned.
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2.2.6 Photophysical and thermal isomerization properties of PATs in aqueous

media.

12 Equation y=a+Db'
-& 7] Weight No Weighting
1 |Residual Sum  4.3401E-4 A
1.1 - of Squares e
— Adj. R-Square 0.99645 /
o} T Value Standard Error,
E 1.0 Intercept 0.11945 0.03153
::. 4 B Slope 0.21863 0.00922
«©
S 0.9- -
—
Qo i S
£ e
o 0.7 7
80 -
_ 4
[0 d
g 0.6 7
o] -~
» 1 e
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N 05 = ////
1 |
0.4 4
L ! | I | I | L ! |
1.5 2.0 25 3.0 3.5 4.0 4.5 5.0

Photons absorbed (x 10'8)/ mol

Figure 120: Graph showing the amount of Z-isomer of PAT 1 formed for the different
light intensity in H20 / acetonitrile (95 / 5). Photons absorbed by PAT 1 were calculated
and the slope of the graph gives the quantum yield for the £~Z isomerization of PAT 1.

E —Z quantum yield = 0.22
Z—E quantum yield = 0.52

Table 9 Peak wavelength of absorption band (i—7+) and isomer ratio at photostationary

states and half-life of Z-isomer of PAT 1 in various solvents at 25 °C.

Solvent Amax (NM) PSSu0s (Z%) | PSSs2s (E%) | ti2 (h)
CH3CN 364 88 78 2.77
CH3CN:H>0 (50:50) 365 87 83 2.89
CHsCN:H>0 (5:95) 365 85 83 2.90
CHsCN:Buffer (5:95) pH =5 367 86 89 2.62
CH3CN:Buffer (5:95) pH =7 367 85 78 2.92
CHsCN:Buffer (5:95) pH =11 367 85 85 2.84

Table 10 Peak wavelength of absorption band and half-life of Z-isomer of PAT 6 in

various solvents at 25 °C.

Solvent Amax (M) t2
Acetonitrile 482 2s
1:1 Acetonitrile/ water 490 11 ms
Chloroform 478 21s
Toluene 476 42 s
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Table 11 Peak wavelength of absorption band and half-life of Z-isomer of PAT 10 in
various solvents at 25 °C.

SO|Veﬂt /1ma>< (nm) t1/2
Acetonitrile 484 2s
1:1 Acetonitrile/ water 498 1.85 ms
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2.3 X-ray single-crystal structures of Phenylazothiazoles

For a deeper understanding regarding the molecular geometry of PAT photoswitches,
I examined the X-ray single-crystal structures of the £ and Z isomers. The £ isomers of
1 and 3 adopted a conformation in which the phenyl and thiazole parts were coplanar
(Figure 121a), as in the case of azobenzene. However, the Z isomers adopted an unusual
T-shaped conformation with orthogonal geometry of the two aromatic rings in which
the S atom of thiazole was facing the phenyl aromatic ring. This is in sharp contrast to
the Z isomer of azobenzene, which possesses a twisted geometry in the two phenyl rings
are twisted. Although calculations have predicted this type of perfect T-shaped
conformation in the Z isomer of some heteroaryl azo compounds, this has not been
demonstrated experimentally.>*>® In our case, the X-ray crystal structure of Z-1 clearly
showed a perfect T-shaped conformation with a dihedral angle of 89.7°(Phenyl-CNNC).
For Z-3 with a bulky CI substituent, the dihedral angle for Phenyl-CNNC was 98.4°,

which slightly deviated from the T-shaped conformation (Figure 121a).

(a) (b) '

- | - ’J’ f!’ =
or l or or
, o W

E-1 Z-1 E-3 Z2-3 E-9 Z2-9

‘ =

Z-3 E-10 Z-10 E-11 Z-11

QO

326,,ﬁ
%523 dens

Figure 121. (a) Single-crystal X-ray structures of both £ and Z isomers of 1 and 3
(green = C; blue = N; golden = S; red = Cl). Hydrogens are omitted for clarity. (b)
Geometry optimized calculated conformations of £ and Z isomers of 1, 3, 9, 10, and 11.
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2.4 Theoretical calculations.

To gain further insights into the molecular structures, molecular orbital energy levels,
and energy barriers for isomerization, we performed density functional theory (DFT)
calculations using a 6-31+G(d,p) basis set with Becke’s three-parameter hybrid
exchange and the Lee—Yang—Parr correlation functional (B3LYP) including the
Grimme dispersion correction in acetonitrile medium. The most stable optimized
geometry in the ground state of both the £ and Z isomers of 1, 3,9, 10, and 11 are shown
in Figure 121b and Tables 12-21 and the less stable conformers are shown in Figure
124. A planar geometry was observed in the £ isomers of 1, 3, 9, 10, and 11 with the
phenyl, azo, and thiazole moieties in the same plane. However, in the Z isomers of the
same PAT derivatives (1, 3, and 9), an orthogonal geometry was observed with the S
atom of the thiazole ring facing the phenyl ring (Figure 121b). For Z-1 and Z-3, the X-
ray crystal structure analysis unambiguously revealed the orthogonal geometry with the
S atom of the thiazole ring facing the phenyl ring. In contrast, the calculated conformers
of Z-10 and Z-11 showed a twisted conformation (Figures 121b and 125). This
calculation result and the X-ray crystal structures of the Z isomers are explained as
follows: the origin of the attractive force stabilizing the T-shaped conformation in Z—1
and Z-3 was the electron transfer from the S lone pair to the n* antibonding orbital in
the phenyl ring. This effect was weakened in Z-10 and Z-11 with electron-donating
NMe, and OMe substituents, respectively.’® ¢ The n-orbital of the S atom extended
farther than that of the N atom, which explains the favored orientation of the thiazole
in the T-shaped conformer with the S atom rather than the N atom facing the phenyl

ring, which provides a n* orbital on the ring plane.

