

HOKKAIDO UNIVERSITY

Title	In Situ Transmission Electron Microscopy Study of Bubble Behavior Near the Surface of Ice Crystals by Using a Liquid Cell With a Peltier Cooling Holder
Author(s)	Yamazaki, Tomoya; Yashima, Yuga; Katsuno, Hiroyasu; Miyazaki, Hiroya; Gondo, Takashi; Kimura, Yuki
Citation	Microscopy and microanalysis, 29(6), 1940-1949 https://doi.org/10.1093/micmic/ozad112
Issue Date	2023-10-18
Doc URL	http://hdl.handle.net/2115/91884
Rights	This is a pre-copyedited, author-produced version of an article accepted for publication in Microscopy and Microanalysis following peer review. The version of record Tomoya Yamazaki, Yuga Yashima, Hiroyasu Katsuno, Hiroya Miyazaki, Takashi Gondo, Yuki Kimura, In Situ Transmission Electron Microscopy Study of Bubble Behavior Near the Surface of Ice Crystals by Using a Liquid Cell With a Peltier Cooling Holder, Microscopy and Microanalysis, Volume 29, Issue 6, December 2023, Pages 1940–1949 is available online at: https://doi.org/10.1093/micmic/ozad112.
Туре	article (author version)
File Information	MM_huscup.pdf

1	In Situ Transmission Electron Microscopy Study of Bubble Behavior Near the
2	Surface of Ice Crystals by Using a Liquid Cell with a Peltier-Cooling Holder
3	Running title: In situ TEM of ice crystals with Peltier cooling (48/50 characters)
4	Tomoya Yamazaki ¹ , Yuga Yashima ¹ , Hiroyasu Katsuno ¹ , Hiroya Miyazaki ² , Takashi
5	Gondo ² , and Yuki Kimura ^{1,*}
6	¹ Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku,
7	Sapporo, 060-0819, Japan.
8	² Mel-Build Corporation, 2-11-36, Ishimaru, Nishi-ku, Fukuoka, 819-0025, Japan
9	*Corresponding author: E-mail: ykimura@lowtem.hokudai.ac.jp, TEL/FAX: +81-11-
10	706-7666/+81-11-706-7666
11	

Abstract:

13	Liquid-cell transmission electron microscopy (LC-TEM) is a unique technique that
14	permits in situ observations of various phenomena in liquids with high spatial and
15	temporal resolutions. One difficulty with this technique is the control of the
16	environmental conditions at the observation area. Control of the temperature in the
17	range from room temperature to minus several tens of degrees Celsius is desirable for
18	controlling the supersaturation in various materials and for observing crystallization
19	more easily. We have developed a cooling TEM specimen holder that uses Peltier
20	devices and we have combined it with a liquid cell to realize accurate temperature
21	control in LC-TEM. We evaluated this system by using water as a specimen. Motionless
22	bubbles, shown to be voids containing pressurized gas, formed in the specimen some
23	time after the temperature had reached -12 °C. An electron-diffraction pattern showed
24	that the specimen turned into ice Ih after the formation of these bubbles, confirming that
25	our system works properly and can induce crystallization. In addition, we analyzed the
26	behavior of bubbles formed in the ice Ih, and we discuss the formation of these bubbles
27	and their internal pressure.

- 29 Key words: liquid-cell transmission electron microscopy, in situ observation,
- 30 crystallization, radiolysis, ice, water, Peltier element, cooling holder

32 Introduction

33	Liquid-cell transmission electron microscopy (LC-TEM) is a technique that permits the
34	observation of volatile samples, such as aqueous solutions, by transmission electron
35	microscopy (TEM) (Ross, 2016). Because this technique can be used to observe various
36	phenomena in solution at the nanoscale (de Jonge et al., 2019), it is promising for
37	visualizing the events during the early stages of crystallization, such as the nucleation of
38	crystals from solution. Recent studies using LC-TEM have revealed that the nucleation
39	of crystals is a complex process in which various growth units, such as atoms or
40	molecules, do not assemble one by one to form the nucleus of a crystal but, instead,
41	form a crystal nucleus via intermediates such as amorphous or dense liquid (Nielsen et
42	al., 2014; Patterson et al., 2015; Yamazaki et al., 2017; Ou et al., 2020). These facts
43	clearly indicate that this method is promising for clarifying the previously inaccessible
44	picture of nucleation.
45	However, it remains difficult to observe the moment of nucleation by LC-TEM. One
46	reason for this is the scarcity of methods available for inducing crystallization within the
47	observation area. To observe the crystallization, it is usually necessary to increase the
48	supersaturation σ (defined as $\sigma = \ln(C/C_e)$, where C is the concentration and C_e is

49	the solubility) within the observation area to create the supersaturated conditions that
50	are necessary for crystallization to occur. To increase the supersaturation, it is clearly
51	necessary to increase the concentration of the solute and/or decrease its solubility. Such
52	an operation is difficult to perform within the observation area for LC-TEM. Increasing
53	the concentration of ions in LC-TEM has been achieved for some systems by using
54	radiolysis (Yuk et al., 2016; Yamazaki & Kimura, 2021). Radiolysis is the process by
55	which electrons impart part of their energy to a solution sample, especially a solvent,
56	resulting in the decomposition of the solvent to form active species that undergo
57	secondary chemical reactions with the surrounding solvent and solute molecules to
58	produce various chemical species that are not present in the initial solution (Schneider et
59	al., 2014; Ambrožič et al., 2019). This process permits the production of the chemical
60	species that are necessary for crystallization to occur, thereby generating supersaturated
61	conditions for the target crystals; however, the range of systems to which this technique
62	can be applied is very limited.
63	Another promising method for increasing the concentration within the observation
00	Theorem promising measure for mercusing the concentration wrann the coservation
64	area involves the use of electrodes. A liquid cell with an amorphous silicon nitride
65	membrane can be equipped with electrodes to which an electrical signal can be applied.

