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ABSTRACT

Yield estimation of root crops has emerged as one of the fastest-growing fields in precision
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agriculture in recent years. Chinese Yam (Dioscorea polystachya), widely cultivated in Japan

and also called 'Nagaimo', represents a typical root crop within the Dioscoreaceae genus. This

research introduced a framework aimed at providing farmers with yield estimates derived from

videos of yams. It utilized geospatial information collected during harvesting to guide yield

estimation across farmland. The framework included accurate yield counting utilizing a deep

learning model for yam detection and a multi-tracking model for tracking the detected yams.

Modifications were implemented in the original algorithm to boost efficiency without requiring

retraining. Moreover, leveraging Shuffle-Net and transfer learning, a lightweight deep learning

model was developed to detect defects of a yam and grade a yam by its size. Simultaneously,

correlation analysis between GNSS location data and yam quantity distribution was conducted,

mapping geospatial data. Leveraging image processing through cameras and computers enabled

cost-effective collection of resultant data without impacting root crops, given its non-contact

nature. This assists farm managers in improving production management and planning.

Counting yams by object detection and multi-object tracking:

Accurate counting is crucial for determining root crop yield. To address this, a method for

precisely counting harvested Chinese Yams in the field was devised. To optimize the detector's

recognition capabilities, the attention module CBAM was integrated with the neck part of the

YOLOv5s network, thereby enhancing the network's feature extraction ability CIoU Loss was used

instead of GIoU Loss as the target bounding box regression loss function to speed up the

bounding box regression rate while improving positioning accuracy. The structure of the

Deep-SORT appearance feature extraction network was adjusted and retrained on the yam

re-identification dataset to reduce the identity switching caused by target overlap. The enhanced
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YOLOv5s detector was integrated with Deep-SORT, establishing a virtual detection line

within the video to tally the quantity of yams. Experimental results indicated a notable

improvement in the accuracy of yam counting.

Defect detection and size grading of yam in harvest:

The goal was to be able to detect defective yams and to grade a yam by its size through

video dataset. Specifically, based on Shuffle-Net and transfer learning, a lightweight deep

learning model (CDD Net) was constructed to detect surface and shape defects of yam. Methods

based on minimum bounding rectangle (MBR) fitting and convex polygon approximation were

also proposed. The experimental results demonstrated that the proposed CDD Net achieved

detection accuracy of 98.94% for two categories (normal and defective) and 92.92% for

multi-category classification (normal, curve, fork root, break). Additionally, the dimensional

accuracy rates for Minimum Bounding Rectangle (MBR) fitting and convex polygon approximation

were recorded at 92.8% and 95.1%, respectively. This experimentation presented a practical

approach for defect detection and size grading.

Geospatial mapping of yam count and its visualization:

The integration of geospatial information into crop analysis is pivotal for intelligent

harvesting, offering farmers comprehensive insights to optimize their resources. In this context,

GNSS points were recorded while capturing videos of the yam rows, supporting these

functionalities. The synchronization of GNSS capturing with video recording allowed for the

correlation of GNSS coordinates with video frames during the counting process. The recorded

counts, along with their respective GNSS coordinates, were utilized to visualize the data.

Subsequently, a map was generated, encompassing yield information on a point-by-point basis.
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In conclusion, YOLOv5s deep learning model was served as the detector, coupled with the

Deep-SORT target tracking method, to accurately count Chinese Yams. Additionally, a size grading

method based on (MBR) fitting and convex polygon approximation was proposed. Overcoming

the limitations of manual labor, approach utilizes computer vision and deep learning technologies

for precise detection and grading. This innovation provides robust support for estimating harvest

yield not only for Chinese Yams but also for other root crops in future agricultural practices.
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Chapter 1 Introduction

1.1 Research Background

Hokkaido's agriculture, a vital sector in Japan, is currently grappling with significant

challenges due to a labor shortage. This issue is compounded by an aging agricultural population,

with an increasing proportion of farmers aged 65 and over. As the number of people working on

farms decreases, there arises a pressing need for more stable and efficient cultivation techniques.

Despite existing stable cultivation practices, many farmers in Hokkaido observe variations in yield

and quality but struggle to utilize this information effectively for future cultivation. This is largely

due to a lack of understanding of the factors contributing to these variations.

One of the key challenges in addressing this issue is the need for accurate data collection

and analysis to identify the causes of yield variation. While technologies for recording

management work history and using remote sensing to understand the natural environment have

been developed, their application in harvesting root and tuber crops remains limited, especially

in accurately capturing yields on a small spatial scale.

In the broader context of global agriculture, root crops like the Chinese Yam (Dioscorea

polystachya), known as 'Nagaimo' in Japan, are a crucial component of the food supply due to

their economic and nutritional value. However, yield estimation for these crops has traditionally

been a manual, labor-intensive process with a high propensity for inaccuracy. This has

necessitated the exploration of more efficient, accurate, and technologically advanced methods.
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The advent of precision agriculture has brought about a transformation in managing and

estimating crop yields, particularly for root crops. Recent advancements in computer vision, deep

learning, and geospatial technologies have opened new avenues for precision agriculture. These

technologies provide non-invasive, cost-effective, and accurate means for assessing crop yields,

essential for effective farm management and planning. Image processing technology, using

cameras and computers, presents a promising non-contact method for data collection. This

approach not only aids in identifying problems during the growth process but also enables the

analysis of factors affecting different growth stages. By providing practical information to farmers,

this technology can significantly improve cultivation methods and increase yields.

In summary, the labor shortage and technical challenges faced in Hokkaido's agriculture,

along with the broader challenges in global root crop cultivation, need innovative solutions and

the application of advanced technology. This is imperative to achieve more efficient, sustainable,

and profitable agricultural production.

1.2 Research Review

The evolution of precision agriculture has been significantly influenced by the integration of

advanced technologies, particularly in the domain of yield estimation and quality assessment of

crops. This progress is emblematic of a broader trend in agricultural technology, where traditional

methods are being supplemented or replaced by more efficient, accurate, and technologically

sophisticated approaches.

