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Chapter 1

General introduction

Superconductivity has attracted much attention of many researchers due to its anoma-

lous electromagnetic properties and has continued to be a central topic in condenced

matter physics from its discovery [1]. This phenomenon is explained well by BCS the-

ory [2] and arises from the condensation of Cooper pairs on the order of Avogadro

number NA ∼ 1023. A number of Cooper pairs composed of two electrons on the Fermi

level condense in the same quantum state by aligning their phases and the energy gap

in the single-particle spectrum opens near the Fermi level. As a result, the supercon-

ductors gain the condensation energy and acquire the phase coherence. When a weak

orbital magnetic field is applied to a superconductor, it can not penetrate the object.

Since the magnetic fields are perturbations that disturb the phase coherence, the super-

conductors gain a larger energy by expelling the magnetic fields rather than attracting

them. The phenomenon known as Meissner-Ochsenfeld effect [3] is more fundamental

than the disappearance of electric resistance. It has been widely accepted that Cooper

pairs have the diamagnetic property and stabilize the superconducting states.

Electrons have internal degrees of freedom such as spin σ and spatial coordinate r.

Therefore, Cooper pairs can be classified by its symmetry. Cooper pairs composed of

spin-1/2 electrons are represented by the pairing correlation function Fσ,σ′(r, r′) and

are classified into two symmetry classes: spin-singlet even-parity symmetry class and

spin-triplet odd-parity symmetry class. The former is represented by an antisymmetric

function under the permutation of the spin degree of freedom and realized in supercon-

ductivity in most metals and cuprates [4]. On the other hand, the latter is represented

by a symmetric function under the above permutation and realized in heavy electron

systems [5–8], superfluid 3He [9], and so on. Since physical phenomena strongly de-

pend on the symmetry in general, understanding how the observable depends on the

symmetry and why it does so remains a challenge in theoretical physics.
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Chapter 1 General introduction

In 1974, Berezinskii proposed a new symmetry class of Cooper pair, odd-frequency

Cooper pair, to explain the symmetry of the order realized in superfluid 3He [10]. The

concept is based on the idea of focusing on the relative time of two electrons forming

a Cooper pair. We need to add the time degree of freedom τ to the correlation func-

tion Fσ,σ′(r, τ ; r′, τ ′) to describe the new pairs. Compared with odd-frequency Cooper

pairs, conventional spin-singlet even-parity pairs and spin-triplet odd-parity pairs are

collectively referred to as even-frequency Cooper pairs. Although the proposal itself

ended in a failure, this new concept has sparked many theoretical and experimental

studies as a result [11–15]. It has been understood that odd-frequency Cooper pairs

appear in local region such as at a vortex core [16], in the vicinity of a magnetic im-

purity [17, 18], and at the surface of a topologically nontrivial superconductor [19, 20].

Important and curious property of odd-frequency Cooper pairs is paramagnetism [21].

So far, phenomena in inhomogeneous systems, such as long-range proximity effects in

superconductor/ferromagnet junctions [22] and anomalous proximity effects in normal

metal/superconductor junctions [19, 23], have been explained well by the concept of

odd-frequency Cooper pair. The reason for the dramatic change in local physical phe-

nomena is commonly attributed to the paramagnetic property of odd-frequency Cooper

pairs. The concept of odd-frequency Cooper pair is still being used to gain a unified

understanding of the property of various physical phenomena in inhomogeneous super-

conducting systems. In other words, the formation of odd-frequency Cooper pairs is a

usuful picture for understanding superconductivity in a rational way.

It has been considered that uniform odd-frequency Cooper pairs are not able to exist

in the bulk since they destabilize superconductivity by disturbing phase coherence due

to the paramagnetic property [24–26]. In fact, superconductivity with odd-frequency

pairing order has never been reported experimentally although there are a number of

theoretical studies [27–46]. On the other hand, it has been shown that uniform odd-

frequency Cooper pairs are able to exist in systems where electrons near the Fermi level

have large internal degrees of freedom such as band, orbital, and sublattice [47, 48].

Many superconductors such as MgB2 [49–51], heavy fermion compounds [52, 53] iron

compounds [54, 55], and CuxBi2Se3 [56, 57] are regarded as “multiband/orbital super-

conductors”. Recently, the condition for a superconducting state that contains spatially

uniform odd-frequency Cooper pairs has been presented [14, 58, 59]. In these supercon-

ducting states, odd-frequency Cooper pairs exist as subdominant pairing correlations

apart from even-frequency Cooper pairs which are linked to the superconducting order

parameter. In fact, Bogoliubov quasiparticles [60, 61] forming the Fermi surfaces, which

is known as one of the characteristics of superconductors with large internal degrees of

freedom [62–64] and odd-frequency Cooper pairs coexist [65, 66]. It is also shown that
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Chapter 1 General introduction

the magnetic response of such uniform odd-frequency Cooper pairs is paramagnetic

and then they suppress the superconducting transition temperature Tc [67]. However,

this fact has made its characteristic physical phenomena extremely obscure. Only

when the amplitude of the odd-frequency pairs become dominant compared with that

of even-frequency pairs, physical phenomena unique to odd-frequency Cooper pairs

are expected to occur. Unfortunately, odd-frequency Cooper pairs, which are para-

magnetic, are thermodynamically unstable and cannot be dominant pair correlations.

Therefore, the effect of uniform odd-frequency Cooper pairs on physical phenomena

was unclear. The purpose of this study is to fill the gaps in knowledge on the physical

phenomena unique to uniform odd-frequency Cooper pairs.

In this thesis, we focus on the stability of the multiband/orbital superconductivity

against thermal fluctuations and disorder, which has been known to exhibit anomalous

characteristics: discontinuous transition to the superconducting phase and suppres-

sion of Tc due to nonmagnetic impurities. Even seemingly obvious properties for most

superconductors such as the second-order transition and the robustness of s-wave su-

perconducting order against disorder [68, 69] do not hold true in multiband/orbital

systems [70, 71]. Unfortunately, there had been no comprehensive understandings of

these anomalous phenomena. We show that the paramagnetic odd-frequency Cooper

pairs play a key role to understand the underlying physics. We expand the Ginzburg-

Landau (GL) free energy in a multiband/orbital superconductor by using the anoma-

lous Green’s function and discuss the relationships between the existence of the uniform

odd-frequency Cooper pairs and the thermodynamic stability of the superconducting

phase. We demonstrate that odd-frequency pairing correlation functions change the

sign of the coefficient of the ∆4 term in the GL free-energy and cause the discontinuous

transition to the superconducting phase. We also show a potential for the discontinuous

transition is a common feature of superconductors that accommodate odd-frequency

Cooper pairs. In addition, we discuss the effects of potential disorder on Tc in a multior-

bital s-wave superconductor. We demonstrate that the uniform odd-frequency Cooper

pairs in the clean limit play an important role to discuss the robustness.

This thesis is organized as follows. In Chapter. 2, we present the classification of

Cooper pairs by its symmetry and discuss how odd-frequency Cooper pairs emerge

in some superconducting systems. A brief review of the magnetic properties of odd-

frequency Cooper pairs are also presented. In Chapter. 3, we discuss the instability

of uniform superconducting state caused by subdominant odd-frequency Cooper pairs.

We demonstrate the transition to the superconducting phase with changing the tem-

perature becomes discontinuous. We discuss the mechanism of the phenomenon in

terms of odd-frequency Cooper pairs. In Chapter. 4, we study the effect of potential
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Chapter 1 General introduction

disorder in a multiorbital superconductor using the effective model of CuxBi2Se3. We

show the robustness of the multiorbital s-wave superconducting order highly depends

on its parity with respect to the orbital degree of freedom. The effect of odd-frequency

Cooper pairs are also discussed. Finally, the summary of this thesis is presented in

Chapter. 5.
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Chapter 2

Paramagnetic odd-frequency

Cooper pair

In this chapter, we introduce odd-frequency Cooper pairs and briefly review their prop-

erties. Firstly, we present the symmetry classification of Cooper pairs including the

relative time degree of freedom of two electrons. Next, we discuss how the symmetry

of Cooper pair affects the magnetic property of a superconductor. We show both non-

uniform and uniform odd-frequency Cooper pairs exhibit a paramagnetic response to

external magnetic fields.

2.1 Symmetry classification of Cooper pair

In the mean-field theory of superconductivity, the presence of Cooper pair in super-

conductors is represented by the pairing correlation function:

Fσ,σ′(r, r′) = −⟨ψσ(r)ψσ′(r′)⟩, (2.1)

where σ, σ′ represents the spin degree of freedom of an electron and r, r′ represents

the spatial coordinate. ψσ(r) is the annihilation operator of an electron at r with spin

σ and satisfies the following anticommutation relation:

{ψσ(r), ψσ′(r′)} = 0, (2.2)

since the electron is a fermion. Therefore the correlation function must be antisym-

metric under the permutation of the two electrons:

Fσ,σ′(r, r′) = −Fσ′,σ(r
′, r). (2.3)
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Chapter 2 Paramagnetic odd-frequency Cooper pair

This antisymmetry is carried by the spin or coordinate degree of freedom of the electron.

Therefore, the Cooper pairs are classified into two symmetry classes. One is spin-singlet

even-parity (s-wave, d-wave, · · · ) symmetry class. The relation

Fσ,σ′(r, r′) = −Fσ′,σ(r, r
′) (2.4)

= +Fσ,σ′(r′, r), (2.5)

holds true among the correlation functions belonging to this symmetry class. In this

class, the spin degree of freedom carry the antisymmetry. The other is spin-triplet

odd-parity (p-wave, f -wave, · · · ) symmetry class represented as

Fσ,σ′(r, r′) = +Fσ′,σ(r, r
′) (2.6)

= −Fσ,σ′(r′, r). (2.7)

The coordinate degree of freedom carry the antisymmetry in this symmetry class. Spin-

singlet s-wave Cooper pairs are known to be realized in most metalic superconductors

such as Al and Pb while spin-singlet d-wave Cooper pairs exist in cuprates. Materials

realizing spin-triplet Cooper pairs are limited, but superfluid 3He and superconductivity

in heavy fermion compounds are the examples. When we assume the internal degrees

of freedom of the electron are only spin and coordinate, above classification of Cooper

pair is completely exhaustive. We summarized this “conventional” classification of

Cooper pairs in Table. 2.1.

Table 2.1: Classification of Cooper pairs. In this classification, the spin and coordinate
degrees of freedom are took into account. Parity below originates from the coordinate
degree of freedom. The two symmetry classes below satisfy the antisymmetric relation
in Eq. (2.3).

Spin Parity

1 Singlet Even
2 Triplet Odd

Above arguments are based on the assumption that two electrons form a Cooper

pair at the same time. In addition to the spin and coordinate degrees of freedom,

electrons naturally have the “time” degree of freedom derived from the equations of

motion. It is not necessary for two electrons to form a Cooper pair at the same time. To

include the time degree of freedom to our arguments, it is useful to define the following
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Chapter 2 Paramagnetic odd-frequency Cooper pair

pairing correlation function:

Fσ,σ′(r, τ ; r′, τ ′) =− ⟨Tτψσ(r, τ)ψσ′(r′, τ ′)⟩
=− θ(τ − τ ′)⟨ψσ(r, τ)ψσ′(r′, τ ′)⟩
+ θ(τ ′ − τ)⟨ψσ′(r′, τ ′)ψσ(r, τ)⟩, (2.8)

where τ is the imaginary time of the electron, Tτ represents imaginary time-ordering

operator, and ψσ(r, τ) = eτHψσ(r)e
−τH represents imaginary time Heisenberg represe-

nation of the annihilation operator as commonly employed in quantum field theory at

finite temperature [69, 72, 73]. This correlation function is referred to as anomalous

Green’s function in the Gor’kov’s formalism and depends only on the relative time

between two electrons τ − τ ′ when we assume uniformity of the time. The anomalous

Green’s function in Eq. (2.8) also satisfies the relation

Fσ,σ′(r, τ ; r′, τ ′) = −Fσ′,σ(r
′, τ ′; r, τ), (2.9)

due to the antisymmetric property of electrons. Strictly speaking, this property is

considered through the time-ordering since the anticommutation relation of fermions

including the time degree of freedom is not defined in quantum mechanics. This ex-

tention enables us to consider the odd function with respect to the relative time as

Fσ,σ′(r, τ ; r′, τ ′) = −Fσ,σ′(r, τ ′; r′, τ). (2.10)

The symmetry of Cooper pairs including the time degree of freedom are usually dis-

cussed in terms of the Matsubara frequency ωn. Cooper pairs that satisfy Eq. (2.10)

are called “odd-frequency Cooper pairs” since the relation

Fσ,σ′(r, r′, iωn) = −Fσ,σ′(r, r′,−iωn), (2.11)

Fσ,σ′(r, r′, iωn) =

∫ 1/T

0

d(τ − τ ′)Fσ,σ′(r, τ ; r′, τ ′)eiωn(τ−τ ′), (2.12)

holds true. In Table. 2.2, we present a complete classification of Cooper pairs includ-

ing the time (frequency) degree of freedom. Cooper pairs are classified into the four

symmetry classes:

1. even-frequency spin-singlet even-parity symmetry class (ESE class).

2. even-frequency spin-triplet odd-parity symmetry class (ETO class).

3. odd-frequency spin-singlet odd-parity symmetry class (OSO class).

13



Chapter 2 Paramagnetic odd-frequency Cooper pair

Table 2.2: Classification of Cooper pairs including the time degree of freedom in
addition to the spin and coordinate. The four symmetry classes below satisfy the
antisymmetric relation in Eq. (2.9).

Frequency Spin Parity

ESE class Even Singlet Even
ETO class Even Triplet Odd
OSO class Odd Singlet Odd
OTE class Odd Triplet Even

4. odd-frequency spin-triplet even-parity symmetry class (OTE class).

Spin-singlet even-parity and spin-triplet odd-parity Cooper pairs in Table. 2.1 can

be regarded as Cooper pairs belonging to ESE class and ETO class in Table. 2.1,

respectively. On the other hand, Cooper pairs belonging to OSO class or OTE class

emerge only when we consider the relative time degree of freedom.

The concept of odd-frequency Cooper pair was introduced by Berezinskii to explain

the superfluidity in 3He [10]. Although there has been much theoretical work on odd-

frequency superconducting states in bulk systems since 1990s [27–46] experimental

evidence is still lacking. The spatially uniform odd-frequency superconducting order

was shown to be impossible in single-band metals [26]. However, it turns out that

the subdominant odd-frequency Cooper pairs are allowed to exist in some systems.

For instance, the odd-frequency spin-triplet s-wave state can be realized as an induced

subdominant pairing correlation in a rather conventional system consisting of a spin-

singlet s-wave superconductor and a ferromagnet [22]. Induced odd-frequency pairing

correlations have been discussed in connection with a subgap quasiparticle appearing at

a surface of unconventional superconductors [12, 74–77], a vortex core [16, 78], an edge

of a Majorana nanowire [20], and around a magnetic impurity/cluster [17, 18, 79, 80].

Superconductors having internal degrees of freedom (e.g., band, orbital, sublattice)

could also be a platform for realizing subdominant odd-frequency Cooper pairs [47,

48]. A quasiparticle on the Bogoliubov Fermi surface [62] in such multiband/orbital

superconductors [63, 64] also accompanies an odd-frequency Cooper pair [65, 66].

2.2 Paramagnetic Cooper pairs

The most important property of odd-frequency Cooper pairs is that they exhibit a

paramagnetic response to an external magnetic field [21, 67, 81, 82]. To discuss the

effects of paramagnetic Cooper pairs, we present a phenomenological argument about
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Chapter 2 Paramagnetic odd-frequency Cooper pair

the energy of the superconducting condensate.

The superconducting condensate can be described phenomenologically by the macro-

scopic wave function

ψ(r) =
√
nS(r) e

iθ(r), (2.13)

where nS is the density of Cooper pairs and θ is the phase of the condensate. The flux

quantization is derived from the single-valuedness of this wave function. The Josephson

effect is explained as the tunnel effect between two superconductors characterized by

such wave functions. The energy of the condensate can be calculated in terms of the

macroscopic wave function,

E =

∫
dr

ℏ2

2m

{(
∇+ i

e

ℏc
A
)
ψ†(r)

}{(
∇− i

e

ℏc
A
)
ψ(r)

}
=

∫
dr

ℏ2

2m

{
(∇nS)

2

4nS

+ nS

(
∇θ − e

ℏc
A
)2}

. (2.14)

The first term in Eq. (2.14) represents the kinetic energy of the condensate, and the

second term means the elastic energy of the superconducting phase. Since nS > 0,

both the spatial gradient of the density and the spatial gradient of the phase increase

the energy of the condensate, which describes the rigidity of the superconducting state.