66	One way in which these electrodes can be used in observing crystallization is to induce
67	an electrochemical reaction on them. This can, for example, permit the visualization of
68	electrodeposition on electrodes during a battery charge-discharge cycle (Mehdi et al.,
69	2015). Another way to use the electrodes is to create an electrical field around them that
70	induces electric-field-related phenomena such as dielectrophoresis (Pohl, 1951). It is
71	possible to induce dielectrophoresis in a liquid cell so that colloidal particles collect
72	around electrodes (Yamazaki et al., 2022). This is a promising method for increasing
73	particle concentrations in the region around the electrodes and could trigger
74	crystallization, although the development of this concept remains a work in progress.
75	In contrast to methods that increase concentration, methods that decrease solubility
76	generally involve changing the temperature of the observed system, and cooling is
77	particularly effective for most solution systems. Cooling experiments under TEM are
78	generally performed by using a refrigerant such as liquid nitrogen. TEM specimen
79	holders for this technique have heaters to maintain the temperature of the specimen by
80	controlling the balance of heat transfer between the heater and the refrigerant. With this
81	temperature-control system, it is difficult to maintain temperatures that are just below
82	room temperature because of an imbalance between the capacity of the heater and that

83	of the refrigerant. Such systems are useful in so-called cryo-TEM, where biological
84	samples are frozen and supported in amorphous ice for observation (Dubochet et al.,
85	1988). The range of applications of crystallization from a solution or a pure liquid
86	(crystallization of a melt) through cooling with a liquid cell in TEM experiments is very
87	limited (Tai et al., 2014).
88	For optical microscopy, cooling stages that use Peltier elements are commonly used
89	in observing crystallization from solution (Dold et al., 2006). Temperature control by
90	using Peltier devices is based on the Peltier effect, in which heat is absorbed or
91	generated when an electric current is applied to a joint between different metals. In
92	practice, when a direct current is applied to a Peltier device, one side of the device is
93	cooled while the other side is heated. By controlling the amount of direct current, the
94	temperature of the specimen and/or its stage can be controlled so that it remains at a
95	desired temperature. This temperature-control system is accurate in principle, and the
96	temperatures that can be controlled by such a system range from several tens to minus
97	several tens of degrees Celsius, with an accuracy of ± 0.1 °C. The key to successful
98	cooling by using Peltier elements is the release of the heat that is produced by the
99	elements. If insufficient heat is released from the heating side, it can be transferred to

100	the cooling side, resulting in inadequate cooling. Heat-dissipating fins and/or refrigerant
101	circulated by a pump can be used to remove the heat generated in the heated section of a
102	Peltier element.

- 103 We have developed a TEM cooling holder that uses a Peltier device and we have
- 104 established an experimental system that combines the holder with a liquid cell for
- 105 performing crystallization experiments on liquid specimen. To demonstrate the
- 106 effectiveness of our cooling system, we used water, which was expected to form ice
- 107 crystals upon cooling, as a liquid specimen, and we successfully observed the formation
- 108 of ice crystals. An initial broad examination also showed that bubbles that formed near
- 109 the surface of the ice displayed an interesting behavior, analysis of which provided clues
- 110 as to the conditions present within the ice and the liquid cell.
- 111

112 Materials and Methods

113 **TEM and Electron-Beam Irradiation Conditions**

- 114 We used a transmission electron microscope (JEM-2100F; JEOL Ltd., Tokyo) with a
- field-emission gun operated at an acceleration voltage of 200 kV. The TEM images and

116	videos were recorded by using a OneView IS TEM camera (Gatan, Inc., Pleasanton,
117	CA). Energy-dispersive X-ray spectroscopy (EDS) for elemental analysis and mapping
118	was performed using an EDS system (JEOL JED2300T) equipped with a silicon drift
119	detector. The electron flux of the electron beam irradiating the specimen was controlled
120	by using an electrostatic shutter (Electrostatic Dose Modulator; IDES, Inc., Pleasanton,
121	CA) to produce a pulsed electron beam. The intensity of the pulsed electron beam
122	followed a square-wave pattern with a frequency of 10^4 Hz. To reduce the overall
123	intensity of a continuous electron beam of, for example, $1.0 e^{-} nm^{-2} s^{-1}$ to $0.1 e^{-}$
124	$nm^{-2} s^{-1}$ (one tenth), during each 0.1 ms of the experiment, the electron beam is
125	irradiated for 0.01 ms with no irradiation during the remaining 0.09 ms. The irradiation
126	rate of the electron beam is expressed as a percentage along with the electron flux. In
127	the previous example, the electron flux is denoted as $0.1 \text{ e}^{-} \text{ nm}^{-2} \text{ s}^{-1}$ (10%). We
128	measured the electron flux when the electrostatic shutter was used without any sample.
129	From this value, we calculated the electron dose rate, and the values of the electron dose
130	rate shown here are those of the electron beam before it penetrated the sample. The
131	electron dose rate was calibrated by using a Faraday cage (JEOL Ltd., Tokyo, Japan).
132	We used DigitalMicrograph (Gatan, Inc., Pleasanton, CA) and imageJ (Schneider et al.,
133	2012) software to analyze the TEM images. We also used <i>Recipro</i> (Seto & Ohtsuka, 9

2022) to simulate electron-diffraction patterns.