1.2.1 Traditional and Modern Methods
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Traditionally, the identification of root and tuber crops has relied on manual classification,

which is subject to many limitations, such as susceptibility to subjective factors, leading to

significant discrepancies in results. Unlike other traditional manual identification techniques,

computer vision technology has emerged as a crucial tool for quality assessment, classification,

automatic grading, and yield estimation in fruit and vegetable recognition, achieving good results

in practical applications. The classification of fruits and vegetables through machine recognition is

a relatively complex process due to the wide variety of species, irregular shapes, colors, and

textures, which places higher demands on the classification systems. The evolution of visual data

for fruits and vegetables from binary images to hyperspectral images has facilitated the

development of fruit and vegetable recognition, and the technology for recognition and

classification typically combines feature descriptions from visual data with machine learning

algorithms.

In 2019, Li and others used drones to capture ortho-images of potato plants during the

emergence stage, employing the excess green index (ExG) and Otsu's method to extract potato

plant objects from bare soil and calculate six shape features as variables for a Random Forest

classifier (RF) to estimate the number of potato plants at the emergence stage. Koh and others,

when most safflower seedlings were at the 2-4 leaf stage, used drones equipped with RGB

cameras to capture remote sensing images from a height of 20 meters above the ground,

generating ortho-mosaic images. They then set a threshold to distinguish potential safflower

seedlings from the soil background using chessboard segmentation and calculated the correlation

coefficient between the segmented objects and safflower seedling group templates to identify

safflower seedlings among all possible objects.
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1.2.2 Deep Learning in Agriculture

In recent years, deep learning methods have shown great potential in fields like computer

vision and natural language processing. Various deep learning-based models have demonstrated

superior performance in specific visual tasks like object detection, outperforming humans in

some cases. In agriculture, these models have found applications in pest monitoring, species

identification, crop detection, and counting.

In 2018, Dijkstra and others introduced a fully convolutional network (FCN) named

CentroidNet, specifically for crop localization and counting. Researchers chose the U-Net

semantic segmentation model as the base network, with the output feature map having the

same size as the input image and a fixed number of channels. The first two channels contained a

vector for each pixel, pointing towards the nearest object centroid, acting as a vote for the

centroid's position, and the remaining channels contained the logistic map for each category,

indicating the probability of the pixel belonging to that category. The centroids were determined

through centroid voting.

In 2019, Liu and others proposed a cheap, portable, and fast fruit counting method. They

first used the FasterR-CNN object detection model to detect fruits and tree trunks in continuous

video frames, then integrated the object detection results with optical flow estimates through

Kalman filtering. They tracked fruits and tree trunks in consecutive video frames and used a

structure-from-motion algorithm for 3D modeling to identify repeat counting scenarios and

estimate fruit numbers. Häni and others introduced a modular end-to-end system for apple

orchard yield estimation. Researchers used the U-Net model for segmenting apple clusters in
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images, then treated counting different apple clusters as a classification task, using the ResNet50

neural network model. They then projected apple clusters into a reconstructed global 3D space

using a structure-from-motion algorithm and tracked them to count apples. Jiang and others

developed a deep learning-based method for estimating the number of field plant seedlings.

Researchers trained a FasterR-CNN model for detecting yam seedlings and used Kalman filtering

and the Hungarian algorithm to match and track detected seedling objects in continuous video

frames, ultimately estimating the number of yams based on the tracked count.

In 2020, Zhang and others introduced a deep learning-based method for counting maize

plants. Researchers used the FasterR-CNN model to detect maize plants in images and then

proposed a visual tracking method combining optical flow, Kalman filtering, and Kernelized

Correlation Filter (KCF) to track target objects in continuous image frames and count maize plants.

Machefer and others proposed a counting method combining remote sensing and deep learning.

Researchers first captured remote sensing images of low-density crops like potatoes and lettuce,

then used a MaskR-CNN model trained via transfer learning to detect and segment plant objects

in the images. The model was fine-tuned for this new task. In 2021, Wang and others proposed a

method for counting maize objects in continuous video frames. Researchers first collected

smooth and stable videos using a camera-mounted cart, then extracted frames to create an

image dataset. Based on this dataset, they trained a YoloV4 object detection model to detect

maize seedlings in image frames. They predicted maize seedling trajectories using Kalman

filtering and associated the same targets in adjacent frames using the Hungarian algorithm to

count maize seedlings.

Mukhtar and colleagues proposed a wheat counting method based on a semantic
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segmentation network and a regression network. The researchers used a semi-supervised

method based on cross-consistency to train the semantic segmentation network using unlabeled

images. The trained semantic segmentation network extracted tiny clusters of plants from RGB

images. These segmented plant clusters were then fed into a regression network to extract

multi-scale features. The regression network performed regression on the number of wheat in

each plant cluster, and finally, the total number of wheat in all plant clusters in the image was

summed up.

In conclusion, the field of precision agriculture is experiencing a significant shift, driven by

the integration of deep learning models and computer vision techniques. These advancements

not only address the challenges posed by traditional methods but also open up new possibilities

for enhancing agricultural productivity and sustainability.

1.3 Research Objectives

1.3.1 Advancing Yield Estimation Techniques for Root Crops

The primary objective of this doctoral thesis is to develop an advanced framework for yield

estimation of root crops, specifically focusing on Chinese Yams (Dioscorea polystachya). This

research seeks to enhance the accuracy and efficiency of crop counting under field conditions.

The approach involves optimizing a deep learning model, notably YOLOv5s, integrating it with an

attention module (CBAM) for improved feature extraction, and employing Deep-SORT for

effective multi-object tracking. This methodology aims to address the limitations of current

manual classification methods by leveraging the precision and scalability of computer vision and
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deep learning technologies.

1.3.2 Implementing Defect Detection and Size Grading Systems

A key goal is to establish a reliable defect detection and size grading system for Chinese

Yams. The development of a lightweight deep learning model, referred to as CDD Net, will be

central to this effort. This model will be combined with innovative computer vision techniques,

such as minimum bounding rectangle (MBR) fitting and convex polygon approximation, to

identify various defect categories and accurately grade yams based on size. This system is

intended to provide more detailed and accurate quality assessments compared to traditional

manual methods.