Therefore, both the pair density and the phase are uniform at the ground state in the

absence of a magnetic field. The electric current can be described by

j =
e ℏ
2im

[
ψ†(r)

(
∇− i

e

ℏc
A
)
ψ(r)−

(
∇+ i

e

ℏc
A
)
ψ†(r) ψ(r)

]
=
e ℏnS

m
∇θ − nS e

2

mc
A. (2.15)

Together with the Maxwell equation ∇ × H = 4π
c
j, we obtain the equation for a

magnetic field in a superconductor,

∇2H − 4π nSe
2

mc2
H = 0. (2.16)

London’s length λL =
√
mc2/4π nS e2 characterizes the spatial variation of a magnetic

field. Equation (2.16) represents the Meissner screening effect of a magnetic field. The

dumping of a magnetic field into a superconductor is described by the negative sign at

the second term on the last line in Eq. (2.15). The argument above is valid when the

pair density nS is positive everywhere in a superconductor.
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Let us assume that the pair density is negative locally at a finite area around r = r0

and let us discuss the physical consequence of nS(r0) < 0. The second term in Eq. (2.14)

suggests that a large gradient of the phase and the penetration of a magnetic field are

necessary to decrease the energy of the condensate. Namely, the condensate with the

“negative pair density” is paramagnetic. Eq. (2.16) with negative nS suggests also that

a magnetic field can penetrate into such a paramagnetic superconductor [21, 81]. Such

a local area around r0 may no longer be superconductive because the phase θ fluctuates

easily from a constant value. Thus the pair density nS must be positive to realize the

stable homogeneous superconducting ground state both electromagnetically and ther-

modynamically. However, the “pair density” can be negative locally in the presence

of an inhomogeneous odd-frequency pair. When the amplitude of an odd-frequency

pair is dominant at some place in the inhomogeneous superconductor, the spatial gra-

dient in the superconducting phase decreases the free-energy there. The magnetic

response of a small unconventional superconductor was also shown to be paramag-

netic at low temperature [82]. Furthermore, for uniform odd-frequency Cooper pairs

in multiband/orbital superconductors, they suppress the transition temperature and

tend to destabilize the superconducting state by disturbing the phase coherence [67].

The reason is also explained by the paramagnetic property. In such cases, the even-

frequency component of the pairing correlation functions are dominant and the total

pair density is always positive. The uniform superconducting order with subdominant

odd-frequency Cooper pairs is stabilized by diamagnetic even-frequency Cooper pairs

as well as conventional uniform superconductors. In the following, we briefly review

the emergence and the magnetic property of odd-frequency Cooper pairs in both an

inhomogeneous superconductor and a homogeneous multiband/orbital superconductor.

2.3 Local odd-frequency Cooper pairs in inhomo-

geneous superconductors

The surface of a superconductor breaks inversion symmetry locally. As a result of

breaking inversion symmetry, odd-parity (even-parity) pairing correlations appear at

the surface of even-parity (odd-parity) superconductor. Such induced pairing correla-

tions belong to an odd-frequency symmetry class because the surface does not change

the spin of a Cooper pair. In what follows, we demonstrate that the pair density can be
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Chapter 2 Paramagnetic odd-frequency Cooper pair

negative at such a surface by using an analytical solution of the Eilenberger equation,

ℏvF k̂ · ∇ĝ + [H, ĝ] = 0, (2.17)

H =

[
ωn ∆(r, k̂)

−ss∆˜ (r, k̂) −ωn

]
, (2.18)

ĝ(r, k̂, ωn) =

[
g(r, k̂, ωn) f(r, k̂, ωn)

−ssf˜(r, k̂, ωn) −g(r, k̂, ωn)

]
. (2.19)

Here we have reduced to 2× 2 particle-hole space by extracting one spin sector of the

Bogoliubov-de Gennes (BdG) Hamiltonian. The pair potential obeys the symmetry

relation

∆(r,−k̂) =

{
∆(r, k̂) singlet ss = −1,

−∆(r, k̂) triplet ss = 1,
(2.20)

which is drived from the Fermi-Dirac statistics of electrons. The Eilenberger equation

can be decomposed into three equations [25],

vF k̂ · ∇g =2∆ fS, vF k̂ · ∇fB = −2ωn fS, vF k̂ · ∇fS = 2(∆ g − ωn fB), (2.21)

with

fB =
1

2
(f − ssf˜), fS =

1

2
(f + ssf˜). (2.22)

The quasiclassical Green’s functions satisfy the normalization condition

g2 − ssf˜ f = g2 + f 2
B − f 2

S = 1. (2.23)

In a homogeneous superconductor, we obtain the solution as

g =
ωn

Ω
, fB =

∆(k̂)

Ω
, fS = 0, Ω =

√
ω2
n +∆2(k̂). (2.24)

Thus fB is interpreted as a bulk component of pairing correlation, which contributes

to the pair potential through the gap equation

∆(r, k̂) = T
∑
ωn

∫
dk̂′

Sd

λ(k̂, k̂′)f(r, k̂′, ωn), (2.25)
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where λ represents an attractive interaction between two electrons. The second equa-

tion in Eq. (2.21) represents the symmetry relationship between fB and fS. Since k̂

is an odd-parity function and ωn is an odd in Matsubara frequency, fS belongs to the

opposite parity and opposite frequency symmetry class to fB. Therefore, fS is consid-

ered as an induced pairing component due to the spatial gradient of fB. Although the

anomalous Green’s function f in Eq. (2.25) consists of both fB and fS, only the bulk

component fB contributes to the pair potential. Since fS is an odd-function of ωn, the

summation of fS over ωn vanishes. The Meissner kernel for the quasiclassical Green’s

function is described as [83]

jµ = −2ne2

mc
Qµ,νAν , (2.26)

Qµ,ν = dπT
∑
ωn

∫
dk̂

Sd

k̂µ k̂ν ∂ωng(r, k̂, ωn)

= dπT
∑
ωn>0

∫
dk̂

Sd

k̂µ k̂ν (f
2
B − f 2

S) ∂ωn log
1 + g

1− g
. (2.27)

The last expression suggests that the odd-frequency pairing correlation decreases Qµ,ν .

By putting the results in Eq. (2.24) for a spin-singlet s-wave superconductor into Q, it

is possible to recover the results of [69]

Qµ,ν = π T
∑
ωn

∆2

(ω2
n +∆2)3/2

δµ,ν . (2.28)

The product of nQµ,µ is often referred to as pair density.

As an example of inhomogeneous superconducting states, we consider the conden-

sate near the surface of a two-dimensional p-wave superconductor. The pair potential

is described as

∆(x) = ∆cos θ tanh

(
x

ξ0

)
, k̂x = cos θ, k̂y = sin θ, ξ0 =

vF
∆cos θ

, (2.29)

where we assume that a surface is at x = 0 and a p-wave superconductor occupies

x > 0, the superconducting state is uniform in the y direction, and ξ0 is the coherence
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Chapter 2 Paramagnetic odd-frequency Cooper pair

length. The solution of Eq. (2.21) can be obtained as [84]

g(x, θ, ωn) =
ωn

Ωθ

+
∆2 cos2 θ

2ωnΩθ

cosh−2

(
x

ξ0

)
, fB(x, θ, ωn) =

∆cos θ

Ωθ

tanh

(
x

ξ0

)
,

(2.30)

fS(x, θ, ωn) =− ∆2 cos2 θ

2ωnΩθ

cosh−2

(
x

ξ0

)
, Ωθ =

√
ω2
n +∆2 cos2 θ. (2.31)

The bulk component fB(x, θ+π, ωn) = −fB(x, θ, ωn) is odd-parity, whereas the surface

component fS is even-parity because of cos2(θ + π) = cos2 θ. The gap equation in

Eq. (2.25) is described as

∆(x) =T
∑
ωn

∫ 2π

0

dθ′

2π
(2λ cos θ cos θ′) [fB(x, θ

′, ωn) + fS(x, θ
′, ωn)] , (2.32)

=∆ cos θ tanh

(
x

ξ0

)
λT
∑
ωn

1√
ω2
n +∆2

. (2.33)

On the way to the second line, we approximately neglect the θ dependence of Ωθ

and that of ξ0 in fB. The amplitude of fS increases with the decrease of ωn at its

denominator and can be larger than the amplitude of fB for ωn ≪ ∆. The resulting

response kernel,

Qµ,ν ≈ δµ,ν πT
∑
ωn

∫ 2π

0

dθ

2π

∆2 cos2 θ

(ω2
n +∆2 cos2 θ)3/2

[
1− ∆2 cos2 θ

2ω2
n

cosh−2

(
x

ξ0

)]
, (2.34)

can be negative for a low temperature T ≪ Tc near the surface 0 < x < ξ0. The

paramagnetic response at the surface of an unconventional superconductor was pointed

out for a d-wave superconductor [85, 86]. To make clear the details of the paramagnetic

effect theoretically, analysis beyond the linear response is necessary. In Refs. [82, 87],

the pair potential and a magnetic field are determined self-consistently with each other

in a small unconventional superconductor. A small p-wave superconducting disk shows

a paramagnetic response to a magnetic field at a low temperature. Even-frequency

pairs stabilize p-wave superconductivity in the bulk, and odd-frequency pairs exhibit

the paramagnetic response at the surface.
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Chapter 2 Paramagnetic odd-frequency Cooper pair

2.4 Uniform odd-frequency Cooper pairs in multi-

band superconductors

The realization of uniform odd-frequency Cooper pairs in the bulk has been considered

to be difficult thermodynamically because of their paramagnetic property. However,

contrary to such conventional knowledge, Black-Schaffer and Balatsky demonstrated

that uniform odd-frequency Cooper pairs could exist as subdominant pairing correla-

tions in multiband/orbital superconductors [47, 48]. They consider the band/orbital

degree of freedom explicitly to describe the superconductivity. The anomalous Green’s

function including the band/orbital degree of freedom are difined by

Fλσ,λ′σ′(r, τ ; r′, τ ′) = −⟨Tτψλσ(r, τ)ψλ′σ′(r′, τ ′)⟩ (2.35)

= −Fλ′σ′,λσ(r
′, τ ′; r, τ), (2.36)

where λ, λ′ represents the band/orbital index, ψλσ(r) is the annihilation operator of

an electron at r with spin σ in band/orbital λ, and ψλσ(r, τ) = eτHψλσ(r)e
−τH is

imaginary time Heisenberg representation of the annihilation operator. The relation in

the second line of Eq. (2.36) holds true due to the antisymmetry of electrons. Originally,

the coordinate degree of freedom and the band degree of freedom cannot be separated

because both originates from the spatial degree of freedom. However, we separate the

spatial degree of freedom into the degree of freedom of lattice points and that within

the lattice points (e.g., the degree of freedom of atomic orbitals). We refer to the

symmetry regarding the former as “momentum parity” and that regarding the latter

as “band parity”. In this case, the number of the symmetry class of the Cooper pairs

doubles. In Table. 2.3, we show the classification of Cooper pairs in multiband/orbital

superconductors. The consideration of the additional degrees of freedom leads to the

emergence of Cooper pairs belonging to various symmetry classes. Therefore, the

uniform pairing correlations belonging to odd-frequency symmetry classes emerge in

the bulk. In the following, we present an example of uniform superconductivity that

include subdominant odd-frequency Cooper pairs and discuss the magnetic response

of Cooper pairs in multiband/orbital superconductors [67].

The mean-field Hamiltonian describing the uniform electronic states of a time-
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Chapter 2 Paramagnetic odd-frequency Cooper pair

Table 2.3: Classification of Cooper pairs in multiband/orbital systems. The eight
symmetry classes below satisfy the antisymmetry relation in Eq. (2.36). The momen-
tum parity in the fourth column represents the parity with respect to the momentum k
of the anomalous Green’s function while the band parity in the fifth column represents
the parity regarding the exchange of the band index.

Frequency Spin Momentum parity Band parity

ESEE class Even Singlet Even Even
ESOO class Even Singlet Odd Odd
ETOE class Even Triplet Odd Even
ETEO class Even Triplet Even Odd
OSOE class Odd Singlet Odd Even
OSEO class Odd Singlet Even Odd
OTEE class Odd Triplet Even Even
OTOO class Odd Triplet Odd Odd

reversal two-band superconductor is represented as

H =
∑
k

Ψ⃗†
kH(k)Ψ⃗k, H(k) =

[
HN(k) ∆(k)

−∆∗(−k) −H∗
N(−k)

]
, (2.37)

Ψ⃗k =
[
ψ⃗ T
k , ψ⃗

†
−k

]T
, ψ⃗k = [ψk,1,↑, ψk,1,↓, ψk,2,↑, ψk,2,↓]

T , (2.38)

HN(k) =


ξ1 0 V0 + V3 V1 − iV2

0 ξ1 V1 + iV2 V0 − V3

V ∗
0 + V3 V1 − iV2 ξ2 0

V1 + iV2 V ∗
0 − V3 0 ξ2

 , (2.39)

∆(k) =


0 ∆1 0 ∆12

−∆1 0 sspin∆12 0

0 −sspin∆12 0 ∆2

−∆12 0 −∆2 0

 (2.40)

where ψλ,σ(k) is the annihilation operator of an electron in band λ (1 or 2) with

spin σ (↑ or ↓) at a momentum k and ξλ,k = k2

2mλ
− µλ. In the normal state Hamil-

tonian HN(k), the hybridization potential expressed by V0 does not depend on the

spin. The hybridization caused by the spin-orbit interaction is also took into account

by V = (V1, V2, V3) and V (k) = −V (−k) holds true. In ∆(k), the pair potentials

consisting of two electrons with opposite spin are considered. sspin = 1 represents spin-

triplet symmetry belonging to the ETEO class while sspin = −1 represents spin-singlet

symmetry belonging to ESEE class.
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Here, we assume that only the intraband pair potential ∆1, ∆2 is finite and the

spin-flip hybridization is absent (i.e., ∆12 = V1 = V2 = 0) for simplicity. Even in

other cases, the discussion can proceed straightforwardly as well. In this case, the

Hamiltonian in Eq. (2.37) can be block diagonalized and the reduced Hamiltonian is

represented by

H(k) =


ξ1 V0 + sV3 s∆1 0

V ∗
0 + sV3 ξ2 0 s∆2

s∆∗
1 0 −ξ1 −V ∗

0 − sV3

0 s∆∗
2 −V0 − sV3 −ξ2

 . (2.41)

The anomalous Green’s function is calculated as [67]

F(k, iωn) =
s

2Z

[{
(−X + v22)∆+ + (K + iv1v2)∆−

}
ρ0

+ {v1(ξ+∆+ − ξ−∆−)− iv2(ξ+∆− − ξ−∆+)} ρ1
+ ωn(v1∆− − iv2∆+)ρ2

+
{
(−X + v21)∆− + (K − iv1v2)∆+

}
ρ3
]
, (2.42)

with

ξ± =
ξ1 ± ξ2

2
, ∆± =

∆1 ±∆2

2
, V0 = v1 + iv2. (2.43)

ρj for j = 1− 3 are Pauli matrices in the two-band space. Z, X, and K are even func-

tion with respect to both the momentum and the Matsubara frequency. The detailed

expression of these functions is presented in Sec. IIIA of Ref. [67]. The third line of

Eq. (2.42) represents the existence of uniform odd-frequency Cooper pairs induced by

the band hybridization V0.

General magnetic property of the uniform odd-frequency Cooper pairs can be exam-

ined by using some symmetries of the Bogoliubov-de Gennes Hamiltonian. We consider

a general Bogoliubov-de Gennes Hamiltonian describing electronic states of a uniform

superconductor:

H(k) =

[
HN(k) ∆(k)

−∆˜ (k) −H˜ N(k)

]
, (2.44)

where X˜ (k, iωn) = X∗(−k, iωn) represents particle-hole conjugation. We assume H(k)

is a 2M×2M matrix withM being a positive integer. H(k) has particle-hole symmetry
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described as

CH(−k)C−1 = −H(k), C = τ1K, (2.45)

where C represents charge-conjugation operator and τ̂j for j = 1−3 are Pauli matrices

in the particle-hole space. When we examine a response of superconductors to external

perturbations within the linear response theory, we often need to compute a correlation

function of this form:

Π = T
∑
ωn

1

Vvol

∑
k

A2Tr [GG + FF ](k,iωn)
, (2.46)

where A represents a vertex in a corresponding correlation function (e.g., current op-

erator in a current-current correlation function). G (F) is normal (anomalous) Green’s

function and is calculated by the Gor’kov equation,

[iωn −H(k)]

[
G(k, iωn) F(k, iωn)

F(k, iωn) G(k, iωn)

]
= 1. (2.47)

The relations

G(k, iωn) = −G˜(k, iωn), (2.48)

F(k, iωn) = −F˜ (k, iωn), (2.49)

FT(−k,−iωn) = −F(k, iωn), (2.50)

hold true by the particle-hole symmetry of the BdG Hamiltonian and the Fermi-Dirac

statistics of electrons. The contribution of the anomalous Green’s function to the

correlation function is calculated to be

ΠF = T
∑
ωn

1

Vvol

∑
k

A2Tr [F(k, iωn)F(k, iωn)]

= T
∑
ωn

1

Vvol

∑
k

A2
∑
αβ

F∗
βα(k,−iωn)Fβα(k, iωn)

= T
∑
ωn

1

Vvol

∑
k

A2
∑
αβ

(
|f e

βα(k, iωn)|2 − |f o
βα(k, iωn)|2

)
, (2.51)

where we used the relations in Eqs. (2.49) and (2.50) to reach the second line. Fβα
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represents (β, α)-component of the M ×M matrix F and

f
e/o
βα (k, iωn) =

Fβα(k, iωn)±Fβα(k,−iωn)

2
, (2.52)

represents even-/odd-frequency components of Fβα. Eq. (2.51) clearly shows the anoma-

lous properties of odd-frequency Cooper pairs by the negative sign of the second term.

