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Chapter 1

Introduction

1.1 Background

Video understanding is a research field that leverages machine learning to analyze

video data. This technology has many applications, including automated driving,

surveillance systems, and video generation. In recent years, the number of videos

available online has increased due to the increase in social media and video-sharing

service users worldwide. The uploaded uncountable videos have rapidly progressed

video understanding research in the last decade.

A typical task in video understanding is video classification (a.k.a. action

recognition), which involves classifying short video clips. In traditional studies,

handcrafted descriptors like dense trajectories [Wang et al., 2013] and improved

dense trajectories [Wang and Schmid, 2013] were developed to classify videos.

Recent studies have used deep networks to classify videos directly from RGB frame

sequences [Hara et al., 2017, Tran et al., 2018, Feichtenhofer et al., 2019].

Accessing RGB frames requires decoding because most videos are compressed

for efficient storage and transmission. While some studies have even incorpo-

rated optical flow as an auxiliary input to boost accuracy [Wang et al., 2018,

— 1 —



1 Introduction 2

Fig. 1.1 Comparison with popular RGB-based video classification and com-

pressed video action recognition.

Simonyan and Zisserman, 2014, Lin et al., 2019, Carreira and Zisserman, 2017,

Ryoo et al., 2019, Ryoo et al., 2020], it also has the same limitation because it is

computed from RGB frame sequences. This decoding limits the deployment of action

recognition models on mobile or edge devices.

Videos frequently contain redundant information, such as backgrounds, and video

compression reduces such redundancy by converting RGB frames into different fea-

tures, including I-frames, motion vectors, and residuals. The I-frames are stored as

images, whereas the motion vectors and residuals represent only the changes from

previous RGB frames. Compressed video action recognition directly classifies actions

from compressed video features, as depicted in Fig. 1.1. This approach has two ad-

vantages. First, we can omit the decoding process and reduce the computational cost

by using compressed video features as inputs. Second, compressed video features are

expected to be easier to classify than raw videos because video compression reduces

the redundancy of raw videos.

Wu et al. [Wu et al., 2018] showed that this method achieves competitive classi-
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fication accuracy against conventional RGB-based action recognition but with lower

computational complexity defined by floating-point operations (FLOPs). Some stud-

ies have leveraged the low computational complexity of compressed action recogni-

tion to deploy action recognition models on mobile and edge devices [He et al., 2021,

Huo et al., 2019].

1.2 Research Objective

Our research objective in this thesis is to improve further the efficiency of com-

pressed video action recognition for low-resource environments. Although compressed

video action recognition is more efficient than RGB frame-based video classification

and suitable for mobile and edge devices, it still struggles with expensive costs to

optimize and deploy deep networks. We aim to reduce such costs of compressed video

action recognition, making it easier to use for many applications. Below, we describe

the costs of compressed video action recognition in detail.

Annotation cost

The previous compressed video action recognition models have been optimized in

a supervised manner. This approach requires large-scale annotated datasets to avoid

over-fitting of deep networks. This is a critical problem because annotating many

videos manually is expensive and tedious, and preparing such datasets is challenging.

Fortunately, the annotation cost problem is general in deep learning, and semi-

supervised learning (SSL) is widely studied to overcome the problem. SSL optimizes

deep networks using both labeled and unlabeled data. Effective SSL methods can

fully utilize unlabeled data to learn helpful features for classification, reducing the

number of labeled data to achieve practical accuracy. Pseudo-labeling is the widely

used approach of SSL. Given unlabeled data, pseudo-labeling feeds the given data

into the deep networks and generates pseudo-labels of the unlabeled data from the
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predictions. The assigned pseudo labels are used as alternatives to the actual labels,

and deep networks are optimized using unlabeled data and pseudo labels.

This thesis addressed the annotation cost problem by extending the pseudo-labeling

method into compressed video action recognition. We first applied the simple pseudo-

labeling method proposed by Lee [Lee et al., 2013] to compressed video action recogni-

tion. We found that combining Lee’s method and compressed video action recognition

achieved better accuracy than combining various SSL methods and RGB-based video

classification. From this observation, we proposed compressed video ensembling-based

pseudo labeling (CoVEnPL), a novel SSL method for compressed video action recog-

nition. The main idea of CoVEnPL is that generating accurate pseudo-labels leads to

obtaining robust models. To obtain such pseudo-labels, CoVEnPL optimized three

deep networks corresponding to I-frames, motion vectors, and residuals and ensem-

ble their predictions for pseudo-labels generation. CoVEnPL combined this ensemble

approach with Fixmatch [Sohn et al., 2020], a state-of-the-art SSL method for image

classification. Our experiments showed that CoVEnPL achieved better accuracy than

most semi-supervised video classification methods. In particular, our method showed

much better than previous studies that only used RGB frames as inputs with a shorter

inference time.

Computational cost

The second focus of this thesis is the computational cost problem. In compressed

video action recognition, researchers have proposed various models that reduce the

computational costs of compressed video action recognition. These studies mainly fo-

cused on using lightweight networks as the backbones of three networks corresponding

to I-frames, motion vectors, and residuals.

The computational complexity of multiple networks may be unnecessary because

most parameters in deep networks are unused and removable after training, as shown

in various studies [Han et al., 2015, Jin et al., 2016, Han et al., 2016]. For the effi-
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cient ensemble of image classification, the multi-input multi-output (MIMO) model

utilized the unused parameters by creating independent subnetworks within a sin-

gle network [Havasi et al., 2021]. The subnetworks process multiple images indepen-

dently with one feedforwarding step of the parent network and make different predic-

tions from the images. As a result, the MIMO model achieved competitive accuracy

against multiple networks while reducing the computational complexity.

Inspired by the MIMO model, we proposed a multi-stream single network (MussNet)

for efficient compressed video action recognition. This model trains a single network

in the MIMO manner and creates three independent subnetworks within a single

network. The subnetworks in the MussNet model independently process I-frames,

motion vectors, and residuals instead of the multiple networks used in the previous

methods. While we can also naively optimize the single network-based models, such

naive optimization results in performance degeneration. On the other hand, our

proposed MussNet model did not suffer from such performance degeneration and

achieved competitive accuracy against multiple networks while reducing the overall

computational complexity.

1.3 Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces related studies

on video classification and compressed video action recognition.

Chapter 3 addresses the annotation cost problem of compressed video action recog-

nition by our SSL methods. In this chapter, we first describe the SSL methods for

image and video classification as the background. Then, we propose SSL methods for

compressed video action recognition and show their effectiveness.

Chapter 4 addresses the computational cost problem by introducing the efficient

ensemble method to compressed video action recognition. This chapter first describes

the ensemble methods as the background and then describes our proposed MussNet
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model. We compare the MussNet model with our baseline methods and previous

efficient compressed video action recognition methods to evaluate our model.

Chapter 5 summarizes this thesis and discusses what the experimental results can

explain. We also describe the future perspective of this study on efficient compressed

video action recognition.



Chapter 2

Video Classification and Compressed

Videos

2.1 Classification Problem

In machine learning, the classification problem refers to assigning a label or category

to given data based on features. This problem aims to learn the mapping of input

data to predefined categories or classes.

More specifically, a classification problem involves training a machine learning

model to predict the class or category of new, unseen data based on the patterns

and relationships learned from a training dataset. Classification problems are com-

mon in many applications, such as image recognition, speech recognition, natural

language processing, etc. Researchers have developed algorithms and models that

can accurately classify data and generalize well to new, unseen data.

Formally, we have a set of classes {ci|1 ≤ i ≤ C}, where ci is the i-th class and C

is the number of classes. To consider each class ci as the probability distribution, ci

— 7 —



2 Video Classification and Compressed Videos 8

is converted to the one-hot encoded vector ti ∈ RC defined as:

tij =

{
1 if i = j,

0 otherwise,
(2.1)

where tij is the j-th element of ti. Given an input x and its target class ci, the

classification model with parameters θ outputs the probability distributions pθ(ĉ|x)

which satisfy the following conditions:

pθ(ĉ|x) ≥ 0, (2.2)

C∑
i=1

pθ(ĉ|x) = 1. (2.3)

In many cases, to obtain such predictions pθ(ĉ|x), the classification model outputs

C scalars {y1, y2, ..., yC} and normalizes the scalars using the softmax function as

follows:

pθ(ĉi|x) =
exp yi∑C

k=1 exp yk
. (2.4)

Then, the network parameters θ are optimized to minimize the cross-entropy loss

between pθ(t̂i|x) and ti, defined as follows:

H(pθ(ĉ|x), ti) := −
∑
j=1

tij log pθ(ĉj |x). (2.5)

2.2 Video Classification

Video classification is the classification problem of video data. Video data consists

of consecutive RGB frames, and capturing spatiotemporal features is critical for

classification. Traditional methods have classified videos from hand-crafted features,

such as spatiotemporal interest points [Laptev and Lindeberg, 2003], dense trajecto-

ries [Wang et al., 2013], improved dense trajectories (iDT) [Wang and Schmid, 2013],

SIFT-3D [Scovanner et al., 2007], HOG3D [Klaser et al., 2008], Motion Bound-

ary Histogram [Dalal et al., 2006], Action Bank [Sadanand and Corso, 2012],
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Cuboids [Dollár et al., 2005], 3D SURF [Willems et al., 2008], and Dynamic-

Poselets [Wang et al., 2014]. These features represent different spatiotemporal

information, and iDT is widely considered one of the best features for classification.

Deep networks have shown remarkable progress in computer vision for the last

decade, and the trend of video classification has also shifted from traditional hand-

crafted approaches to deep learning approaches. Unlike the traditional hand-crafted

approaches, most deep networks receive consecutive RGB frames as inputs and learn

how to capture spatiotemporal features necessary to classify the input videos. To

capture practical spatiotemporal features for classification, researchers have devel-

oped various deep network architectures, such as 2D convolutional neural networks

(ConvNets) and 3D ConvNets, and improved the accuracy of video classification.

However, such models are over-parameterized and suffer from over-fitting. Therefore,

large-scale annotated datasets have also been crucial for video classification with deep

networks to avoid over-fitting. This section introduces deep network architectures and

public large-scale datasets for video classification.

2.2.1 Deep Network Models

Since AlexNet [Krizhevsky et al., 2012] was developed for images, ConvNets have

been widely used in the computer vision fields. Video classification models have also

employed ConvNets because the video data is a sequence of images. However, unlike

image classification models, video classification models should capture both spatial

and temporal features within videos. Therefore, designing the temporal modeling is

a critical problem in developing video classification models. There are two popular

architectures: 2D ConvNets and 3D ConvNets. We summarize these architectures

below.
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Fig. 2.1 The shift operation used in the temporal shift modules.

2D ConvNets

Before very large-scale video datasets such as Kinetics appeared, 2D ConvNets were

widely used for video classification. One advantage of 2D ConvNet-based models is

that their parameters can be pretrained by large-scale image datasets (e.g., Ima-

geNet) so that the models can be fine-tuned on relatively small video datasets. Some

early studies concatenated multiple frames along their channel dimensions for tem-

poral modeling and fed the stacked frames into 2D ConvNets. [Karpathy et al., 2014,

Simonyan and Zisserman, 2014, Feichtenhofer et al., 2016a] Others classified videos

from each frame using 2D ConvNets and aggregated the predictions to obtain the fi-

nal prediction [Wang et al., 2018]. However, the temporal modeling of these methods

was not powerful, and their classification performances were limited. Thus, recent

studies have employed recurrent neural networks (RNNs) to achieve more helpful

temporal modeling for video classification [Sharma et al., 2015, Ballas et al., 2015,

Yue-Hei Ng et al., 2015].