1.3.3 Utilizing Geospatial Data for Enhanced Yield Analysis

The integration of geospatial data into the yield estimation process forms a crucial aspect of

this research. Utilizing Global Navigation Satellite System (GNSS) data and other geospatial

information will allow for the precise mapping and visualization of yam distribution across

farmlands. This integration is expected to provide deeper insights into the spatial variability of

crop yields, assisting in better understanding and managing the factors contributing to yield

variations.

In conclusion, this research is poised to make a substantial contribution to the field of

precision agriculture. By providing a robust, scalable, and accurate method for yield estimation

and quality assessment of Chinese Yams, it sets the groundwork for similar applications in other

root crops. The successful implementation of this framework is expected to revolutionize yield
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estimation practices, leading to enhanced productivity, optimized resource use, and promotion of

sustainable farming practices. The objectives outlined in this thesis aim to address the critical

challenges faced by Hokkaido's agriculture sector and the broader global agricultural community.

By integrating advanced technologies such as deep learning, computer vision, and geospatial data

analysis, this research strives to provide innovative solutions to improve agricultural efficiency,

sustainability, and profitability.

Chapter 2 Counting yams by object detection
and multi-object tracking

2.1 Methodology

2.1.1Brief introduction to convolutional neural network

Convolutional Neural Networks (CNNs), as a special type of artificial neural network, were

actually proposed and studied by scholars before 2006, especially achieving good recognition

results in the field of handwritten digit recognition. It was not until after AlexNet in 2012 that

CNNs gained widespread attention, and simultaneously, algorithms based on CNNs also

developed rapidly. Compared to the complex task of feature extraction performed by designers in

the past, CNNs have enabled the automatic learning of data features, rather than manual

operations. Additionally, what sets CNNs apart from other networks is their use of convolutional

operations, making them an important technological tool in the field of image processing.

(1)Input layer of convolutional neural networks

As the entry point for convolutional neural networks, the input layer primarily records the



9

pixel information of images. The current mainstream format is RGB pixels, which undergo mean

processing and variance processing for quantification of the image to reduce the total amount of

information in the entire image. This simplification facilitates forward network propagation and

backward derivative calculations. However, when inputting image features, the volume of

information directly affects the accuracy of the prediction target. Therefore, extensive research

and processing are usually conducted when inputting image features, such as pre-processing

images through rotation, cropping, flipping, and Gaussian filtering. There are also specific

restrictions on the image input format. For object detection and classification, grayscale images

are commonly used, while for live detection and high-precision targets, Moiré patterns and image

texture features are processed and directly inputted as RGB pixels. The input layer is a relatively

important component in the entire convolutional neural network.

(2)Convolution layer of convolutional neural networks

The convolution layer primarily performs convolution operations on the input images. Its

working mode can be viewed as conducting local operations while sliding through the feature

layer, thereby generating multiple feature maps, with each feature map corresponding to the

extraction of an image feature. Local operations involve multiplying the weight values of a given

size of the convolution kernel with the corresponding input pixel values, followed by

accumulative computation to obtain the local information of the image. Based on this, utilizing

the weight-sharing characteristic of the convolution layer, a convolution kernel is used as a sliding

window to scan the entire image, resulting in the final convolutional feature map. The

convolution operations mentioned not only effectively extract the valid features of images but
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also significantly reduce the number of parameters, thereby decreasing computational load and

reducing the complexity of the neural network. Convolution layers are generally preset with

scales of 3x3 or 5x5. The entire receptive field can quickly extract the feature information of the

matrix under a limited sliding step length, effectively completing the task of convolution. Next,

will introduce in more detail the working principle of the convolution layer and discuss its role in

convolutional neural networks.

Taking a two-dimensional scenario as an example, the calculation formula, as shown in

Equation (2.1), provides a more intuitive description of the convolution operation process.

b

M

u

N

V
ji wvjuiXvuWy 






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0
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M represents the width of the convolution kernel, N its depth, W(u,v) is the weight of the

u-th row and m-th column of the convolution kernel, X(i-u,j-v) represents the coordinate value of

the input image data, and wb is used to represent the bias.

The convolution operation process is as illustrated in Figure 2.1. First, set the convolution

stride to 1, and use the predefined 3x3 convolution kernel to slide from left to right, and from top

to bottom, performing the aforementioned convolution operations. This results in the

corresponding position output, which ultimately determines the feature map output of the

convolution layer.
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Fig.2.1 Schematic diagram of convolution operation

(3)Pooling layer of convolutional neural networks

The use of multiple convolution kernels results in the stacking of computations in the

convolution layer, leading to high dimensions and excessive computational requirements for

subsequent input layers, which can cause overfitting. To reduce computation, convolutional

neural networks incorporate a pooling layer after the convolution layer to perform dimensionality

reduction on the output of the previous layer. The primary function is to downsample the feature

map, reducing the dimensions of the network layer’ s feature map to avoid overfitting. The

pooling layer also uses a predefined sliding window size to scan the feature map output of the

convolution layer and outputs a compressed new feature map for use in the next layer of the

network structure. However, unlike the convolution layer, the pooling layer only requires

selecting parameters such as the type of pooling, kernel size, and stride, without considering

internal parameter values.

Common pooling methods include max pooling and average pooling. Max pooling involves

selecting the maximum value from a local area of the image to replace all data information in
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that area. It is fast and is the most widely used image processing method in practical applications;

initially, the filtering algorithm in OpenCV was implemented using this concept. In contrast,

average pooling uses the average value of a subregion to replace the information therein,

thereby retaining overall data characteristics and highlighting background information.

Figure 2.2 shows two types of pooling operations commonly used with a kernel size of 2x2

and a stride of 2. First, the input feature map is divided into four equal-sized subregions based on

the kernel size. The two aforementioned pooling methods are then applied, resulting in two

different post-pooling feature maps.