When we consider a linear response to a static transverse vector potential, the second

term indicates that odd-frequency pairing correlations always have negative contribu-

tions to the Meissner kernel. In other words, odd-frequency Cooper pairs exhibit a

paramagnetic response to external magnetic fields and then destabilize superconduc-

tivity by disturbing phase coherence. Actually, above arguments are not valid when

the corresponding vertex can not be factorized like Eq. (2.46). It has been shown that

diamagnetic odd-frequency Cooper pairs can exist in some special systems [88, 89].

But the odd-frequency Cooper pairs in most multiband/orbital superconductors show

paramagnetic response [67] and we do not consider such exceptional cases here.

2.5 Summary and scope of this thesis

We have presented the symmetry classifications of Cooper pairs and have introduced

odd-frequency Cooper pairs. We have also reviewed the emergence of the odd-frequency

Cooper pairs and their magnetic properties in both inhomogeneous and homogeneous

superconductors. There are various studies on the inhomogeneous superconductors and

the concept of odd-frequency Cooper pairs comprehensively explains the physics in such

superconductors. However, our kowledge about the effects of uniform odd-frequency

Cooper pairs on the physical phenomena has been still lacking. The purpose of this

study is to fill the gaps in knowledge. In the following chaper, we discuss the thermody-

namic stability and robustness against potential disorder of uniform superconductivity

that include subdominant odd-frequency Cooper pairs.
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Chapter 3

Discontinuous transition

3.1 Abstract

We discuss the instability of uniform superconducting states that contain the pairing

correlations belonging to the odd-frequency symmetry class. The instability originates

from the paramagnetic response of odd-frequency Cooper pairs and is considerable

at finite temperatures. As a result, the pair potential varies discontinuously at the

transition temperature when the amplitude of the odd-frequency pairing correlation

functions is sufficiently large. The discontinuous transition to the superconducting

phase is a general feature among superconductors having a large amplitude of odd-

frequency pairing correlation functions.

3.2 Introduction

There are two types of perturbations that act on uniform superconducting states. One

does not change the thermal properties, while the other does. Spin-orbit interactions

and Zeeman fields correspond to the examples of such perturbations in a spin-singlet

superconductor. Spin-orbit interactions do not change any thermal properties of a

superconductor such as the transition temperature Tc or the dependence of order pa-

rameter ∆ on temperatures T [90]. On the other hand, uniform Zeeman fields decrease

Tc. Moreover, the transition to the superconducting phase by decreasing the temper-

ature changes to a first-order transition in sufficiently strong Zeeman fields [91, 92].

Namely, the superconducting state is thermally unstable under Zeeman fields. A re-

cent study [70] has reported that j = 3/2 superconductors also exhibit very similar

instabilities. Although such discontinuous transition has been observed in spin-singlet

superconductors under Zeeman fields [93–95], there has been no comprehensive expla-
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nation for why the superconducting transition changes to a first-order transition and

what distinguishes the two types of perturbations. We address these issues in this

study.

To the best of our knowledge, odd-frequency Cooper pairs [10–15] tend to cause

thermal instability in superconducting states. This consideration is supported by the

following findings for odd-frequency pairs localized various places in a superconductor

such as at a vortex core [16], in the vicinity of a magnetic cluster [17, 18], and at

the surface of a topologically nontrivial superconductor [19, 20]. An analysis of the

free-energy density shows that the superconducting states are unstable locally around

these defects [79, 82]. The paramagnetic response of odd-frequency Cooper pairs to

an external magnetic field is responsible for the instability [21]. In uniform supercon-

ductors, odd-frequency Cooper pairs exist as subdominant pairing correlations when

the electronic structures have extra degrees of freedom such as spins, orbitals and sub-

lattices [48]. It has been shown that the Tc of such superconductors decreases as the

amplitude of odd-frequency pairs increases [67].

The purpose of this chapter is to show that odd-frequency Cooper pairs in uniform

superconducting states are responsible for the discontinuous transition to the super-

conducting phase. For this purpose, we analyze the way in which the odd-frequency

pairing correlation functions change the coefficient of the ∆4 term in the Ginzburg-

Landau (GL) free-energy functional and the superfluid density. We find that the odd-

frequency pairing correlations decrease the coefficient and the superfluid density in the

same manner. The instability originates from the suppression of the superfluid density

caused by odd-frequency pairs. We conclude that a potential for the discontinuous

transition to the superconducting phase is a general feature of superconductors con-

taining odd-frequency Cooper pairs since the mechanism is explained well by basic

properties of uniform odd-frequency Cooper pairs. The two types of perturbations are

distinguished by whether or not they induce odd-frequency Cooper pairs.

This chapter is organaized as follows. In Sec. 3.3, we explain a model of j = 3/2

superconductors which we mainly analyze in this chapter and show the expression of

the coefficients in the GL free-energy functional in terms of the Green’s function. The

discontinuous transition to the superconducting phase is demonstrated numerically in

Sec. 3.4. The mechanism of the discontinuous transition is discussed by analyzing the

temperature dependence of the superfluid density in Sec. 3.5. In Sec. 3.6, we discuss

the universality of the phenomenon by showing the discontinuous transition in a spin-

singlet superconductor in Zeeman fields and that in a two-band superconductor under

the band-hybridization. The conclusions are given in Sec. 3.7.
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3.3 Ginzburg-Landau Free-energy

3.3.1 Multi-band superconductors

In this chapter, we mainly analyze the Hamiltonian of pseudospin-quintet states in a

j = 3/2 superconductor for the following several reasons. The normal state Hamilto-

nian describes the most general multiband electronic states, which have four internal

degrees of freedom and preserve both time-reversal symmetry and inversion symme-

try [96]. The pair potential can be represented by a simple formula [63, 64]. Useful

mathematical tools are available to calculate the Green’s function analytically. The

high-pseudospin electronic states stem from the strong coupling between orbitals with

angular momentum ℓ = 1 and spin with s = 1/2 [63, 64, 97–99]. The mean-field

Hamiltonian can be expressed as

H =
1

2

∑
k

Ψ⃗†
kH(k)Ψ⃗k +

N∆2

g̃
, (3.1)

Ψ⃗k =
[
ψ⃗ T
k , ψ⃗

†
−k

]T
, (3.2)

ψ⃗k =
[
ck,3/2, ck,1/2, ck,−1/2, ck,−3/2

]T
, (3.3)

where g̃ > 0 represents the strength of the attractive interaction, N is the number of

unit cells of the underlying lattice, ∆ denotes the pair potential, and ck,jz is the anni-

hilation operator of an electron at k with pseudospin jz. The Bogoliubov-de Gennes

Hamiltonian in Eq. (3.1) is,

H(k) =

[
HN(k) ∆(k)

−∆∗(−k) −H∗
N(−k)

]
. (3.4)

The normal state Hamiltonian is represented by the tight-binding model on a simple

cubic lattice [97] as

HN(k) = −2t1
∑
ν

cos kν − 2t2
∑
ν

cos kν J
2
ν

+ 4t3
∑
ν ̸=ν′

sin kν sin kν′ JνJν′ + 6t1 +
15

2
t2 − µ,

= ξk + ϵ⃗k · γ⃗, (3.5)

with µ being the chemical potential. The corresponding point group is Oh. The nearest

neighbor hopping independent of (depending on) pseudospin is t1 (t2). The second
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neighbor hopping is denoted by t3. ξk represents kinetic energy of an electron and the

five-component vector ϵ⃗k,j for j = 1− 5 determines the dependence of the normal state

dispersions on pseudospins. Each is defined as

ξk =

(
−2t1 −

5

2
t2

)∑
ν

cos kν + 6t1 +
15

2
t2 − µ, (3.6)

ϵk,1 = 4
√
3t3 sin kx sin ky, (3.7)

ϵk,2 = 4
√
3t3 sin ky sin kz, (3.8)

ϵk,3 = 4
√
3t3 sin kz sin kx, (3.9)

ϵk,4 =
√
3t2(− cos kx + cos ky), (3.10)

ϵk,5 = t2(−2 cos kz + cos kx + cos ky). (3.11)

The spinors for the angular momenum of j = 3/2 are described by,

Jx =
1

2


0

√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

 , (3.12)

Jy =
1

2


0 −i

√
3 0 0

i
√
3 0 −2i 0

0 2i 0 −i
√
3

0 0 i
√
3 0

 , (3.13)

Jz =
1

2


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

 . (3.14)

The five Dirac’s γ-matrices are defined in 4 × 4 pseudospin space as

γ1 =
1√
3
(JxJy + JyJx), γ2 =

1√
3
(JyJz + JzJy), (3.15)

γ3 =
1√
3
(JzJx + JxJz), γ4 =

1√
3
(J2

x − J2
y ), (3.16)

γ5 =
1

3
(2J2

z − J2
x − J2

y ), (3.17)
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and 14×4 is the identity matrix. They satisfy the following relations

γi γj + γj γi = 2× 14×4δi,j, (3.18)

γ1 γ2 γ3 γ4 γ5 = −14×4, (3.19)

{γi}∗ = {γi}T = UT γ
i U−1

T , UT = γ1 γ2, (3.20)

where UT is the unitary part of the time-reversal operation T = UT K with K meaning

complex conjugation. Eq. (3.5) corresponds to the Luttinger-Kohn Hamiltonian [97]

with cubic anisotropy when we expand the trigonometric functions up to the second

order of the momentum.

The pair potential is described as

∆(k) = ∆ η⃗k · γ⃗ UT , (3.21)

η⃗k = (ηk,1, ηk,2, ηk,3, ηk,4, ηk,5), (3.22)

where the five-component vector η⃗k with |η⃗k| =
√
η⃗k · η⃗ ∗

k = 1 represents an even-parity

pseudospin-quintet pairing order.

3.3.2 Ginzburg-Landau expansion

To analyze superconducting states, we solve the Gor’kov equation

[iωn −H(k)]

[
G(k, iωn) F(k, iωn)

−F˜ (k, iωn) −G˜(k, iωn)

]
= 1, (3.23)

where ωn = (2n+1)πT is the fermionic Matsubara frequency with n being an integer,

and X˜ (k, iωn) ≡ X∗(−k, iωn) represents the particle-hole conjugation of X(k, iωn).

The Fermi-Dirac statistics of electrons gives the symmetry relation in the anomalous

Green’s function FT(−k,−iωn) = −F(k, iωn). The GL free-energy functional per unit
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cell is represented in terms of the Green’s function [100, 101]

ΩSN(∆) = a∆2 + b∆4 + c∆6 + h. o. t., (3.24)

a∆2 =
∆2

g̃
+ T

∑
ωn

1

N

∑
k

1

2
Tr
[
F1(k, iωn)∆

†(k)
]
, (3.25)

b∆4 = T
∑
ωn

1

N

∑
k

1

4
Tr
[
F1(k, iωn)∆

†(k)F1(k, iωn)∆
†(k)

]
, (3.26)

c∆6 = T
∑
ωn

1

N

∑
k

1

6
Tr
[
F1(k, iωn)∆

†(k)F1(k, iωn)∆
†(k)F1(k, iωn)∆

†(k)
]
,

(3.27)

where F1(k, iωn) ≡ −GN(k, iωn)∆(k)G˜N(k, iωn) is the anomalous Green’s function

within the first order of ∆ and GN is the Green’s function in the normal state. The

calculated results are given by

F1(k, iωn) =
∆

Z0

(
f∆
1 (k, iωn) + f s

1(k, iωn) + fq
1 (k, iωn) + f odd

1 (k, iωn)
)
, (3.28)

f∆
1 (k, iωn) = −(ω2

n + ξ2k)η⃗k · γ⃗ UT , (3.29)

f s
1(k, iωn) = 2ξk η⃗k · ϵ⃗k UT , (3.30)

fq
1 (k, iωn) = −ϵ⃗k · γ⃗ η⃗k · γ⃗ ϵ⃗k · γ⃗ UT , (3.31)

f odd
1 (k, iωn) = −iωnPO UT , (3.32)

PO = [η⃗k · γ⃗ , ϵ⃗k · γ⃗] , (3.33)

Z0 = (ω2
n + ξ2k − ϵ⃗ 2k)

2 + 4ω2
nϵ⃗

2
k

= ξ4k + 2ξ2k(ω
2
n − ϵ⃗ 2k) + (ω2

n + ϵ⃗ 2k)
2, (3.34)

with [A , B] = AB−BA. f∆
1 in Eq. (3.28) belongs to pseudospin-quintet symmetry and

is linked to the pair potential through the gap equation. The spin-orbit interactions

ϵ⃗k induce a pseudospin-singlet correlation function f s
1 and another pseudospin-quintet

correlation function fq
1 . f odd

1 represents an induced pairing correlation belonging to

the odd-frequency symmetry class and holds finite value for PO ̸= 0 [102, 103]. The

structure of fq
1 is modified by f odd

1 since both correlation functions are connected

each other by the Gor’kov equation in Eq. (3.23). Therefore the total even-frequency

components which are linked to the pair potential

Tr
[
F1(k, iωn)∆

†(k)
]
=

∆

Z0

Tr
[(
f∆
1 + fq

1

)
∆†(k)

]
, (3.35)

are indirectly affected by the odd-frequency correlation function f odd
1 .
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In the absence of the odd-frequency pairing correlations (i.e., PO = 0), fq
1 and the

coefficients in the free-energy functional are calculated to be

fq
1 (k, iωn) = −ϵ⃗ 2k η⃗k · γ⃗ UT , (3.36)

a =
1

g̃
+ T

∑
ωn

1

N

∑
k

−2

Z0

(ω2
n + ξ2k + ϵ⃗ 2k), (3.37)

b = T
∑
ωn

1

N

∑
k

1

Z2
0

{
(ω2

n + ξ2k + ϵ⃗ 2k)
2 + 4ξ2kϵ⃗

2
k

}{
2− |η⃗k · η⃗k|2

}
. (3.38)

ϵ⃗ 2k in the last term of the numerator of Eq. (3.37) originates from fq
1 and amplifies the

integrand. The coefficient a changes the sign at T = Tc. The gap equation correspond-

ing to a = 0 has the same expression as that in the BCS theory [103]. In addition,

b is always positive. This means that the transition to the superconducting state is

a second-order and that the superconducting state is stable for T < Tc. Therefore,

the equation PO = 0 characterizes the perturbations that preserve the thermal proper-

ties of the superconducting states. That is, the thermal properties of superconducting

states in the absence of odd-frequency Cooper pairs are identical to those in the BCS

state. Similarly, thermal properties of pseudospin-singlet pairing states coincide with

the BCS state since there are no odd-frequency Cooper pairs. Pseudospin-singlet pair

potential in the j = 3/2 model is described by

∆(k) = ∆UT , (3.39)

in the BdG Hamiltonian in Eq. (3.4) [63, 64]. Here, ∆ is chosen to be real. The

anomalous Green’s function within the first order of ∆ results in,

F singlet
1 =

∆

Z0

[
−(ω2

n + ξ2k + ϵ⃗ 2k) + 2ξkϵ⃗k · γ⃗
]
UT . (3.40)

In this pairing order, the spin-orbit interaction does not induce odd-frequency pair-

ing correlations but generate an even-frequency pseudospin-quintet pairing correlation

described by the second term in Eq. (3.40). The coefficients in the GL free-energy

functional are expressed as

asinglet =
1

g̃
+ T

∑
ωn

1

N

∑
k

−2

Z0

(ω2
n + ξ2k + ϵ⃗ 2k), (3.41)

bsinglet = T
∑
ωn

1

N

∑
k

1

Z2
0

{
(ω2

n + ξ2k + ϵ⃗ 2k)
2 + 4ξ2kϵ⃗

2
k

}
, (3.42)

31



Chapter 3 Discontinuous transition

where asinglet and bsinglet represent second and fourth-order coefficients of the GL func-

tional, respectively. Since there are no odd-frequency Cooper pairs, the expression of

asinglet is equivalent to a in Eq. (3.37) and bsinglet > 0 holds true. Therefore, the thermal

property of the pseudospin-singlet state is identical to that of the BCS state as well as

the pseudospin-quintet states without odd-frequency Cooper pairs.

In the presence of odd-frequency pairing correlation (i.e., PO ̸= 0), it is not easy

to obtain analytical expression of the GL coefficients without further simplifications. To

proceed discussions, we restrict ourselves to consider Eg pairing order η⃗k = (0, 0, 0, ηk,4, ηk,5)

because there are only two components in the pair potential. This simplification en-

ables us to get the following analytical expressions:

fq
1 (k, iωn) = ϵ⃗ 2k η⃗k · γ⃗ UT − 2ϵ⃗k · η⃗k ϵ⃗k · γ⃗ UT , (3.43)

a =
1

g̃
+ T

∑
ωn

1

N

∑
k

−2

Z0

(ω2
n + ξ2k + ϵ⃗ 2k − 2A0), A0 = ϵ⃗ 2k − |⃗ϵk · η⃗k|2, (3.44)

b = T
∑
ωn

1

N

∑
k

1

Z2
0

[
(ω2

n + ξ2k − ϵ⃗ 2k)
2 − 4ω2

nϵ⃗
2
k

−
{
(ω2

n + ξ2k − ϵ⃗ 2k)
2 − 4ω2

n

(
ϵ 2k,1 + ϵ 2k,2 + ϵ 2k,3 − ϵ 2k,4 − ϵ 2k,5

)}
η2k,4

(
ηk,5 − η∗k,5

)2
+ 8|⃗ϵk · η⃗k|2

(
ω2
n + ξ2k − ϵ⃗ 2k + |⃗ϵk · η⃗k|2

) ]
, (3.45)

where we chose the common phase factor of the pair potential so that ∆ and ηk,4

are real but ηk,5 is complex in general. We found that the expression of fq
1 and a in

Eqs. (3.43) and (3.44) is also valid for the general case: η⃗k = (ηk,1, ηk,2, ηk,3, ηk,4, ηk,5).