Today, 2D ConvNets are not the mainstream architectures for video classification,
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compared with 3D ConvNets. However, some studies still employ 2D ConvNets as

their backbone networks because 2D ConvNets tend to be more efficient than 3D Con-

vNets and Transformers regarding parameter size, computation time, and computa-

tional complexity. For example, the temporal shift module (TSM) [Lin et al., 2019],

a particular case of RNNs, processes each frame by 2D ConvNets but shifts parts of

channels to the neighbor frames at some points. As depicted in Fig 2.1, the shift

operation can process multiple frames simultaneously with zero FLOPs, leading to

powerful yet efficient time modeling. Liu et al. proposed the temporal adaptive mod-

ule (TAM) [Liu et al., 2021b], an extended version of TSMs. While TSM constantly

shifts channels by the pre-defined number of frames, their module dynamically deter-

mines how many frames channels should be shifted by, depending on the input videos.

RubiksNet [Fan et al., 2020] also shifts channels to not only the temporal dimension

but also the height and width dimensions.

3D ConvNets

Another popular approach for ConvNet-based video classification is 3D ConvNets,

which use 3D convolutional kernels. Unlike 2D ConvNets, 3D ConvNets directly cap-

ture spatiotemporal features using 3D kernels. The early 3D ConvNets suffered from

over-fitting because 3D kernels have more parameters than 2D convolutional kernels,

and there were only relatively small datasets for video classification. For example,

convolutional 3D (C3D) consists of only five layers to reduce over-fitting. Pseudo-3D

residual network (P3D) reduces the parameters by approximating 3D convolutional

kernels using 1D and 2D convolutional kernels.

The practical 3D ConvNets in terms of accuracy have appeared since very large-

scale video datasets such as Kinetics [Carreira and Zisserman, 2017] were publicly

published. The large-scale datasets provided enough videos to optimize 3D ConvNets

without over-fitting, allowing researchers to develop deep 3D ConvNets. Such 3D

ConvNets first employed architectures of image classification models where their
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2D convolutional kernels are replaced with 3D convolutional kernels. For example,

3D ResNet (R3D) [Hara et al., 2017] is developed based on ResNet [He et al., 2016]

and Inflated 3D ConvNet (I3D) [Carreira and Zisserman, 2017] is modified from

GoogLeNet [Szegedy et al., 2015], a 2D ConvNet using Inception modules. Tran et

al. revisited the combination of 1D and 2D convolutional kernels as alternatives

to 3D convolutional kernels and proposed R(2+1)D [Tran et al., 2018]. Unlike

P3D, R(2+1)D keeps the number of parameters as 3D convolutional kernels and

improves accuracy from the 3D ConvNets. More recently, some 3D ConvNet

architectures such as X3D [Feichtenhofer, 2020], S3D-G [Xie et al., 2018], Tiny Video

Networks [Piergiovanni et al., 2022], and MoViNets [Kondratyuk et al., 2021] have

been found by manual way or network architecture search (NAS) for more efficient

yet robust video classification.

Multi-stream model

It is well-known that some auxiliary inputs, in addition to RGB frames, help

boost video classification accuracy. Dual TV-L1 optical flow, which represents the

movements of objects between successive RGB frames, is one of the most popular

auxiliary inputs. Two-stream ConvNet [Simonyan and Zisserman, 2014] is an early

video classification model that introduces optical flow as auxiliary inputs. This model

employs late fusion, using two 2D ConvNets that classify videos from RGB frames

and optical flow, respectively. Late fusion first optimizes these ConvNets indepen-

dently and averages their predictions to obtain the final prediction. The two-stream

I3D proposed by Carreira and Zisserman also employed late fusion but used I3D

as backbone networks instead of 2D ConvNets. While late fusion has been widely

used for multi-stream models and has shown accuracy improvement for various net-

work architectures [Wang et al., 2018, Lin et al., 2019, Tran et al., 2018], some stud-

ies explored more effective fusion approaches. Feichtechofer et al. showed that in-

termediate fusion, which fuses optical flow features at the intermediate computa-
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tion of the ConvNet of RGB frames, is better than late fusion in terms of accu-

racy [Feichtenhofer et al., 2016a, Feichtenhofer et al., 2016b].

The problem with optical flow is that it takes a long time to compute it from con-

secutive frames, even when GPU is used. To avoid this high computation, researchers

have explored removing optical flow. For example, motion-augmented RGB stream

(MARS) [Crasto et al., 2019] first trains ConvNet, classifying videos from optical flow.

Then, MARS optimizes another ConvNet that receives RGB frames and computes

similar embeddings to the optical flow ConvNet. ActionFlowNet [Ng et al., 2018] and

distilled 3D networks (D3D) [Stroud et al., 2020] have two prediction heads, where

one head classifies videos, and another predicts optical flow. These models use opti-

cal flow as teaching signals, making it unnecessary during the inference phase. The

hidden two-stream ConvNets [Zhu et al., 2017] does not need optical flow anymore.

This model employs MotionNet, which estimates optical flow from RGB frames. The

MotionNet can be optimized in an unsupervised manner, i.e., pre-computed optical

flow is not used for training. Then, the estimated optical flow is used as an alternative

input to the actual optical flow in the multi-stream model.

The SlowFast network [Feichtenhofer et al., 2019] is also a multi-stream model that

does not use optical flow. Instead of RGB frame and optical flow streams, the SlowFast

network uses low- and high-FPS RGB frames. The authors claimed that low-FPS

RGB frames can be considered spatial features, and high-FPS RGB frames can be

considered temporal features. Under the assumptions, low-FPS RGB frames are

processed by the high-capacity network with a narrow temporal receptive field. In

contrast, high-FPS RGB frames are processed by the low-capacity network with a

wide temporal receptive field. The SlowFast network also employed intermediate

fusion, achieving state-of-the-art video classification accuracy.
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Fig. 2.2 Video examples of the UCF-101 dataset.

2.2.2 Public Datasets

Deep networks have many parameters and tend to suffer from over-fitting. To avoid

over-fitting, large-scale annotated datasets are required. We use the following video

datasets in our experiments to evaluate our methods.

UCF-101

The UCF-101 dataset [Soomro et al., 2012] (Fig. 2.2) consists of 13,320 video clips

across 101 action categories. All clips are collected from YouTube and have a fixed 25

FPS with a resolution of 320×240. This dataset provides train-test splits for three-

fold cross-validation, where each split uses about 9,600 videos for training and others

for validation. Note that each split specifies a slightly different number of videos

for training and validation, but the number of clips per action category is almost

balanced.

HMDB-51

The HMDB-51 dataset [Kuehne et al., 2011] (Fig. 2.3) consists of 6,770 video clips

across 51 action categories, where each action category has a minimum of 101 clips



2 Video Classification and Compressed Videos 15

Fig. 2.3 Video examples of the HMDB-51 dataset.

Fig. 2.4 Video examples of the Kinetics dataset.

collected from various sources, including movies and public databases. Although video

clips have various FPS, we converted them to 25 FPS. This dataset also provides train-

test splits for three-fold cross-validation. Each split specifies 70 clips for training and

30 clips for validation per category. Therefore, the number of clips per action category

in train-test splits is perfectly balanced with a ratio of 70:30.

Kinetics

The Kinetics dataset [Carreira and Zisserman, 2017] (Fig. 2.4) is first proposed as a

set of 306,245 video clips from 400 action categories, where each category has a mini-
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mum of 400 clips taken from different YouTube videos. Each clip lasts around 10 sec-

onds and has various FPS and resolutions. The actions are human-focused and cover

a broad range of classes, including human-object interactions such as playing instru-

ments and human-human interactions such as shaking hands. This dataset is regularly

extended, and some variants called Kinetics-600 [Carreira et al., 2018], which consists

of 480K videos from 600 action categories, and Kinetics-700 [Carreira et al., 2019],

which consists of 650,000 videos from 700 action categories, are currently available.

In this study, we used the subset of the Kinetics dataset named Kinetics-

100 [Jing et al., 2021] because the original datasets, such as Kinetics-400, Kinetics-

600, and Kinetics-700, are too massive to optimize deep networks on our available

computational resources.

2.3 Compressed Video Action Recognition

Data compression is the process that encodes information using fewer bits than

the original representation by identifying and eliminating statistical redundancy or

removing unimportant information. Today, most media, including images and videos,

are stored as compressed representations for efficient storage and transmission.

Most deep networks receive the raw data decoded from the compressed representa-

tions. These networks require decoding to obtain their inputs, leading to inefficient

inference. To overcome this problem, some recent studies directly used compressed

representations as their deep network inputs. For images, Park and Johnson proposed

to use JPEG representations as inputs of deep networks [Park and Johnson, 2023].

While their model is only available for JPEG, ByteFormer is more general and directly

processes bytes of compressed data by the large language models [Horton et al., 2023].

SeiT uses the codes of VQ-VAE as the compressed inputs instead of the popular data

compression algorithms [Park et al., 2023]. Compressed vision also used codes of VQ-

VAE as the inputs of deep networks for video understanding [Wiles et al., 2022].
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Fig. 2.5 Compressed video features.

Compressed video action recognition is one of the pioneering computer vision fields

based on compressed data. The compressed video action recognition studies have

mainly used compressed representations of MPEG4 [Le Gall, 1991] as inputs and

performed video classification [Zhang et al., 2016, Zhang et al., 2018, Wu et al., 2018,

Li et al., 2021]. Some studies extended compressed video action recognition into vari-

ous applications for real-time object tracking [Bommes et al., 2020, Wang et al., 2019,

Fields, 2019] and facial expression recognition [Liu et al., 2021a].

This study also focuses on compressed video action recognition. In this section

describes inputs and previous studies of compressed video action recognition in more

detail.
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2.3.1 Compressed Video Features

Video is a sequence of RGB frames. In general, videos gradually change frame by

frame, and their contents tend to be redundant among the consecutive frames. Highly

efficient video compression algorithms such as MPEG-4, H.264, and HEVC leverage

this fact and compress most frames by reusing contents from other frames and storing

only the difference.

Most modern codecs arrange RGB frames into groups of pictures (GOPs). Each

GOP starts with one intra-coded frame (I-frame), followed by predictive frames (P-

frames), and zero or more bi-directional frames (B-frames). We depicted compressed

video features in Fig. 2.5. I-frames are compressed as the standard images. P-frames

reference the contents of the previous frames and only encode the differences between

P-frames and the previous frames. More specifically, the differences are represented

by motion vectors and residuals. The motion vectors represent movements of mac-

roblocks of pixels from previous to current frames. After the compensation for mac-

roblock movements, there can still be differences between the original and predicted

frames. To correct the predicted frames after movement compensation, residuals

store the pixel-wise differences in the RGB values between the original and predicted

frames. B-frames are also represented by motion vectors and residuals similar to P-

frames but reference previous and future frames. Then, the codecs transform motion

vectors and residuals using discrete cosine transform (DCT) and entropy encoding for

compression.

Compressed video action recognition classifies videos from I-frames, motion

vectors, and residuals. This study compresses videos by the MPEG-4 Part2 for-

mat [Le Gall, 1991] and only uses I-frames and P-frames as inputs, following the

previous study [Wu et al., 2018].
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Back-tracing technique

A P-frame depends on the reference frame, which might also be a P-frame; this

chain of dependencies continues back to the I-frame within the same GOP. Treating

each P-frame as an independent observation ignores this dependency. To overcome

this problem, Wu et al. proposed the back-tracing technique to decouple individual

P-frames, making them dependent on only their predescent I-frames.