Fig.2.2 Schematic diagram of convolution operation

In summary, pooling operations use a single value to replace all data in a local area,

effectively replacing all feature information within that area. This is equivalent to reducing the

width and height dimensions of the feature map, thereby lowering the input dimensions and the

number of parameters in subsequent network layers, reducing the model size, and enhancing the

training efficiency of the convolutional neural network.
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(4) Fully connected layer of convolutional neural network

After image convolution, multiple feature maps are produced, each corresponding to the

extraction of an image feature. Subsequently, through pooling layer operations, dimensionality

reduction is performed on the output from the previous layer. The reduced volume of data, after

being processed by the Sigmoid function, abstracts discrete feature information, which is then

connected to a fully connected layer.

To improve the classification results after the action of the above network layers, the fully

connected layer connects the output information of the neurons correspondingly and flattens the

output feature matrix into a one-dimensional vector, which serves as the input to the classifier. If

the aforementioned convolution and pooling layers repeatedly process the input image's features,

then the fully connected layer represents the refined result of this data. It is the fusion of

features in a highly integrated form as input to enhance the quality of the output classification.

The computation formula for the feature vector in the fully connected layer is shown in Equation

(2.2).

)( bwxfy  (2.2)

Where f is the activation function, x and y represent the input and output feature vectors,

respectively, and w is the weight matrix.

(5)Activation function and loss function

Activation Functions:

In convolutional neural networks, when processing initial image data through convolution
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and pooling operations, the weights of image pixels are typically subjected to linear operations.

However, sometimes due to insufficient expressive power of the information, activation functions

are introduced to add non-linear factors for related operations. This section focuses on three

commonly used activation functions.

(a) Sigmoid Activation Function

The Sigmoid activation function is a monotonically increasing function, and its calculation

formula is shown in Equation (2.3).

xe
xSigmoid 

1
1)( (2.3)

As Figure 2.3 shows, the Sigmoid activation function is a monotonically increasing function

with an exponential shape, similar to biological neurons. It is also evident that the output values

are compressed to arbitrary numbers between (0, 1), which allows for categorization of certain

values for classification purposes. However, when the input data becomes very large or very

small, the output data is more likely to be compressed to 1 or 0, leading to a 'saturation effect'

that prevents timely updates of the network's parameters, thereby affecting the network's

performance.

Fig.2.3 Sigmoid function graph
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(b)Tanh function

The Tanh function is also a common activation function, and the Equation is shown in (2.4).

xx

xx

ee
eeTanh 






 (2.4)

As can be seen from Figure 2.4, the Tanh function is a standard hyperbolic tangent curve,

and it is also monotonically increasing. It was proposed based on the Sigmoid function, but the

difference is that the output values after being processed by the Tanh function range between (-1,

1). This helps to amplify certain feature effects during the training process. However, it still

exhibits a 'soft saturation phenomenon', which can lead to the vanishing gradient problem.

Fig.2.4 Tanh function graph

(c) ReLU Activation Function

The ReLU (Rectified Linear Unit) function can be regarded as a piecewise function, and its

calculation formula is shown in Equation (2.5).













0,0
0,

)(Re
x
xx

xLU (2.5)

As illustrated in Figure 2.5, the output of the ReLU function is either 0 or a positive number.

The gradient of the function is 1 when x > 0 and 0 when x < 0. Particularly, in the positive range

where x > 0, its gradient is constantly 1, effectively overcoming the gradient saturation issue. In
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terms of computational load, both the Sigmoid and Tanh functions require exponential

calculations, whereas the ReLU function is simpler in comparison. Additionally, experiments have

also found that the ReLU function is conducive to faster network training convergence, with the

model convergence speed increasing by nearly six times.

Fig.2.5 ReLU function graph

Loss Functions:

Loss functions are typically used to measure the deviation between a model's predictions

and the actual targets. During the training of a neural network, the aim is to minimize the

network's loss through parameter optimization, comparing the true values of the targets with the

predicted values of the model. The loss is then calculated using a loss function. Generally, the

smaller the loss, the higher the robustness of the model.

(a) Regression Loss Function

L1 loss function, also known as Mean Absolute Error, uses the average error magnitude as

the measure between the true value y and the predicted f(x) value. Its calculation formula is

shown in Equation (2.6).
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L2 loss function, or Mean Squared Error function, uses the sum of the squares of the

differences as a measure. Its calculation formula is shown in Equation (2.7).
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(b) Classification Loss Functions

0-1 Loss Function: It compares whether the output value is equal to the input value, i.e.,

whether the actual target value is equal to the prediction result. It is 0 if they are equal,

otherwise 1. The calculation formula is shown in Equation (2.8).
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Cross-Entropy Loss Function: Generally based on Softmax classification, it converts the

required output values into class probabilities through an exponential form. The calculation

formula is shown in Equation (2.9).
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2.1.2 YOLOv5s target detection

(1)YOLOv5

Compared to previous object detection algorithms that used a sliding window approach and

the time wastage issue caused by generating candidate regions, the introduction of the YOLO

(You Only Look Once) algorithm undoubtedly brought a new research direction to the field of

object detection. The YOLO algorithm eliminates the step of selecting candidate boxes and
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adopts a method of predicting bounding boxes, using the entire image as the input for network

prediction. In the output layer, it directly regresses the location and classification problem,

balancing real-time performance and accuracy.

The YOLOv5 algorithm uses a grid division method, dividing the input image into several

different detection regions. It uses the position of the target center to select the prediction

bounding box, predicting the target when the center point is located in a specific grid. The

divided cells are responsible for predicting the bounding box information and confidence, where

the confidence includes the confidence score of the predicted box's target and the accuracy of

the predicted box.In each data training load of the YOLOv5 algorithm, such as passing an RGB

image, the data loader scales the image, adjusts the color space, and applies Gaussian

preprocessing during training through the convolutional layers. These three methods achieve

data augmentation, thereby implementing secondary data feature processing.Using the

CSPDarknet53 backbone network, the algorithm extracts a large amount of deep features in the

image through continuous downsampling operations. It integrates all gradient changes into the

feature map, thereby reducing the number of parameters and FLOPs to increase the model's

training speed.