Only f∆
1 and fq

1 in F1(k, iωn) contribute to a because a = 0 corresponds to the gap

equation at T = Tc. Comparing with Eq. (3.37), an additional term −2A0 appears

in the presence of odd-frequency pairs in Eq. (3.44). The third and fourth terms in

Eq. (3.44) (⃗ϵ 2k and −2A0) originates from fq
1 , which is affected by f odd

1 through the

Gor’kov equation. Comparing with Eq. (3.36), it is important that the sign of the

first term in Eq. (3.43) is reversed due to f odd
1 although there is a correction from

the second term. Since A0 ≧ 0, f odd
1 suppresses the amplitude of the even-frequency

correlation function which is linked to the pair potential and indirectly decrease Tc

due to their paramagnetic property [67]. Similar arguments have also been presented

in other papers [14, 58, 59]. Even under the simplifications, it is not easy to extract

the physical meaning from the coefficient b due to its quite complicated structure as

shown in Eq. (3.45). To obtain the physical insights from the analytical expression

of b, we also assume (ηk,4, ηk,5) = (1, 0), (0, 1), (1, 1)/
√
2, and (1, i)/

√
2. The first,
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second, and fourth ones are predicted to be stable states within the phenomenological

GL theory [64, 98, 104]. PO for each state is calculated as

P
(1,0)
O = 2γ4

∑
i ̸=4

ϵk,iγ
i, P

(0,1)
O = 2γ5

∑
i ̸=5

ϵk,iγ
i, (3.46)

P
(1,1)/

√
2

O =
√
2

(
(γ4 + γ5)

3∑
i=1

ϵk,iγ
i + (ϵk,5 − ϵk,4)γ

4γ5

)
, (3.47)

P
(1,i)/

√
2

O =
√
2

(
(γ4 + iγ5)

3∑
i=1

ϵk,iγ
i + (ϵk,5 − iϵk,4)γ

4γ5

)
. (3.48)

The analytical expressions of b in each state are

bTRS = T
∑
ωn

1

N

∑
k

1

Z2
0

[
(ω2

n + ξ2k − ϵ⃗ 2k)
2 + 4|⃗ϵk · η⃗k|2

(
ω2
n + 2ξ2k − 2A0

)
− 4ω2

nA0

]
,

(3.49)

bTRSB = T
∑
ωn

1

N

∑
k

1

Z2
0

[
2(ω2

n + ξ2k − A0 + |⃗ϵk · η⃗k|2)2 − 8ω2
n(A0 − |⃗ϵk · η⃗k|2)

]
, (3.50)

where bTRS is valid for (ηk,4, ηk,5) = (1, 0), (0, 1), and (1, 1)/
√
2 and bTRSB is valid

for (1, i)/
√
2. The last terms which are proportional to ω2

n in Eqs. (3.49) and (3.50)

originates from f odd
1 . We found that these terms are always less than or equal to zero.

Thus the existence of these terms implies the sign change of b when the amplitude of

f odd
1 is large enough. The equation PO ̸= 0 characterizes the perturbations that change

the thermal properties of the superconducting states. In terms of thermodynamic

properties of superconductors, perturbations are distinguished by whether or not they

induce odd-frequency Cooper pairs.

The sixth and higher order terms in Eq. (3.24) are also affected by the odd-frequency

correlation functions. However, we are not able to divide the contributions from even

and odd-frequency correlation functions due to the presence of the cross terms com-

posed of these functions. For example, we consider (ηk,4, ηk,5) = (1, 0) and t2 = 0 in

Eq. (3.4) as we assumed in Sec. 3.4. In this case, the sixth-order coefficient of the GL

functional results in,

c = T
∑
ωn

1

N

∑
k

−2

3Z3
0

{
(ω2

n + ξ2k − ϵ⃗ 2k)
3 − 12ω2

nϵ⃗
2
k(ω

2
n + ξ2k − ϵ⃗ 2k)

}
. (3.51)

The first term in Eq. (3.51) originates from the even-frequency correlation function.

On the other hand, the second term is composed of both even and odd-frequency
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correlation function. Although eighth-order coefficients and above are also modified

by odd-frequency correlation functions, it is difficult to extract the physical meaning

from these coefficients due to the cross terms. Thus it is difficult to extract physical

meaning from these coefficients.

3.4 Discontinuous transition

In the previous section, we obtained that odd-frequency pairing correlation functions

have negative contribution to the fourth order coefficient of GL free-energy. It implies

that the transition to the superconducting phase becomes discontinuous. To progress

the argument, we consider a specific pair potential represented by (ηk,4, ηk,5) = (1, 0).

In addition, we choose t2 = 0 in the normal state Hamiltonian HN(k) to obtain simple

analytical solutions of the Gor’kov equation with infinite order of ∆ in Eq. (3.23). Even

under these simplifications, the following discussion is valid also for (ηk,4, ηk,5) = (0, 1),

(1, 1)/
√
2, and (1, i)/

√
2. The existence of odd-frequency Cooper pairs is a common

feature among these states. The anomalous Green’s function results in

F(k, iωn) = −∆

Z
[W − 2iωnϵ⃗k · γ⃗] η⃗k · γ⃗UT , (3.52)

Z = W 2 + 4ω2
nϵ⃗

2
k , W = ω2

n + ξ2k − ϵ⃗ 2k +∆2. (3.53)

The second term in Eq. (3.52) is the pairing correlation belonging to the odd-frequency

symmetry class, which is induced by the spin-orbit interaction ϵ⃗k. The coefficient of

the fourth-order term is calculated to be

b(T ) = T
∑
ωn

1

N

∑
k

1

Z2
0

[
W 2

0 − 4ω2
nϵ⃗

2
k

]
, (3.54)

with Z0 = Z|∆=0 andW0 = W |∆=0. The last term in Eq. (3.54) is derived from the odd-

frequency pairing correlation functions and contributes negatively to the coefficient b.

The results indicate the instability of the superconducting phase due to odd-frequency

Cooper pairs. The amplitude of the pair potential ∆ is determined self-consistently

from the thermodynamic potential in the superconducting state

ΩS(∆) =
∆2

g̃
− 2T

N

∑
k,λ=S±

log

[
2 cosh

(
Eλ(k)

2T

)]
, (3.55)

where ES±(k) =
√
ξ2k +∆2 ± |⃗ϵk| and irrelevant constants are neglected. The pair

potential is determined by minimizing ΩS(∆) with respect to ∆. Thus, the solution in
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the equilibrium state (∆eq) always satisfies

ΩSN(∆eq) = min
∆

{ΩSN(∆) |∆ ∈ R} ≦ 0, (3.56)

with ΩSN(∆) ≡ ΩS(∆) − ΩS(0). The solution of ∆eq is plotted as a function of tem-

perature in Fig. 3.1(a) for several choices of spin-orbit interaction t3. Hereafter, the

transition temperature at t3 = 0 is denoted by T0, and the pair potential at T = 0 and

t3 = 0 is denoted by ∆0. In the numerical simulation, we chose µ = t1 and g̃ = 2.463t1

so that T0 = 0.05t1. We obtained ∆0 = 0.0882t1 ≈ 1.76T0, which corresponds to

BCS universal relation [68]. The transition temperature decreases monotonically with

increasing t3. Although ∆eq is insensitive to t3 at very low temperature T ≪ T0, it

abruptly vanishes for t3 ≳ 0.023t1. Uniform superconducting states are no longer stable

under strong spin-orbit couplings. Furthermore, ∆eq shows the discontinuous behavior

at Tc for t3 ≳ 0.0205t1. In Fig. 3.1(b), the coefficient b(Tc) is plotted as a function of t3.

We obtained b(T0) = 1.237t−3
1 at t3 = 0. As predicted in Eq. (3.54), the odd-frequency

pairing correlations decrease the coefficient b(Tc). As a result, the transition becomes

discontinuous for b(Tc) < 0 as shown in Fig. 3.1(a) and (b). Thus, odd-frequency

Cooper pairs are responsible for the discontinuous transition to the superconducting

states.

3.5 Superfluid density

To understand why odd-frequency Cooper pairs cause the discontinuous transition,

we discuss the relationship between the coefficient b and the response function to an

electromagnetic field,

jx(q, ω) = −Kxx(q, ω)Ax(q, ω), (3.57)

where jν is the electric current and Aν(q, ω) is the Fourier component of a vector

potential. The derivation of the response kernel Kνν is presented in Appendix A. The

response kernel to a static transverse gauge potential is called the Meissner kernel or

superfluid density

Q =
Kxx(q → 0, ω = 0)

2e2t1
, (3.58)

where e is the charge of an electron and Q is dimensionless. In Fig. 3.1(c), the superfluid

density Q is plotted as a function of temperature for several choices of t3, where Q0 =
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Figure 3.1: The self-consistent solution of the pair potential ∆eq(T ) in a j = 3/2
superconductor is plotted as a function of temperature for several strengths of spin-
orbit interaction t3 in (a), where T0 is the transition temperature at t3 = 0 and ∆0 is
the amplitude of the pair potential at T = 0 and t3 = 0. The coefficient b at T = Tc
is plotted as a function of t3 in (b), where Tc is obtained from the results in (a). The
temperature dependence of the superfluid density Q and Q̃ is shown in (c) and (d),
respectively. Q0 (Q̃0) in (c) ((d)) represents Q (Q̃) at T = 0 and t3 = 0.
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0.0664 is the superfluid density at T = 0 and t3 = 0 in our numerical simulation. At

T ≈ 0, the superfluid density is almost independent of t3 for t3 ≲ 0.0225t1. However,

the superfluid density decreases drastically at finite temperatures. To understand such

characteristic features, we analyze the contribution of the anomalous Green’s function

in Eq. (3.52) to the superfluid density,

QF = T
∑
ωn

1

N

∑
k

2t1 sin
2 kx

4∆2

Z2

[
W 2 − 4ω2

n ϵ⃗
2
k

]
. (3.59)

The second term is derived from the odd-frequency pairing correlations and reduces the

superfluid density. The dependence of Q on temperature in Fig. 3.1(c) is dominated

mainly by that of ∆2
eq(T ) because Q is proportional to ∆2

eq(T ) as shown in Eq. (3.59).

Thus, it is not easy to extract the effects of odd-frequency pairs on the superfluid

density. To highlight a role of odd-frequency pairs in the discontinuous transition, we

calculate

Q̃(T, t3) =
Q(T, t3,∆BCS(T ))

∆2
BCS(T )

, (3.60)

for T < T0. Here we first replace ∆eq(T, t3) by

∆BCS(T ) = ∆eq(T, t3 = 0), (3.61)

and divide the results by ∆2
BCS(T ) to relax the influence of ∆BCS(T ). Q(T, t3,∆eq(T, t3))

corresponds to Q(T ) shown in Fig. 3.1(c). In Fig. 3.1(d), Q̃ is plotted for several choices

of t3. The vertical axis is normalized to Q̃0 = Q̃(T = 0, t3 = 0). The black line for

t3 = 0 almost corresponds to the results of BCS theory

Q̃(T, t3 = 0)

Q̃0

≈ ∆2
0 πT

∑
ωn

1

(ω2
n +∆2

BCS(T ))
3/2
, (3.62)

and decreases with increasing temperature almost linearly for T ≳ 0.3T0. Q̃ at T = 0

remains unchanged even in the presence of the spin-orbit interaction, whereas it at

finite temperatures decreases with increasing t3. The suppression from the black line

is remarkable for 0.2 ≲ T/T0 ≲ 0.5. As a result, the curves for t3/t1 = 0.018− 0.0225

are convex downward. The drastic suppression of the superfluid density in such finite

temperatures is responsible for the suppression of Tc and the discontinuous transition

finding at t3/t1 ≳ 0.0205. When we compare Eq. (3.54) with Eq. (3.59), the odd-

frequency pairs decrease the coefficient b and the superfluid density QF in the same
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manner. As shown in Eq. (3.52), the odd-frequency pairing correlation function is

proportional to the Matsubara frequency, which is a common property of odd-frequency

pairs in uniform superconductors [14, 67]. As a result, the effect of odd-frequency

pairs on the instability is considerable at finite temperatures [105]. The temperature

dependence of Q̃ and the discontinuous change of ∆eq and Q are the consequence of

the presence of such odd-frequency Cooper pairs. We conclude that the discontinuous

transition to the superconducting phase occurs because odd-frequency Cooper pairs

reduce the superfluid density at finite temperatures.

3.6 Universality of phenomenon

The discontinuous transition due to odd-frequency Cooper pairs and the close rela-

tionship between b and Q are confirmed in other superconducting states. Indeed, the

expression in Eqs. (3.54) and (3.59) can be applied also to (ηk,4, ηk,5) = (0, 1) and

(1, 1)/
√
2. The discontinuous transition in j = 3/2 superconductors has also been

reported in T2g pairing states at T ≧ 0 [70]. The authors of Ref. [70] found that the

interband pairing is responsible for the discontinuous transition. Here, band means the

diagonalized normal state band. Although there are some relations between interband

pairing and odd-frequency Cooper pair, these are not equivalent concept. It can be the

case that interband pairing corresponds to even-frequency Cooper pair and stabilizes

the superconducting order. We present the examples in Appendix B. Odd-frequency

Cooper pairs provide us clear insights to discuss the thermodynamic properties by their

paramagnetic property. The instability at T = 0 for both T2g and Eg pairing states

has been also implied in Ref. [106]. The authors of Ref. [106] compared the free-energy

among multiple superconducting states and concluded that the transition to another

superconducting phase becomes first-order transition with changing the amplitude of

the attractive interaction between the two electrons. If we assume that there are only

one superconducting phase, the first-order transition from the normal state to the uni-

form superconducting state would relate to the discontinuous transition discussed in

this study. Such abrupt change of the equilibrium state is similar to our results at

T = 0. In addition to the studies in j = 3/2 superconductors, discontinuous transition

was found in a two-band superconductor with interband pairing order when the band

hybridization V is large enough [107]. In this model, V corresponds to the interaction

which induces odd-frequency Cooper pairs and their paramagnetic property explains

the mechanism of the discontinuous transition well. The detailed discussion about the

interband superconductor considered in Ref. [107] is presented in Appendix B. The

existence of odd-frequency Cooper pairs is a common feature among these supercon-
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Figure 3.2: The critical value of the Zeeman fields Bc in a spin-singlet s-wave supercon-
ductor is plotted as a function of temperature, where T0 is the transition temperature
at B = 0. We reproduced the results obtained in Refs. [91, 92]. The black line is
obtained by using the solutions giving the global minimum of the thermodynamic po-
tential while the red (broken blue) line is obtained by using the solutions giving the
local minimum (maximum) of the thermodynamic potential.

ducting states and is responsible for the discontinuous transition.

Finally, we emphasize the relevance of the conclusions in this chapter to an im-

portant open issue. The transition to the uniform spin-singlet s-wave superconducting

state is known to be discontinuous under a Zeeman field B [91, 92, 108, 109]. Fig. 3.2

shows the temperature dependence of the critical field Bc. We showed that the critical

field in the equilibrium state by the black line in Fig. 3.2. The critical field in the

metastable state is represented by the red line. The broken blue line is obtained by

using the solution giving the local maximum of the thermodynamic potential. Below

the temperature at which the lines intersect (T/T0 ≈ 0.56), the transition becomes

discontinuous [91, 92]. The calculated results for the coefficient b and the superfluid
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density Q are given by

b =
N0

4
Y (A0, C0), (3.63)

Q = 2n∆2Y (A,C), (3.64)

Y (A,C) =
√
2πT

∑
ωn

A3 +
√
C(A2 − 2ω2

nµ
2
BB

2)

[C(A+
√
C)]3/2

, (3.65)

A = ∆2 + ω2
n − µ2

BB
2, C = A2 + 4ω2

n µ
2
BB

2, (3.66)

where A0 = A|∆=0, C0 = C|∆=0, µB is Bohr’s magneton, N0 is the density of states

at the Fermi level per spin in the normal state, and n is the electron density per spin.

The derivations are given in Appendix. C. We also calculate

Q̃(T,B) =
Q(T,B,∆BCS(T ))

∆2
BCS(T )

= 2nY (A,C)|∆=∆BCS(T ), (3.67)

where ∆BCS(T ) = ∆eq(T,B = 0) represents the pair potential of a BCS superconductor.

The coefficient and the superfluid density share exactly the same expression for ∆ ≪ T .