Let {I(0), I(1), ..., I(T )} be a GOP consists of an I-frame I(0) and T P-frames

{I(1), ..., I(T )}. Each P-frame I(t) is transformed to motion vectors T (t) and residuals

∆
(t)
i for the compression, which satisfy

I
(t)
i = I

(t−1)

i−T (t)
i

+ ∆
(t)
i , (2.6)

for all pixel locations i. The back-tracing technique removes the dependency between

consecutive P-frames by recursively tracing to an I-frame I0. Formally, consider two

frames in the same GOP: I(k) and I(t), where k < t. Then, the pixel location i of I(t)

can be traced back to the corresponding location J (t,k)
i of I(k) defined as follows:

µT (t)(i) := i− T (t)
i , (2.7)

J (t,k)
i := µT (k+1) ◦ · · · ◦ µT (t)(i). (2.8)

Now, we can accumulate motion vectors and residuals from I(k) to I(t) as follows:

D(t,k)
i := i− J (t,k)

i , (2.9)

R(t,k)
i :=

t∑
j=k+1

∆j

J (t,j)
i

, (2.10)

where D(t,k)
i andR(t,k)

i denote accumulated motion vectors and residuals, respectively.

Here, resulting accumulated motion vector D(t,k)
i and residual R(t,k)

i are independent

on the P-frames in between I(k) and I(t). Therefore, when k = 0, the accumulated

motion vector and residual depend on only the target P-frame I(t) and the I-frame

I(0) within the same GOP. We depict the accumulated motion vectors and residuals

in Fig. 2.6
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Fig. 2.6 Accumulated compressed video features using the back-tracing technique.

Wu et al. also claim that the accumulated motion vectors and residuals are more

robust to noise and camera motion than the original ones because they contain longer-

time information. Because of the advantage, this study always uses the accumulated

motion vectors and residuals as model inputs without any mentions.

2.3.2 Model

Pioneering studies [Zhang et al., 2016, Zhang et al., 2018] on compressed video ac-

tion recognition only used motion vectors as an easy-to-use alternative to optical
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flow that needs expensive computation to obtain. These studies used decoded RGB

frames and did not use compressed video features other than motion vectors; thus,

their efficiency was still limited.

Wu et al. [Wu et al., 2018] first proposed the CoViAR method that classifies videos

using only compressed video features. They employed three 2DCNNs corresponding

to compressed video features and trained them independently. After training, the final

prediction was computed by averaging the predictions of the three different networks.

Wu et al. also introduced the back-tracing technique to improve compressed video

action recognition. Li et al. [Li et al., 2021] showed that compressed video action

recognition was available under the practical scenario that compressed videos are

transmitted from other devices, and some packets are dropped.

Subsequent studies have developed more efficient or effective compressed video

action recognition methods by replacing backbone networks with different lightweight

networks and employing additional components to maintain the accuracy of the

CoViAR method. For example, CV-C3D [dos Santos et al., 2019] and MFCD-

Net [Battash et al., 2020] used 3DCNNs; Wu et al. [Wu et al., 2019] and Guo et

al. [Guo et al., 2023] used ResNet18 [He et al., 2016] as their backbone network and

trained it using knowledge distillation [Hinton et al., 2015]; TTP [Huo et al., 2019]

combined MobileNetV2 [Sandler et al., 2018] with an efficient yet effective fusion

method. Other studies estimated optical flow from motion vectors and resid-

uals and used the estimated optical flow to improve accuracy. The DMC-Net

method [Shou et al., 2019] trained the optical flow estimator in a supervised manner

using actual optical flow for training. The subsequent SIFP method [Li et al., 2020]

developed an unsupervised approach to train the optical flow estimator without

actual optical flow. The proposed MussNet provides another approach for efficient

compressed video action recognition.



Chapter 3

Semi-supervised Compressed Video

Action Recognition to Reduce Anno-

tation Cost

3.1 Introduction

As described in Chapter 2, deep networks have shown remarkable progress

in video classification [Hara et al., 2017, Tran et al., 2018, Feichtenhofer, 2020,

Feichtenhofer et al., 2019]. The deep networks capture the spatiotemporal features

of videos using their uncountable trainable parameters. However, to optimize

their parameters, we require large-scale annotated datasets [Soomro et al., 2012,

Kuehne et al., 2011, Carreira and Zisserman, 2017] to avoid over-fitting. This is

a critical problem because annotating many videos manually is expensive and

tedious, and preparing such datasets is challenging. For example, the recent massive

Ego4D dataset, which collects 3,670 hours of video, consumes over 250,000 hours of

annotator effort for annotation [Grauman et al., 2022].

Some studies have focused on semi-supervised learning (SSL) to reduce the depen-

— 22 —
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dencies of annotations [Jing et al., 2021, Zou et al., 2021, Xiong et al., 2021]. SSL

uses both labeled and unlabeled data to train deep networks. Effective SSL methods

utilize unlabeled data efficiently and obtain robust models even if labeled data are

limited. In SSL, ”pseudo-labeling” is a popular approach that generates artificial

labels from the model predictions for unlabeled data. In this approach, how artifi-

cial labels are generated significantly impacts performance. Xiong et al. proposed

multiview pseudo labeling (MvPL) [Xiong et al., 2021] as a semi-supervised video

classification method based on pseudo-labeling. MvPL generates accurate artificial

labels by ensembling the model predictions from the RGB frames, optical flow, and

temporal gradients. An optical flow represents the apparent motion of the objects,

and temporal gradients represent the differences in RGB between two frames. Be-

cause they emphasize temporal features, these representations help models efficiently

learn spatio-temporal features.

We consider that conventional SSL methods have the following problems. First, raw

RGB videos have many redundancies that are irrelevant to classify videos. In general,

most videos change frame by frame gradually so that much information is also con-

tained in the neighbor frames and redundant. Under the limited labels, the training

models would be confused by the redundancies and suffer from serious over-fitting.

Second, conventional SSL methods require computational and storage costs to obtain

their model’s inputs, making it difficult to scale up the training. Although these SSL

methods use RGB frames as their model inputs, we often store videos as compressed

video files to reduce the file size. Therefore, to extract RGB frames, we must decode

them from compressed video files every time they are used. This decoding process

increases the computational cost and makes the training inefficient. In addition, using

an optical flow, such as MvPL, requires significant computational cost. To reduce the

computational costs during training, we often compute RGB frames (along with the

optical flow) in advance and save them as images. However, this approach consumes
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a significant amount of time for preprocessing and requires a large storage space.

Hence, the previous SSL methods require high-end computer clusters to train deep

networks on large-scale datasets. In particular, with MvPL, which uses RGB frames

and optical flow for training, it is more challenging to use large-scale datasets. This is

a critical problem for SSL because some studies have shown that increasing unlabeled

data improves its performance [Oliver et al., 2018, Yalniz et al., 2019]; however, high

computational and storage costs hinder the utilization of many unlabeled data for

training.

To address this problem, we combine SSL with compressed video action recognition.

As described in Chapter 2, compressed videos contain multiple types of features con-

verted from RGB frames for efficient storage, and we can directly load them without

any decoding. This means that using compressed videos as inputs requires neither the

computational costs for decoding nor storage costs for maintaining the RGB frames

(and the optical flow) as images, making it easier for SSL to scale up the training.

Furthermore, some features stored in compressed videos hold temporal features sim-

ilar to optical flow and temporal gradients. Therefore, we can employ the ensemble

approach for pseudo-labeling. Although compressed videos are already used for video

classification [Wu et al., 2018, Shou et al., 2019], this is the first study that uses com-

pressed videos for semi-supervised video classification.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce

previous SSL studies. In Section 3.3, we define notations for the following sections.

In Section 3.4, we apply Lee’s method [Lee et al., 2013] to compressed video action

recognition and show that compressed video features are preferable to RGB frames

under the limited labels for accuracy. In Section 3.5, we propose Compressed Video

Ensemble based Pseudo Labeling (CoVEnPL) for semi-supervised compressed video

action recognition. Finally, we conclude this chapter in Section 3.6.
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Fig. 3.1 Abstract image of entropy minimization and consistency regulariza-

tion. The blue circles represent examples of one class, and the red triangles

represent those of another class.

3.2 Background: Semi-supervised Learning

3.2.1 Semi-supervised Learning for Images

Most previous studies on SSL in computer vision have focused on image classifica-

tion. In SSL, ”pseudo-labeling” is a popular approach. This approach is based on

the idea that we can generate artificial labels from the model predictions and use the

generated artificial labels for supervised learning of unlabeled data. To design how

to generate artificial labels, there are two critical factors: entropy minimization and

consistency regularization, and most SSL algorithms contain either or both of the

factors.

Entropy minimization

This regularization aims to minimize the entropy of model predictions. In other

words, entropy minimization encourages models to output high-confidence predic-

tions. In classification problems, the decision boundary should not pass through high-
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density regions of training data within the learned latent space. This idea is widely ac-

cepted in machine learning methods such as a support vector machine [Vapnik, 1963].

Entropy minimization helps models learn such latent spaces and the decision bound-

ary from unlabeled data. The early SSL method based on entropy minimization

was proposed by Lee [Lee et al., 2013]. This method first generates the model pre-

dictions from unlabeled data and creates one-hot labels from such predictions as

artificial labels of unlabeled data. Lee’s method uses only high-confidence predictions

for generating artificial labels to avoid inaccurate artificial labels. Then, the arti-

ficial labels are used as the target labels for unlabeled data to train the models in

a supervised manner. As other methods for entropy minimization, a sharpen func-

tion [Berthelot et al., 2019] and a loss term that explicitly minimizes the entropy of

predictions [Miyato et al., 2018] have been proposed. The sharpen function sharpens

the model predictions for generating artificial labels and will be integrated into the

proposed method.

Consistency regularization

This regularization aims to obtain robust models against any perturbations. Specif-

ically, this regularization generates two different predictions from the same unlabeled

data by adding different perturbations and minimizing the distance or divergence

between the predictions. Π-Model [Laine and Aila, 2016] is a typical consistency

regularization method that applies small perturbations such as a dropout, random

cropping, and horizontal flipping to unlabeled data. Recent studies have used both

small perturbations and large perturbations. The large perturbations make the input

data challenging to classify correctly; therefore, maintaining consistent predictions

becomes more difficult for the applied models. More robust models than the Π-model

are obtained by training using such perturbations. Specifically, virtual adversarial

training [Miyato et al., 2018] uses adversarial perturbations, and unsupervised data

augmentation [Xie et al., 2020] uses RandAugment [Cubuk et al., 2020] as the large
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perturbations. In the consistency regularization, either prediction from unlabeled

data is considered an artificial label. Some consistency regularization methods aim to

make this artificial label more stable and accurate by generating artificial labels from

the ensemble of previous networks. Temporal Ensembling [Laine and Aila, 2016] uses

the exponential moving average (EMA) of the past predictions of each unlabeled data

as its artificial label, and Mean Teacher [Tarvainen and Valpola, 2017] uses a teacher

network obtained from the EMA of past network weights to generate artificial labels.

The recent trend of SSL is combining entropy minimization and consistency reg-

ularization. In particular, FixMatch [Sohn et al., 2020] combines Lee’s method and

RandAugment to achieve a state-of-the-art performance.

3.2.2 Semi-supervised Learning for Videos

Compared to image classification, only a few studies have focused on semi-

supervised video classification. Jing et al. proposed combining Lee’s method with

distillation [Girdhar et al., 2019] from a pre-trained image classifier to help with

video classification training [Jing et al., 2021]. Zou et al. explored a set of suitable

transformations of RandAugment for videos and used them with FixMatch for SSL.

These methods use only RGB frames to train the models, limiting their performances.

Some works proposed semi-supervised video classification with multi-stream input,

and various types of inputs are explored in their methods. MvPL [Xiong et al., 2021]

is a recent state-of-art method for semi-supervised video classification. This method

generates artificial labels by ensembling the predictions from RGB frames, optical

flows, and temporal gradients. Because an ensemble of the predictions from multiple

types of features boosts the performances [Simonyan and Zisserman, 2014, ?], MvPL

can obtain reliable artificial labels and achieve a promising performance. In addi-

tion, MvPL trains a single model to classify videos from all features; thus, MvPL can

classify videos from only RGB frames and reduce the computational cost of optical
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flows and temporal gradients during the inference phase. Inspired by MvPL, Xiao

et al. proposed the SSL method that does not use optical flow [Xiao et al., 2021].