At the input end of the YOLOv5 model, the Mosaic method is mainly used for data

augmentation. During network training, due to dataset variations, the algorithm typically

initializes the size of the anchor boxes. Unlike the method of obtaining anchor box sizes using

K-means, the YOLOv5 algorithm embeds the calculation of anchor boxes into the overall code,

thus allowing for adaptive anchor box training and eliminating the need for 'extra' operations

before training. For different datasets, the adaptive computation generates prediction boxes
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based on the initial fixed size, then calculates the Loss by comparing them with the actual boxes,

continuously updating and calculating to determine the optimal size of the anchor boxes.

(2)YOLOv5s

In the DBT algorithm, the effectiveness of the detector significantly impacts the result of

target tracking. Moreover, the speed of the detector and the model size are crucial for achieving

real-time target tracking. Since most farmland sites utilize embedded devices with limited

computing power, deploying large-scale detection models is impractical. To minimize computing

costs and enhance practicality, this research selects YOLOv5s, the smallest model in the YOLOv5

series, as the foundational model for Chinese Yam detection. The structure of YOLOv5s is divided

into four main parts: Input, Backbone, Neck, and Head, as shown in Figure 2.6

Fig.2.6. Structure of YOLOv5s

The Input primarily involves data preprocessing, which includes Mosaic data augmentation,

adaptive image padding, and integrated adaptive anchor box calculations. This integration allows

for automatic adjustment of the initial anchor box size when switching datasets. The Backbone

network, through deep convolution operations, extracts various levels of features from the image.

It primarily utilizes BottleneckCSP (bottleneck cross-stage partial) and SPP (spatial pyramid
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pooling). The former aims to reduce computational load and improve inference speed, while the

latter facilitates feature extraction at different scales on the same feature map, thereby

enhancing detection accuracy.

The Neck layer comprises a Feature Pyramid Network (FPN) and a Path Aggregation Network

(PAN). The FPN conveys semantic information from the top down in the network, whereas the

PAN transmits positional information from the bottom up. This layer integrates information from

different layers in the Backbone to further improve detection capabilities. Finally, as the

concluding detection component, the Head outputs predictions for targets of varying sizes on

feature maps of different scales.

(3) YOLOv5s Fusion Attention Mechanism

In the field of computer vision, the effectiveness of the attention mechanism has been

well-established, finding widespread application in tasks like classification, detection, and

segmentation. Within CNN networks, the attention mechanism focuses on feature maps to

extract valuable attention information, which primarily includes spatial attention and channel

attention. The Convolutional Block Attention Module (CBAM) concurrently addresses both spatial

and channel information. It reconstructs the feature map in the network's intermediate layers

through two sub-modules: the Channel Attention Module (CAM) and the Spatial Attention

Module (SAM). These modules accentuate important features while suppressing general ones,

thereby enhancing the effectiveness of target detection. The structure of this mechanism is

depicted in Figure 2.7.
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Fig.2.7. Structure of CBAM

For the 3D feature map F∈ RC × H × W of a certain layer in the CNN network, CBAM

sequentially infers the 1D channel attention feature map Mc and the 2D spatial attention feature

map Ms from F, and performs element-by-element correlation respectively. Multiply, and finally

get the output feature map of the same dimension as F, as shown in Equation (2.10). Where F

represents the feature map of a network layer in the network, Mc(F) represents the channel

attention reconstruction of F by CAM, Ms(F′) represents the spatial attention reconstruction of F′

by SAM on the result of channel attention reconstruction, ⊗ means element-wise multiplication.

F’ = Mc (F) ⊗ F
F" = Ms(F') ⊗ F' (2.10)

The structure of the CAM (Channel Attention Module) and SAM (Spatial Attention Module)

is depicted in Figure 2.8 illustrates the computational process of CAM. In CAM, each channel of

the input feature map F simultaneously undergoes maximum and average pooling. The resulting

intermediate vector is then processed through a multi-layer perceptron (MLP). To reduce

computational complexity, the MLP is designed with only one hidden layer. The feature vector

output by the MLP is added element-wise and subjected to a Sigmoid activation operation to
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yield the channel attention Mc. Figure 2.8 below describes the computational process of SAM.

The feature map F’, activated by Mc, undergoes maximum and average pooling along the channel

direction. The intermediate vector obtained is then convolved, and the convolution result is

activated by a Sigmoid function to derive the spatial attention Ms.

Fig.2.8 Structure of CAM and SAM

One of the key functions of the attention mechanism is to reconstruct the feature map,

emphasizing important information while suppressing generic information. In the YOLOv5s

network, the most critical phase of feature extraction occurs in the backbone. Therefore, this

article integrates CBAM after the Backbone and before the Neck network for feature fusion. The

rationale for this placement is that YOLOv5s completes feature extraction in the Backbone, and

following the feature fusion in the Neck, it performs predictions on different feature maps.
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Implementing CBAM at this juncture serves to bridge past and future processes. The specific

structure is illustrated in Figure 2.9.

Fig.2.9. Structure of Neck integrating CBAM

(4) Loss function improvement

YOLOv5s uses GIoU Loss as the bounding box regression loss function to judge the distance

between the predicted box(PB)and the ground truth(GT),such as Equation (2.11):

GIoU = IoU − Ac−U
Ac

LGIoU = 1 − GIoU
(2.11)

In the Equation, IoU represents the intersection ratio of PB and GT, Ac represents the area

of the smallest rectangular box that includes PB and GT at the same time, U represents the union

of PB and GT, and LGIoU is the GIoU loss. The advantage of GIoU Loss is scale invariance, that is,
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the similarity of PB and GT has nothing to do with their spatial scale. The problem with GIoU Loss

is that when PB or GT is completely surrounded by the opponent, GIoU Loss completely

degenerates into IoU Loss. Because it relies heavily on IoU items, the convergence speed in actual

training is too slow, and the accuracy of the predicted bounding box is relatively low. For these

problems, CIoU Loss also considers the overlapping area of PB and GT, the distance between the

center points, and the aspect ratio, such as Equation (2.12):

CIoU = IoU − ρ2(b,bgt)
C2 − αγ

LGIoU = 1 − CIoU
(2.12)

In the Equation, b and bgt represent the center points of PB and GT, ρ2(...) represents the

Euclidean distance, c represents the shortest diagonal length of the smallest bounding box of PB

and GT, α represents a positive balance parameter,γ represents the consistency of the aspect

ratio of PB and GT. α and γ are defined as Equation (2.13):

γ = 4
π2 (arctan wgt

hgt − arctan w
h

)2

α = γ
(1−IoU)+γ

(2.13)

which wgt and hgt represent the width and height of GT and PB, respectively.