We then simulated the theoretical absorption spectra of both the £ and Z isomers of

1, 3, 9, 10, and 11 in acetonitrile, which showed strong n—n* and weak n—m*
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electronic transitions (Figure 126). For instance, the Amax of the calculated spectra of £—
1 appeared at 397 nm (oscillatory strength (f) = 0.704) and 477 nm (f= 0.000), whereas
that of Z—1 appeared at 350 nm (f = 0.024) and 502 nm (f = 0.001). The Amax (m—7*) of
the substituted PAT (E-3 (411 nm), £-9 (412 nm), £~10 (475 nm), and £-11 (430 nm))
was further redshifted compared with the parent PAT (E-1 (397 nm)), which was
similar to the trend observed in the experimental spectra. The relative intensities of the
n—7* transitions of Z-10 (fs27nm = 0.202) and Z—11 (fs29 nm = 0.113) were much higher
than that of Z—1 (fso2 nm = 0.001). The n—x* transition was symmetry-allowed for Z—
10 and Z—11 because of their twisted orthogonal geometry, but symmetry-forbidden for
Z-1.% The experimentally obtained molar extinction coefficient (¢) of Z-11
corresponding to the n—m* transition was 2044 M 'cm™!. The n—n* transition at 550
nm in the calculated absorption spectra of Z—10 was supported by the flash photolysis
results, in which a sudden increase in the absorbance at 550 nm was observed (Figure
56). Figure 122 shows the frontier molecular orbitals and the electron distribution at
each group in the £ isomers of 1 and 10. The highest occupied molecular orbital
(HOMO), lowest unoccupied molecular orbital (LUMO), and HOMO-1 have a &, n*,
and n nature, respectively.%® During the n—n* transition, the electron density of thiazole
decreases more than that of phenyl, whereas that of the azo group increases. The nature
of this intramolecular charge transfer from electron-rich thiazole to azo upon the n—n*
transition of 1 could be the origin of the red-shift in absorbance compared with
azobenzene.® An enormous electron-density shift from the NMe»-substituted phenyl to
azo and to thiazole is observed in 10, which contributes to its further red-shift in the

n—n* transition band.

We then calculated the potential energy diagrams for the Z—FE isomerization using

the B3LYP/6-31+G(d,p) level of theory. To determine the preferred thermal
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isomerization pathway, we calculated the activation energies for the inversion and
rotation pathways separately (Figures 127-129). The inversion pathway can occur
either via the azo phenyl (inversion-Ph) or azo thiazole (inversion-7/) segments. The
obtained relative energies of the Z isomers of 1, 3, 10, and 11 were 62—75 kJ mol ™
higher than those of the £ isomers, indicating the reduced stability of the Z isomer than
the £ isomer (Figure 127). We found that 1, 3, and 11 isomerized via inversion-7h,
whereas 9 isomerized via inversion-Ph. Interestingly, 10 isomerized via the rotation of
the azo segment (Figure 123a and Table 14). The calculated potential energy barriers
for the Z—E thermal isomerization (AEz—g) of 10 (67.86 kJ mol™!) and 11 (88.14 kJ
mol ') having electron-donating NMe> and OMe substituents, respectively, were much
lower than that of 1 (94.06 kJ mol ™) (Figure 123b). The calculated activation energies
(E.*") for the Z—E thermal isomerization followed a similar trend as the experimentally

obtained activation energies (Table 1).

(a) E-1 E-10
(b)

Phenyl | N=N | Thiazole
HOMO-1 (%) (%) (%)
E_q | LUMO | 21 46 33
HOMO | 32 14 55
LUMO | 29 39 30
E-10| jomo | 62 11 19

Figure 122. (a) LUMO, HOMO, and HOMO-1 of E-1 and E-10. (b) HOMO and
LUMO electron distributions at different groups having n and n* natures (phenyl, N=N,
and thiazole units) in £-1 and £-10.
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N=N Inversion-Th (in plane) S
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1 (cis) i Q T E-1 (trans)
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(b) " Rotation (out of plane) )
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\ A ( ‘ Z‘
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ooy " | Inversion-Th | Inversion-Th | Inversion-Ph | Rotation | Inversion-Th
Eg*@! (kJ mol-1) 94.06 99.76 86.50 67.86 88.14

Figure 123. (a) Scheme showing the inversion and rotation pathways for the
isomerization of 1. (b) Transition states and calculated activation energies (E.') of PAT

derivatives.
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2.4.1 Time-dependent density-functional theory (TDDFT) calculations

Theoretical calculations were performed using Gaussian 09 (Revision D.01).”°
GaussView 6.0 was used to draw and visualize the molecular structures and to feed the
inputs.”! Density functional theory (DFT) and time dependent density functional theory
(TDDFT) were employed to optimize the geometries and to obtain the electronic
transition in the ground state, respectively.”>’* The 6-31+G(d,p) basis set with Becke’s
three-parameter hybrid exchange and the Lee-Yang-Parr’s correlation functional
(B3LYP) was used for geometry optimization.’”> The solvent stabilization of different
isomers was incorporated by considering integral equation formalism-polarizable
continuum model (IEF-PCM) and choosing acetonitrile as medium.”® Potential energy
diagram for the £—Z isomerization is obtained from the dihedral scan by 0° to 180°

rotation of the C—-N=N—C dihedral angle or by inversion along -N=N—C bond.