They used temporal gradients computed from RGB frames of different FPS videos in-

stead of optical flow. Although their method does not outperform MvPL, it is much

better than other methods that use only RGB frames as inputs. CMPL also uses

multi-stream inputs [Xu et al., 2021] although it does not employ the ensembling

approach. CMPL uses RGB frames of different FPS videos and achieves competi-

tive performances against MvPL. Like these methods, our proposed method employs

multi-stream input and ensembles the predictions to generate reliable artificial labels.

These conventional semi-supervised video classification methods overlook the com-

putational and storage costs required to obtain their input features because we often

store videos as compressed video files. This problem makes the training of conven-

tional SSL methods inefficient. In particular, MvPL training is highly inefficient

because it uses an optical flow, and acquiring it may incur significant computational

costs. We address this problem by using directly available features from compressed

videos as our model inputs.

3.3 Preliminaries

Let X be a set of labeled videos and U be a set of unlabeled videos. For semi-

supervised learning, we sample a subset of labeled videos from X and that of unlabeled

videos from U as mini-batches. The subset of labeled videos is represented as Bsup =

{(xi, ti)|1 ≤ i ≤ Nsup}, where xi is an i-th video, ti is a label of xi and Nsup is

the number of labeled videos and the subset of unlabeled videos is represented as

Bunsup = {uj |1 ≤ j ≤ Nunsup}, where uj is a j-th video and Nunsup is the number of

unlabeled videos.

We sample T GOPs from videos as inputs, where one GOP holds one I-frame and

multiple P-frames. Then, we subsample µ P-frames from each GOP while maintaining
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Fig. 3.2 The abstract image of the multi-stream model used in this chapter.

the frame order. Consequently, we can obtain T I-frames and µT P-frames. For

simplicity, xI
i , xM

i , and xR
i denote I-frames, motion vectors and residuals of xi, and

uI
j , uM

j , and uR
j denote I-frames, motion vectors and residuals of uj .

To process compressed video features, we use a multi-stream model that consists of

three independent networks corresponding to I-frames, motion vectors, and residuals

(Fig. 3.2). Each network receives the corresponding input and returns the probability

distribution for classification. Formally, given {xI
i , x

M
i , xR

i } as inputs, the predicted

distributions are denoted as {pθI (yi|xI
i ), pθM (yi|xM

i ), pθR(yi|xR
i )}, where θI , θM and

θR are network parameters of I-frames, motion vectors and residuals, respectively.

The predicted distributions should be fused during inference to obtain the final

prediction. In this study, the final prediction is computed by averaging the three

predicted distributions as follows:

1

3

∑
V ∈{I,M,R}

pθV (yi|xV
i ). (3.1)
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Fig. 3.3 Pseudo labeling method for semi-supervised compressed video action recognition.

3.4 Pseudo Labeling for Semi-supervised Compressed Video

Action Recognition

3.4.1 Training Method

We first train the networks independently using the same objective function as

Lee [Lee et al., 2013]. This objective function separately computes supervised loss

Lsup from labeled data and unsupervised loss Lunsup from unlabeled data and com-

bines them for the total loss.

For labeled data Bsup, we compute supervised loss Lsup defined as:

Lsup =
1

3Nsup

Nsup∑
i=1

∑
V ∈{I,M,R}

H(pθV (y|a(xV
i )), ti), (3.2)

where H is the cross-entropy loss as Section 2.1 and a is stochastic augmentation

that transforms x. Thanks to the compressed video features, the networks can learn

efficiently under the limited number of labeled data via supervised loss.

For unlabeled data Bunsup, we compute artificial labels from unlabeled inputs uI
j ,

uM
j , and uR

j . To obtain artificial labels, we first compute the model predictions from
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I-frames, motion vectors, and residuals as follows:

qIj = pθI (y|a(uI
j )), (3.3)

qMj = pθM (y|a(uM
j )), (3.4)

qRj = pθR(y|a(uR
j )). (3.5)

From these predictions, the artificial labels can be obtained as follows:

q̂Ij = arg max(qIj ), (3.6)

q̂Mj = arg max(qMj ), (3.7)

q̂Rj = arg max(qRj ). (3.8)

Now, we define the unsupervised loss Lunsup as the sum of the cross-entropy loss

between the model predictions {qIj , qMj , qRj } and the artificial labels {q̂Ij , q̂Mj q̂Rj }. as

follows:

Lunsup =
1

3Nunsup

Nunsup∑
j=1

∑
V ∈{I,M,R}

1(max(qVj ) > threshold)H(qVj , q̂Vj ), (3.9)

where 1(max(qVj ) > threshold) returns 1 if the prediction confidence max(qVj ) is

higher than threshold; otherwise, returns 0. This term is introduced to avoid un-

reliable artificial labels during training. The unsupervised loss Lunsup encourages

our models to make high-confidence predictions. In other words, it works as entropy

minimization mentioned in Section 3.2.1.

Finally, we combine the supervised loss Lsup and the unsupervised loss Lunsup and

define our objective function as follows:

L = Lsup + λLunsup, (3.10)

where λ is the hyperparameter determining the relative weight of an unsupervised loss

Lunsup. The general algorithm of the proposed method is summarized in Algorithm 1.
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Algorithm 1 The extended version of Lee’s method into semi-supervised compressed

video action recognition.

Require: Network parameters {θI , θM , θR}, labeled data X , unlabeled data U ,

threshold threshold, balancing weight λ, learning rate η

Ensure: Updated parameters {θI , θM , θR}

1: while {θI , θM , θR} do not converge do

2: // Compute supervised loss

3: Bsup = {(xi, yi)|1 ≤ i ≤ Nsup} ∼ X

4: Get {(xI
i , x

M
i , xR

i )|1 ≤ i ≤ Nsup} from Bsup.

5: Lsup = 1
3Nsup

∑
(xi,ti)∈Bsup

∑
V ∈{I,M,R} H(pθV (yVi |a(xV

i )), ti)

6: // Compute unsupervised loss

7: Bunsup = {uj |1 ≤ j ≤ Nunsup} ∼ U

8: Get {(uI
j , u

M
j , uR

j )|1 ≤ j ≤ Bu} from Bunsup.

9: for V in {I,M,R} do

10: qV ← pθV (y|a(uV ))

11: q̂V ← arg max qV

12: end for

13: Lunsup = 1
3Nunsup

∑Nunsup

j=1

∑
V ∈{I,M,R} 1(max(qVj ) > threshold)H(qVj , q̂Vj )

14: // Compute loss to minimize

15: L = Lsup + λLunsup

16: // Update parameters by SGD

17: θI ← θI − η ∂L
∂θI

18: θM ← θM − η ∂L
∂θM

19: θR ← θR − η ∂L
∂θR

20: end while



3 Semi-supervised Compressed Video Action Recognition to Reduce Annotation Cost33

3.4.2 Experimental Setup

We use UCF-101 to evaluate the proposed method. All videos are encoded as

MPEG-4 Part2 [Le Gall, 1991], where each GOP holds one I-frame and 11 P-frames,

and we resized all videos to 171 × 128 resolution to reduce the computational cost.

During the training, we performed data augmentations by randomly cropping 112 ×
112 patches from input frames and flipping the cropped patches horizontally with a

50% probability. For evaluation, we cropped 112 × 112 patches by center cropping.

The size of each frame was 112 pixels × 112 pixels × 3 channels for I-frames and

residuals and 112 pixels × 112 pixels × 2 channels for motion vectors, respectively.

Implementation details

Our multi-stream model consists of three ResNet-18 [He et al., 2016] im-

plemented in torchvision *1. We trained these networks independently and

combined them for inference. As hyperparameters, we always use λ = 1, and

threshold = 0.95. Each network is updated 218 times using SGD with Nesterov’s

momentum [Sutskever et al., 2013]. We set the learning rate to 0.01, momentum to

0.9, and weight decay to 0.0005. For temporal augmentation, we set T = 3 and µ = 1

to select frames, and thus we input 3 I-frames and a P-frame into our networks.

Each batch for training contained 64 labeled and 64 unlabeled data. We trained our

model from scratch on the different percentages of labeled data. To train our model

in a semi-supervised manner, we randomly sampled 5%, 10%, 20%, or 50% of the

dataset as labeled data and used the remains as unlabeled data. Unlabeled data

was annotated, but we discarded their labels to train models in a semi-supervised

manner. We ran the training three times under the same settings and reported the

average accuracy scores.

*1 https://pytorch.org/docs/1.5.0/torchvision/models.html
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Baseline methods

As a supervised baseline model, we trained our model with only supervised loss

Lsup, where unlabeled data were not used, while the other settings were the same

as our proposed semi-supervised methods described in Section 4.1 and 4.2. We call

this model Supervised Learning on Compressed Video Representations. To evaluate

the effectiveness of the compressed video representations in supervised learning, we

compared our results with the results reported by Jing et al. [27], which trained 3D

ResNet18 [3] on raw videos. Specifically, as supervised baselines on raw videos, we

cited results given by the following scenarios:

• Supervised learning: Training 3D ResNet18 on only labeled raw videos. This

model is trained to minimize supervised loss Lsup.

• Supervised learning with knowledge distillation: Training 3D ResNet18 on only

labeled raw videos. This model utilizes knowledge distillation using an extra

image dataset; it is trained to minimize supervised loss Lsup and to mimic

the outputs of the ImageNet pre-trained classifier. This technique is a core

component of VideoSSL, as mentioned below.

For semi-supervised baselines on raw videos, we cited the results given by the fol-

lowing methods:

• Pseudo Label: Training 3D ResNet18 by Lee’s method [Lee et al., 2013] on raw

videos. This method uses the same objective function as our method.

• Mean Teacher: Training 3D ResNet18 by Mean Teacher [Tarvainen and Valpola, 2017]

on raw videos.

• S4L: Training 3D ResNet18 by Self-Supervised Semi-Supervised Learning (S4L)

method [Zhai et al., 2019]. In S4L, the model is trained by the standard clas-

sification task on labeled data and the self-supervised task of predicting the

spatial rotation of images on unlabeled data.
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Table 3.1 Accuracy comparison of supervised learning on the UCF-101

dataset. Accuracy scores were achieved, where different percentages of data

were used as labeled data, and the remainder was used as unlabeled data.

Method 5% 10% 20% 50%

Supervised learning 16.9 24.0 32.2 38.3

Supervised learning with knowledge distillation 31.2 40.7 45.4 53.9

Supervised learning on compressed video features 36.2 45.7 56.7 66.2

• VideoSSL: Combining Lee’s method [Lee et al., 2013] and Supervised Learning

with Knowledge Distillation.

3.4.3 Comparison with Supervised Learning

Table 3.1 compares the training results in a supervised manner. As shown in Ta-

ble 3.1, our method (supervised learning on compressed video features) consistently

outperformed Supervised learning and Supervised learning with knowledge distillation,

both of which were trained on raw videos. These results showed that our method pre-

vented over-fitting under the limited number of labels by reducing redundancies with

video compression. The comparison between our method and Supervised learning with

knowledge distillation also showed that training on compressed video representations

is more efficient than using an extra dataset like ImageNet.

3.4.4 Comparison with Semi-supervised Learning

Table 3.2 compares our method with semi-supervised learning methods trained with

3D ResNet18 on raw videos. Similar to the results of supervised learning, our proposed

method consistently outperformed other methods. For example, when trained models

on 10% labels of UCF101, our proposed method achieved 47.9% accuracy, which is
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Table 3.2 Accuracy comparison of semi-supervised learning on the UCF-101

dataset. Accuracy scores were achieved, where different percentages of data

were used as labeled data, and the remainder was used as unlabeled data.