The last term in Eq. (3.65) is derived from the odd-frequency pairing correlation, which

is generated by a Zeeman field and is proportional to the Matsubara frequency. The

self-consistent pair potential ∆eq, the coefficient b at the transition temperature, the

superfluid densityQ, and Q̃ in the spin-singlet superconductor are plotted in Fig. 3.3(a),

(b), (c), and (d), respectively. We denote the transition temperature at B = 0 by T0

and the pair potential at T = 0 and B = 0 by ∆0 ≈ 1.76T0 [68]. The coefficient b at

T = T0 and B = 0 corresponds to the BCS results: bBCS(T0) = N0
7ζ(3)

16(πT0)2
. Q0 = 2n is

the superfluid density at T = 0 and B = 0. Q̃0 = 2n/∆2
0 represents Q̃ at T = 0 and

B = 0. The characteristic properties shown in Fig. 3.3 coincide with those in Fig. 3.1.

The results suggest the universality of the phenomenon.

The discontinuous transition is caused by odd-frequency Cooper pair (f odd) and the

reason is explained well by two basic properties of odd-frequency Cooper pair: para-

magnetism and f odd ∝ ωn. Therefore, we conclude a potential for the discontinuous

transition is a common property among superconductors that contain subdominant

odd-frequency Cooper pairs.

Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states can appear at high fields [110,

111]. For µBB/2πT0 ≳ 0.18, such oscillating states become a stable solution [112].

Theoretical studies [113, 114] showed that the transition from the normal state to the

FFLO state can be both first and second-order and it depends on the parameters.
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Figure 3.3: The self-consistent solution of the pair potential ∆eq(T ) in a spin-singlet
superconductor under a Zeeman field is plotted as a function of temperature for several
strengths of Zeeman interaction B in (a), where T0 is the transition temperature at
B = 0 and ∆0 is the amplitude of the pair potential at T = 0 and B = 0. The
coefficient b at T = Tc is plotted as a function of B in (b), where Tc is obtained from
the results in (a). The temperature dependence of the superfluid density Q and Q̃ is
shown in (c) and (d), respectively. Q0 (Q̃0) in (c) ((d)) represents Q (Q̃) at T = 0 and
B = 0.
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Since odd-frequency Cooper pairs also exist in such regime [80, 115], there might be

nontrivial relationships between the non-uniform odd-frequency Cooper pairs and the

order of the phase transition. However, the problem is beyond the scope of this study

and is left for our future study.

3.7 Conclusion

We have theoretically studied the thermodynamic instability of uniform supercon-

ducting states including the subdominant pairing correlations belonging to the odd-

frequency symmetry class. In j = 3/2 superconductors, we analyzed the contributions

of the odd-frequency pairing correlations to the coefficients of ∆4 term in Ginzburg-

Landau (GL) free-energy, the pair potential, and the superfluid density. The odd-

frequency pairing correlations decrease the coefficient and the superfluid density in

the same manner. Since the effects are considerable at finite temperature, the transi-

tion to a superconducting phase becomes discontinuous. We conclude that a potential

for the discontinuous transition to the superconducting state is a common feature of

superconductors that accommodate odd-frequency Cooper pairs.

42



Chapter 4

Superconductivity in Cu-doped

Bi2Se3 with potential disorder

4.1 Abstract

We study the effects of random nonmagnetic impurities on superconducting transition

temperature Tc in a Cu-doped Bi2Se3, for which four types of pair potentials have

been proposed. Although all the candidates belong to s-wave symmetry, two orbital

degree of freedom in electronic structures enriches the symmetry variety of a Cooper

pair such as even-orbital-parity and odd-orbital-parity. We consider realistic electronic

structures of Cu-doped Bi2Se3 by using tight-binding Hamiltonian on a hexagonal

lattice and consider effects of impurity scatterings through the self-energy of the Green’s

function within the Born approximation. We find that even-orbital-parity spin-singlet

superconductivity is basically robust even in the presence of impurities. The degree

of the robustness depends on the electronic structures in the normal state and on the

pairing symmetry in orbital space. On the other hand, two odd-orbital-parity spin-

triplet order parameters are always fragile in the presence of potential disorder.

4.2 Introduction

The robustness of superconductivity in the presence of nonmagnetic impurities depends

on symmetry of the pair potential. The transition temperature Tc is insensitive to the

impurity concentration in a spin-singlet s-wave superconductor [69, 116, 117]. In a

cuprate superconductor, on the other hand, Tc of a spin-singlet d-wave superconduc-

tivity is suppressed drastically by the impurity scatterings [118]. The pair potential

of an unconventional superconductor changes its sign on the Fermi surface depending

43



Chapter 4 Superconductivity in Cu-doped Bi2Se3 with potential disorder

on the direction of a quasiparticle’s momenta. The random impurity scatterings make

the motion of a quasiparticle be isotropic in both real and momentum spaces. Such a

diffused quasiparticle feels the pair potential averaged over the directions of momenta.

The resulting pair potential is finite for an s-wave symmetry, whereas it is zero for

unconventional pairing symmetries. Thus, unconventional superconductivity is fragile

under the potential disorder.

Previous papers [71, 119–123] showed that s-wave superconductivity is not always

robust against the nonmagnetic impurity scatterings in multiband (multiorbital) su-

perconductors. The interorbital impurity scatterings decrease Tc, which is a common

conclusion of all the theoretical studies. The two-band models considered in these pa-

pers, however, are too simple to discuss the effects of impurities on Tc in real materials

such as iron pnictides [54, 124], MgB2 [49, 50], and Cu-doped Bi2Se3 [56, 57]. The ro-

bustness of multiband superconductivity under the potential disorder may depend on

electronic structures near the Fermi level. In iron pnictides and MgB2, two electrons

in the same conduction band form a Cooper pair [50, 124]. The impurity effect on

such an intraband pair has been studied by taking realistic electronic structures into

account [125]. In the case of Cu-doped Bi2Se3, four types of pair potentials ∆1 − ∆4

have been proposed as a promising candidate of order parameter [57]. Among them,

an interorbital pairing order has attracted much attention as a topologically nontrivial

superconductivity [57, 126]. Unfortunately, the possibility of such a topological super-

conductivity under the potential disorder has never been studied yet. We address this

issue.

In this chapter, we study the effects of impurities on Tc of Cu-doped Bi2Se3. We

describe electronic structures near the Fermi level by taking into account two p orbitals

in Bi2Se3 and the hybridization between them [127, 128]. According to the theoretical

proposal [57], we consider four types of s-wave pair potential on such orbital based elec-

tronic structures. The effects of impurities on Tc are estimated through the impurity

self-energy within the Born approximation. The transition temperature is calculated

by solving the gap equation numerically and is plotted as a function of impurity con-

centration nimp. We will show that the relation between Tc and nimp depends sensitively

on the types of pair potentials. Superconductivity with an intraorbital pair potential

∆1 is robust even in the dirty regime. This conclusion is consistent with that at a

limiting case of previous studies [71, 120–122]. There are two kinds of interorbital

pairing order: even-orbital symmetry and odd-orbital symmetry. We find that Tc of an

even-interorbital superconductivity ∆3 decreases slowly with the increase of nimp and

vanishes in the dirty limit. The results for ∆3 disagree with those in a simple two-band

model [123] because the robustness of ∆3 depends sensitively on electronic structures.
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Finally, the odd-interorbital pairing orders (∆2 and ∆4) vanish at a critical value of

the impurity concentration, which agrees well with the results of a idealistic two-band

model [123]. Thus we conclude that odd-orbital pair potential is fragile irrespective of

electronic structures.

This chapter is organized as follows. In Sec. 4.3, we describe the effective Hamil-

tonian near the Fermi level in Cu-doped Bi2Se3 and four types of pair potentials in

its superconducting state. The anomalous Green’s function and the gap equation for

each pair potential in the clean limit are obtained by solving the Gor’kov equation.

In Sec. 4.4, we introduce the random impurity potential and discuss the effects of im-

purities on Tc within the Born approximation. The conclusion is given in Sec. 4.5.

Throughout this chapter, we use the units of kB = ℏ = 1, where kB is the Boltzmann

constant. The symbol ¯· · ·, ˇ· · ·, and ˆ· · · represent 8 × 8, 4 × 4, and 2 × 2 matrices,

respectively.

4.3 Clean limit

4.3.1 Model

For constructing an effective model of the normal state, we start with the tight-binding

Hamiltonian on a hexagonal lattice as shown in Fig. 4.1 [129]. Strictly speaking, the

crystal structure of Bi2Se3 is rhombohedral [127, 128]. The simplification does not affect

the low energy physics. We assume that an intercalated copper atom supplies electrons

and makes a topological insulator Bi2Se3 be metallic [130]. In the hexagonal lattice,

the primitive lattice vectors are
(√

3a/2, a/2, 0
)
, (0, a, 0), (0, 0, c) where a and c are

the lattice constants in the xy plane and along the z axis, respectively. We define the

nearest neighbor vectors a1 =
(√

3a/2, a/2, 0
)
, a2 = (0, a, 0), a3 =

(
−
√
3a/2, a/2, 0

)
,

and a4 = (0, 0, c). The tight-binding Hamiltonian in real space can be written as [129,

131]

HN =
∑
R

ψ†
Rε̌ψR +

∑
R,i

ψ†
Rťai

ψR+ai
+H.c., (4.1)

ψR = [ψ+,↑(R) , ψ−,↑(R) , ψ+,↓(R) , ψ−,↓(R)]T , (4.2)

where ψ†
σ,s (ψσ,s) is the creation (annihilation) operator of an electron at the orbital

σ (= + or −) with spin s (=↑ or ↓). We consider only the nearest neighbor hopping

on the hexagonal lattice in the xy plane and that along the z axis. An orbital + (−)

mainly consists of pz orbital of a Bi (Se) atom. The matrix element of hopping ťai
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Figure 4.1: The simplified lattice structure of a Cu-doped Bi2Se3. The arrow indicates
the hopping.

(i = 1− 4) is described as

⟨R, σ, s|H |R+ ai, σ
′, s′⟩ . (4.3)

The nearest neighbor hopping elements are illustrated in Fig. 4.1. In momentum space,

the tight-binding Hamiltonian is described as

ȞN(k) = ε̌+
∑
i

ťai
eik·ai +H.c.. (4.4)
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The matrix structures of ťai
are given in Appendix D. The tight-binding Hamiltonian

can be written as

ȞN(k) = ckŝ0σ̂0 +mkŝ0σ̂3 + Vz ŝ0σ̂2 + (Vyŝ1 − Vxŝ2)σ̂1, (4.5)

ck = −µ+ c1α1(k) + c2α2(k), (4.6)

mk = m0 +m1α1(k) +m2α2(k), (4.7)

Vx,y = vαx,y(k), (4.8)

Vz = vzαz(k), (4.9)

where αi(k) (i = 1, 2, x, y, z) is

α1(k) =
2

c2
(1− cos kzc) , (4.10)

α2(k) =
4

3a2

(
3− 2 cos

√
3kxa

2
cos

kya

2
− cos kya

)
, (4.11)

αx(k) =
2√
3a

sin

√
3kxa

2
cos

kya

2
, (4.12)

αy(k) =
2

3a

(
cos

√
3kxa

2
sin

kya

2
+ sin kya

)
, (4.13)

αz(k) =
1

c
sin kzc. (4.14)

We define the Pauli matrices ŝj in spin space, σ̂j in orbital space, and τ̂j in particle-

hole space for j = 1 − 3. The unit matrix in these spaces are ŝ0, σ̂0, and τ̂0. In

Eq. (4.5), the hopping in the z direction (ťa4) causes the orbital hybridization term Vz

and the hopping in the xy plane (ťa1 , ťa2 , ťa3) causes the spin-orbit interaction term

Vx,y. When we expand the trigonometric functions around the Γ point, the tight-

binding Hamiltonian ȞN(k) corresponds to k · p Hamiltonian of Bi2Se3 [127, 128].
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The superconducting state in CuxBi2Se3 is described by a Hamiltonian

H(0) =
∑
k

Ψ†(k)H̄
(0)
k Ψ(k), Ψ(k) =

[
ψe(k)

ψh(k)

]
, (4.15)

ψe(k) =


ψ+,↑(k)

ψ−,↑(k)

ψ+,↓(k)

ψ−,↓(k)

 , ψh(k) =


ψ†
+,↑(−k)

ψ†
−,↑(−k)

ψ†
+,↓(−k)

ψ†
−,↓(−k)

 , (4.16)

H̄
(0)
k =

(
ȞN(k) ∆̌λ

∆̌†
λ −Ȟ∗

N(−k)

)
. (4.17)

According to the previous proposal [57], we consider four types of momentum-independent

pair potential defined by

∆1 =
g1
N

∑
k

⟨ψ+,↑(k)ψ+,↓(−k)⟩ =
g1
N

∑
k

⟨ψ−,↑(k)ψ−,↓(−k)⟩, (4.18)

∆2 =
g2
N

∑
k

⟨ψ+,↑(k)ψ−,↓(−k)⟩ = −g2
N

∑
k

⟨ψ−,↑(k)ψ+,↓(−k)⟩, (4.19)

∆3 =
g3
N

∑
k

⟨ψ+,↑(k)ψ−,↓(−k)⟩ =
g3
N

∑
k

⟨ψ−,↑(k)ψ+,↓(−k)⟩, (4.20)

∆4 =
g4
N

∑
k

⟨ψ+,↑(k)ψ−,↑(−k)⟩ = −g4
N

∑
k

⟨ψ−,↑(k)ψ+,↑(−k)⟩, (4.21)

where gλ > 0 (λ = 1 − 4) represents the attractive interaction between two electrons.

Generally speaking, the pair correlation function can be represented as

fs,σ;s′,σ′(k) = ⟨ψs,σ(k)ψs′,σ′(−k)⟩ , (4.22)

where we assume a spatially uniform equal-time Cooper pair. The momentum-symmetry

is even-parity s-wave symmetry, which is a common property among the four candi-

dates in a Cu-doped Bi2Se3. Because of the Fermi-Dirac statistics of electrons, the

pairing correlation obeys

fs,σ;s′,σ′(k) = −fs′,σ′;s,σ(k). (4.23)

The remaining symmetry options of the pairing function are orbitals and spins of

a Cooper pair. Therefore, the pairing function must be either antisymmetric under

s↔ s′ or antisymmetric under σ ↔ σ′.

Both Eqs. (4.18) and (4.20) belong to spin-singlet symmetry. Thus the pairing
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functions belong to even-orbital parity. In Eq. (4.20), a Cooper pair consists of two

electrons in the different orbitals (interorbital pair): one electron is in + orbital and

the other is in − orbital. In Eq. (4.18), on the other hand, a Cooper pair consists of

two electrons in the same orbital (intraorbital pair). The pair potential in the + orbital

and that in the − orbital have the same amplitude and the same sign.

Both Eqs. (4.19) and (4.21) represent the spin-triplet interorbital pairing correla-

tions. In these cases, the pair correlation belongs to odd-orbital-parity symmetry. In

addition to the symmetry options for Cooper pairing, the pair potentials are classified

by the irreducible representation of D3d point group. ∆2 and ∆4 can be distinguished

from each other by the irreducible representation. The matrix form of pair potentials,

the irreducible representation, spin symmetry, and orbital-parity of the pair potentials

are summarized in Table 4.1. Although Fu and Berg [57] proposed a pair potential

of ∆(iŝ2)σ̂3, it is unitary equivalent to Eq. (4.18) as long as the Hamiltonian H̄
(0)
k

preserves time-reversal symmetry [122]. (See Appendix E for details.) They also con-

sidered a pair potential of ∆ŝ0(iσ̂2) independently of Eq. (4.21). However, the behavior

of Tc under the potential disorder in the two pair potentials are the same with each

other. Thus, in this study, we discuss effects of random impurity scatterings on super-

conducting states described by Eqs. (4.18)-(4.21). We note that the orbital parity and

the momentum parity are independent symmetry options of each other. The former

represents symmetry of correlation function under the commutation of two orbitals.

The latter is derived from inversion symmetry of the lattice structure.

In addition to the pair potentials in Eqs. (4.18)-(4.21), generally speaking, the mean-

field Hamiltonian contains the interorbital Cooper pair scattering terms described as

g′λ⟨ψ
†
σ′,s′(−k

′)ψ†
γ′,s(k

′)⟩ψγ,s(k)ψσ,s′(−k), (4.24)

with γ ̸= γ′ and σ ̸= σ′ [132]. We do not consider these terms because they only

renormalize the amplitude of the pair potential as

∆λ → ∆λ

(
1 + P

g′λ
gλ

)
, (4.25)

and do not change main conclusions of this study, where P is 1 (−1) for the even-

(odd-) orbital-parity superconductivity.
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Table 4.1: Symmetry classification of pair potentials. Equal-time pairing order param-
eter belongs to even-frequency symmetry. A spin-singlet component is described by
iŝ2. An opposite-spin-triplet and an equal-spin-triplet components are indicated by ŝ1
and ŝ3, respectively.