E-10° Z-10 E-171 Z-171

Figure 124. Optimized geometry of conformers of PAT 1, 3, 9, 10 and 11. These are
less stable conformer compared to the more stable conformer shown in Figure 121b.
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1o

Z—1 Z-3 Z-10 Z-11

Figure 125. Calculated conformation of Z-isomers of PAT 1, 3, 9, 10 and 11 showing
“T-shape” or tilted (deviation) “T-shape”. Thiazole ring and azo bond are in the vertical
plane with respect to the phenyl ring in the horizontal plane. In the case of Z—10 and Z—
11, deviation from “T-shape” geometry is clearly visible.
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Figure 126. Calculated absorption spectra of £ and Z isomers of 1, 3, 9, 10 and 11.
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Figure 127. Potential energy diagram for £—Z isomerization obtained from the dihedral
scan (0—180 °C) in Sp along C-N=N-C (rotation) for PAT 1, 3, 9, 10 and 11. The

calculated energy barrier (AEz—.g) and the relative enthalpy (AHg.z) are shown with
arrows.
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Figure 128. Potential energy diagram for £—Z isomerization obtained from the bond
angle scan in So along -N=N-C (inversion at thiazole segment) for PAT 1, 3, 9, 10 and

11. The calculated energy barrier (AEz—£) and the relative enthalpy (AHg.z) are shown
with arrows.
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Figure 129. Potential energy diagram for £—Z isomerization obtained from the bond
angle scan in Sp along -N=N-C (inversion at phenyl segment) for PAT 1, 3, 9, 10 and

11. The calculated energy barrier (AEz—.£) and the relative enthalpy (AHg.z) are shown
with arrows.
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0.00002

] o 16 -4.15204 2.24091 -
Table 12. The XYZ-coordinates of optimized 0.00007
El in the ground state. 17 386628 i 0.00010
1.15814
18 -4.47666 - 0.00014
2.05559
19 4.06853 - 0.00043
0.444388
20 4.97209 - 0.00076
1.03966
Center Coordinates (Angstroms)
Number X Y 4
1 2.50536 - -
1.18511 0.00017
2 -0.29138 - 0.00007
0.32671
3 0.43895 0.70400  0.00000
4 2.67964 1.41764 -
0.00030
5 -1.68279 - 0.00006
0.10139 Table 13. The XYZ-coordinates of optimized
6 -2.29058 1.17114 - Z1 in the ground state.
0.00001
7 -1.67222 2.06125 -
0.00004
8 1.80181 0.44144 -
0.00002
9 -2.47483 - 0.00011
1.26211
10 -1.98377 - 0.00015
2.23015
11 395715 092349 - Center Coordinates (Angstroms)
0.00008 Number X Y Z
12 479468  1.61012 - ! 0.97679 - -
0.00011 1.01206  0.00091
13 446924 0.10351  0.00003 2 -0.33707 203129 -
14 -5.55173  0.18793  0.00002 0.00010
15 -3.67820 126401 - 3 0.90669 1.87979  0.00008

88



4 2.91265 0.71949  0.00068
5 -1.25618  0.92386  0.00005
6 -1.75521 0.44495  1.21866
7 -1.37646 0.84771  2.15276
8 1.59541 0.65185  0.00013
9 -1.75664  0.44586 -
1.21832
10 -1.37900  0.84934 - Center  Coordinates (Angstroms)
2.15256 Number X Y z
11 3.48013 . 0.00033 1 2.67358 1.06094  0.00012
0.51829 2 -1.82957 229815 -
12 4.55892 - 0.00074 0.00009
0.61247 3 -0.02195 - 0.00002
13 -3.20625 - 0.00046 0.06319
107027 4 0.80361 - ]
14 -3.95991 - 0.00062 1.01951  0.00006
1.85151 5 3.10164 - -
15 -2.72312 - 1.21114 1.51265 0.00012
0.56189 6 -1.37981 - 0.00001
16 -3.10184 - 2.15380 0.42560
0.94520 7 2.13281 - -
17 -2.72450 - - 0.62543  0.00003
056103 121041 8 233277 0.61596 -
18 -3.10429 - - 0.00002
0.94369  2.15290 9 3.69968  0.33576 -
19 2.60111 - - 0.00002
157678 0.00062 10 -4.41416 115111 -
20 2.82951 - - 0.00006
263462 0.00112 I -1.84056 - 0.00007
1.75923
12 -1.10676 - 0.00011
2.55682
13 4.29991 0.47718  0.00006
14 5.14104 1.15754  0.00012
15 -4.13138 - 0.00003
0.99128
16 -5.19544 - 0.00004
Table 14. The XYZ-coordinates of optimized .
E3 in the ground state. 17 432363 ) )

0.89669  0.00007
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18 5.22446 - - 0.06075 1.01936

1.49775 0.00013 10 -3.00619 041118 -
19 -3.20000 - 0.00007 1.90317
2.03983 11 -1.50916 - 1.27592
20 -3.53959 - 0.00012 1.24577
3.07041 12 -1.08773 - 2.17345
1.68702
13 2.84567 - -
1.02025 1.21112
14 3.12073 - -
1.64200 2.05310
15 -2.97910 - -
1.34894  0.64427
16 -3.70663 - -
1.88350 1.24612
Table 15. The XYZ-coordinates of optimized v 366361 ) )
0.23106  0.43421
73 in the ground state. 18 473181 ] ]
0.12414  0.57576
19 -2.43852 - 0.50236
1.94001
20 -2.74394 - 0.79924
2.93802
Center Coordinates (Angstroms)
Number X Y Z
1 1.21782 - -
0.92098  0.66962
2 -1.15245 2.24189 - Table 16. The XYZ-coordinates of optimized

0.73190 E11 in the ground state.

3 -0.22857 0.78009 1.76775
4 1.01307 0.83375 1.61220
5 3.04755 0.44113  0.57561
6 -1.09077 0.03528 0.89051
7 1.75068 0.20067  0.60002
8 -1.65553 0.62787 - Center Coordinat  (Angstroms)
0.24772 es
9 -2.59119 - - Number X Y Z
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10