Method 5% 10% 20% 50%

Pseudo Label 17.6 24.7 37.0 47.5

Mean Teacher 17.5 25.6 36.3 45.8

S4L 22.7 29.1 37.7 47.9

VideoSSL 32.4 42.0 48.7 54.3

Proposed 36.8 47.9 58.1 66.6

25.2 points higher than Pseudo Label and 5.9 points higher than VideoSSL. Even when

compared to our proposed method trained on 20% labels with VideoSSL trained on

50% labels, our method outperformed VideoSSL by 3.8 points. These results showed

that our method is more effective than training on raw videos for semi-supervised

video classification.

3.4.5 Discussion

Our experiments show that our method is more effective than training on raw videos

for both supervised and semi-supervised learning. This would be because raw videos

have many redundancies that are irrelevant to classifying videos. Under the limited

labels, the training models would be confused by the redundancies and suffer from

serious over-fitting. Our method can relax such over-fitting by the video compression.

Our proposed semi-supervised learning method is better than VideoSSL, which is

the best semi-supervised learning method among the previous methods. Furthermore,

our method has another advantage against VideoSSL: it is more robust toward the

various target domains. VideoSSL can improve performance on the UCF101 dataset

because the ImageNet pre-trained classifier gives training models a hint of correct
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action labels via class distributions of ImageNet, whether the input is labeled or

not. For example, when given unlabeled data of ”Soccer Juggling,” the ImageNet

pre-trained classifier will give models the class distributions with high confidence

on ”soccer ball.” In the case of the UCF101 dataset, this signal is beneficial for

training models because it contains actions of ”Soccer Juggling” and ”Soccer Penalty,”

which are related to ”soccer ball.” However, if we use VideoSSL for surveillance to

monitor criminal activities, the ImageNet pre-trained classifier cannot give helpful

signals about criminal activities to training models. This is because most classes

related to humans in ImageNet are about clothes such as sunglasses, trench coats,

or suits, which are irrelevant to criminal activities. In such cases, the improvement

of VideoSSL is limited. On the other hand, our method never suffers from this

problem because our method does not rely on pre-training with extra datasets such as

ImageNet. Our method applies to a broader range of domains for video classification.

3.5 Compressed Video Ensemble-based Pseudo Labeling

We propose CoVEnPL, which trains models using compressed videos in a semi-

supervised manner. We show an overview of CoVEnPL training for unlabeled data

in Fig. 3.4.

CoVEnPL is a pseudo-labeling approach and generates artificial labels from the

ensemble of predictions from multiview inputs such as MvPL. The main difference

between CoVEnPL and MvPL is that CoVEnPL uses features stored in compressed

videos as inputs to reduce computational and storage costs. The generated artificial

labels are used to train the models through a variant version of FixMatch, one of the

best SSL methods.
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Fig. 3.4 Overview of CoVenPL method.

3.5.1 Augmentation for Strong Perturbations

Data augmentation virtually increases the training data by using stochastic trans-

formations and improves the robustness of the models. Recent SSL methods for image

classification use weak and strong augmentation to add more significant perturbations

for consistency regularization. Moreover, spatial and temporal augmentation is cru-

cial for video classification because videos hold both features, and their capture is

essential.

Following the temporal augmentation, we apply spatial augmentation to the ex-

tracted frames while maintaining the random parameters. CoVEnPL uses weak and

strong spatial augmentation to control the perturbation strength. As a weak spa-
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Fig. 3.5 Example of images transformed by RandAugment.

tial augmentation, we apply random cropping and horizontal flipping to the frames

extracted through temporal augmentation. By contrast, as a strong spatial augmen-

tation, we use RandAugment [Cubuk et al., 2020] following the previous SSL meth-

ods [Xie et al., 2020, Berthelot et al., 2020, Sohn et al., 2020, Xiong et al., 2021]. We

show the general algorithm of RandAugment in Algorithm 2 and example images

transformed by RandAugment in Fig. 3.5. RandAugment achieves a strong trans-

formation of inputs by using randomly sampled multiple augmentations and their

magnitude from the set of augmentations summarized in Table 3.3. Because there

are no previous studies applying a strong augmentation to compressed videos, it is

unclear what transformations are suitable for each feature of such a video, and it

could be beneficial for the performance to search for the best set of transformations.

However, instead of searching for the best transformations for compressed videos in

this paper, we use RandAugment with the same transformations and their parameters
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Algorithm 2 RandAugment algorithm used in CoVEnPL.

Require: Inputs {xI , xM , xR}, number of transforms N , number of magnitude bins

M

Ensure: Transformed inputs {xI , xM , xR}

1: for i = 1 to N do

2: // Randomly sample transform and its parameter range from Table 3.3

3: (transform, pmin, pmax) ∼ transforms

4: m ∼ {1, 2, ...,M}

5: // Transform compressed video features.

6: xI ← transform(xI , m(pmax−pmin)
M + pmin)

7: xM ← transform(xM , m(pmax−pmin)
M + pmin)

8: xR ← transform(xR, m(pmax−pmin)
M + pmin)

9: end for

Ensure: xI , xM , xR

applied in semi-supervised image classification [Sohn et al., 2020]. We found that us-

ing such transformations largely improves the performances of semi-supervised video

classification despite being tuned for an image classification task.

3.5.2 Training Method

For labeled data Bsup, we also use the same supervised loss of Section 3.4, defined

as:

Lsup =
1

3Nsup

Nsup∑
i=1

∑
V ∈{I,M,R}

H(pθV (y|a(xV
i )), ti). (3.11)

For unsupervised data Bunsup, we first make the ensemble prediction of unlabeled
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Transformation Description Parameter Range

Auto contrast Maximizes the image contrast by set-

ting the darkest (lightest) pixel to

black (white).

Brightness Adjusts the brightness of the image.

B = 0 returns a black image, B = 1

returns the original image.

B [0.05, 0.95]

Color Adjusts the color balance of the image

like in a TV. C = 0 returns a black &

white image, C = 1 returns the origi-

nal image.

C [0.05, 0.95]

Contrast Controls the contrast of the image. A

C = 0 returns a gray image, C = 1

returns the original image.

C [0.05, 0.95]

Equalize Equalizes the image histogram.

Identity Returns the original image.

Posterize Reduces each pixel to B bits. B [4, 8]

Rotate Rotates the image by θ degrees. θ [-30, 30]

Sharpness Adjusts the sharpness of the image,

where S = 0 returns a blurred image,

and S = 1 returns the original image.

S [0.05, 0.95]

Shear x Shears the image along the horizontal

axis with rate R.

R [-0.3, 0.3]

Shear y Shears the image along the vertical

axis with rate R.

R [-0.3, 0.3]

Solarize Inverts all pixels above a threshold

value of T .

T [0, 1]

Translate x Translates the image horizontally by

(λ×image width) pixels.

λ [-0.3, 0.3]

Translate y Translates the image vertically by

(λ×image height) pixels.

λ [-0.3, 0.3]

Table 3.3 List of transformations used by RandAugment, cited from Table

12 in [Sohn et al., 2020].
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videos from predictions of the training networks as follows:

qj =
1

3

∑
V ∈{I,M,R}

pθV (y|a(uV
j )). (3.12)

We then generate artificial labels q̂ from the estimated predictions as follows:

q̂j =
q
1/τ
j∑C

k=1 q
1/τ
jk

, (3.13)

where qjk denotes the k-th element of the ensembled prediction qj , C is the number

of classes, and τ is a sharpening temperature parameter determining how much the

sharpen function sharpens the predictions. In the standard FixMatch, the artificial

labels q̂ are defined as one-hot labels from only the high-confidence predictions. How-

ever, we experimentally observe that most predictions from unlabeled data cannot

achieve high confidence and are ignored. We consider this to occur because the three

networks must predict the same action category to make the ensembled prediction

achieve high confidence. One way to increase the unlabeled data utilization is to set

the confidence threshold to a low value; however, Sohn et al. showed that using a

low confidence threshold decreases the performance of FixMatch, and we should thus

use a high confidence threshold. Hence, we decided to follow the variant version of

FixMatch to address this problem. In this version, artificial labels q̂ are generated

from all estimated predictions q regardless of the confidence by applying the sharpen

function. This means we can fully utilize unlabeled data for training without decreas-

ing the final performance. Finally, we define the unsupervised loss Lunsup as the cross

entropy loss between the sharpened artificial labels and the predictions from strongly

augmented features of compressed videos as follows:

Lunsup =
1

3Nunsup

Nunsup∑
j=1

∑
V ∈{I,M,R}

H(pθV (y|A(uV
j )), q̂Vj ), (3.14)

where A is the strong augmentation described in Section 3.5.1.
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Now, we can define our total loss L as follows:

L = Lsup + λLunsup, (3.15)

where λ is a balancing weight for the unlabeled data. Our model is optimized to

minimize the loss L using SGD. Finally, we summarize a complete algorithm for

CoVEnPL in Algorithm 3.

3.5.3 Experimental Setup

Following previous studies [Wu et al., 2018, Shou et al., 2019], we used a larger net-

work for an I-frame network and smaller networks for the motion vector and residual

networks. Table 3.4 shows the architectures of our models. In our experiments, we

used two models based on ResNet-18 and ResNet-50. We trained our models using

Adam [Kingma and Ba, 2014] with α = 0.002 and a weight decay of 0.0004. In ad-

dition, we set τ = 0.5, λ = 1 for our loss, and Bs = Bu = 32 for the batch size.

We used PyTorch [Paszke et al., 2019] to implement CoVEnPL and mixed precision

training [Micikevicius et al., 2017] to reduce GPU memory usage.

Augmentation

We used videos resized to a pixel resolution of 128 on the shorter side while main-

taining the aspect ratio. We set the size of each GOP as 12, which means that

each GOP contains an I-frame and 11 P-frames. For temporal augmentation, we set

T = 5 and µ = 5 to select frames, and thus we input 5 I-frames and 25 P-frames

into our networks. For a weak augmentation, we randomly cropped patches with a

pixel resolution of 112 × 112 from the extracted frames and applied horizontal flip-

ping to the patches with 50% probability. For a strong augmentation, we applied

RandAugment described in Section 3.5.1 to compressed video features, in addition to

the weak augmentation. However, motion vectors only have two channels, and some

transformations in RandAugment cannot transform motion vectors because their in-
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Algorithm 3 CoVEnPL algorithm.

Require: Network parameters {θI , θM , θR}, labeled data X , unlabeled data U ,

sharpening temperature τ , balancing weight λ, learning rate η.

Ensure: Updated parameters {θI , θM , θR}

1: while {θI , θM , θR} do not converge do

2: // Compute supervised loss

3: Bsup = {(xi, yi)|1 ≤ i ≤ Nsup} ∼ X

4: Get {(xI
i , x

M
i , xR

i )|1 ≤ i ≤ Nsup} from Bsup

5: Lsup = 1
3Nsup

∑
(xi,ti)∈Bsup

∑
V ∈{I,M,R} H(pθV (yVi |a(xV

i )), ti)

6: // Compute unsupervised loss

7: Bunsup = {uj |1 ≤ j ≤ Nunsup} ∼ U

8: Get {(uI
i , u

M
i , uR

i )|1 ≤ j ≤ Nunsup} from Bunsup

9: for j = 1 to Nunsup do

10: qj = 1
3

∑
V ∈{I,M,R} pθV (y|a(uV

j )) ▷ Ensemble

11: q̂j =
q
1/τ
j∑C

k=1 q
1/τ
jk

▷ Sharpen function

12: end for

13: Lunsup = 1
3Nunsup

∑Nunsup

j=1

∑
V ∈{I,M,R} H(pθV (y|A(uV

j )), q̂Vj )

14: // Compute loss to minimize

15: L = Lsup + λLunsup

16: // Update parameters by SGD

17: θI ← θI − η ∂L
∂θI

18: θM ← θM − η ∂L
∂θM

19: θR ← θR − η ∂L
∂θR

20: end while
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Table 3.5 Accuracy comparison of RGB-based methods on Kinetics-100. We

report the average and standard deviation of the top-1 accuracy of CoVEnPL

and compare it with the results reported by other works. In this table, CMPL

and Xiao et al.’s method are omitted because they do not report their results

on Kinetics-100.