Matrix Rep. Frequency Spin
Momentum

parity
Orbital
parity

∆1(iŝ2)σ̂0 A1g Even Singlet Even
Even
(Intra)

∆2ŝ1(iσ̂2) A1u Even Triplet Even
Odd
(Inter)

∆3(iŝ2)σ̂1 A2u Even Singlet Even
Even
(Inter)

∆4ŝ3(iσ̂2) Eu Even Triplet Even
Odd
(Inter)

4.3.2 Gor’kov equation

The Matsubara Green’s function is obtained by solving the Gor’kov equation,[
iωn − Ȟ(0)(k)

]
Ḡ(0)(k, iωn) = 1, (4.26)

Ḡ(0)(k, iωn) =

(
Ǧ(0)(k, iωn) F̌ (0)

λ (k, iωn)

−F̌ (0)∗
λ (−k, iωn) −Ǧ(0)∗(−k, iωn)

)
, (4.27)

where ωn = (2n+1)πT is a fermionic Matsubara frequency and T is a temperature. To

discuss the transition temperature, we need to find the solutions of Eq. (4.26) within

the first order of ∆. The results of the normal part

Ǧ(0)(k, iωn) =
1

X
[(iωn − ck) ŝ0σ̂0 +mk ŝ0σ̂3 + Vz ŝ0σ̂2 + (Vyŝ1 − Vxŝ2) σ̂1] , (4.28)

X(k, iωn) = (iωn − ck)
2 −m2

k − V 2
x − V 2

y − V 2
z , (4.29)

are common for all the pair potentials because the normal Green’s function does not in-

clude the pair potential at the lowest order. The results of anomalous Green’s function
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are given by,

F̌ (0)
1 (k, iωn) =

∆1

Z

[
−i
(
ω2
n + c2k +m2

k + V 2
x + V 2

y + V 2
z

)
ŝ2σ̂0

+2ickmk ŝ2σ̂3 + 2ickVz ŝ2σ̂2 − 2ckVy ŝ3σ̂1 − 2ickVx ŝ0σ̂1] , (4.30)

F̌ (0)
2 (k, iωn) =

∆2

Z

[
−i
(
ω2
n + c2k −m2

k + V 2
x + V 2

y + V 2
z

)
ŝ1σ̂2

+ 2mkVy ŝ0σ̂0 − 2ckVy ŝ0σ̂3 + 2imkVx ŝ3σ̂0 − 2ickVx ŝ3σ̂3

+2ickVz ŝ1σ̂0 − 2imkVz ŝ1σ̂3 + 2iωnmk ŝ1σ̂1] , (4.31)

F̌ (0)
3 (k, iωn) =

∆3

Z

[
−i
(
ω2
n + c2k −m2

k + V 2
x + V 2

y − V 2
z )
)
ŝ2σ̂1

+ 2iVxVz ŝ0σ̂2 + 2VyVz ŝ3σ̂2 − 2ickVx ŝ0σ̂0 + 2imkVx ŝ0σ̂3

−2ckVy ŝ3σ̂0 + 2mkVy ŝ3σ̂3 − 2iωnmk ŝ2σ̂2 + 2iωnVz ŝ2σ̂3] , (4.32)

F̌ (0)
4 (k, iωn) =

∆4

Z

[
−i
(
ω2
n + c2k −m2

k + V 2
x − V 2

y + V 2
z

)
ŝ3σ̂2

− 2VxVy ŝ0σ̂2 − 2imk Vxŝ1σ̂0 + 2ickVx ŝ1σ̂3 + 2ickVz ŝ3σ̂0

−2imkVz ŝ3σ̂3 − 2VyVz ŝ2σ̂1 + 2iωnmk ŝ3σ̂1 − 2ωnVy ŝ2σ̂3] , (4.33)

with Z(k, iωn) = |X(k, iωn)|2. The ŝ2σ̂0 component in Eq. (4.30), the ŝ1σ̂2 component

in Eq. (4.31), the ŝ2σ̂1 component in Eq. (4.32), and the ŝ3σ̂2 component in Eq. (4.33)

are linked to the pair potentials ∆1, ∆2, ∆3, and ∆4, respectively. Therefore, the gap

equations in the linear regime result in

∆1 = −g1T
∑
ωn

1

N

∑
k

Tr

[
F̌ (0)

1 (k, iωn)
(−iŝ2)σ̂0

4

]
= g1T

∑
ωn

1

N

∑
k

∆1

Z(k, iωn)

[
ω2
n + c2k +m2

k + V 2
x + V 2

y + V 2
z

]
, (4.34)

∆2 = −g2T
∑
ωn

1

N

∑
k

Tr

[
F̌ (0)

2 (k, iωn)
ŝ1(−iσ̂2)

4

]
= g2T

∑
ωn

1

N

∑
k

∆2

Z(k, iωn)

[
ω2
n + c2k −m2

k + V 2
x + V 2

y + V 2
z

]
, (4.35)
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∆3 = −g3T
∑
ωn

1

N

∑
k

Tr

[
F̌ (0)

3 (k, iωn)
(−iŝ2)σ̂1

4

]
= g3T

∑
ωn

1

N

∑
k

∆3

Z(k, iωn)

[
ω2
n + c2k −m2

k + V 2
x + V 2

y − V 2
z

]
, (4.36)

∆4 = −g4T
∑
ωn

1

N

∑
k

Tr

[
F̌ (0)

4 (k, iωn)
ŝ3(−iσ̂2)

4

]
= g4T

∑
ωn

1

N

∑
k

∆4

Z(k, iωn)

[
ω2
n + c2k −m2

k + V 2
x − V 2

y + V 2
z

]
. (4.37)

Eqs. (4.30), (4.31), (4.32), and (4.33) show that the orbital hybridization (Vz), the

spin-orbit interaction (Vx,y), and the asymmetry between the two orbitals (mk) generate

various paring correlations which belong to different symmetry classes from that of the

pair potential [48, 67]. Especially, we discuss briefly a role of odd-frequency pairing

correlation in the gap equation. For instance, the pairing correlation F̌ (0)
2 includes

2iωnmk ŝ1σ̂1 which describes a spin-triplet even-orbital-parity component. Such an

component must be odd-frequency symmetry because the pairing correlation function

must be antisymmetric under the permutation of two electrons. In the gap equation,

the odd-frequency pairing component decreases the numerator as shown in −m2
k in

Eq. (4.35). It has been pointed out that an odd-frequency pair decreases the transition

temperature [67]. If we would be able to tune the parameters to delete more the

odd-frequency components, the gap equation results in higher Tc.

4.4 Effects of disorder

We consider the random nonmagnetic impurities described by

H̄imp(R) = Vimp(R) τ̂3ŝ0(σ̂0 + σ̂1). (4.38)

The schematic picture of potential disorder in a CuxBi2Se3 is shown in Fig. 4.2. We

assume the impurity potential satisfies the following properties,

Vimp(R) = 0, (4.39)

Vimp(R)Vimp(R′) = nimpv
2
impδR,R′ , (4.40)

where · · · means the ensemble average, nimp is the density of the impurities, and vimp is

the strength of the impurity potential. We also assume that the attractive interactions
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Figure 4.2: A model of the random potential in a CuxBi2Se3. The cross mark denotes
an impurity.

between two electrons are insensitive to the impurity potentials [117]. We calculate

the Green’s function in the presence of the impurity potentials within the Born ap-

proximation. The Green’s function is expanded up to the second order of the impurity
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potential.

Ḡ(R−R′, ωn)

≈ Ḡ(0)(R−R′, ωn) +
∑
R1

Ḡ(0)(R−R1, ωn)H̄imp(R1)Ḡ
(0)(R1 −R′, ωn)

+
∑

R1,R2

Ḡ(0)(R−R1, ωn)H̄imp(R1)Ḡ(0)(R1 −R2, ωn)H̄imp(R2)Ḡ(R2 −R′, ωn),

(4.41)

≈ Ḡ(0)(R−R′, ωn)

+ nimpv
2
imp

∑
R1

Ḡ(0)(R−R1, ωn) τ̂3 ŝ0 σ̂0Ḡ
(0)(0, ωn) τ̂3 ŝ0 σ̂0Ḡ(R1 −R′, ωn)

+ nimpv
2
imp

∑
R1

Ḡ(0)(R−R1, ωn) τ̂3 ŝ0 σ̂1Ḡ
(0)(0, ωn) τ̂3 ŝ0 σ̂1Ḡ(R1 −R′, ωn). (4.42)

We transform the Eq. (4.41) to (4.42) by using the properties in Eqs. (4.39) and (4.40).

In momentum space, Eq. (4.42) becomes

Ḡ(k, iωn) = Ḡ(0)(k, iωn) + Ḡ(0)(k, iωn)Σ̄impḠ(k, iωn), (4.43)

Σ̄imp = Σ̄intra + Σ̄inter, (4.44)

Σ̄intra = nimpv
2
impτ̂3ŝ0σ̂0

1

N

∑
k

Ḡ(0)(k, iωn)τ̂3ŝ0σ̂0, (4.45)

Σ̄inter = nimpv
2
impτ̂3ŝ0σ̂1

1

N

∑
k

Ḡ(0)(k, iωn)τ̂3ŝ0σ̂1, (4.46)

where Σ̄intra and Σ̄inter are the self-energy due to the intraorbital impurity scatterings

and that of the interorbital impurity scatterings, respectively. We describe the total

self-energy as follows.

Σ̄imp = Σ̄intra + Σ̄inter =

[
Σ̌g Σ̌fλ

−Σ̌∗
fλ

−Σ̌∗
g

]
, (4.47)

Σ̌g = nimpv
2
imp[ǧ

(0) + ŝ0σ̂1ǧ
(0)ŝ0σ̂1], (4.48)

Σ̌fλ = −nimpv
2
imp[f̌

(0)
λ + ŝ0σ̂1f̌

(0)
λ ŝ0σ̂1], (4.49)

where we denote the momentum summation of the Green’s function as 1/N
∑

k Ǧ(0)(k, iωn) =

ǧ(0) and 1/N
∑

k F̌ (0)(k, iωn) = f̌ (0). Therefore, the Gor’kov equation in the presence
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of the impurity potential is described by[
iωn − H̄0(k)− Σ̄imp

]
Ḡ(k, iωn) = 1, (4.50)

Ḡ(k, iωn) =

(
Ǧ(k, iωn) F̌λ(k, iωn)

−F̌∗
λ(−k, iωn) −Ǧ∗(−k, iωn)

)
. (4.51)

The normal part of self-energy (Σ̌g) is calculated as follows.

Σ̌g = [−iωnηn + In] ŝ0σ̂0, (4.52)

ηn =nimpv
2
imp

1

N

∑
k

2

Z

[
ω2
n + c2k +m2

k + V 2
x + V 2

y + V 2
z

]
, (4.53)

In =nimpv
2
imp

1

N

∑
k

−2ck
Z

[
ω2
n + c2k −m2

k − V 2
x − V 2

y − V 2
z

]
. (4.54)

Within the first order of ∆, the normal Green’s function becomes

Ǧ(k, iωn) = Ǧ(0)(k, iω̃n)|µ→µ̃, (4.55)

ω̃n = ωn(1 + ηn), (4.56)

µ̃ = µ− In. (4.57)

The imaginary (real) part of the self-energy renormalizes the Matsubara frequency

(chemical potential). The anomalous Green’s function after summing up the momenta

is described as

f̌
(0)
1 =

1

N

∑
k

∆1

Z

[
−i
(
ω2
n + c2k +m2

k + V 2
x + V 2

y + V 2
z

)
ŝ2σ̂0 + 2icm ŝ2σ̂3

]
, (4.58)

f̌
(0)
2 =

1

N

∑
k

∆2

Z

[
−i
(
ω2
n + c2k −m2

k + V 2
x + V 2

y + V 2
z

)
ŝ1σ̂2 + 2iωnmk ŝ1σ̂1

]
, (4.59)

f̌
(0)
3 =

1

N

∑
k

∆3

Z

[
−i
(
ω2
n + c2k −m2

k + V 2
x + V 2

y − V 2
z

)
ŝ2σ̂1 − 2iωnm ŝ2σ̂2

]
, (4.60)

f̌
(0)
4 =

1

N

∑
k

∆4

Z

[
−i
(
ω2
n + c2k −m2

k + V 2
x − V 2

y + V 2
z

)
ŝ3σ̂2 + 2iωnmk ŝ3σ̂1

]
. (4.61)
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By substituting these expressions into Eq. (4.49), we obtain the anomalous part of the

self-energy for each pair potential.

Σ̌f1 = ∆1(iŝ2)σ̂0 · ηn, (4.62)

Σ̌f2 = ∆2ŝ1σ̂1 · (−iωn)Jn, (4.63)

Σ̌f3 = ∆3(iŝ2)σ̂1 · η′n, (4.64)

Σ̌f4 = ∆4ŝ3σ̂1 · (−iωn)Jn, (4.65)

η′n = nimpv
2
imp

1

N

∑
k

2

Z

[
ω2
n + c2k −m2

k + V 2
x + V 2

y − V 2
z

]
, (4.66)

Jn = nimpv
2
imp

1

N

∑
k

4mk

Z
. (4.67)

Before demonstrating Tc under the potential disorder, we briefly summarize a re-

lation between the self-energy and the pair potential in the four cases. The results

in Eq. (4.62) show that Σ̌f1 has the same matrix structure with the pair potential as

shown in Table. 4.1. Namely, Σ̌f1 renormalizes the pair potential ∆1 which belongs to

even-frequency spin-singlet even-momentum-parity even-orbital-parity (ESEE) pairing

symmetry. We will show that this fact explains the robustness of ∆1 in the presence

of impurity scatterings. The same feature can be seen in Σ̌f3 in Eq. (4.64), which im-

plies the robustness of ∆3. On the other hand, Σ̌f2 and Σ̌f4 have the different matrix

structure from their pair potentials shown in Table. 4.1. In other words, the impurity

self-energy leaves the pair potentials as they are. The previous studies suggested that

the superconductivity in such cases can be fragile. We also note that Σ̌f2 and Σ̌f4

enhance the pair correlation belonging to odd-frequency spin-triplet even-momentum-

parity even-orbital-parity (OTEE) symmetry. In what follows, we discuss characteristic

behavior of Tc as a function of impurity concentration case by case.
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Figure 4.3: The superconducting transition temperature Tc is plotted as a function of
ξ0/ℓ. The vertical axis is normalized to the transition temperature in the clean limit
T0. We fix T0 for all pair potentials.
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4.4.1 ∆1

The gap equation for ∆1 results in

∆1 = g1T
∑
ωn

1

N

∑
k

∆̃1

Z̃

[
ω̃2
n + c̃2k +m2

k + V 2
x + V 2

y + V 2
z

]
. (4.68)

By comparing with the gap equation in the clean limit in Eq. (4.34), the renormalized

values are defined as

∆̃1 = ∆1(1 + ηn), (4.69)

Z̃(k, iωn) = Z(k, iω̃n)|µ→µ̃, (4.70)

c̃k = ck|µ→µ̃. (4.71)

The impurity self-energy renormalizes the pair potential and the Matsubara frequency

in the same manner as ∆1 → ∆̃1 and ωn → ω̃n [69]. We solve the gap equation

numerically and plot the transition temperature Tc of ∆1 as a function of ξ0/ℓ in

Fig. 4.3. Here T0 is the transition temperature in the clean limit, ξ0 = vF/(2πT0) is

the superconducting coherence length, vF is the Fermi velocity, ℓ = vF τimp is the mean

free path due to impurity scatterings, and τimp is the lifetime of a quasiparticle. We

found that the normal part of self-energy Σ̌g is nearly independent of the Matsubara

frequency in the low energy region for ωn ≤ ωc. Here ωc = 103T0 is the cut-off energy

of the Matsubara frequency. Therefore, we estimate τimp from the imaginary part of

Σ̌g as

1

τimp

= −2Tr

[
1

4
Im Σ̌g

]
∼ 2π × nimpv

2
imp × 10−2 [eV]. (4.72)

The horizontal axis ξ0/ℓ in Fig. 4.3 is proportional to the impurity concentration nimp.

The results in Fig. 4.3 show that Tc of ∆1 is almost independent of the impurity

concentration as shown with filled circles. Such behavior agrees well with Tc in a

limiting case of idealistic models. The previous papers [71, 120–122] considered two-

band superconductivity with the intraband pairing order parameters (say D1 and D2)

on idealistic two-band electronic structures and demonstrated that Tc is independent

of impurity concentration at D1 = D2. The interband impurity scatterings disappear

in such a symmetric situation, which explains the unchanged Tc. The superconducting

state in Cu-doped Bi2Se3 with ∆1 corresponds to the symmetric intraband pairing state

in the previous studies. In this study, we confirmed that the conclusions of the previous

papers on idealistic band structures are valid even if we calculate Tc on a realistic
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electronic structure. In Fig. 4.3, the results for ∆1 show the oscillating behavior.

Although it is not easy to specify the reasons of the oscillations, such behavior comes

from a realistic band structure. In the Born approximation, we conclude that Tc of ∆1

is insensitive to the impurity scatterings.