11

12

13
14

15
16

17

18

19

20
21

22

23

3.44443

0.61323

1.28641

3.48989

-0.77845

-1.47770

-0.92386

2.65976

-1.50591

-0.96034

479164

5.59367

-3.58265
-2.86573

-2.89087
-3.46115

4.97162

5.90345

-3.38360

-4.93342
-5.71435

-6.75373

-5.51452

1.10154

0.39302

0.68108
1.50724
0.26143

0.96309

1.89487
0.49029
1.46992

2.40826

1.07531
1.80331
0.23412
0.98141
1.45998
2.38259

0.28423
0.83358
1.93228
0.32116

0.88380

0.55755

0.00056

0.00017

0.00011

0.00027

0.00003
0.00013

0.00017

0.00013

0.00008

0.00020
0.00007
0.00002

0.00019
0.00024

0.00003
0.00001
0.00035
0.00070
0.00036

0.00027
0.00063

0.00077
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24

-5.51417

1.47908

1.47878

0.89655
0.89792

Table 17. The XYZ-coordinates of optimized

Z11 in the ground state.

Center Coordinat  (Angstroms)
es
Number X Y zZ
1 -1.91739 0.70007 -
1.11599
2 -0.71269 - 0.04662
2.15747
3 -1.91799 - 0.15517
1.81525
4 -3.38674 - 0.87390
0.10343
5 0.37720 - 0.13741
1.25409
6 0.44653 - 1.06673
0.19329
7 -0.38551 0.00869 1.73187
8 -2.38334 - 0.12249
0.47925
9 1.49696 - -




10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

1.45545

-3.80403

-4.61488

2.69064

1.59439

1.67204

2.63857

3.47576

-3.15879

-3.35118

3.75386
4.91442

4.66779

5.61939

5.35506

1.55064
2.39902
1.16439
1.61860
0.31789
0.57385
1.37924

0.75293

0.98372
1.74981

2.71003

1.14512
0.94260

1.05088

1.71947

0.04338

0.65202
1.32786
0.54162
1.09759
0.30499
1.15449
1.87717

0.60275

1.24887

0.51336

0.97237
0.45701

0.36219

1.42394

0.06825

0.17983

Table 18. The XYZ-coordinates of optimized
E10 in the ground state.

Center Coordinat  (Angstroms)
es
Number X Y Z
1 -3.77505 - 0.00005

1.16402

10

11

12

13

14

15

16

17

18

19

20

21

22
23

-0.98725

-1.71215

-3.95541

0.38332

1.04893

0.46366

-3.07011

1.16914

0.66328

-5.23415

-6.07230

3.22856

2.42503

2.89479

2.54991

3.10816

-5.34624

-6.24889

4.58842

5.26460

6.34133
5.00630

0.32572
0.72544

1.44115

0.14560
1.10655

2.01919

0.47038

1.31959
2.28058
0.93981
1.62636
0.01101
1.17470

2.14969

1.26559

2.19241

0.42512
1.02106
0.06180

1.35850
1.19817
1.94362

0.00002

0.00007

0.00006

0.00009

0.00026

0.00039

0.00002
0.00005

0.00022

0.00003
0.00002

0.00014

0.00027

0.00045
0.00004

0.00026

0.00013

0.00022

0.00019
0.00073
0.00129

0.88971




24 5.00526 1.94287 0.89134 0.81752

25 5.39274 - - 10 0.65488 - -
1.15891 0.00026 0.42757 1.33409
26 5.19202 - - 11 3.89991 - -
1.76699  0.89023 1.44462 0.52086
27 6.44806 - - 12 4.55514 - -
0.89164 0.00138 2.08997 1.09321
28 5.19359 - 0.89064 13 -2.50874 - -
1.76619 0.02252  0.09881
14 -2.36094 1.30560  0.39924
15 -3.19483 1.81579 0.86283
16 -1.37605 - -
Table 19. The XYZ-coordinates of optimized 0.61044  0.74305
710 in the ground state. 17 -1.45364 B B
1.58951 1.19747
18 3.42785 - 0.72870
1.72859
19 3.62932 - 1.34567
2.59360
20 -3.68740 - 0.01149
0.69664
- 21 -4.84640 - 0.63322
Center Coordinat  (Angstroms)
0.05899
es
22 -5.67655 - 0.64659
Number X Y Z
0.76315
1 2.40705 - 1.29152
23 -4.63038 0.23318 1.66738
0.43804
24 -5.15991 0.83229 0.07610
2 1.12242 2.16092 -
25 -3.82563 - -
0.35515
2.04582 0.53432
3 2.31243 1.73572 -
26 -3.10028 - -
0.46245
2.73206  0.08267
4 3.51201 - -
27 -4.82528 - -
0.23394 1.05722
2.41752  0.31568
5 -0.01756 1.35406 -
28 -3.68658 - -
0.28004
2.05522  1.62238
6 -1.15749 1.97342 0.27841
7 -1.06486 2.99207 0.64288
8 2 70357 039960 - Table 20. The XY Z-coordinates of optimized
0.24784 E-9 in the ground state.
9 -0.16787 0.05185 -
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19 -5.71415 0.95037 0.00070

20 5.17385 - -
0.11634  0.00012
21 6.33559 - -
0.19608 0.00019
Center  Coordinat (Angstroms)
Number ;S Y Z
1 -3.25555 1.16173 -
0.00010
2 -0.43326 0.37218  0.00026
3 -1.14245 - 0.00010 Table 21. The XYZ-coordinates of optimized
0.67270 Z-9 in the ground state.
4 -3.36007 - -