The Peltier-Cooling TEM Holder

137	We have developed a Peltier-cooling TEM holder (Figs. 1a-c) that has a double stacked
138	Peltier element inside the handle of the TEM holder (Fig. 1b), together with built-in
139	heat-transfer rods that extend from the Peltier element to just before the sample stage,
140	which can be replaced by other stages, depending on the required purpose (Fig. 1d-h).
141	The holder is equipped with signal lines (Fig. 1b) to apply a dc electric current to the
142	Peltier elements. A thermosensor and a heater are installed immediately before the
143	sample stage inside the holder (not visible in Fig. 1). The thermosensor can measure the
144	temperature near the sample location, including radiant head, and the temperature
145	measured by the thermosensor was used to maintain the temperature at the desired value
146	by balancing the outputs of the Peltier elements and a heater controlled by external
147	signals. A refrigerant-type heat sink was used to dissipate the heat generated in the hot
148	parts of the Peltier elements, and a low-pulsation chiller is used to circulate a refrigerant
149	at -20 °C through the heat sink. For this purpose, the holder is also equipped with tubes

150	(Fig. 1c) for circulating the refrigerant. When this type of chiller is used, vibrations
151	caused by the circulation of the refrigerant are minimal. The actual temperature might
152	differ from that measured by the thermosensor: the difference will depend on the heat
153	capacity of the tip and other factors. We attempted to measure the temperature of the tip
154	in vacuum by using a platinum sensor directly attached to the tip. The temperatures
155	reported in this study are the values corrected by this measurement. As discussed below,
156	the temperature at which ice formed from water was consistent with that previously
157	reported, and the temperature measurement is therefore not significantly incorrect. Note,
158	however, because heat inflow from the platinum sensor was also possible, more-
159	accurate measurements of the temperature at the sample location would be desirable. It
160	is also desirable to calibrate the temperature by observing the phase transition of
161	materials that are less affected by the electron beam.
162	
163	The Liquid Cell
164	The liquid cell, installed at the tip of the holder, consisted of a copper liquid cell holder

165 with large and small O-rings (Fig. 1e), a 3-mm-diameter silicon chip (NT025A;

166	Norcada Inc., Edmonton, Canada) (Fig. 1f) and a 5-mm-square silicon chip (Fig. 1g)
167	(NX5025A; Norcada), with a 50 nm-thick amorphous silicon nitride (a-SiN $_x$)
168	membrane. Both windows measured 250 \times 250 $\mu m.$ The circular silicon chip was placed
169	on the small O-ring, and double-distilled water that had not been degassed was loaded
170	onto the chip as a specimen (Fig. 1f). The square silicon chip was then placed on the
171	circular silicon chip and the larger O-ring (Fig. 1g), and the copper lid was screwed on
172	(Fig. 1h). The water was thus encapsulated between the two $a-SiN_x$ membranes. The a-
173	SiN_x membranes were placed so that they overlapped, allowing the electron beam to
174	penetrate through them to permit observation of the encapsulated water specimen.
175	
176	Results and Discussion
177	Bubble Generation and Ice Formation
178	We observed that ice crystallized in the liquid cell when the temperature was
179	reduced to -12 °C (Fig. 2). Initially, it was difficult to distinguish whether the water had

- 180 crystallized or not but, as described below, we were eventually able to identify
- 181 crystallization by means of the behavior of bubbles that formed in the sample. By

182	subsequently obtaining electron-diffraction patterns, we were able to identify the
183	formation of ice. Note that we use the term 'bubble' throughout to refer to a spherical
184	bright-contrast object observed in the ice crystal; this was actually a void, a type of
185	crystal defect, that contained gas, as will be discussed later.
186	The observation region of the liquid cell was filled with water, and no large air
187	bubbles were generated (Grogan et al., 2014) in the initial sample. The liquid cell was
188	gradually cooled to -12 °C and maintained at this temperature. About 3.5 minutes after
189	the temperature reached -12 °C, bright spots began to appear (Fig. 2b). The size of
190	these bright spots increased with time (Fig. 2c). The bright contrast of these spots
191	indicated that they were less dense than their surroundings. As we discuss later, we
192	concluded that these spots correspond to bubbles. In general, when such bubbles form in
193	an aqueous solution in a liquid cell they move or instantly grow so large that they cover
194	the entire field of view (Grogan et al., 2014). However, these bubbles grew slowly over
195	time and their centers did not move. We therefore concluded that the water had already
196	crystallized as ice.
197	When the temperature was raised toward 6 °C after the formation of these bubbles,

198 the ice crystal in the observation area shrank and the interface of the ice became

199	obscured; eventually, the observation area filled with water (Fig. 3 and Supplementary
200	Video S1) because all the ice crystals in the liquid cell completely melted into water.
201	When the ice reverted to water, the bubbles disappeared, suggesting that all the bubbles
202	had dissolved in the water because water can dissolve gases, whereas bubbles are not
203	readily incorporated into ice.
204	A selected-area electron-diffraction (SAED) pattern of the ice was acquired at
205	-12 °C, as shown in Fig. 4. Note that it is generally difficult to obtain electron-
206	diffraction patterns when this type of liquid cell is filled with a solvent, because the
207	sample is too thick. We attempted to obtain a diffraction pattern when the liquid cell was
208	filled with ice, but we could not obtain a clear diffraction pattern due to the thickness of
209	the sample, which was probably of the order of several micrometers. We therefore
210	searched for a large air bubble and we obtained a diffraction pattern through it (Fig. 4).
211	The electron-diffraction pattern was consistent with that of ice Ih, as simulated by the
212	<i>Recipro</i> software (Seto & Ohtsuka, 2022). We observed the presence of ice Ih at -12 °C,
213	the same temperature as that found in a previous study in which ice Ih was observed at
214	-12 °C by using a cooling TEM holder with a refrigerant and heater (Tai et al., 2014).
215	Therefore, our temperature-control system combining a Peltier-cooling TEM holder and