4.4.2 ∆3

The gap equation for ∆3 becomes

∆3 = g3T
∑
ωn

1

N

∑
k

∆′
3

Z̃

[
ω̃2
n + c̃2k −m2

k + V 2
x + V 2

y − V 2
z

]
, (4.73)

∆′
3 = ∆3(1 + η′n). (4.74)

The pair potential is renormalized by the impurity self-energy as ∆3 → ∆′
3 in Eq. (4.73)

in a slightly different way from the relation ωn → ω̃n. By solving Eq. (4.73), we plot

Tc of ∆3 as a function of ξ0/ℓ in Fig. 4.3. The results show that Tc of the spin-singlet

interorbital pairing order is suppressed slowly with the increase of ξ0/ℓ and goes to

zero in the dirty limit. A previous paper [123], however, demonstrated on an idealistic

two-band structure that Tc of a spin-singlet s-wave interband pairing order is indepen-

dent of the impurity concentration. Thus ∆3 in a Cu-doped Bi2Se3 is more fragile than

that in an idealistic two-band model. The difference between the results in the two

models can be explained by the enhancement of odd-frequency pairing components due

to the realistic electronic structures. The odd-frequency pairing correlation is absent

in an idealistic band structure [123]. As a result, the impurity self-energy renormalizes

the pair potential and the Matsubara frequency in the same manner, which leads to

unchanged Tc versus ξ0/ℓ. In Cu-doped Bi2Se3, on the other hand, the asymmetry be-

tween two-orbitals (mk) and the orbital hybridization (Vz) generate the odd-frequency

pairing correlations as described in Eq. (4.32). These correlations contribute negatively

to the numerator of the renormalization factor of the pair potential 1+ η′n as shown in

−m2
k and −V 2

z in Eq. (4.66). As a consequence, the reduction of the pair potential by

odd-frequency pairs causes the suppression of Tc in the dirty regime. We conclude that

the robustness of the spin-singlet s-wave interorbital pairing order depends on band

structures.
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4.4.3 ∆2 and ∆4

The gap equations for ∆2 and ∆4 result in

∆2 = g2T
∑
ωn

1

N

∑
k

∆2

Z̃

[
ω̃2
n + c̃2k −m2

k + V 2
x + V 2

y + V 2
z − 2Jnωnω̃nmk

]
, (4.75)

∆4 = g4T
∑
ωn

1

N

∑
k

∆4

Z̃

[
ω̃2
n + c̃2k −m2

k + V 2
x − V 2

y + V 2
z − 2Jnωnω̃nmk

]
. (4.76)

Both ∆2 and ∆4 represent spin-triplet interorbital pairing order antisymmetric under

the permutation of two orbitals. The numerical results in Fig. 4.3 indicate that Tc of ∆2

and that of ∆4 decrease rapidly with the increase of ξ0/ℓ and vanish around ξ0/ℓ ≈ 0.3.

The impurity self-energy renormalizes the Matsubara frequency as ωn → ω̃n. However,

it leaves the pair potentials unchanged as shown in Eqs. (4.75) and (4.76). Therefore,

∆2 and ∆4 are fragile in the presence of impurities. The obtained results of Tc for

a Cu-doped Bi2Se3 agree even quantitatively with those calculated in an idealistic

band structure [123]. The interorbital impurity scatterings mix the electronic states

in the two orbitals and average the pair potentials over the two orbital degree of

freedom. As a result, the impurity scatterings wash out the sign of the pair potential in

Eq. (4.17), which leads to the suppression of odd-orbital symmetric superconductivity.

We confirmed that this physical interpretation is valid independent of band structures.

Several experiments have indicated nematic superconductivity in Cu-doped Bi2Se3

[133–135]. Such superconductivity can be realized when the pair potential belongs to

the Eu representation of the D3d point group [136]. The corresponding pair potential

is described as

∆̌nematic = ∆(Axŝ3(iσ̂2) + Ayŝ0(iσ̂2)) , (4.77)

where coefficients Ax,y determine a nematic direction. ∆4 corresponds to the specific

case ((Ax, Ay) = (1, 0)) of the nematic superconductivity. The nematic is considered

to be fragile in the presence of potential disorder because the nematic order belongs to

odd-orbital symmetry as well as ∆2 and ∆4.

Finally, we compare our results in this chapter with those in a recent study [137].

The authors of Ref. [137] formulated the random impurity scatterings based on the

two-band picture in momentum space, which is obtained by diagonalizing the normal

state Hamiltonian in the absence of impurities [138]. They mapped a Hamiltonian for

an interorbital s-wave superconductor with random impurities to a Hamiltonian for a

single-band unconventional superconductor with random impurities. As a result, they

concluded that ∆2, ∆3, and ∆4 are fragile under the potential disorder. Their conclu-
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sion for ∆3 does not agree with ours obtained by applying the standard method [69].

The difference in the theoretical methods causes the discrepancy. An earlier [139] and a

recent [140] analysis also contradict our results. A key point might be the self-energy

due to interorbital impurity scatterings. Actually all of the previous papers [71, 120–

123] have suggested an importance of the interorbital/interband impurity scatterings

on Tc. Refs. [137, 139, 140], on the other hand, does not consider the interorbital

impurity scatterings.

4.5 Conclusion

We studied the effects of random nonmagnetic impurities on the superconducting tran-

sition temperature Tc in Cu-doped Bi2Se3. We consider four types of momentum-

independent pair potentials, which include the intraorbital pairing (∆1), the interorbital-

even-parity pairing (∆3), and the interorbital-odd-parity pairings (∆2 and ∆4). The

effects of the impurity scatterings are considered through the self-energy of the Green’s

function within the Born approximation. Tc of ∆1 is insensitive to the impurity con-

centration, which is consistent with the previous theories. We find that ∆1 with the

electronic structure of a Cu-doped Bi2Se3 corresponds to a limiting case of idealistic

models [71, 120–122]. Tc of ∆3 decreases moderately with the increase of impurity con-

centration and vanishes in the dirty limit, which does not agree well with the results

on an idealistic model [123]. The presence of the odd-frequency pairing correlations

explain the discrepancy. Tc of ∆2 and ∆4 decrease rapidly with the increase of the

impurity concentration. Superconductivity vanishes at a critical value of the impu-

rity concentration. The results are consistent with those in an idealistic model even

quantitatively [123].

We found that the robustness of the even-orbital-parity order parameters depends

on the details of the band structures and that the odd-orbital-parity order parameters

are fragile irrespective of the band structures.
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Conclusion

The dependency of the phenomena on the symmetry is a commonality in physics.

From the establishment of the microscopic theory of superconductivity, the symmetry

of Cooper pair has continued to play important roles. Various unique and interesting

phenomena in non-uniform superconductors such as anomalous transport in junction

systems have studied extensively by both theoretical and experimental researchers.

Their numerous studies reveal that odd-frequency Cooper pairs, which are expressed

by the anomalous Green’s function of odd functions with respect to the Matsubara

frequency, give us comprehensive explanations of the anomalous phenomena. The

mechanism of the interesting phenomena is commonly attributed to the paramagnetic

property of odd-frequency Cooper pairs. Odd-frequency Cooper pair is a reasonable

concept to understand the underlying physics.

After the birth of the cocept of odd-frequency Cooper pairs by Berezinskii, it has

been considered that the uniform odd-frequency pairing could not exist in the bulk of

a superconductor because of the paramagnetic property. However, by the proposal of

the various subdominant pairing correlations in multiband/orbital systems, it has been

shown that the paramagnetic odd-frequency Cooper pairs are able to exist uniformly

in such systems. Although there are nontrivial relationships between uniform odd-

frequency Cooper pairs and exotic quantum states, such as quasiparticles on Bogoliubov

Fermi surfaces in multiband/orbital systems, the physics originating from uniform odd-

frequency Cooper pairs has been an open question.

In this thesis, we have theoretically studied the thermodynamic properties of uni-

form superconductors that accommodate subdominant odd-frequency Cooper pairs.

We determined the amplitude of the order parameter in a j = 3/2 superconductor self-

consistently and found the transition to the uniform superconducting phase becomes

discontinuous when the amplitude of the odd-frequency pairing correlation function is
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large enough. We also calculated the Ginzburg-Landau (GL) free-energy functional

and found that the sign of the fourth-order term with respect to ∆ becomes nega-

tive. It has been revealed that the odd-frequency pairing correlation functions make

negative contributions to the GL coefficient, while those with even symmetry make

positive contributions to the coefficient. We demonstrated that the superfluid den-

sity decreases greatly at finite temperarures due to the contributions of paramagnetic

odd-frequency pairing correlation functions which are proportional to the Matsubara

frequency. Existence of such odd-frequency pairing correlations explain the mechanism

of the discontinuous transition well. We also addressed an important open issue: the

discontinuous transition to uniform superconducting phase under Zeeman fields and

obtained similar results as above. We conclude that a potential for the discontinuous

transition is a common property of superconductors that include uniform odd-frequency

Cooper pairs.

We have also discussed the effect of the potential disorder in a multiorbital super-

conductor. According to the conventional knowledge, known as Anderson’s theorem,

s-wave superconducting order is completely robust against nonmagnetic impurity scat-

terings. On the contrary, several previous studies pointed out that s-wave supercon-

ducting order in multiband/orbital metals is not necessarily robust against disorder. To

make the comprehensive arguments about the nonmagnetic impurity effect in multi-

band/orbital superconductors, we discussed the robustness of several pairing orders

against disorder. We calculated the superconducting transition temperature Tc as a

function of impurity concentration within the Born approximation. We used the ef-

fective model of a multiorbital s-wave superconductor CuxBi2Se3, in which the various

candidates of the order parameter has been proposed. Among the potential candidates

of the superconducting order, we found that Tc of spin-triplet s-wave odd-orbital-parity

pairing order is suppressed greatly by the impurity scatterings irrespective of the details

of the eletronic structures. The homogenization of the two orbitals due to the interor-

bital impurity scattering, which is unique to multiorbital systems, explains the reason.

We also found that the spin-singlet even-orbital-parity pairing order is basically robust

but Tc within the Born approximation is gradually suppressed by the disorder when

the odd-frequency Cooper pairs are present in the clean limit. Uniform odd-frequency

Cooper pairs play an important role even in the impurity effect.

Throughout this study, we have discussed the stability of uniform superconducting

order in multiband/orbital metals against thermal fluctuations and potential disorder.

We have presented comprehensive arguments in terms of odd-frequency Cooper pairs

and have found that anomalous properties of such superconductors could be explained

well by this concept. Our conclusions established in this study could help to understand
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anomalous phenomena found in various superconductors that contain uniform odd-

frequency Cooper pairs.
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Appendix A

Linear response to electromagnetic

fields in a lattice model

The coupling between an electron and an electromagnetic field is considered through

the Peierls phase in the kinetic energy [141, 142]:

Hkin
N = −t1

∑
jz

∑
⟨ri,rj⟩

eiφijc†ri,jzcrj,jz +H.c., φij = e

∫ ri

rj

dr ·A(r), (A.1)

where c†r,jz (cr,jz) is the creation (annihilation) operator for the electron at r with

pseudospin jz. We neglect the correction to the weak spin-orbit interactions (t3 ≪ t1).

The current density operator j is defined from the variation of the Hamiltonian with

respect to the vector potential:

δH(t) = −
∑
r

j(r, t) · δA(r, t). (A.2)

Within the first order of the vector potential, the current can be decomposed into the

paramagnetic and diamagnetic terms,

jµ(r, t) = jparaµ (r) + jdiaµ (r, t) (µ = x, y, z), (A.3)

jparaµ (r) = iet1
∑
jz

[
c†r+r̂µ,jz

cr,jz − H.c.
]
, jdiaµ (r, t) = e2kµ(r)Aµ(r, t), (A.4)

where r̂µ is the basic lattice vector along the µ-direction of a simple cubic lattice and

kµ(r) is local kinetic energy operator with respect to the µ-oriented links, which is
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defined as

kµ(r) = −t1
∑
jz

[
c†r+r̂µ,jz

cr,jz +H.c.
]
. (A.5)

The perturbation Hamiltonian H′ within the first order of the vector potential reads,

H′(t) = −
∑
r

jpara(r) ·A(r, t). (A.6)

In Sec. 3.5, we examine the linear response in the x-direction:

jx(q, ω) = −Kxx(q, ω)Ax(q, ω). (A.7)

The response kernel Kxx is calculated to be [143–145]

Kxx(q, ω) = e2 ⟨−kx(r)⟩ − ΛR
xx(q, ω), (A.8)

where ⟨−kx(r)⟩ represents the kinetic energy along the x-direction per unit cell and

ΛR
xx is the current-current correlation function expressed as

ΛR
xx(q, ω) = Λxx(q, iνm → ω + iδ), (A.9)

Λxx(q, iνm) = −e2T
∑
ωn

1

N

∑
k

4t21 sin
2
(
kx +

qx
2

)
× Tr

[
G(k + q, iωn + iνm)G(k, iωn)−F˜ (k + q, iωn + iνm)F(k, iωn)

]
,

(A.10)

where νm = 2mπT is a bosonic Matsubara frequency with m being an integer and δ is

a small positive real value. The superfluid density is defined by

Q =
Kxx(q → 0, ω = 0)

2e2t1
. (A.11)

The contribution of odd-frequency pairing correlations in Sec. 3.5 is described using

QF = T
∑
ωn

1

N

∑
k

2t1 sin
2 kxTr

[
−F˜ (k, iωn)F(k, iωn)

]
. (A.12)
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The summation over Matsubara frequencies can be carried out analytically, when we

use the spectral representation of the Green’s function,

G(k, iωn) =
∑
λ

ϕ⃗k,λϕ⃗
†
k,λ

iωn − Eλ(k)
. (A.13)

Here, the summation is taken over all eight indices of the eigenstates of the BdG

Hamiltonian and ϕ⃗k,λ is the eigenvector belonging to the eigenenergy Eλ(k). After the

summation over the Matsubara frequencies, we reach at

⟨−kx(r)⟩ =
1

N

∑
k,λ=S±

2t1 cos kx
[
u2kf(Eλ) + v2kf(−Eλ)

]
, (A.14)

with

u2k = 1 +
ξk√

ξ2k +∆2
, v2k = 1− ξk√

ξ2k +∆2
, (A.15)

and

ΛR
xx(q → 0, ω = 0) = e2

1

N

∑
k,λ=S±

8t21 sin
2 kx

(
−∂f(Eλ)

∂Eλ

)
, (A.16)

for (ηk,4, ηk,5) = (1, 0), (0, 1), and (1, 1)/
√
2 states at t2 = 0.

The Green’s function for (ηk,4, ηk,5) = (1, 0), (0, 1), and (1, 1)/
√
2 states at t2 = 0

is calculated to be

G(k, iωn) = − 1

Z

[
(ω2

n + ξ2k +∆2)(iωn + ξk) + ϵ⃗ 2k(iωn − ξk)

−
{
(iωn + ξk)

2 +∆2 − ϵ⃗ 2k
}
ϵ⃗k · γ⃗

]
, (A.17)

F(k, iωn) = −∆

Z

[
ω2
n + ξ2k +∆2 − ϵ⃗ 2k − 2iωnϵ⃗k · γ⃗

]
η⃗k · γ⃗UT , (A.18)

Z = (ω2
n + ξ2k +∆2 − ϵ⃗ 2k)

2 + 4ω2
nϵ⃗

2
k . (A.19)

The last term in Eq (A.18) represents the odd-frequency pairing correlation induced

by the spin-orbit interaction.
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Appendix B

Interband pairing and

odd-frequency Cooper pair

We consider following mean-field Hamiltonian which describes the electronic states of

interband pairing order in a two-band model,

H =
∑
k

[
a†k,↑ a

†
k,↓ b

†
k,↑ b

†
k,↓a−k,↑ a−k,↓ b−k,↑ b−k,↓

]

×



εak V ∆

εak V s∆

V εbk −s∆
V εbk −∆

−∆ −εak −V
−s∆ −εak −V

s∆ −V −εbk
∆ −V −εbk





ak,↑

ak,↓

bk,↑

bk,↓

a†−k,↑

a†−k,↓

b†−k,↑

b†−k,↓


, (B.1)

where a†kσ (b†kσ) is a creation operator of an electron in band a (b) with momentum k

and spin σ (=↑, ↓). εlk (l = a, b) is defined by εlk = k2

2ml
− µl and V is the hybridization

potential mixing the two bands. ∆ represents interband pairing potential belonging

to s-wave spin-triplet odd-band-parity (spin-singlet even-band-parity) symmetry class

when we choose s = +1 (−1). Eq. (B.1) with s = +1 corresponds to the mean-field

Hamiltonian considered in Ref. [107]. Eq. (B.1) can be block diagonalized and the
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reduced Hamiltonian is represented by

Ȟ(k) =

[
ĤN ∆̂

∆̂† −ĤN

]
, ĤN = ξ + ερ̂3 + V ρ̂1, ∆̂ =

∆(iρ̂2) (s = +1)

∆ρ̂1 (s = −1)
, (B.2)

where ξ = (εak + εbk)/2, ε = (εak − εbk)/2, and ρ̂j for j = 1 − 3 are Pauli matrices in

the two-band space. The Matsubara Green’s function is calculated by the Gor’kov

equation,

[
iωn − Ȟ(k)

] [ Ĝ(k, iωn) F̂(k, iωn)

F̂(k, iωn) Ĝ(k, iωn)

]
= 1. (B.3)

The anomalous Green’s function F̂ is calculated as

F̂(k, iωn) =

{
−1
Z+1

[ω2
n + ξ2 − ε2 − V 2 +∆2 − 2iωn(ερ̂3 + V ρ̂1)]∆(iρ̂2) (s = +1)

−1
Z−1

[ω2
n + ξ2 − ε2 + V 2 +∆2 − 2V ξρ̂1 + 2iV ερ̂2 − 2iωnερ̂3] ∆ρ̂1 (s = −1)

,

(B.4)

Z+1 = (ω2
n + ξ2 − ε2 − V 2 +∆2)2 + 4ω2

n(ε
2 + V 2), (B.5)

Z−1 = (ω2
n + ξ2 − ε2 + V 2 +∆2)2 − 4(V 2ξ2 − V 2ε2 − ω2

nε
2). (B.6)

−2iωnερ̂3∆(iρ̂2) and −2iωnV ρ̂1∆(iρ̂2) in the numerator for s = +1 and −2iωnερ̂3∆ρ̂1

in that for s = −1 represent odd-frequency pairing correlations. When the band

hybridization is absent (i.e., V = 0), the Hamiltonian in Eq. (B.1) describes a pure

interband pairing state even considering in the basis that diagonalizes the normal state

Hamiltonian. The interband pairing does not correspond to odd-frequency Cooper

pair because the even-frequency pairing correlations in Eq. (B.4) are also interband

pairings.