Compared with the GIoU Loss and CIoU Loss used in YOLOv5s, the penalty items of PB, GT

center distance and aspect ratio are added to the loss item, so that the network can ensure faster

convergence of the prediction frame during training and get a higher return. For positioning

accuracy, this research uses CIoU Loss as the loss function of the Chinese Yam detection network.

(5) NMS non-maximum suppression improvement
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In the prediction stage, Non-Maximum Suppression (NMS) is commonly employed to

eliminate redundant detection frames. The decision to remove a detection frame is based on the

Intersection over Union (IoU) ratio between a given frame and the frame with the highest

prediction score. If the IoU exceeds a predefined threshold, the predicted frame will be discarded.

While effective in general scenarios, this approach can be problematic in environments with

densely packed targets. Due to mutual occlusion, detection frames for different targets may be

closely positioned with significant overlap, leading to inadvertent removal by NMS and,

consequently, failure in target detection. In camera videos of yam fields, targets are often

concentrated in the middle of the image, representing a densely populated scene prone to

occlusion. To address this issue, this part adopts the Distance-IoU (DIoU) as the criterion for NMS,

aiming to improve target detection in such challenging environments.

DIoU considers the distance between the center points of two bounding boxes on the basis

of IoU, as in Equation (2.14):

DIoU = IoU − ρ2(b,bgt)
C2 (2.14)

b and bgt represent the center points of PB and GT, ρ2 (...) represents the Euclidean

distance, c represents the shortest diagonal length of the smallest bounding box of PB and GT.

DIoU-NMS is defined as Equation (2.15):

si =
si, DIoU(M, Bi) < ε

0, DIoU(M, Bi) ≥ ε
(2.15)

M represents a prediction frame with the highest prediction score, Bi represents the

prediction frame that needs to be removed, si represents the classification score, and ε
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represents the threshold of NMS.DIoU-NMS considers the IoU while judging the distance

between the center points of the two bounding boxes M and B. When the distance is far away,

the prediction box will not be removed, but another target is detected, which helps to solve the

mutual occlusion of the targets. The problem of missed detection in the case. This research uses

DIoU-NMS to replace the original NMS.

2.1.3 Deep-SORT object tracking

The multi-target online tracking algorithm SORT (Simple Online and Real-Time Tracking)

employs the Kalman filter and Hungarian matching algorithm. It utilizes the Intersection over

Union (IoU) between tracking and detection results as a cost matrix to implement a

straightforward, efficient, and practical tracking approach. However, a limitation of the SORT

algorithm is that its association metric is only effective when there is low uncertainty in state

estimation. Consequently, this can lead to a high frequency of identity switches during the

algorithm's execution, making tracking failures more likely. To address this issue, Deep-SORT

enhances the algorithm by combining the target's motion information and appearance

information as a correlation metric, thereby improving the robustness of target tracking.

(1) SORT algorithm process

The Kalman filter algorithm is one of the most commonly used algorithms in current

mainstream tracking algorithms and is a fusion algorithm often used in continuously changing

systems. Even in the presence of many uncertainties and external noise interference, the Kalman

filter can make corresponding predictions based on the target's previous motion, thereby
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obtaining the motion state information of the target at the next moment. In the prediction

process, the state equation is constructed based on the model of the detected target. The state

estimates obtained at different times are not the actual values, hence each state estimate at

every moment carries uncertainty. To better represent the degree of uncertainty in the estimated

states in the Kalman filter and the correlation between state variables (such as the correlation

between the position and velocity of a moving target), a covariance matrix P is usually used to

represent this. The Equation (2.16):

T
KKKKK FPFP 11   (2.16)

At the same time, in practical application scenarios, such as the control input vector

mentioned earlier, the estimation of predicted values will inevitably be subject to some noise

interference. Therefore, it is essential to consider the impact of the external environment.

Generally, this noise cannot be measured or eliminated through mathematical modeling and is

typically represented by a covariance matrix denoted as Q. Hence, by estimating the uncertainty

of the state and the uncertainty of external noise interference, we can derive the second formula

in the Kalman filter prediction process, as shown in Equation (2.17):

K
T
KKKKK QFPFP   11 (2.17)

The core of the SORT algorithm lies in the Kalman filter algorithm and the Hungarian

algorithm. The primary function of the Kalman filter is to predict the next moment's motion

variables based on the current series of motion variables, with the first detection result being

used to initialize the Kalman filter's motion variables. In simple terms, the Hungarian algorithm is
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used to solve allocation problems. It allocates a set of detection frames and frames predicted by

Kalman, enabling the Kalman-predicted frames to find the best matching detection frame, thus

facilitating effective tracking.

The workflow of the entire algorithm is as follows:

(1) Create corresponding Tracks from the detection results of the first frame. Initialize the

motion variable of the Kalman filter and predict its corresponding frame using the Kalman filter.

(2) Perform IOU matching between the frame of the frame target detection and the frame

predicted by Tracks from the previous frame, then calculate the cost matrix based on the IOU

matching result (calculated as 1-IOU).

(3) Use all the cost matrices obtained in step (2) as inputs for the Hungarian algorithm to

achieve linear matching. At this point, three outcomes are generated. The first is Unmatched

Track, where we directly delete the mismatched Tracks; the second is Unmatched Detection,

where we initialize such Detection as a new Track; the third is the successful pairing of the

detection frame and the predicted frame, indicating successful tracking from the previous to the

next frame, with the corresponding Tracks variable updated through the Kalman filter for the

corresponding Detection.

(4) Repeat steps (2)-(3) until the end of the video frames.

(2) Deep-SORT algorithm process

The DeepSort target tracking algorithm primarily predicts target positions based on the

intersection of the normal distribution functions of predicted effective targets and the actual



29

calculated normal distribution functions. It extracts and predicts information about the target in

the next frame based on the effective information of the features. The matching results of the

DeepSort algorithm are shown in Figure 2.10.