216	a liquid cell worked successfully in the TEM observations.
217	
218	Formation Routes of the Bubbles
219	There are two possible routes for the formation of gas bubbles during ice
220	crystallization: either the gases are excluded from the water during ice crystallization in
221	a degassing process or the gases are produced by radiolysis of the ice after
222	crystallization.
223	After the ice had crystallized, we were often able to find an area where a large
224	bubble had formed (Supplementary Fig. S1), through which the transmission of the
225	electron beam was sufficient to permit the acquisition of an electron-diffraction pattern
226	(Fig. 4). The EDS mapping images for oxygen and silicon show that neither element
227	could be detected in such bubbles, whereas the surrounding was composed of oxygen,
228	indicating ice (Supplementary Fig. S1). Assuming that the sample water was previously
229	saturated with atmospheric gases, the ratio of the volume of the gas present to that of the
230	water was calculated to be 50:1 (Supplementary Text S1). Because the window area
231	accounted for less than 2% of the total liquid cell (the surface area of the small Si chip
	15

232	was \sim 7 mm ² whereas the area of the window was \sim 0.06 mm ²), if a large bubble that
233	covered the entire window is formed, this can be explained by degassing of the water
234	alone. When the ice reverted to water, these bubbles disappeared, suggesting that they
235	had redissolved in the water (Fig. 3, Supplementary Video S1). The bubbles that formed
236	only after the ice crystallization were primarily the result of degassing of the initial
237	water sample as a result of ice crystallization.
238	As shown in Fig. 2, the bubbles continued to expand when the ice was irradiated
239	with the electron beam. This suggests that radiolysis by the electron beam was the main
240	source of gases after crystallization. When water/ice is irradiated with electrons, water
241	molecules are excited and then undergo chemical reactions with surrounding water
242	molecules. This process, known as radiolysis, results in the formation of various
243	chemical species, including gas molecules such as hydrogen and oxygen (Schneider et
244	al., 2014). The formation of bubbles by radiolysis is also supported by our observation
245	that no bubbles formed in the ice regions not irradiated by the electron beam after
246	crystallization. We therefore conclude that the bubbles formed in the ice crystal were the
247	result of a radiolysis process. A schematic summarizing the two bubble-formation routes
248	involving crystallization and electron-beam effects is shown in Supplementary Fig. S2.

249	In LC-TEM, radiolysis has significant effects on liquid specimens and on
250	observing phenomena. Calculations of changes in the composition of liquid water
251	resulting from radiolysis have shown that the production of hydrogen and oxygen
252	depends on the electron dose rate (Schneider et al., 2014). Similarly, such gaseous
253	products might be produced by the radiolysis of an ice specimen. The formation of
254	bubbles in both ice and hydrated specimens has also been observed by cryo-TEM
255	(Unwin & Muguruma, 1972; Dubochet et al., 1988). The formation and escape of
256	bubbles (referred to as 'cavities' in the literature) under electron-beam irradiation have
257	been observed in ice Ih at -80 °C (Unwin & Muguruma, 1972). Also, similar bubble
258	formation has often been observed in hydrated organic specimens in ice under cryogenic
259	conditions (Dubochet et al., 1988). The presence of hydrogen was confirmed by
260	electron energy-loss spectroscopy (EELS) (Leapman & Sun, 1995). A similar analysis
261	could provide insight into the composition of the bubbles produced in the present study
262	and the chemical reaction pathway for the formation of these bubbles by radiolysis.
263	

A Physical and Chemical View of the Formation of Bubbles in the Ice

265	Next, we will consider a physical view of the formation of bubbles in the crystals.
266	During radiolysis, lattice positions occupied by water molecules in an ice crystal
267	become vacant as a result of radiolytic decomposition, resulting in the formation of
268	vacancies. In the formation of a bubble, a plausible picture is that these vacancies
269	diffuse and aggregate to form a void that is filled by the gases generated by radiolysis.
270	The gases could diffuse through the crystal alone or together with the vacancies or
271	voids. Although a detailed model might provide a better account of the effects of gases
272	and defect sinks (Was, 2017), we assumed that the bubble-growth mechanism involves a
273	process of diffusion and aggregation of growth units (vacancies and/or vacancy and gas
274	molecule pairs); we were then able to predict the process that determines the growth
275	rate of the bubbles.
276	We measured the time dependence of the radius of one bubble (indicated by the
277	white arrow in Fig. 2) and we found that its radius increased almost linearly with time,
278	indicating that its growth rate R was constant (Fig. 5). The growth rate can be described
279	by the equation $R = K\sigma_{surf}$, where K is the kinetic coefficient and σ_{surf} is
280	supersaturation at the surface of the bubble (Chernov, 1984). The kinetic coefficient
281	represents the reaction process at the bubble's surface; this value will therefore be