1.44531 0.00042

5 0.96269 0.16054  0.00015
6 1.58000 - 0.00037
1.10648
7 0.97099 - 0.00063
2.00228
8 -2.50863 - -
0.44399  0.00001
9 1.74181 1.32873 -
0.00011 Center  Coordinat (Angstroms)
10 1.24457 229272 - Number ;S Y 7
0.00024 1 1.30337 - -
11 -4.64761 - - 1.06498 0.00152
0.98702  0.00025 2 0.69789 2.18680  0.00008
12 -5.46744 - - 3 1.87738 1.76633  0.00042
1.69451  0.00037 4 3.57720 0.19290 0.00119
13 3.74386 - - 5 -0.44882 1.32841  0.00008
0.01925  0.00003 6 -1.04911 0.98500 1.22022
14 2.96375 - 0.00028 7 -0.58468 1.28145 2.15448
1.19535 8 2.27800 0.41995 0.00032
15 3.44928 - 0.00045 9 -1.05066 0.98721 -
2.16511 1.21991
16 3.13021 1.24535 - 10 -0.58742 1.28538 -
0.00022 2.15420
17 3.73518 2.14494 - 11 3.85413 - 0.00062
0.00044 1.13917
18 -4.79467 0.38039 0.00038 12 4.88431 - 0.00130
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1.47265 0.03086 2.15872

13 -2.82126 - 0.00027 18 2.76063 - -
0.12509 1.97566  0.00089
14 -2.22886 0.24875 1.22058 19 2.74670 - -
15 -2.69198 - 2.15927 3.05773  0.00165
0.03463 20 -4.03612 - 0.00035
16 -2.23036 0.25089 - 0.88479
1.22010 21 -5.02270 - 0.00041
17 -2.69463 - - 1.50377

Table 22. Potential energy barrier (kJ/mol) for different isomerization pathways.
AHEg-.7 1s the calculated relative enthalpy (kJ/mol) between the most stable conformer
of E- and Z-isomers.

Inversion-Th Inversion-Ph Rotation AHg_.z
PAT-1 94.06 110.40 120.31 68.07
PAT-3 99.76 107.38 119.91 62.89
PAT-9 98.24 86.50 119.75 64.40
PAT-11 88.14 100.12 88.24 73.57
PAT-10 78.50 104.60 67.86 75.19
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2.5 Reductant stability

For biological applications, the photoswitch should be stable in a reductive
environment such as cell cytoplasm. Reductants such as DTT and glutathione may react
at the azo moiety of the photoswitch resulting in hydrazine. We tested the stability of
1-3, 9, and 11 by incubating them in a mixture of BRB80 buffer and acetonitrile (50/50,
v/v) containing DTT (0.1 mM) or glutathione (I mM) reductants. The absorbance
spectra were then measured before and after light irradiation (Figure 130 and 131).
Interestingly, the absorbance originating from the azo chromophore remained
unchanged, indicating the excellent stability of the £ and Z isomers of PATs toward
both DTT and glutathione reductants. However, the Z isomer of 9 with an electron-

withdrawing CN group was unstable (Figure 130d).
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Figure 130. Absorbance changes of 1-3, 9, and 11 (20 uM) over time after incubation
for 60 min at 25°C in aqueous solution (BRB80 buffer: acetonitrile = 1:1 v/v) containing
glutathione (1 mM) reductant. The black squares and red circles represent the
absorbance before and after 405 nm light irradiation, respectively, followed by a 3-min
incubation period before each measurement.
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Figure 131. Graph showing the change in absorbance of PAT 1-3, 9 and 11 (20 4M) over time

after incubation for 60 min at 25 °C in aqueous solution (BRB80 buffer: acetonitrile

1:1)

containing DTT (0.1 mM) reductant. Black square and red circle represent the absorbance before

and after 405 nm light irradiations followed by a 3-min incubation before each measurement,

respectively.
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3. Conclusions

We have demonstrated a novel class of five-membered “heteroaryl azo” photoswitches
that reversibly isomerize on being exposed to visible light. The photoswitch with
thiazole directly connected to a phenyl azo chromophore showed very different spectral
characteristics than conventional azobenzene and other heteroaryl azo compounds. For
instance, the Amax value (m—n*) of 1 was 363 nm, which is 47 nm and 35 nm redshifted
compared with those of azobenzene and azopyrazole, respectively.>* Furthermore, the
spectral band attributed to the £ and Z isomers of 1 was redshifted, allowing us to
reversibly isomerize the photoswitch using visible-light (405 and 525 nm) irradiation,
providing an excellent £ and Z isomer ratio at the PSS and a long thermal half-life of
the Z isomer. The photoswitch properties (Amax, ?12, and the PSS ratio) of PAT can be
further tuned by introducing ortho and para substituents at the phenyl ring. In particular,
6, having an ortho NH> substituent, showed reversible photoisomerization under longer
wavelength visible light (525 and 625 nm) irradiation with a smaller thermal stability
compensation effect and a longer half-life than visible-light switchable azobenzenes.
Furthermore, PAT photoswitches showed excellent stability in the presence of
reductants. Our calculation studies supported the experimental observations of the
molecular energy parameters as well as the molecular geometries in both the £ and Z
1somers of the PAT photoswitches. We believe that the PAT class of photoswitches will
provide unique applications, particularly in areas for which visible light is a requirement

such as photopharmacology.”” Such studies are currently underway.
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4. Experimental section
4.1 Experimental and instrumental methods

Chemicals

All reagents and solvents were purchased from commercial sources
(FUJIFILM Wako Pure Chemical Corporation, Tokyo Chemical Industry, Merck,

Kanto Chemical) and used without further purification.