Method
Kinetics-100

5% 10% 20% 50%

Pseudo Label [Lee et al., 2013] 27.8 38.9 48.0 59.0

Mean Teacher [Tarvainen and Valpola, 2017] 27.8 36.4 47.1 59.3

S4L [Zhai et al., 2019] 33.0 43.3 51.1 54.6

VideoSSL [Jing et al., 2021] 47.6 52.6 57.7 65.0

Zou et al. [Zou et al., 2021] — 61.2 — —

CoVEnPL 37.5 ± 5.2 43.27 ± 5.7 46.9 ± 4.7 52.2 ± 3.6

put must be three channels, as in RGB images. Therefore, to apply RandAugment

to motion vectors, following a previous study [Xiong et al., 2021], we add an extra

channel representing the magnitude of movements to the motion vectors.

3.5.4 Accuracy Comparison with RGB-based Methods

Results on UCF-101

For UCF-101, CoVEnPL consistently outperformed the baseline methods that use

only RGB frames as an input. For example, CoVEnPL achieved 54.8% accuracy

on only 5% of the labels. It scored 24.5 points higher than VideoSSL on the same

number of labels. Surprisingly, our method trained using only 5% of the labels also

outperformed the methods that use only RGB frames as an input, except for Zou

et al.’s method trained using 50% of the labels of the dataset. In addition, the gap

between CoVEnPL trained using 5% of the labels and Zou et al.’s method trained

using 50% of the labels is only 3.0 points. Comparing CoVEnPL with CMPL and

Xiao et al.’s method, their performances on UCF-101 were competitive. CMPL and
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Xiao et al.’s method uses multiple types of inputs. In contrast, others use only RGB

frames; these results show that using multiple types of features in compressed videos

can improve performance effectively.

Results on HMDB-51

Like UCF-101, CoVEnPL also performed better against baseline methods that use

only RGB frames as input with fewer labels in HMDB-51. For example, CoVEnPL

achieved 31.0% accuracy on 10% of the labels. This result is better than Pseudo Label

and Mean Teacher trained using 50% of the labels. Moreover, CoVEnPL trained on

20% of the labels achieved higher performances than these single-stream baseline

methods trained on 50%. CoVEnPL is also competitive against Xiao et al.’s method

using multiple types of inputs, although the performance gap is not so significant.

These results show that, for HMDB-51, CoVEnPL is more effective than the baseline

methods that use only RGB frames and competitive against the baseline methods

that use multiple features.

Results on Kinetics-100

For Kinetics-100, CoVEnPL mostly outperformed Pseudo Label, Mean Teacher,

and S4L. However, when training our model using 50% of the labels, CoVEnPL

achieved lower performances than Pseudo Label and Mean Teacher. CoVEnPL also

consistently underperformed VideoSSL and Zou et al.’s method. These results show

that, unlike the experiments conducted on UCF-101 and HMDB-51, CoVEnPL could

not improve the performances on Kinetics-100 from the RGB-based methods.

3.5.5 Accuracy Comparison with Multi-stream Methods

We also compared CoVEnPL with MvPL, which uses RGB frames, an optical

flow, and temporal gradients to generate artificial labels and CMPL on the UCF-
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Table 3.7 Accuracy comparison with MvPL and CMPL on UCF-101 using

ResNet-50-based models. We report the top-1 accuracy of CoVEnPL and

compare it with the reported results. Compared with the RGB-based methods,

CoVEnPL cannot outperform MvPL and CMPL.

Method 1% 10%

MvPL [Xiong et al., 2021] 22.8 80.5

CMPL [Xu et al., 2021] 25.1 79.1

CoVEnPL 21.3 ± 0.9 63.6 ± 3.1

101 dataset. Because MvPL only reports the results of the ResNet-50-based model,

we also use the ResNet-50-based model for a fair comparison. Our model has 40M

parameters, roughly 6M more than the MvPL model, because it consists of three

networks to process our inputs while MvPL uses a network to process their inputs.

Unlike the previous experiments, we used 1% and 10% of the labels of UCF-101 to

train our model and ran three trials.

Table 3.7 shows the results of our comparison. This table indicates that CoVEnPL

achieved competitive performances against MvPL when training the models using

only 1% of the labels. When training the models using 10% of the labels, CoVEnPL

achieved only an accuracy of 63.6%, which is 15.1 points lower than that of MvPL

and 13.7 points lower than that of CMPL. From these results, MvPL and CMPL were

superior to CoVEnPL. Comparing this result with Table. 3.6, the classification perfor-

mances of CoVEnPL on UCF-101 with 10% labels decreased when changing models

from ResNet-18 to ResNet-50. From this observation, CoVEnPL cannot outperform

CMPL in the previous experiments because CMPL improved classification scores by

increasing the capacity of models while CoVEnPL failed to improve scores.
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Table 3.8 Speed comparison with baseline methods. We show the prepro-

cessing and feed-forwarding times (ms) per frame. Because MvPL uses RGB

frames, an optical flow, and temporal gradients for training and uses only

RGB frames for inference, we distinguish between MvPL training and MvPL

inference. From this result, we observe that CoVEnPL is faster than the other

methods owing to the use of compressed videos.

Method RGB-based method MvPL inference MvPL training CoVEnPL

Preprocess (ms) 25.2 25.6 73.5 3.2

Feed-forward (ms) 0.4 1.1 1.4 0.5

Total (ms) 25.6 26.7 74.9 3.7

3.5.6 Speed Comparison

As an advantage of CoVEnPL, we can efficiently prepare the inputs because the

features of the compressed video can be loaded from the compressed video files with-

out any decoding. Table 3.8 shows the per-frame runtime speed (ms) on an Nvidia

Tesla V100 GPU with Intel Xeon Gold 6230 CPUs. CoVEnPL showed the shortest

preprocessing time. In particular, in terms of the preprocessing time, our approach

is roughly 25 times faster than MvPL training. Although MvPL inference is faster

than training because MvPL does not use an optical flow for inference, it is not faster

than our approach. In addition, there are only slight differences within all methods in

the feed-forward time despite our model consisting of three networks. This is because

our networks that process motion vectors and residuals are smaller than our network

that processes I-frames.

3.5.7 Ablation Study

We conducted ablation studies to analyze CoVEnPL. For the ablation studies, we

trained the ResNet-18 based model using UCF-101 with 10% of the labels, and the

result of our full method shows a 68.0% accuracy, as indicated in Table 3.6. We ran
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five trials per experiment and summarized our ablation studies in Table 3.9. From

these studies, we found the following results.

First, we removed our unsupervised loss (i.e., set λ=0) to observe whether

CoVEnPL utilizes unlabeled videos well. This is one of the most important factors of

SSL methods. Consequently, CoVEnPL without an unsupervised loss achieved only

47.1% accuracy, which is 20.9 points lower than our full method. This result shows

that CoVEnPL can utilize unlabeled videos effectively to improve performance.

Second, we removed the ensemble part from Eq. 3.12. We trained our networks

independently and ensembled their predictions only for the final inference. Therefore,

CoVEnPL without an ensemble achieved an accuracy of 62.1%, which is 5.9 points

lower than our full method. This result shows that using ensembled artificial labels

is also effective for compressed videos.

Third, we replaced strong augmentation with weak augmentation to show how much

strong augmentation contributes to CoVEnPL. Consequently, CoVEnPL, using only

weak augmentation, achieved only a 51.9% accuracy level, which is 16.1 points lower

than our full method. The gap in performance between our full method and this

ablation study is the widest in our ablation studies except for removing unsupervised

loss. Because removing unsupervised loss also removes other components, this result

shows that strong augmentation is the most important component for the performance

of CoVEnPL. We did not specifically tune it for CoVEnPL; thus, we can improve its

performance of CoVEnPL by exploring a more effective and stronger augmentation

for compressed videos. The strong augmentation also improves the performance of

supervised image and video classification. Hence, exploring such strong augmentation

for compressed videos is promising for semi-supervised and supervised CoViAR.

Finally, we removed the sharpen function and used q̂j = qj instead of Eq. 3.13.

CoVEnPL without the sharpen function achieved a 66.3% accuracy, which is 1.7

points lower than our full method. This result showed that although the contribution
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Table 3.9 Ablation study. We conducted each experiment on UCF-101 with

10% of the labels. All components of CoVEnPL contributed to the improved

performance.

Method Accuracy

Full method 68.0 ± 1.8

w/o unsupervised loss 47.1 ± 2.6

w/o ensemble predictions 62.1 ± 4.3

w/o strong augmentation 51.9 ± 3.8

w/o sharpen function 66.3 ± 2.3

of the sharpen function is limited compared with other components, it also contributes

to the performance of CoVEnPL.

3.5.8 Discussion

In this study, we proposed CoVEnPL to reduce large computational and storage

costs for training required by the conventional semi-supervised video classification

methods. Unlike the previous works, such as MvPL, we used compressed video fea-

tures as inputs. We could reduce the computational cost as shown in Table 3.8

without storing all frames of datasets as images in advance. In addition, for UCF-101

and HMDB-51, CoVEnPL achieved competitive performances against the baseline

methods.

The performance comparison on UCF-101 and HMDB-51 indicates that com-

pressed video features can be used to obtain accurate models in an SSL manner,

and CoVEnPL utilizes them effectively. In Table 3.6, CoVEnPL, CMPL, and Xiao

et al.’s method achieved the competitive classification performances. The common

point of these methods is that they use multiple types of inputs to train models.

When we trained ResNet-50 based models as shown in Table 3.5, MvPL, which
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also used multiple types of inputs, achieved better performances than CoVEnPL.

In this experiment, CMPL achieved competitive performances against MvPL and

outperformed CoVEnPL. However, in practice, there is an advantage to using

CoVEnPL against others, including MvPL and CMPL; CoVEnPL requires fewer

times to process videos than not only MvPL that uses optical flow but also others

that do not use optical flow like CMPL and Xiao et al.’s method. This advantage

comes from the compressed video features, making training easier to scale up than

other methods.

Our CoVEnPL achieves a better level than the performance of conventional state-

of-the-art methods due to the strong augmentation and the ensemble of predictions.

Our method’s key component is its ensemble of predictions to generate artificial la-

bels. Our ablation study showed that the ensemble improved performances. This

is because the compressed video features used in our proposed method consist of

I-frames, motion vectors, and residuals, each of which holds important action in-

formation required for video classification. Our ablation study also indicates that

the CoVEnPL performances heavily rely on strong augmentation. Strong augmen-

tation is a popular consistency regularization in semi-supervised image classifica-

tion [Zhai et al., 2019, Berthelot et al., 2020, Sohn et al., 2020, Zhang et al., 2021].

The strong augmentation is applied to I-frames, motion vectors, and residuals indi-

vidually. We discuss how strong augmentation works for each feature.