282	constant if the environmental conditions, such as temperature, remain unchanged. The
283	supersaturation σ_{surf} can be expressed as $\sigma_{surf} = C_{surf} - C_{eq}$, where C_{surf} is the
284	concentration of growth units in ice at the surface of the bubble and C_{eq} is the
285	equilibrium concentration of growth units. The equilibrium concentration C_{eq} will also
286	be constant if the environmental conditions are unchanged. As the particles become
287	larger, the number of sites for the incorporation of growth units increases and the
288	concentration C_{surf} tends to decrease. In the present case, the constant growth rate
289	during the observation period suggests that bubble growth is rate-limited by the reaction
290	process at the surface of the bubble.
201	
291	According to the literature (Schneider et al., 2014.), the electron flux in Fig. 2
292	corresponds to the dose rate of 10^5 Gy s ⁻¹ under our experimental conditions. At this
293	dose rate, the concentrations of hydrogen and oxygen at chemical equilibrium in the
294	
	irradiated area are approximately 10^{-5} and 10^{-6} M, respectively. If all the gas
295	irradiated area are approximately 10^{-5} and 10^{-6} M, respectively. If all the gas components emerge as a bubble from a water volume of $1000 \ \mu m^3$ (this assumes from a
295 296	irradiated area are approximately 10^{-5} and 10^{-6} M, respectively. If all the gas components emerge as a bubble from a water volume of $1000 \ \mu m^3$ (this assumes from a volume of $10 \times 10 \times 10 \ \mu m^3$, similar to our observation conditions) at this
295 296 297	irradiated area are approximately 10^{-5} and 10^{-6} M, respectively. If all the gas components emerge as a bubble from a water volume of $1000 \ \mu m^3$ (this assumes from a volume of $10 \times 10 \times 10 \ \mu m^3$, similar to our observation conditions) at this concentration, the volume of the bubble would be ~ $0.2 \ \mu m^3$ at atmospheric pressure and

299	maintained at this value on the millisecond scale because the solution is in chemical
300	equilibrium. Therefore, the maximum gas production rate is estimated to be 200 μm^3
301	s ⁻¹ , which is sufficient to grow a bubble with a diameter of 1.8 μ m (volume of ~24 μ m ³)
302	in 236 s. The value calculated under this assumption is consistent with the results of the
303	present experiment. Note that this gas production rate is calculated for a thin film of
304	water. Because the sample in our experiment is ice and thicker (multiple scattering of
305	electrons should occur), the production rate should be different.
306	This might provide further insights into the details of the bubble-formation
307	mechanism to measure the bubble growth rate as functions of the temperature and the
308	dose rate.
309	
509	
310	Estimation of the State of the Ice and Its Environment by an Analysis of the Bubbles
311	In this section, we discuss details of the nature of the ice and its surrounding
312	environment obtained by analyzing the bubbles. When all the liquid water had
313	crystallized, the dissolved gases were excluded, and a gas-solid interface formed inside
314	the liquid cell. Observations performed at -12 °C showed that the interface slowly

315	receded (Fig. 6 and Supplementary Video 2). While the interface was receding, bubble
316	growth was not clearly observed. In addition, the temperature increase in LC-TEM has
317	been estimated to be small (Grogan et al., 2014), and we did not observe any drastic
318	changes, such as boiling of water, induced by high temperatures. Therefore, this
319	recession might have been due to decomposition of the ice crystals through radiolysis,
320	with the radiolysis products, as well as forming bubbles, escaping from the interface
321	before being incorporated into bubbles.
322	The bubbles formed within the ice crystals remained stationary at constant
323	positions (the positions of the centers of the spheres did not change), and no movement
324	of the bubbles inside the crystals was clearly observed. Under these conditions, as the
325	surface of the ice crystal receded and the surface moved closer to the bubbles, the
326	bubbles were eventually ejected from the surface of the ice crystal. When bubbles began
327	to be ejected, they were observed to be moving and their shapes became deformed, so it
328	appeared that there might have been a liquid layer present on the surface. Here, we
329	discuss the state of the ice surface by analyzing the behavior of the bubbles.
330	First, let us assume the presence of a liquid layer on the surface of an ice crystal
331	about the size of a bubble (several hundreds of nanometers), from which the bubble

332	escapes. This is a similar situation to the case in which bubbles escape from the surface
333	of bulk water at a flat gas-liquid interface. Note that a layer of liquid on the ice surface,
334	commonly called the quasi-liquid layer, is not observed in this temperature region, and
335	its thickness is less than 100 nm (Sazaki et al., 2022).
336	When a bubble with a size of a few tens of micrometers escapes from bulk water,
337	the relaxation time of the water's surface has been experimentally determined to be
338	several tens of microseconds (because the water surface generally oscillates during the
339	relaxation, the time for one cycle of oscillation is taken as the relaxation time) (Lee et
340	al., 2011). On the other hand, the relaxation time that we observed before the bubbles
341	escaped from the surface and the surface was roughly flattened was about one second
342	for bubbles with a diameter of 600 nm (Fig. 6). The measured relaxation time was
343	therefore huge compared with that of bulk water. This discrepancy shows that ordinary
344	water was not present on the surface of the ice. If a liquid layer is highly viscous, its
345	relaxation time τ can generally be described by the expression $\tau = \mu h / \gamma$ (Bird et al.,
346	2010), where μ is the viscosity, <i>h</i> is the distance between the interface and the surface of
347	the air bubble, and γ is the surface tension. If we assume that the surface tension of
348	water at -12 °C is 0.077 kg s ⁻² (Kalová & Mareš, 2018), a typical value of <i>h</i> is about

349	100 nm (Fig. 4), and the relaxation time is about 1 s, the viscosity of the liquid phase is
350	7.7×10^5 Pa s or 7.7×10^8 cP. This is highly viscous for a liquid, and its value is more
351	than eight orders of magnitude higher than that of bulk water. Therefore, it is reasonable
352	to infer that the surface remains in a solid state. It would be interesting to observe the
353	ice surface at closely spaced temperatures around the melting point to identify the
354	boundary between the liquid and solid phases.
355	If the surface is solid, the mass-transport process involved in restoring a flat
356	surface can be estimated from the relaxation time of the surface. Immediately after
357	bubble rupture, a hole is created in the surface of the ice, and the flat surface is
358	eventually restored because the ice attempts minimize its surface energy. During this
359	recovery process, the supply of molecules to the ice surface can be estimated by
360	applying Herring's scaling law for sintering (Herring, 1950), which can be used to
361	predict the process of mass transfer from the relationship between the relaxation time
362	and the characteristic length power. We measured the dependence of the relaxation time
363	on the bubble size (Fig. 7) and we found that it increased with the bubble size to the
364	power 1.77. According to Herring's scaling law, this corresponds to a process of
365	evaporation and condensation in which molecules that have evaporated into the gas