Instrumentation

Reactions were monitored by thin-layer chromatography using TLC silica gel 60 F2s4
(Merck). Column chromatography was performed using silica gel 60 N (spherical,
neutral, 63-210 um, Kanto chemical). NMR spectra ('H, *C) were measured by a JEOL
ECX-400 (400 or 600 MHz) spectrometer. A Shimadzu UV spectrophotometer (UV-
1800) equipped with a TCC-100 Shimadzu temperature-controlled cell holder was used
for UV-vis spectrophotometry. Photoisomerization studies of PAT derivatives were
performed by a LED light source (Asahi Spectra, CL-1503) equipped with 405 nm, 430
nm, 470 nm, 525 nm and 625 nm LED heads. Flash photolysis experiments were carried

out using a Q-switched Nd:YAG laser (Surelite I-10; Continuum).
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4.2 Synthesis
General procedure for the synthesis of PAT 1-5, 9 and 6¢

S 9 N
3\1/ /\/NH2 HCI HN Na.CO Ny
NH4SCN “NH Br aL03 N
X X =
© EtOH, Reflux, 12-20h || |PrOH Reflux, 1620 h @ EtOH, Reflux, 1-3d ||
XN XR ’\R
a b PAT 1-5,9
R = ortho H, F, Cl, Br, |, NO,; paraCN 6¢c

Scheme 2: Synthetic scheme for PAT 1-5, 9 and 6c¢.

PAT 1-5, 9 and 6c¢ were synthesized according to a previously reported procedure with
slight modifications.”®

a. Synthesis of 2-phenylhydrazine-1-carbothioamide derivatives: Phenylhydrazine
hydrochloride (1.0 eq.) and ammonium thiocyanate (2.0 eq.) were suspended in a
mixture of ethanol and water (9:1, v/v) [5 mL per 1 mmol of phenylhydrazine
hydrochloride)] and refluxed for 12—-20 h. Then the solvent was removed under reduced
pressure, add water to the residue, and the resulting precipitate was filtered, washed
with water twice, and dried under vacuum to get pure 2-phenylhydrazine-1-
carbothioamide derivatives.

b. Synthesis of 2-(2-phenylhydrazineyl)-4,5-dihydrothiazole derivatives: 2-phenylhy-
drazine-1-carbothioamide derivatives (1.0 eg.) and 2-bromoethylamine hydrobromide
(1.0-1.2 eq.) were suspended in 2-propanol (5 mL per 1 mmol 2-bromoethylamine
hydrobromide) and refluxed for 16-20 h. Precipitate formed was filtered off and the
filtrate was evaporated under reduced pressure. The resulting residue was redissolved
in hot water, added saturated sodium bicarbonate (pH >7) and cooled to room
temperature. The slurry precipitate formed (containing the target compound) was
extensively washed with water and dried under vacuum, which was directly used for
the next reaction without further purification.

PAT.  Synthesis of  (E)-2-(phenyldiazenyl)thiazole  derivatives:  2-(2-
phenylhydrazineyl) -4,5-dihydrothiazole derivatives (1.0 eq.) and sodium carbonate
(4.0 eq.) were suspended in ethanol (5 mL per 1 mmol sodium carbonate) and refluxed
for 1-3 days. The solvent was removed by vacuum evaporation, add water to the residue,
extracted the compound with ethyl acetate or dichloromethane, dried with MgSOsa,
solvent removed by vacuum evaporation, and subjected to column chromatography on
silica using the EtOAc (5-25%)/Hexane eluent to isolate pure compounds PAT 1-5, 6¢
and 8. The oxidation reaction yield (<10%) of 4,5-dihydrothiazole compound to
azothiazole compound was enhanced (>30%) in the synthesis of PAT 4 and o-nitro
derivative (6C) by using silver dioxide as oxidizing agent (4.0-8 eq, reflux in ethyl
acetate or ethanol, 1-3 days) instead of air oxidation mentioned above.
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Synthesis of PAT 6 — 8

S/=\N S/=\N S/=\N S/=\N
\f Zn, NH,CI \f Mel Y \f
N\\ N\\ N\\ + N\\
N MeOH, 25 °C, N,, 1 h N DMF, 25 °C, 48 h N N
©/N02 ©/NH2 ©/NHMe ©/NMe2
6¢c 6 7 8

Scheme 3: Synthetic scheme for PAT 6 — 8.

PAT 6. The compound 6¢ (100 mg, 0.4 mmol), ammonium chloride (70 mg, 1.3 mmol),
and Zn powder (80 mg, 1.3 mmol) were mixed with dry MeOH (2 mL) under nitrogen
atmosphere and stirred for 1 h at room temperature. The reaction mixture was then
quenched with water and filtered through a celite bed. The filtrate was extracted with
ethyl acetate, dried over anhydrous MgSO4 followed by vacuum evaporation. The crude
compound was then purified by silica gel column chromatography using 30% ethyl
acetate in hexane solvent mixture (9 mg, yield = 10%).

PAT 7 and 8. The compound 6 (60 mg, 0.3 mmol) was mixed with K»CO3 (122 mg, 0.9
mmol) and dry DMF (2 mL) under nitrogen atmosphere. Methyl iodide (80 mg, 0.6
mmol) was added to this mixture dropwise and stirred for 48 hours at 25 °C. The
reaction mixture was diluted with ethyl acetate and washed with water followed by
brine solution. The organic layer was separated, dried over anhydrous MgSOj4 followed
by vacuum evaporation. The crude compound containing both PAT 7 and 8 was purified
using silica gel column chromatography using 30% ethyl acetate in hexane solvent
mixture 7 (4 mg, yield = 6%) and 8 (1.4 mg, yield = 2%)).
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Synthesis of PAT 10

—
S*N
Ns
=\ HSO,NO NMe, N
S_-.N .- >
7\; H,SO0,, H,0, 0°C, 2 h EtOH, 0 °C
2 pH = 5.0, 25 °C, 12 h
NM62
PAT 10

Scheme 4: Synthetic scheme of PAT 10.