The strong augmentation adds large perturbations to compressed video features

and improves the robustness of our models. In this paper, we use the same strong

augmentation that has been conventionally used in the semi-supervised image

classification methods [Zhai et al., 2019, Berthelot et al., 2020, Sohn et al., 2020,

Zhang et al., 2021] because there are no studies where strong augmentations have

been applied to compressed video action recognition. It is not clear how the

strong augmentations should be implemented. Our method’s strong augmentation
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consists of color and geometric transformations. Our ablation study shows that

both transformations can improve the performance of CoVEnPL. However, because

the augmentation has been tuned only for RGB images without considering tem-

poral features, it could distort the temporal action features stored in compressed

videos excessively and may lead to poor performances. Nevertheless, our ablation

study indicates that such strong augmentation is even more beneficial than weak

augmentation, which does not distort the temporal action features. We must

consider what each compressed feature represents to understand why the strong

augmentation works well. As I-frames are just a sequence of RGB images, the strong

augmentation naturally works well for I-frames, as in previous studies. Regarding

residuals, their important action features are the edges of moving objects in videos.

The strong augmentation does not remove the features of these edges, and our

network could classify videos from the strongly augmented residuals. Therefore, the

strong augmentation helps our residual networks to obtain robustness against large

perturbations.

Unlike I-frames and residuals, there is a possibility that the strong augmentation

is not suitable for motion vectors. In our method, the motion vectors represent the

amounts and directions of pixel movements in videos as color images. Therefore, color

transformations change the amounts and directions of movements, which are crucial

temporal action features indicating how objects move in video frames. Even though

the color transformation distorts the temporal features, the strongly transformed mo-

tion vectors are still classifiable in many cases. Sevilla et al. focused on what optical

flow features lead to better video classification [Sevilla-Lara et al., 2018]. In their ex-

periments, the temporal coherence in the training videos was removed by shuffling the

orders of video frames and making optical flow inputs from the randomized frames.

Such optical flow highlights the pixels for which motion is detected. In other words,

information shapes the edges of moving objects in the image frames. Even when the
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temporal coherence was removed from the optical flow, their models could still learn

to classify videos. Their findings indicate that actions of optical flow are classifiable

from the movement represented as temporal features appearing in the consecutive

frames and the shape of moving objects represented by information where the move-

ment occurred. Such information is not removed by the strong augmentation. There

is also the case where color transformations are not applied, as the strong augmenta-

tions used once are randomly sampled from a set of possible transformations. In that

case, the temporal features are not distorted, and the augmentations benefit training.

For the above reasons, the strong augmentation can add large but suitable per-

turbations to I-frames, residuals, and even motion vectors and helps models improve

their performances. However, the strong augmentation here was applied using a sim-

ple conventional method. Developing better strong augmentations for residuals and

motion vectors is an open problem for our method and deep learning models that use

compressed videos as input.

The entropy minimization is another popular regularization in SSL [Lee et al., 2013,

Berthelot et al., 2019, Xie et al., 2020, Zhai et al., 2019, Berthelot et al., 2020,

Sohn et al., 2020, Zhang et al., 2021]. Still, the performance improvement of this

regularization was relatively limited compared with strong augmentation in our

method. To minimize the entropy of predictions, models should output high-

confidence predictions. Our method applies the sharpen function to the artificial

labels for entropy minimization. Unlike popular inputs such as RGB frames and

optical flow, compressed video features are designed to remove redundant information

as much as possible to reduce the file size. Hence, action features contained in each

input will be relatively limited compared with RGB frames and optical flow, and

it is more difficult to classify videos from each input feature with high confidence.

The ensemble of predictions for generating the artificial labels also weakens the

contribution of the entropy minimization. Although the ensemble will improve the
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correctness of artificial labels, it tends to generate uniform distribution-like artificial

labels when models classify the same videos into different actions. Such uniform

distribution-like artificial labels train models to output lower-confidence predictions,

so the work of the sharpen function would be limited.

Another limitation of CoVEnPL was shown when we trained models using Kinetics-

100. Unlike UCF-101 and HMDB-51, CoVEnPL was worse than other baseline meth-

ods using RGB frames. Compared to the other datasets, Kinetics-100 seems to require

the extraction of detailed temporal features. If we can solve this problem, our method

is expected to improve performance and become more practical.

3.6 Conclusion

In this chapter, we proposed CoVEnPL, a novel SSL method for video classification.

Inspired by the recent SSL method MvPL, we introduced an ensembling approach to

generate reliable artificial labels for unlabeled data. At the same time, CoVEnPL

uses features stored in compressed videos as inputs to reduce the computational

and storage costs for training. We found that the ensembling approach effectively

improves performance using compressed videos. In addition, by using compressed

videos directly as inputs, CoVEnPL can reduce the computational and storage costs

for training and easily scale up the training.

In our experiments, CoVEnPL cannot reach the classification performance of MvPL

but achieves competitive performances against other state-of-the-art optical flow-free

SSL methods on the public datasets UCF-101 and HMDB-51. Furthermore, we show

that the loading of our input features is faster than that of the other method. However,

interestingly, CoVEnPL does not work well on Kinetics-100.

We believe that improving the SSL methods using compressed videos is a promising

approach because the number of videos available online is increasing now, and it is

easier to utilize unlabeled videos for training.



Chapter 4

Efficient Compressed Video Action

Recognition with a Single Network

4.1 Introduction

Compressed video action recognition is more efficient than RGB frame-based video

classification in terms of computational complexity. Some studies have focused on

the low computational complexity of compressed video action recognition to deploy

networks on mobile or edge devices [He et al., 2021, Huo et al., 2019].

The compressed video features consist of multiple features whose information

should be fused effectively to improve video classification performance. Most

conventional methods use multiple networks to process the compressed video

features [Wu et al., 2018, Huo et al., 2019, dos Santos et al., 2019, Shou et al., 2019,

Wu et al., 2019]. This approach is depicted in Figure 4.1-(a) and is called late

fusion. Recent studies have improved late fusion by fusing internal states to establish

additional information paths between the networks [He et al., 2021, Li et al., 2020].

The disadvantage of late fusion is that it needs multiple networks to process com-

pressed video features. This problem prevents us from reducing the computational

— 57 —
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complexity for efficient compressed video action recognition. Early fusion, shown

in Figure 4.1-(b), does not suffer from this problem. This approach concatenates

compressed video features along channel dimensions in advance and simultaneously

processes the concatenated features using a single network. This approach does not

need multiple networks, providing scope to reduce the computational complexity

compared to late fusion using the same backbone networks. However, the video

classification performance of early fusion is much poorer than that of late fusion.

To overcome this computational complexity and performance problem, we propose

to train a single network for late fusion. Our method is inspired by the recently

proposed approach named multi-input multi-output (MIMO) [Havasi et al., 2021].

MIMO was initially proposed as an efficient ensemble method. This method feeds

multiple ”different” images into a network and trains subnetworks embedded in the

single network to classify the images independently. As a result, MIMO can simul-

taneously compute multiple subnetworks in one single network, allowing ensemble

results to be output. In this work, we extend MIMO to compressed video action

recognition, as depicted in Figure 4.1-(c). Instead of applying MIMO by using mul-

tiple entire videos as the inputs, we extract different compressed video features from

multiple videos and use them as inputs during the training phase. After training,

our network can perform the late fusion of different compressed video features with a

single feed-forwarding using the subnetworks. Our experiments show that our method

attains the same level of computational complexity as early fusion and accuracy as

late fusion. In addition, the video classification performance of our method is compet-

itive with state-of-the-art compressed video action recognition methods on popular

video classification datasets.
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Fig. 4.1 Typical approaches to fuse compressed video features (a, b) and our

proposed method (c). Colors indicate networks or subnetworks that process

each input feature. Our method uses a single network similar to early fusion

but internally holds independent subnetworks for late fusion.

4.2 Background

4.2.1 Typical Fusion Methods for Multi-stream Inputs

Fusing the information to utilize multiple types of inputs, including compressed

videos, is crucial to obtain accurate predictions effectively. The design of the fusion

method has been extensively studied as it significantly affects classification perfor-

mance [Jiang et al., 2018, Boulahia et al., 2021, Joze et al., 2020, Duong et al., 2017,

Hu et al., 2019]. This study focused on three näıve fusion methods: early, late, and

intermediate fusion.

Late Fusion

Late fusion, depicted in Fig. 4.1-(b), is another simple fusion method for com-

pressed videos, which is employed by many conventional methods [Wu et al., 2018,
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Li et al., 2021, dos Santos et al., 2019, Shou et al., 2019, Guo et al., 2023, Huo et al., 2019].

In compressed video action recognition, the late fusion method used three networks

and independently classified actions from each compressed video feature using these

networks. The final prediction was obtained by averaging the three predictions.

Late fusion can significantly improve classification performance compared to early

fusion. However, late fusion only linearly fuses the predictions from compressed

videos and cannot nonlinearly fuse compressed video information, leaving room for

further improvement in accuracy.

Early Fusion

For the implementation level, our method is based on early fusion. Let X =

{xi, ti|0 ≤ i ≤ N} be a video dataset, where xi is an i-th video, ti is an action

category of xi and N is the number of videos in the dataset. From each video xi, we

can obtain compressed video features: I-frames xI
i , motion vectors xM

i , and residu-

als xR
i . The early fusion concatenates compressed video features along their channel

dimensions and processes the concatenated features by a single network. Here, let

pθ(y|xI
i , x

M
i , xR

i ) be the prediction of the single network from xI
i , xM

i , and xR
i , where

θ is the network parameters. We optimize θ to classify videos correctly. Formally,

early fusion minimizes the loss Learly defined as:

(xI
i , x

M
i , xR

i ) ∼ X , (4.1)

Learly = H(pθ(y|xI
i , x

M
i , xR

i ), ti), (4.2)

where H is the cross-entropy loss.

Although this method does not need as much computational complexity as the late

fusion, we observe that this method does not achieve competitive video classifica-

tion performance against the late fusion. We tackle this performance problem while

keeping the low computational complexity as early fusion.
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4.2.2 Efficient Ensemble of Deep Networks

Our method is inspired by the recent ensemble method that can estimate the

uncertainty of predictions or improve out-of-distribution robustness by feeding the

same inputs (e.g., images) into multiple networks and fusing their predictions. The

problem with the ensemble methods is the expensive computation and memory

costs for training and testing multiple networks. Various approaches, such as Monte

Carlo Dropout [Gal and Ghahramani, 2016] and Snapshot [Huang et al., 2017],

were proposed to address this problem. Havasi et al. proposed the MIMO

method [Havasi et al., 2021], which uses a single MIMO network instead of mul-

tiple single-input single-output networks. Unlike other methods, their method

processes multiple inputs with one feed-forwarding of a single network. They showed

that independent subnetworks are obtained in a single network through MIMO

learning. Sun et al. integrated interpolation-based data augmentation such as

mixup [Zhang et al., 2017] and cutmix [Yun et al., 2019] into the MIMO method and

improved performance [Ramé et al., 2021, Sun et al., 2022]. Ferianc and Rodrigues

used more output layers to improve the MIMO model [Ferianc and Rodrigues, 2023].

DataMUX [Murahari et al., 2022] employed a MIMO-like approach to process long

texts simultaneously using transformers [Vaswani et al., 2017]. We extend the MIMO

method into compressed video action recognition to obtain a single network that

processes compressed video features simultaneously.

4.3 Late Fusion Approximation by a Single Network

4.3.1 Multi-stream Single Network

We train a single network for late fusion. As depicted in Fig. 4.1-(c), our net-

work comprises the shared backbone network and three single-layer networks. The

shared backbone network computes the embeddings from I-frames, motion vectors,
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Fig. 4.2 Training phase of our proposed method. We feed compressed video

features extracted from different videos into a single network simultaneously

and train the network to classify each video.

and residuals. The single-layer networks correspond to one of the I-frames, motion

vectors, and residuals and predict classes from the corresponding features. The com-

putational complexity of this network is almost maintained compared to early fusion,

as the shared backbone network computes the embeddings only once.