Fig.2.10. Matching result graph

The workflow of the entire algorithm is as follows:

(1) Create corresponding Tracks from the detection results of the first frame. Initialize the motion

variable of the Kalman filter and predict its corresponding frame using the Kalman filter. At this

stage, Tracks must be unconfirmed.

(2) Perform IOU matching between the frame from the target detection and the frame predicted

by Tracks in the first frame, then calculate the cost matrix using the IOU matching result

(calculated as 1-IOU).

(3) Use all the cost matrices obtained in step (2) as inputs for the Hungarian algorithm to achieve

linear matching. Three outcomes are possible at this point. The first is Unmatched Tracks; we

directly delete these mismatched Tracks, as they are in an uncertain state. If they are in a definite
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state, deletion can only occur after a certain number of occurrences (default 30 times). The

second is Unmatched Detections; we initialize such detections as new Tracks. The third is the

successful pairing of the detection frame and the predicted frame, indicating successful tracking

from the previous to the next frame. The corresponding Detections update their respective

Tracks variables through the Kalman Filter.

(4) Repeat steps (2)-(3) until confirmed Tracks appear or the video frame ends.

(5) Predict the boxes corresponding to the Tracks in both confirmed and uncertain states using

the Kalman filter. Cascade match the frames from the confirmed Tracks with the Detections. Save

the appearance features and motion information of the Detections each time Tracks are matched.

By default, the first 100 frames are saved, and this information is used for cascade matching with

the Detections, as confirmed state Tracks and Detections are more likely to match.

(6) Three outcomes are possible after cascade matching. The first one is Tracks matching, where

such Tracks update their corresponding variables through Kalman filtering. The second and third

are mismatches between Detections and Tracks. In this case, previously unconfirmed Tracks and

mismatched Tracks will be individually matched with Unmatched Detections for IOU matching.

The cost matrix will then be calculated based on the IOU matching results, using the calculation

method of 1-IOU.

(7) Repeat steps (5)-(6) until the end of the video frames.

(3) State Estimation and Tracking Processing

Deep-SORT uses the result of the detector to initialize the tracker. Each tracker will set a
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counter. After Kalman filtering, the counter is accumulated. When the prediction result and the

detection result successfully match, the counter is set to 0.If a tracker does not match a suitable

detection result within a period of time, the tracker is deleted.Deep-SORT assigns a tracker to the

new detection results in each frame. When the prediction results of the tracker match the

detection results for 3 consecutive frames, it is confirmed that a new track has appeared,

otherwise the tracker is deleted.

Deep-SORT uses an 8-dimensional state space (u, v, γ, h, ẋ, ẏ, γ̇, ḣ) to describe the state

of the target and its motion information in the image coordinate system. u and v represent the

center coordinates of the target detection frame, γ and h represent the aspect ratio and height

of the detection frame respectively, and (ẋ, ẏ, γ̇, ḣ) represent the relative speed of the first four

parameters in image coordinates. The algorithm uses a standard Kalman filter with a constant

velocity model and a linear observation model, taking the bounding box parameters (u,v,γ,h) as

direct observations of the object state.

(4) Allocation Problem

Deep-SORT combines motion information and appearance information, and uses the

Hungarian Algorithm to match prediction boxes and tracking boxes. For motion information, the

algorithm uses the Mahalanobis distance to describe the degree of correlation between the

Kalman filter prediction results and the detector results, such as the Equation (2.18):

)()(),(d 1)1(
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T
ij ydSydji   (2.18)

In the Equation, dj and yi represent the state vectors of the j-th detection result and the i-th
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prediction result respectively, and Si represents the covariance matrix between the detection

result and the average tracking result.

The Mahalanobis distance measures the standard deviation of the detection results from

the average tracking results, taking into account the uncertainty of the state estimation, and can

exclude low-probability associations.

When the uncertainty of target motion information is low, the Mahalanobis distance is a

suitable correlation factor, but when the target is occluded or the camera perspective shakes,

only using the Mahalanobis distance correlation will cause the target identity to switch. Therefore,

consider adding appearance information, calculate the corresponding appearance feature

descriptor rj for each detection frame dj, and set ∥rj∥=1 . For each tracking track k, set the

feature warehouse Rk=
kL
k

i
k 1
)( }r{  , which is used to save the feature descriptors of the last 100

objects successfully associated, Lk = 100. Calculate the minimum cosine distance between the

i-th tracking frame and the j-th detection frame, such as the Equation(2.19):
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When ),(d )2( ji is less than the specified threshold, the association is considered

successful.The Mahalanobis distance can provide reliable target location information in the case

of short-term prediction, and the cosine similarity of appearance features can be used to restore

the target ID when the target is occluded and reappears. In order to make the advantages of the

two metrics complement each other, a linear weighting method is used to combine:

),()1(),(c )2()1(
, jidjidji   (2.20)
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(5) Deep Appearance Features

Before the adoption of convolutional neural network-based tracking algorithms, target

tracking algorithms primarily relied on pure algorithms, with the cost matrix as the core

algorithm for tracking. However, there were issues in the tracking process, such as the extraction

of an object's feature information. Merely using two-dimensional information is not sufficient to

fully represent these features. Therefore, using only the cost matrix as the core algorithm does

not fully express the tracked object's feature information. After the application of convolutional

neural networks in target tracking algorithms, the SORT algorithm uses convolutional neural

networks to extract the appearance features of the target object to generate the cost matrix,

thereby improving target tracking. The DeepSort algorithm, on the other hand, combines the

Mahalanobis distance related to motion information and appearance feature information to

generate the cost matrix for feature extraction, and it also includes cascade matching to correlate

target data, thus accurately tracking target information.