PAT 10. Nitrosylsulfuric acid was prepared by adding sodium nitrite (1.1 g, 16 mmol)
to the concentrated sulfuric acid (9.6 mL, 98%) followed by heating at 70 <C and then
cooling to 0 <T.”° Separately, concentrated sulfuric acid (7.5 mL, 98%) was carefully
added to an aqueous solution (150 mL) of 2-aminothiazole (2.0 g, 20 mmol) followed
by cooling the solution to 0 <C. Nitrosylsulfuric acid was then slowly added to the above
prepared 2-aminothiazole solution at 0 <C and stirred for 2 hours at the same
temperature. Then, EtOH solution (10 mL) of N, N-dimethylaniline (1.9 g, 16 mmol)
was added at 0 T, adjusted the pH to 5.0 using 1 M NaOH, and stirred for another 12
h at 25 <C. The crude product was extracted with ethyl acetate and purified by column
chromatography on silica using EtOAc (50%) /Hexane eluent to isolate PAT 10.
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Synthesis of PAT 11

—\ =

g e

No Ny
/=\ HCI/H2O SN KZCOS MGQSO4 SN
S 2N + E—— > '
Y NaNO,, NaOH, H,O DMF, 25°C,0.5h 25°C,12h
NH; OH 0°C,2h

OH OMe
11a PAT 11

Scheme 5: Synthetic scheme of PAT 11.

Compound 11a. 2-Aminothiazole (5.4 g, 54 mmol) was dissolved in a solution of
deionized water (48 mL) and concentrated HCI (36%, 16 mL).2° A mixed solution of
sodium nitrite (3.9 g, 58 mmol), phenol (5.1 g, 54 mmol), sodium hydroxide (4.5 g,
0.11 mol) and deionized water was added dropwise to the above acidic solution at 0 <
and stirred for 2 h. The precipitate formed was filtered, and the crude product obtained
was purified by column chromatography on silica using EtOAc (50%) /hexane eluent
to isolate 11a.

PAT 11. To a solution of compound 11a (0.20 g, 0.98 mmol) in DMF (20 mL),
potassium carbonate (270 mg, 1.96 mmol) was added. The mixture was stirred at room
temperature for 30 min under nitrogen atmosphere. Dimethyl sulfate (0.12 g, 0.98
mmol) was then carefully added to the above mixture and stirred at room temperature
for 12 h. Water was added to the reaction mixture, extracted with EtOAc, solvent
removed by vacuum evaporation, and subjected to column chromatography on silica
using EtOAC (30%)/hexane eluent to isolate pure PAT 11.
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4.3 Measurement of isomer conversion at PSS by absorption spectra (PAT 11)

Due to short half-life of PAT 11 (14 min at 25 °C), the isomer ratios at PSS obtained by
NMR analysis were inaccurate and hence used the absorption spectroscopy for isomer
ratios calculation at PSS. When the extinction coefficient of Z isomer of PAT 11 (e7) at

Amax (384 nm) was zero, then the isomer ratios at PSS was calculated using the equation:

Ao

XE = Apss
XE E isomer ratio at PSS

Ao Absorbance at initial state at Amax

Apss Absorbance at PSS at Amax
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4.4 Methods for isomerization quantum yields

E—Z isomerization quantum yields were determined as follows

® number of events number of Z isomers formed (mol)
E-Z

~ humber of photons absorbed ~ humber of photons absorbed (mol)

4.8a: Determination Z isomers formed

The E—Z conversion ratios were strictly kept minimum (5-10%) during the experiments
to reduce the photons absorbed by E isomer. The number of Z isomers formed was
calculated by the equation:

Number of Z isomers formed = —————V

Apr Absorbance at Amax before irradiation

A4r  Absorbance at Amax after irradiation

€E Extinction coefficient of £ isomers at Amax
&z Extinction coefficient of Z isomers at Amax
) Optical length of cuvette (i.e. 1 cm)

V Total volume of the PAT solutions

Extinction coefficient at the Amax (¢7) can be obtained by following equation
_ Apss — Aoxe
gy =——
CoXz
Apss Absorbance at observation wavelength at 405pss
Ao Absorbance at observation wavelength before irradiation
co  Concentration of the PAT solutions
xe  E isomer ratio at 405 nm PSS (obtained by 'H NMR)
yz  Zisomer ratio at 405 nm PSS (obtained by '"H NMR)
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4.4b: Determination of absorbed photons

Actinometry: Ferrioxalate actinometer was used to determine the absorbed photons.?!
Ferrioxalate actinometer solution in a round-shaped cuvette (total volume = 3.1 mL,
optical path length = 1 cm) was placed in front of a square-shaped cuvette (optical path
length = 1 cm) equipped with a magnetic stirring bar to capture all photons passing
through the square cuvette. These two cuvettes were fixed on a metal base so that the
position of two cuvettes remained same for all experiments. (see image below).

ﬁED head (405 nm)

Square-shaped cuvette

Figure 132: Experimental set up for quantum yield measurement. LED light source:
(Asahi Spectra, CL-1503) equipped with 405 nm LED heads; Lens: Olympus
microscope condenser U-POC-2.
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4.4¢: Procedure for the measurement

The procedure has two consecutive steps.

(1) Measurement of photon absorbed by blank solution. A 405 nm-light (0.15-0.56
W/cm?) was irradiated (60 sec) to the cuvettes containing blank solution (i.e. CH3CN,
1.485 mL) in the square-shaped cuvette and ferrioxalate actinometer solution (0.15 M,
3 mL) in the round-shaped cuvette. Then manually shake the actinometer solution and
transfer 1 mL of it to a glass vial and mix with sodium acetate buffer (0.15 M, 2 mL)
containing phenanthroline (0.1 wt%, 300 xL). The mixed solution was incubated for
~60 min and measured absorbance at 510 nm using absorption spectroscopy.