366	phase are taken up again at the surface (for which the power is approximately 2), and
367	not volume diffusion (for which the power is approximately 3). This result suggests that
368	the process of surface relaxation involves the release of water molecules from a
369	relatively unstable crystal and their reincorporation from the gas phase to form a surface
370	to minimize the surface energy.
371	If the ice surface is crystalline, its tensile strength can be used to estimate the
372	pressure inside the bubbles. In Fig. 4, a bubble with a radius of 200 nm ruptured when
373	the ice between the bubble and the environmental phase was 100 nm thick. Rupture
374	occurs when the stress generated by the internal pressure of a bubble exceeds the tensile
375	strength of the ice. In a thick-walled spherical container of thickness t , the maximum
376	stress due to the internal pressure caused by the enclosed gas is equal to the stress
377	applied at the inner wall of the container, and can be expressed by the following
378	equation:

379
$$\sigma_{inner} = p \frac{(r+t)^2 + r^2}{(r+t)^2 - r^2}$$
(1).

380 If we assume that the internal pressure inside the liquid cell is equal to atmospheric
381 pressure (0.1 MPa) and that the tensile strength of the ice is 1–2 MPa (Cuda & Ash,

382	1984), the pressure p ranges from 0.38 to 0.77 MPa, which is the same order of
383	magnitude as atmospheric pressure. This is small compared with the pressure of $\sim 10^3$
384	atmospheres inside bubbles generated in water samples containing organic matter, as
385	measured by EELS (Leapman & Sun, 1995). From a simple ratio, when two water
386	molecules are converted into gases, two hydrogen molecules and one oxygen molecules
387	are produced. The volume occupied by one water molecule in ice Ih is 0.32 nm ³ ,
388	whereas the volume of one ideal gas molecule at one atmosphere is 41 nm ³ . If three gas
389	molecules are present in the space previously occupied by two water molecules, the
390	local pressure would be about 200 atm. However, the diffusion coefficient of molecular
391	hydrogen in ice Ih under similar condition to those of our study is 10^{-11} m ² s ⁻¹
392	(Patterson & Saltzman, 2021), a value that is as large as that of macromolecules in
393	aqueous solution. Therefore, interactions might occur between the bubble surface and
394	hydrogen molecules that keep hydrogen within the bubble.
395	

396 Application of the Cooling TEM Holders, and Perspectives

397	Our experimental system composed of the Peltier-cooling TEM holder and a
398	liquid cell can be used to study phase transitions of liquids and crystallization
399	from solutions (e.g., salt precipitation from solutions). In the current situation, we
400	can use it to study the dynamics of the early stages of crystallization. Even in a
401	thick solution layer where no bubbles are generated, we have measured the
402	growth rate of crystals using a combination of a liquid cell and machine learning
403	to detect crystallization (Katsuno et al., 2022). In this experiment, we captured a
404	large change in growth rate in the early stages of crystallization. We speculate
405	that this change in growth rate is due to a phase transition from a metastable
406	phase to a stable phase. Our system is useful for studying the nucleation pathways
407	to the most stable phase for various crystallization systems.
408	Thinning a sample liquid layer for high-resolution imaging is one of the future
100	Thinning a sumple fiquid layer for high resolution inlaging is one of the future
409	challenges for realizing the potential of our developed system. There are mainly
410	two methods to produce a thin liquid layer in this type of liquid cell: generation
411	of bubbles and the use of rectangular-slit window frames. The generation of
412	bubbles in this type of liquid cell produces a thin layer of liquid (meniscus) on the
413	membrane (Grogan et al., 2014). This procedure is necessary to attain high-

414	resolution images and electron diffraction patterns. Such a bubble is often
415	generated without the experimenter realizing it. The presence of a thin liquid
416	layer on the membrane is supported by indirect evidence such as the growth of
417	crystals on the membrane. In addition, controlling the thickness of the bubble-
418	induced liquid layer formed on the membrane is difficult. In practice, the liquid
419	layer is sufficiently thin for high-resolution images to be acquired. With the
420	second method (i.e., using rectangular-slit window frames), the thickness of the
421	sample can be reduced somewhat by using rectangular-slit window frames and
422	overlapping the window frame in a cross (Li et al., 2021). This type of liquid cell
423	could be used in our system, and the spatial resolution would be improved at the
424	corners where the windows overlap. However, controlling the thickness of the
425	liquid in the entire liquid cell is difficult because of the bulging effect (Holtz et
426	al., 2013). Controlling the liquid layer thickness over a large-scale area is a
427	technical challenge not only for this system but also for liquid-cell TEM using a-
428	SiN_x membranes.

430 Conclusion

431	We have developed a cooling TEM specimen holder that uses Peltier devices and we
432	have combined it with a liquid cell to establish a temperature-controlled LC-TEM
433	system. We crystallized water by using this system and we showed that the device
434	operates correctly and can promote crystallization by decreasing the temperature. The
435	growth of bubbles formed in ice Ih and their internal pressure have been discussed on
436	the basis of the behavior of the bubbles. Bubbles in ice were formed by radiolysis, and
437	their growth rate suggested that the kinetics of incorporation of growth units at the
438	bubble-ice interface was the rate-limiting step for bubble growth. When the bubbles
439	escaped from the ice surface, the surface appeared to consist of a liquid phase, but the
440	relaxation time of the surface suggested that it remained as a solid. When Herring's
441	scaling law was applied, the dependence of the relaxation time on the bubble sizes
442	suggested that surface relaxation occurred by a process of evaporation and
443	condensation. Based on the state of ice when the bubbles ruptured, the pressure inside
444	the bubble was estimated to be in the range 0.38 to 0.76 MPa, assuming that the inside
445	of the liquid cell was at atmospheric pressure.
446	In conclusion, our system can be used to investigate not only crystallization, but