To train single-layer networks that classify videos independently from the shared

embeddings, we extend the MIMO approach into compressed video action recognition,

as shown in Figure 4.2. During training, we sample compressed video features xI
i , xM

j ,

and xR
k from different videos xi, xj , and xk, respectively, and concatenate them to

feed into a single network. The network outputs three predictions pθ(yIi |xI
i , x

M
j , xR

k ),

pθ(yMi |xI
i , x

M
j , xR

k ), and pθ(yRi |xI
i , x

M
j , xR

k ) obtained from the concatenated input, and

each prediction is optimized to predict the classes of different corresponding videos

ti, tj , and tk.

Because video classes of xi, xj , and xk may differ, each video’s compressed video
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Fig. 4.3 Evaluation phase of our proposed method.

feature does not have helpful information to classify the other two videos. Thus,

our network will make subnetworks that compute features independently to classify

all videos correctly. After training, the obtained subnetworks can be used for late

fusion instead of multiple networks depicted in Figure 4.1-(a). Formally, we optimize

networks to minimize the loss value L defined as:

L =
∑

(l,V )∈{(i,I),(j,M),(k,R)}

H(pθ(yVi |xI
i , x

M
j , xR

k ), tl). (4.3)

Note that the above method for sampling different features from different videos is

not performed during the evaluation phase as depicted in Fig 4.3. We use compressed

video features extracted from the same videos as inputs and average the three pre-

dictions corresponding to I-frames, motion vectors, and residuals to obtain the final

prediction pθ(yi|xI
i , x

M
i , xR

i ) as follows:

pθ(yi|xI
i , x

M
i , xR

i ) =
1

3

∑
V ∈{I,M,R}

pθ(yVi |xI
i , x

M
i , xR

i ). (4.4)
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4.3.2 MIMO Pre-training

Following previous studies [Wu et al., 2018, Huo et al., 2019], we finetune networks

pre-trained by the ImageNet1K dataset [Russakovsky et al., 2015]. The standard

classification training is unsuitable for our method’s pre-training because it does not

encourage networks to make multiple subnetworks. Instead of the standard classi-

fication training, we use MIMO training as the pre-training to obtain subnetworks

in the pre-training phase. We experimentally show that our method requires this

pre-training strategy to reach the late fusion level accuracy.

4.3.3 Experimental Setup

We used the UCF101 [Soomro et al., 2012] and HMDB51 [Kuehne et al., 2011]

datasets to evaluate our method. All videos were resized to 240× 320 resolution and

compressed to the MPEG4 Part-2 format [Le Gall, 1991]. We randomly sampled

8 I-frames, motion vectors, and residuals from videos allocated for training. The

frames were cropped into 224 × 224 patches and underwent horizontal flipping with

50% probability. For evaluation, we uniformly sampled 8 I-frames, motion vectors,

and residuals from videos and cropped the central 224×224 patches from the frames.

As the backbones of our networks, we chose ResNet18, ResNet34, and

ResNet50 [He et al., 2016] with temporal shift modules (TSMs) [Lin et al., 2019].

TSMs can adapt 2D convolutional networks for video processing without increasing

the number of parameters and FLOPs. We first trained the backbone networks with-

out TSMs using the ImageNet1K dataset [Russakovsky et al., 2015]; subsequently, we

finetuned the network parameters to classify the UCF101 or HMDB51 datasets with

the TSMs. To demonstrate the effectiveness of MIMO pre-training, we finetuned both

the MIMO pre-trained parameters and standard pre-trained parameters provided

by the PyTorch team. Our networks were optimized by stochastic gradient descent
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with Nesterov momentum (learning rate: 0.1; momentum: 0.9; weight decay rate:

1.0 × 10−5). We trained our networks for 150 epochs. A factor of 0.2 decayed the

learning rate after 60, 90, and 120 epochs.

As the baseline methods, we used the standard early fusion described in Section ??

and late fusion depicted in Figure 4.1-(a). Baseline methods used the same backbones

as those used in ours. We trained the baseline methods with approximately the

same optimization strategies described above. However, because the training loss

of baseline methods on HMDB51 did not converge after 150 epochs, we trained our

baseline methods four times longer than our method; that is, we trained the baseline

networks for 600 epochs. Accordingly, the learning rate decreased after 240, 360, and

480 epochs.

4.3.4 Comparison with Typical Fusion Methods

We compared our method with the baseline methods and summarized the results

in Table 4.1.

The early fusion baseline exhibited much poorer video classification performances

than the late fusion baseline, regardless of the backbone networks. These results

indicated that early fusion was impractical for compressed video action recognition.

Although our method used only a single network like early fusion, it achieved com-

petitive video classification performances compared to the late fusion baseline.

Our method required approximately three times lower computational complexity

than the late fusion baseline. This is because the late fusion used three networks. As

a result, our method with ResNet50 still yielded a lower computational complexity

than the late fusion baseline with ResNet18.

The performance improvement of our method depended on the pre-training method.

When we did not pre-train parameters for image classification using MIMO, the video

classification performance of our method was consistently poorer than that of the late
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Table 4.2 Comparison between the proposed method and conventional com-

pressed video action recognition methods in terms of video classification perfor-

mance and computational complexity (GFLOPs). Views indicate the number

of test time augmentations to achieve the reported accuracy scores. For ex-

ample, CoViAR, Wu et al., and TTP applied the ten-crop to every frame.

Method Backbone Pretrain GFLOPs × Views UCF-101 HMDB-51

CoViAR [Wu et al., 2018] ResNet18+ResNet152 ImageNet1K 361.5× 10 90.4 59.1

DMC-Net [Shou et al., 2019] I3D Kinetics400 401 × 1 92.3 71.8

CV-C3D [dos Santos et al., 2019] C3D ImageNet1K 96.4 × 1 83.9 55.7

Wu et al. [Wu et al., 2019] ResNet18 ImageNet1K 125.4× 10 88.5 56.2

TTP [Huo et al., 2019] MobileNetV2 ImageNet1K 105 × 10 87.2 58.2

SIFP [Li et al., 2020] SIFP Kinetics400 50 × 30 94.0 72.3

He et al. [He et al., 2021] ResNet Kinetics400 90.5 × 1 93.7 70.3

MFCD-Net [Battash et al., 2020] MFNet3D Kinetics400 128 × 1 93.2 66.9

TEMSN [Li et al., 2021] ResNet18+ResNet152 ImageNet1K 50.4 × 1 91.8 61.1

MTFD [Guo et al., 2023] ResNet18 — 25.5 × 1 92.4 78.7

MEACI-Net [Li et al., 2022] I3D-ResNet50 Kinetics400 89.0 × 3 96.4 74.4

Proposed ResNet18-TSM ImageNet1K 15.4 × 1 85.8 58.6

Proposed ResNet34-TSM ImageNet1K 28.9 × 1 88.9 61.7

Proposed ResNet50-TSM ImageNet1K 33.6 × 1 89.2 62.9

fusion baseline. This result indicated that MIMO pre-training, which trains backbone

networks to classify images with MIMO in advance, was essential for a single network

to achieve competitive performance compared to the standard late fusion.

4.3.5 Comparison with Previous Methods

We also compared our method with conventional compressed video action

recognition methods and summarized the results in Table 4.2. Some conventional

methods also focus on efficient compressed video action recognition [Huo et al., 2019,

dos Santos et al., 2019]. Still, they explore how to use lightweight networks such as

MobileNetV2 [Sandler et al., 2018] and C3D [Tran et al., 2015] as their backbones,
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different from our approach that reduces the number of networks to process com-

pressed video features. From Table 4.2, we found that our method requires lower

computational complexity than conventional methods, as shown in the GFLOPs ×

Views column. Our proposed method with ResNet50 still needs lower computational

complexity than conventional methods, while some conventional methods use

lightweight networks as their backbones. Our method can attain a low computational

complexity because it only uses a single network. In contrast, most conventional

methods use multiple networks corresponding to each compressed video feature.

In addition, our method was competitive with most conventional methods regarding

video classification performance. This result indicates that a single network can reach

the same accuracy level as multiple networks specialized in compressed video action

recognition.

4.4 Discussion

For the implementation level, our method and early fusion process compressed

video features similarly except for output layers for generating predictions. However,

our method achieved better video classification performance than early fusion. This

section discusses why our method can improve video classification performance against

early fusion.

Compared with late fusion, despite its computational complexity, early fusion is

not popular because of the performance problem for multi-stream video classification,

including compressed video action recognition. Jiang et al. claimed that the reason

for the performance problem of early fusion is the high complexity of early fusion

input [Jiang et al., 2018]. In multi-stream video classification, inputs for each stream

contain different discriminative features and should be effectively fused to improve

video classification performance. However, by fusing multi-stream inputs in early

layers, these inputs disturb their discriminative features each other. Given the con-
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catenated features as inputs like early fusion, networks must first learn how to extract

each feature separately from concatenated inputs to fuse these different features ef-

fectively. This learning is difficult when we optimize networks to minimize only the

cross-entropy loss.

Our method overcomes this problem by forcing networks to internally process mul-

tiple inputs separately by the MIMO configuration. Under this training approach,

there are no advantages of fusing features to minimize the loss value; therefore, our

networks only focus on extracting features from each input. We can improve the video

classification performance with a single network by fusing the predictions as output

for each stream using separately extracted features.

However, our method still has room for improvement. Recent works show

that fusing the multiple features in the intermediate stage of the processing im-

proves multi-stream video classification performance effectively [Ryoo et al., 2019,

Ryoo et al., 2020, Feichtenhofer et al., 2019]. In compressed video action recognition,

some works already employed this intermediate fusion approach [Li et al., 2020,

He et al., 2021]. These previous works construct the intermediate features corre-

sponding to different input features using multiple networks. When considering

extending our proposed method to intermediate fusion, we need to address the

problem of how to extract the intermediate features. It is a non-trivial problem

because they are non-linearly mixed in the intermediate stages of a single network.

We need additional modules or loss terms to disentangle our networks’ embedding

while keeping our method’s computational complexity.

4.5 Conclusion

This study presents a novel method for efficient compressed video action recognition.

We extend the MIMO approach to compressed video action recognition and construct

a single network that acts as late fusion. Our experiments demonstrate that our
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method can achieve early fusion-level efficiency in terms of computational complexity

and late fusion-level video classification performance. Moreover, our method performs

competitive video classification compared to conventional methods while attaining

lower computational complexity.



Chapter 5

Conclusion

This thesis tried to reduce the annotation and computational costs of compressed

video action recognition.

In Chapter 3, we tackled the annotation cost problem and proposed a novel SSL

method named CoVEnPL. This chapter first showed that compressed video features

achieved better accuracy than raw RGB frames under the limited labeled data. This

result showed the usefulness of compressed video features for the scenario of SSL.

Then, we proposed CoVEnPL that makes pseudo labels by aggregating the I-frame,

motion vector, and residual predictions. The proposed method improved the accu-

racy of semi-supervised compressed video action recognition and defeated most RGB

frame-based SSL methods in terms of accuracy with a faster inference time.

In Chapter 4, we tackled the computational cost problem and proposed the MussNet

model that uses only a single network to process compressed video features simulta-

neously. We first showed that early fusion is worse than late fusion in compressed

video action recognition. Then, we proposed to approximate late fusion using a single

network by training the network in the MIMO manner. The proposed model achieved

competitive accuracy against the late fusion baseline while keeping the efficiency of

a single network. Compared with previous methods, our method achieved one of

— 71 —
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the most efficient GFLOPs even when we used a relatively large network, ResNet-50,

as the backbone. In addition, the accuracy of the MussNet model was competitive

against the previous studies.

We consider that both approaches, SSL and single network-based compressed video

action recognition, are promising directions to improve the efficiency of compressed

video action recognition. SSL and MIMO have shown remarkable progress in more

efficient image processing for images. In addition, compressed video features have

their advantage in that different types of features are available without decoding.

The author believes combining compressed video action recognition and efficient deep

learning methods would lead to more interesting and practical technologies for com-

puter vision tasks, including video classification.
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