(2) Measurement of photon absorbed by PAT sample solution. PAT stock solution (15
uL, 7.94 mM) was added to the same square-shaped cuvette containing CH3CN solvent
(1.485 mL) to prepare PAT sample solution (1.5 mL, 79.4 uM). A fresh ferrioxalate
actinometer solution (0.15 M, 3 mL) was added into the round-shaped cuvette followed
by light irradiation (405 nm, 0.15-0.56 W/cm?, 60 sec). Then manually shake the
actinometer solution and transfer 1 mL of it to a glass vial and mix with sodium acetate
buffer (0.15 M, 2 mL) containing phenanthroline (0.1 wt%, 300 xL). The mixed
solution was incubated for ~60 min and measured absorbance at 510 nm using
absorption spectroscopy.®? All the experiments should be done in dark room (red light
was used whenever necessary). We used the similar procedure for all the PAT
derivatives. The number of absorbed photons was calculated using the equation:

(Ao —ADVIV;

€510 nmV2Pa05 nm

Photons absorbed =

Ao Absorbance of ferrioxalate-phenanthroline solution at 510 nm (with
blank solvent in the square-shaped cuvette)

Al Absorbance of ferrioxalate-phenanthroline solution at 510 nm (with PAT
solutions in the square-shaped cuvette)

Vi Volume of actinometer solution in round-shaped cuvette (i.e. 3 mL)

V> Volume of actinometer solution taken from round-shaped cuvette after
irradiation (i.e. 1 mL)

V3 Total volume of the ferrioxalate-phenanthroline solution (i.e. 3 mL).

Es10nm Extinction coefficient of ferrioxalate-phenanthroline complex (ferroin) at

510 nm (obtained by calibration graph, £ = 11410 M'-cm in our experimental
condition) (Figure S52)

da0snm  Quantum yield of ferrioxalate actinometer at irradiation wavelength (1.14 at
405 nm)
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4.4d: Method to calculate the Z—F quantum vields.

Z—-F quantum yields were calculated by following equation in the case where the effect
of thermal back isomerization reaction is negligible

Xe€ EPE—2

€'7Xz
et Extinction coefficient of £ isomers at irradiation wavelength
e’z Extinction coefficient of Z isomers at irradiation wavelength
xe  E isomer ratio at 405pss (obtained by 'H NMR)
xz  Zisomer ratio at 405pss (obtained by 'H NMR)

Z—-E —

Extinction coefficient for the Z-isomer at irradiation wavelength (405 nm) (ez) can be
obtained by following equation:

, _ Apss —Aoxe
gy =—
CoXz

Apss Absorbance at observation wavelength at 405pss
Ao Absorbance at observation wavelength before irradiation
co  Concentration of the PAT solutions
e E isomer ratio at 405 nm PSS (obtained by 'H NMR)
yz  Zisomer ratio at 405 nm PSS (obtained by '"H NMR)
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4.5 Half-lives, Arrhenius plots and Eyring Plots.

A freshly prepared solution was irradiated at 405pss or 470pss and immediately kept for
thermal back Z—F isomerization in dark at temperatures (15, 20, 25, 30 and 35 °C for
PAT 1-5; 16, 19, 22, 25 and 28 °C for PAT 6; 5, 10, 15, 20 and 25 °C for PAT 11). In all
cases, 6—8 spectra at fixed time intervals were recorded in dark condition to minimize
the effect of light beam on thermal back isomerization. Then, a first order rate constant
(k) for the thermal back Z—F isomerization reaction was obtained using the equation

A Abs(BI) — Abs(time)

_ - —k
"4, ~ "™ Abs(BI) — Abs(PSS) ‘

Abs(BI) = absorbance at initial state at Amax.

Abs(PSS) = absorbance at photostationary state at Amax.

Abs(time) = absorbance at Amax at different time interval for thermal back isomerization
from 405pss.

For a first order reaction, half-life (¢;2) can be calculated using the equation:

0.693

ty/2 = 2

Arrhenius equation was used to obtain activation energy (E,) from /n k versus T/ graph.
k= -2 1 s
nk=-—o+in

T = absolute temperature
A = pre-exponential factor
R = universal gas constant (8.314 J-K!-mol ')

Eyring equation was used to obtain entropy of activation (4S¥) and enthalpy of
activation (AH*) from In k/T versus T/ graph.

ko AH*1+lkb+AS*
"TTTTTR TR R

T = absolute temperature

k»=Boltzmann constant (1.381 x 102* J-K'!)

h = Planck’s constant (6.626 x 1074 J-Hz!).

The Gibbs free energy (4G¥) was obtained by the equation:

AGF=AH¥—TAS*
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4.6 Single crystal X-ray structure analysis.

Cryoloop was used to mount the single crystals. Crystallographic data was collected
using a Rigaku XtalLab Synergy diffractometer with a single microfocus Mo Ko X-ray
radiation source (PhotonJet-S), equipped with a Hybrid Pixel (HyPix) Array detector
(HyPix-6000HE). Data collection, cell refinement, and data reduction were carried out
with CrysalisPRO (Rigaku Oxford Diffraction, 2017).

The initial structure was solved by SHELXT #* and expanded using Fourier techniques
and refined on F2 by the full-matrix least-squares method SHELX1.2018/3 8 package
compiled into OLEX2 package.®> All parameters were refined using anisotropic
temperature factors, except for hydrogen atoms, which were refined using the riding
model, with a fixed C—H bond distance.

CCDC 2201443 (E-1), 2201445 (Z-1), 2201444 (E-3) and 2201446 (Z-3) contain the
supplementary crystallographic data for this paper.
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