447 also physical properties and interfacial conditions based on dynamic behaviors through

448	in situ observations. The system will be useful in investigating crystallization from
449	aqueous solutions and, as shown in this study, it will help in achieving an understanding
450	of the properties of materials and phenomena that occur inside liquid cells to elucidate
451	the behavior of materials under observation. It should be possible to understand the
452	observed phenomena more deeply by examining the effect of the dose rate and the
453	temperature dependence.
454	
455	Acknowledgements
456	We are grateful to Mr. S. Ikezawa (Mel-Build Corporation) for his support in facilitating
457	the smooth progress of the research. This work was supported by JSPS KAKENHI,
458	grants numbers JP20H02580 and JP20H05657.
459	

References

461	Ambrožič, B., Prašnikar, A., Hodnik, N., Kostevšek, N., Likozar, B., Rožman, K. Ž. &
462	Šturm, S. (2019). Controlling the radical-induced redox chemistry inside a liquid-cell
463	TEM. Chem Sci 10, 8735–8743.
464	Bird, J. C., de Ruiter, R., Courbin, L. & Stone, H. A. (2010). Daughter bubble cascades
465	produced by folding of ruptured thin films. Nature 465, 759–762.
466	Chernov, A. A. (1984). Modern Crystallography III: Crystal Growth. Berlin: Springer Verlag.
467	Cuda, V. Jr. & Ash, R. L. (1984). Development of a uniaxial ice tensile specimen for low
468	temperature testing. Cold Reg Sci Technol 9, 47–52.
469	Dold, P., Ono, E., Tsukamoto, K. & Sazaki, G. (2006). Step velocity in tetragonal lysozyme
470	growth as a function of impurity concentration and mass transport conditions. J Cryst
471	Growth 293, 102–109.
472	Dubochet, J., Adrian, M., Chang, JJ., Homo, JC., Lepault, J., McDowall, A. W. & Schultz,
473	P. (1988). Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21, 129-
474	228.

475	Grogan, J. M., Schneider, N. M., Ross, F. M. & Bau, H. H. (2014). Bubble and pattern
476	formation in liquid induced by an electron beam. Nano Lett 14, 359–364.
477	Herring, C. (1950). Effect of change of scale on sintering phenomena. J Appl Phys 21, 301-
478	303.
479	Holtz, M. E., Yu, Y., Gao, J., Abruña, H. D. & Muller, D. A. (2013). In situ electron energy-
480	loss spectroscopy in liquids. Microsc Microanal 19, 1027–1035.
481	de Jonge, N., Houben, L., Dunin-Borkowski, R. E. & Ross, F. M. (2019). Resolution and
482	aberration correction in liquid cell transmission electron microscopy. Nat Rev Mater 4,
483	61–78.
484	Kalová, J. & Mareš, R. (2018). The temperature dependence of the surface tension of water.
485	AIP Conf Proc 2047, 020007.
486	Katsuno, H., Kimura, Y., Yamazaki, T. & Takigawa, I. (2022). Early detection of nucleation
487	events from solution in LC-TEM by machine learning. Front. Chem. 10, 818230.
488	Leapman, R. D. & Sun, S. (1995). Cryo-electron energy loss spectroscopy: Observations on
489	vitrified hydrated specimens and radiation damage. Ultramicroscopy 59, 71–79.
	31

490	Lee, J. S., Weon, B. M., Park, S. J., Je, J. H., Fezzaa, K. & Lee, W. K. (2011). Size limits the
491	formation of liquid jets during bubble bursting. Nat Commun 2, 367.
492	Li, X., Mitsuishi, K. & Takeguchi, M. (2021). Fabrication of a liquid cell for in situ
493	transmissions electron microscopy. Microscopy (Oxford, U. K.) 70, 327-332.
494	Mehdi, B. L., Qian, J., Nasybulin, E., Park, C., Welch, D. A., Faller, R., Mehta, H.,
495	Henderson, W. A., Xu, W., Wang, C. M., Evans, J. E., Liu, J., Zhang, J. G., Mueller, K.
496	T. & Browning, N. D. (2015). Observation and quantification of nanoscale processes in
497	lithium batteries by operando electrochemical (S)TEM. Nano Lett 15, 2168–2173.
498	Nielsen, M. H., Aloni, S. & de Yoreo, J. J. (2014). In situ TEM imaging of CaCO3 nucleation
499	reveals coexistence of direct and indirect pathways. Science 345, 1158-1162.
500	Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. (2020). Kinetic pathways of crystallization
501	at the nanoscale. Nat Mater 19, 450–455.
502	Patterson, J. D. & Saltzman, E. S. (2021). Diffusivity and solubility of H ₂ in ice Ih:
503	Implications for the behavior of H ₂ in polar ice. J Geophys Res: Atmos 126, 1–14.
504	Patterson, J. P., Abellan, P., Denny, M. S. Jr., Park, C., Browning, N. D., Cohen, S. M.,

505	Evans, J. E. & Gianneschi, N. C. (2015). Observing the growth of metal-organic
506	frameworks by in situ liquid cell transmission electron microscopy. J Am Chem Soc
507	137, 7322–7328.
508	Pohl, H. A. (1951). The motion and precipitation of suspensoids in divergent electric fields. J
509	Appl Phys 22, 869–871.
510	Ross, F. M. (Ed.) (2016). Liquid Cell Electron Microscopy. New York: Cambridge
511	University Press.
512	Sazaki, G., Murata, K., Asakawa, H., Nagashima, K., Nakatsubo, S. & Furukawa, Y. (2022).
513	The emergence of drop-type and thin-layer-type quasi-liquid layers on ice crystal
514	surfaces and their thermodynamic origin. J Cryst Growth 597, 126853.
515	Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of
516	image analysis. Nat Methods 9, 671–675.
517	Schneider, N. M., Norton, M. M., Mendel, B. J., Grogan, J. M., Ross, F. M. & Bau, H. H.
518	(2014). Electron-water interactions and implications for liquid cell electron microscopy.
519	J Phys Chem C 118, 22373–22382.