The authors of Ref. [107] found that the transition from the normal state to the

superconducting state described by H in Eq. (B.1) with s = +1 with changing the

temperature becomes first-order when the band hybridization V is large enough. The

mechanism is explained well by the paramagnetic property of the odd-frequency Cooper

pairs induced by V as well as we discussed in this study. Moreover, we can expect the

discontinuous transition also occur even when the asymmetry between the two bands

ε is increased because an odd-frequency pairing correlation is induced by ε. This

expectation is easily confirmed since Ȟ(k) in Eq. (B.2) for s = +1 is equivalent to

the Hamiltonian of a spin-singlet superconductor under Zeeman fields. We obtain

the fourth-order coefficient of the GL free-energy b ∝ Yinter(A0, C0) and the superfluid
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density Q ∝ Yinter(A,C) with Yinter = Y |µBB→
√
ϵ2+V 2 in Eq. (3.65) when we consider a

simple band structure ma = mb [67].
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Appendix C

A spin-singlet superconductor

under spin-dependent potentials

We consider a spatially uniform spin-singlet s-wave superconducting state under spin-

dependent potentials. The Gor’kov equation reads,

[
iωn − ȞBdG

] [ G F
−F˜ −G˜

]
(k,iωn)

= 1̌, ȞBdG =

[
ĤN ∆̂

−∆̂˜ −Ĥ˜ N

]
. (C.1)

The anomalous Green’s function is represented as

F(k, iωn) =
[
∆̂ ∆̂˜ − ω2

n − ∆̂ Ĥ˜ N ∆̂−1 ĤN + iωn P
]−1

∆̂, (C.2)

P = (∆̂ Ĥ˜ N − ĤN ∆̂) ∆̂−1, ∆̂ = ∆ iσ̂2, (C.3)

where σ̂j for j = 1− 3 are Pauli matrices in the spin space. The odd-frequency pairing

correlations appear for P ̸= 0 [14]. The coefficients in the GL free-energy functional

are calculated by

a∆2 =
∆2

g
+ T

∑
ωn

1

Vvol

∑
k

1

2
Tr
[
F1(k, iωn)∆̂

†
]
, (C.4)

b∆4 = T
∑
ωn

1

Vvol

∑
k

1

4
Tr
[
F1(k, iωn) ∆̂

† F1(k, iωn) ∆̂
†
]
. (C.5)
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The electric current j within the linear response to a vector potential A is described

by [69]

j = − e2

mc
QA, (C.6)

Q = nT
∑
ωn

∫
dξ ⟨Tr

[
G G − F˜ F − GN GN

]
(k,ωn)

⟩FS, (C.7)

where n is the electron density per spin and ⟨· · · ⟩FS ≡
∫

dΩ
4π

· · · is the Fermi surface

average. Q is referred to as superfluid density.

Firstly, we consider the normal state Hamiltonian including an antisymmetric spin-

orbit interaction,

ĤN(k) = ξk −αk · σ̂, ξk =
ℏ2k2

2m
− µ, α−k = −αk. (C.8)

The Fermi surface is split into two due to the spin-orbit interaction in the normal state.

The Green’s functions are calculated to be

G(k, iωn) =− (iωn + ξk)(ω
2
n + ξ2k +∆2) + (iωn − ξk)α

2
k + {(iωn + ξk)

2 −α2
k −∆2}αk · σ̂

{ω2
n + ξ2k +∆2 +α2

k}
2 − 4ξ2kα

2
k

,

(C.9)

F(k, iωn) =− ω2
n + ξ2k +∆2 +α2

k + 2 ξkαk · σ̂
{ω2

n + ξ2k +∆2 +α2
k}

2 − 4ξ2kα
2
k

∆ iσ̂2. (C.10)

The last term in the numerator of F represents the spin-triplet odd-parity pairing

correlation induced by the spin-orbit interaction. Since P = 0, the odd-frequency

component is absent. The gap equation becomes

∆ = g T
∑
ωn

1

Vvol

∑
k

1

2
Tr [F(k, iωn) iσ̂2] = g N0πT

∑
ωn

∆√
ω2
n +∆2

, (C.11)

which is identical to that in the BCS theory, where N0 is the density of states at

the Fermi level per spin. It is possible to show that the superfluid density and the
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coefficients of the GL free-energy are identical to those in the BCS theory,

QBCS = 2nπT
∑
ωn

∆2

(ω2
n +∆2)3/2

, (C.12)

aBCS =
1

g
−N0πT

∑
ωn

1

|ωn|
, (C.13)

bBCS =
N0π

4
T
∑
ωn

1

|ωn|3
= N0

7ζ(3)

16(πT )2
, (C.14)

where ζ(n) is Riemann zeta function. Therefore, the spin-orbit interactions do not

change any thermal properties of a spin-singlet superconductor [90].

Secondly, we consider the normal state Hamiltonian including the Zeeman potential,

ĤN(k) = ξk − µBB · σ̂, (C.15)

where µB is Bohr’s magneton and B is a Zeeman field. The odd-frequency pairing

correlation appears because P = 2µBB · σ̂ remains finite. The Green’s functions are

calculated as

G(k, iωn) =
−1

Zz

[
(iωn + ξk)(ω

2
n + ξ2k +∆2) + (iωn − ξk)µ

2
BB

2

+
{
(iωn + ξk)

2 +∆2 − µ2
BB

2
}
µBB · σ̂

]
, (C.16)

F(k, iωn) =
−1

Zz

[
ω2
n + ξ2k +∆2 − µ2

BB
2 + 2iωn µBB · σ̂

]
∆iσ̂2, (C.17)

Zz = ξ4k + 2 ξ2kA+ C, A = ∆2 + ω2
n − µ2

BB
2, C = A2 + 4ω2

n µ
2
BB

2. (C.18)

The last term in F represents the pairing correlation belonging to odd-frequency spin-

triplet s-wave symmetry class. The gap equation becomes

∆ = g N0πT
∑
ωn

∆
√
A+

√
C√

2C
. (C.19)

The self-consistent pair potential ∆eq not only satisfies Eq. (C.19), but also minimize

77



Chapter C A spin-singlet superconductor under spin-dependent potentials

the thermodynamic potential. The coefficients in the free-energy result in

a =
1

g
−N0πT

∑
ωn

ω2
n

|ωn|(ω2
n + µ2

BB
2)
, (C.20)

b =

√
2

4
N0πT

∑
ωn

A3
0 +

√
C0(A

2
0 − 2ω2

nµ
2
BB

2)

[C0(A0 +
√
C0)]3/2

, (C.21)

A0 = A|∆=0, C0 = C|∆=0. (C.22)

The second term in Eq. (C.20) becomes smaller than that in Eq. (C.13), which leads

to the suppression of Tc. The last term in Eq. (C.21) is derived from the odd-frequency

pairing correlation function and decreases the coefficient b. The superfluid density is

calculated to be

Q = 2
√
2nπT

∑
ωn

∆2
{
A3 +

√
C(A2 − 2ω2

nµ
2
BB

2)
}

[C(A+
√
C)]3/2

. (C.23)

The comparison between the expression of the superfluid density in Eq. (C.23) and

that of the coefficient b in Eq. (C.21) shows that the odd-frequency pairing correlation

decreases Q and b in exactly the same manner.
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Restriction of hopping matrix in

tight-binding Hamiltonian

The crystal structure of Bi2Se3 preserves discrete symmetries [127, 128] such as three-

fold rotation R3 along the z direction, twofold rotation R2 along the x direction, and

inversion P . In addition, both the normal and superconducting states preserve time-

reversal T symmetry. With the basis of (|+, ↑⟩, |−, ↑⟩, |+, ↓⟩, |−, ↓⟩), these symme-

try operations can be represented as R3 = exp(iπ
3
s3σ0), R2 = is1σ3, P = s0σ3, and

T = is2σ0K, respectively. Here K represents the complex conjugation.

Under threefold rotation symmetry, the relation

⟨R, σ, s|H |R+ ai, σ
′, s′⟩ = exp

(
i
π

3
(s′3 − s3)

)
⟨R, σ, s|H |R+ aj, σ

′, s′⟩ , (D.1)

is satisfied for (ai,aj) = (a1,−a2), (a2,−a3), and (a3,a1). Under twofold rotation

symmetry, the relation

⟨R, σ, s|H |R+ ai, σ
′, s′⟩ = σ′

3σ3 ⟨R, σ, s|H |R+ aj, σ
′, s′⟩ , (D.2)

holds true for (ai,aj) = (a1,−a3), (a2,−a2), and (a3,−a1). As a results of inversion

symmetry, we find the relation of

⟨R, σ, s|H |R+ ai, σ
′, s′⟩ = σ′

3σ3 ⟨R, σ, s|H |R− ai, σ
′, s′⟩ . (D.3)

Finally, time-reversal symmetry is described as

⟨R, σ, s|H |R+ ai, σ
′, s′⟩ = s′3s3 ⟨R, σ′, s′|H |R− ai, σ, s⟩ . (D.4)
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We have used the notation of

σ3 =

+1 (σ = +)

−1 (σ = −)
, s3 =

+1 (s =↑)

−1 (s =↓)
, (D.5)

σ =

− (σ = +)

+ (σ = −)
, s =

 ↓ (s =↑)

↑ (s =↓)
. (D.6)

According to the conditions in Eqs. (D.1), (D.2), (D.3), and (D.4), the hopping matrices

can be reduced as [129, 131]

ťa1 =


t11 t12 0 t14

−t12 t22 t14 0

0 −t∗14 t11 t12

−t∗14 0 −t12 t22

 , (D.7)

ť−a1 =


t11 −t12 0 −t14
t12 t22 −t14 0

0 t∗14 t11 −t12
t∗14 0 t12 t22

 , (D.8)

ťa2 =


t11 −t12 0 −ei2π/3t14
t12 t22 −ei2π/3t14 0

0 −ei2π/3t14 t11 −t12
−ei2π/3t14 0 t12 t22

 , (D.9)

ť−a2 =


t11 t12 0 ei2π/3t14

−t12 t22 ei2π/3t14 0

0 ei2π/3t14 t11 t12

ei2π/3t14 0 −t12 t22

 , (D.10)

ťa3 =


t11 t12 0 −t∗14
−t12 t22 −t∗14 0

0 t14 t11 t12

t14 0 −t12 t22

 , (D.11)
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ť−a3 =


t11 −t12 0 t∗14
t12 t22 t∗14 0

0 −t14 t11 −t12
−t14 0 t12 t22

 , (D.12)

ťa4 =


t′11 t′12 0 0

−t′12 t′22 0 0

0 0 t′11 t′12
0 0 −t′12 t′22

 , (D.13)

ť−a4 =


t′11 −t′12 0 0

t′12 t′22 0 0

0 0 t′11 −t′12
0 0 t′12 t′22

 . (D.14)

In momentum space, the tight-binding Hamiltonian becomes

ȞN(k) =


c+m −i(v3α3 + vzαz 0 v(αy + iαx)

i(v3α3 + vzαz) c−m v(αy + iαx) 0

0 v(αy − iαx) c+m −i(v3α3 + vzαz)

v(αy − iαx) 0 i(v3α3 + vzαz) c−m

 ,

(D.15)
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with

ck = −µ+ c1α1(k) + c2α2(k), (D.16)

mk = m0 +m1α1(k) +m2α2(k), (D.17)

c1 = −c
2

2
(t′11 + t′22), (D.18)

c2 = −3a2

4
(t11 + t22), (D.19)

µ = −3(t11 + t22)− (t′11 + t′22)− ε, (D.20)

m1 = −c
2

2
(t′11 − t′22), (D.21)

m2 = −3a2

4
(t11 − t22), (D.22)

m0 = 3(t11 − t22) + t′11 − t′22, (D.23)

v = −3iei2π/3at14, (D.24)

vz = −2ct′12, (D.25)

v3 =
3a3

4
t12. (D.26)

Here α1(k), α2(k), αx(k), αy(k), and αz(k), are defined in Eqs. (4.10)-(4.14). We

also define α3(k) = − 8
3a3

(2 cos
√
3
2
kxa sin

1
2
kya − sin kya). In this study, we set the

parameters as follows [129, 146]: a = 4.14 Å, c = 28.7 Å, µ = 0.5 eV, c2 = 30.4 eVÅ2,

m0 = −0.28 eV, m2 = 44.5 eVÅ2, v = 3.33 eVÅ, c1/c
2 = 0.024 eV, m1/c

2 = 0.20 eV,

and vz/c = 0.32 eV. We choose v3 = 0 for simplicity [127, 128].
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Appendix E

Unitary equivalence of the

Hamiltonian with intraorbital

pairing order

The superconducting state with s-wave spin-singlet intraorbital pairing order is de-

scribed by a following Bogoliubov-de Gennes Hamiltonian [122].

H̄
(0)
k (θ, φ1, φ2) =



ξ1 −iVzeiθ 0 V eiθ 0 0 ∆+ 0

iVze
−iθ ξ2 V e−iθ 0 0 0 0 ∆−

0 V ∗eiθ ξ1 −iVzeiθ −∆+ 0 0 0

V ∗e−iθ 0 iVze
−iθ ξ2 0 −∆− 0 0

0 0 −∆∗
+ 0 −ξ1 iVze

−iθ 0 V ∗e−iθ

0 0 0 −∆∗
− −iVzeiθ −ξ2 V ∗eiθ 0

∆∗
+ 0 0 0 0 V e−iθ −ξ1 iVze

−iθ

0 ∆∗
− 0 0 V eiθ 0 −iVzeiθ −ξ2


,

(E.1)

ξ1 = ck +mk, ξ2 = ck −mk, V = v(αy(k) + iαx(k)), Vz = vzαz(k), (E.2)

∆+ =
g+
N

∑
k

⟨ψ+,↑(k)ψ+,↓(−k)⟩ = |∆+|eiφ1 , (E.3)

∆− =
g−
N

∑
k

⟨ψ−,↑(k)ψ−,↓(−k)⟩ = |∆−|eiφ2 , (E.4)

where gσ > 0 represents the attractive interaction between two electrons in the orbital

σ and θ denotes the phase of the hybridization in the normal state. We obtain the

normal part of H̄
(0)
k (θ, φ1, φ2) from Eq. (4.5) by choosing ψ+,s → ψ+,se

iθ/2 and ψ−,s →
ψ−,se

−iθ/2. Although the phase factor eiθ does not affect the physics in the normal
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state, such a gauge transformation affects the relative phase difference between the

order parameters φ1 − φ2 [122].

Time-reversal symmetry of H̄
(0)
k is represented by

T H̄(0)
k T −1 = H̄

(0)
−k, T = τ̂0(iŝ2)σ̂0K. (E.5)

If we find a transformation Ū which eliminates all the phase factors in Eq. (E.1), it

is possible to show time-reversal symmetry of H̄
(0)
k [122]. By applying the unitary

transformation,

Ū = diag[e−iφ1/2, e−iφ2/2, e−iφ1/2, e−iφ2/2, eiφ1/2, eiφ2/2, eiφ1/2, eiφ2/2], (E.6)

the Hamiltonian is transformed into

ŪH̄
(0)
k (θ, φ1, φ2)Ū

† = H̄
(0)
k (θ − φ1 − φ2

2
, 0, 0). (E.7)

Therefore, the three phases must satisfy a relation

2θ − φ1 + φ2 = 2πn, (E.8)

with n being an integer for the Hamiltonian to preserve time-reversal symmetry. By

tuning θ = 0 at n = 0, the two pair potentials have the same sign with each other

because of φ1−φ2 = 0. By tuning θ = π/2, on the other hand, H̄
(0)
k (π/2, 0, π) describes

a state where two pair potentials have the opposite sign to each other. It is easy to

show that H̄
(0)
k (π/2, 0, π) and H̄

(0)
k (0, 0, 0) are unitary equivalent to each other. We set

g+ = g− = g1 and ∆+ = ∆− = ∆1 in section 4.3. Under the condition, ∆1(iŝ2)σ̂3 is

unitary equivalent to ∆̌1 = ∆1(iŝ2)σ̂0.
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