520	Seto, Y. & Ohtsuka, M. (2022). ReciPro: Free and open-source multipurpose crystallographic
521	software integrating a crystal model database and viewer, diffraction and microscopy
522	simulators, and diffraction data analysis tools. J Appl Crystallogr 55, 397–410.
523	Tai, K., Liu, Y. & Dillon, S. J. (2014). In situ cryogenic transmission electron microscopy for
524	characterizing the evolution of solidifying water ice in colloidal systems. Microsc
525	Microanal 20, 330–337.
526	Unwin, P. N. T. & Muguruma, J. (1972). Electron microscope observations on the defect
527	structure of ice. Phys Status Solidi A 14, 207–216.
528	Was, G. S. (2017). Fundamentals of Radiation Materials Science: Metals and Alloys. Berlin:
529	Springer.
530	Yamazaki, T. & Kimura, Y. (2021). Radiolysis-induced crystallization of sodium chloride in
531	acetone by electron beam irradiation. Microsc Microanal 27, 459–465.
532	Yamazaki, T., Kimura, Y., Vekilov, P. G., Furukawa, E., Shirai, M., Matsumoto, H., Van
533	Driessche, A. E. S. & Tsukamoto, K. (2017). Two types of amorphous protein particles
534	facilitate crystal nucleation. Proc Natl Acad Sci U S A 114, 2154–2159.

535	Yamazaki, T., Niinomi, H. & Kimura, Y. (2022). Feasibility of control of particle assembly
536	by dielectrophoresis in liquid-cell transmission electron microscopy. Microscopy
537	(Oxford, U. K.) 71, 231–237.
538	Yuk, J. M., Zhou, Q., Chang, J., Ercius, P., Alivisatos, A. P. & Zettl, A. (2016). Real-time
539	observation of water-soluble mineral precipitation in aqueous solution by in situ high-
540	resolution electron microscopy. ACS Nano 10, 88–92.
541	
542	

544 Figure legends

545

546

547

548

549

550

Figure 1. The Peltier holder and the procedure for assembly of the liquid cell. The liquid cell is assembled at the tip of the developed Peltier-cooling TEM holder, circled by the red dashed line (a). The Peltier device was installed inside the handle of the holder, as indicated the black arrow in (b), and the current is supplied and the temperature measurements are performed by using the signal lines indicated by the

551 white arrows in (b). For circulation of the refrigerant, there are three ports indicated by

552 white arrows in (c), two for circulation and one for removal of air bubbles by a syringe

553 (c). The sample stage at the tip of the holder can be changed for samples on a

554 conventional $3 \text{ mm}\Phi$ grid (d) or for liquid-cell experiments (e–h). The liquid-cell holder

is made of copper on which the large and small O-rings are placed (e). A square Si chip

- 556 is placed on top of the small Si chip (f) and the large O-ring (g). The copper lid is then
- 557 positioned and tightened in place by screws (h).

559	Figure 2. A series of bright-field TEM images showing the formation of bubbles in ice.
560	The outer circular dark area is the shadow of the condenser aperture. Nothing is visible
561	in the water sample at -8 °C (a). The sample was continuously observed at an electron
562	flux of 1.8 e ⁻ nm ⁻² s ⁻¹ (11%). The temperature was lowered from -8 °C to -12 °C over
563	3.5 minutes, and after another 3.5 minutes at -12 °C, the formation of a bubble
564	(indicated by the white arrow) was clearly observed (b). The bubble grew larger for the
565	next 1.5 minutes (c). The scale bar is 5 μ m, and all images are on the same scale.

577	Figure 4. Identification of a formed crystal. The SAED pattern was acquired from the
578	region of the crystal with the air bubble indicated by the white arrow in (a). The bright
579	area in the lower left is the region where the large bubble was formed, and the dark area
580	in the upper left corresponds to the ice crystal for which the SAED pattern was
581	recorded. The inset is an enlarged image of the bubble. This bubble was just about to
582	rupture, and these images were acquired at the point where the ice's crystal surface was
583	nearly parallel to the electron beam. The diameter of the bubble was about 400 nm, and
584	the thinnest part of the ice separating the bubble from the gas phase was about 100 nm.
585	The SAED pattern corresponds to the [163] SAED pattern of ice Ih (b). The electron
586	flux was 65 e ⁻ nm ⁻² s ⁻¹ (50%). The scale bars are 1 μ m (a) 200 nm (a, inset), and 5 nm ⁻¹
587	(b).
588	

591 Figure 5. Change in the bubble size with time at an electron flux of $1.8 \text{ e}^{-} \text{ nm}^{-2} \text{ s}^{-1}$

(11%) at -12 °C. Because the time of the bubble occurrence was unknown, the plots

593 were produced by subtracting the size and time for the first bubble.

c) are on the same scale. The scale bar is 500 nm (d) and (d–g) are on the same scale.

Figure 7. Dependence of the bubble size on the relaxation time for bubble rupture. The

608 measurements were made on the bubbles shown in Supplementary Video S2. The power

609 function
$$y = Ax^B$$
 was fitted with $A = 1.3 \times 10^{-5}$ and $B = 1.77$.