Although the DeepSort tracking algorithm has improved stability and precision in tracking

Chinese yams compared to the SORT algorithm, and has reduced the frequency of ID switches

during tracking, its ability to extract features of target appearance in complex lighting

backgrounds is still relatively weak. This paper introduces the Darknet53 network as the primary

method for feature extraction, enhancing tracking precision in conjunction with the tracking

algorithm. The structure of the Darknet53 network is shown in Figure 2.11.
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Fig.2.11 Darknet53 network structure diagram

The original algorithm used a residual convolutional neural network to extract the

appearance features of targets and was trained on a large-scale pedestrian re-identification

dataset, making it suitable for pedestrian detection and tracking. As the original algorithm was

solely used for pedestrian categories, all input images were scaled to 128x64, which is

inconsistent with the aspect ratio of Chinese yam targets. To adapt the model for Chinese yam

feature extraction, the network model was modified. The adjusted network input image size is

256x64.



35

2.2 Results and Discussion

2.2.1 Dataset and Experimental Environment

The dataset used in the experiment is mainly from the Michishita Hironaga Farm in Obihiro

City, Hokkaido. The camera used is GoPro Hero 7 Black, and pixel count is 2.76 million pixels and

shot at 24fps. The camera is equipped with image stabilization for mounting the tractor on

unstable fields. Fix the GoPro camera on a tractor running in parallel and at constant speed,

taking a bird's-eye view of the Chinese Yams placed on the field. During image acquisition,

frame-triggered mode was used to capture images of Yams moving at a low speed, as in Fig.2.12.

The experiment uses PyTorch as the software framework, and the model training hardware

environment is Intel(R) Core(TM) i7−11800H (16 GB) and NVIDIA GeForce RTX 3060 Laptop GPU

(6 GB).



36

Fig.2.12 GoPro and dataset collection scenario

2.2.2 Parameter setting and evaluation index

Model training parameter settings: the input image size is 600×450, the number of iterations

is 100, the batch size is 16, and the initial learning rate is 0.001.

The recall rate Mr, the average precision Mp, the average missed detection rate Mm, and the

average false detection rate Mf are used as the evaluation criteria of the target detection model.
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In the Equation(2.21): TP is the yam that is correctly detected; FN is the yam that is not

detected; FP is the yam that is falsely detected; TN is the yam that is not falsely detected.

Define the number of real trajectories in the t frame as gt, the number of successfully

matched trajectories in these trajectories is recorded as ct, the matching cost of the i pair of

successful matches is recorded as dt
i, and the true trajectories that have not been successfully

matched are recorded as mt.The trajectory predicted by the model but not successfully matched

in the t frame is recorded as fpt. If there is an inconsistency in trajectory matching in two adjacent

frames, it means that identity switching has occurred, and the number is recorded as mmet.

Based on these definitions, some comprehensive multi-target tracking model performance
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evaluation indicators can be generated.
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The number of identity switching IDs and the number of tracking frames per second speed

are used as the evaluation criteria of the tracking model. The statistical accuracy of Chinese Yam

flow is used as the evaluation standard of the whole scheme.

2.2.3 YOLOv5s ablation and comparison experiment

In this paper, the dataset is randomly divided in a 6:2:2 ratio into training, validation, and

testing sets for the detection network. To verify the three improvement strategies proposed for

YOLOv5s, an ablation study was conducted on the dataset to assess the effectiveness of each

enhancement. CBAM and CIoU Loss were sequentially added to the initial YOLOv5s model. The

experiments did not utilize pre-trained models, and the training process followed the same

parameter configuration.



38

CBAM CIoU Loss Precision Recall AP@0.5

× × 90.2 93.9 93.3

√ × 92.6 96.8 95.1

× √ 91.0 93.7 94.2

√ √ 93.9 96.6 95.8

Table 2.1 Ablation of YOLOv5s

The first row of Table 2.1 displays the baseline performance of the original YOLOv5s on the

dataset, achieving an average detection accuracy of 93.3%. After introducing CBAM and CIoU

Loss separately, it is observed that CBAM more significantly enhances detection results, with

notable improvements in Precision, Recall, and AP, while the impact of CIoU Loss is slightly less

pronounced. This difference is attributed to the distinct functions of the two modules. The

attention mechanism, CBAM, is designed to enhance the network’s ability to extract important

features, resulting in increased accuracy. In contrast, CIoU Loss focuses on speeding up the

regression of the prediction frame and improving regression accuracy, leading to only a modest

improvement in detection accuracy. When both CBAM and CIoU Loss are introduced together,

the detection network achieves optimal results, with the average precision AP increasing by 2.5

percentage points compared to the original network. Some test results of CIoU Loss and

DIoU-NMS are visualized in Figure 2.13, demonstrating the detection of previously missed

Chinese yams while maintaining high detection accuracy.
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Fig.2.13 CBAM+CIoU Loss+DIoU-NMS of ablation result

For horizontal comparison, this part selects Faster R-CNN+FPN, YOLOv3+SPP, and

mobilenetv2-YOLOv4 to train and test on the same data set, all using pre-trained models. The

experimental results are shown in Table 2.2. It can be seen that the improved YOLOv5s in this

research is ahead of the other three networks in terms of detection rate FPS, weight size, and

average precision AP. For the network weight size, the original YOLOv5s is 7.2 MB, and the

improved network only increases 0.5MB.



40

Model Name FPS Weight Size/MB AP@0.5

Faster R-CNN+FPN 12 311 88.7

YOLOv3+SPP 56 238 92.1

Mobilenetv2_YOLOv4 82 47.59 93.5

Proposed 120 7.7 95.8

Table 2.2 Comparison of different detection networks

2.2.4 Deep Appearance Feature Extraction Network Experiment

The adjusted re-identification network is trained on the data-set YaRi, the input image size is

256×64, and the other parameters remain unchanged. Connect the improved YOLOv5s and

Deep-SORT after yam re-identification for testing, the results are shown in Table 2.3

Model Name IDs/time Speed/Hz

SORT 65 60

Deep-SORT 28 33

YaRi Deep-SORT 22 31

Table 2.3 Chinese Yam tracking experiment

Since the SORT algorithm only uses motion features as the basis for target association, a

total of 65identity switches occurred in the yam tracking of the above data. Compared with SORT,

Deep-SORT reduced by 56%, and the model after the yam re-identification in this research

further reduces IDs, not only IDs are reduced to 22 times, but also the detection speed can reach



41

31Hz on the local test platform, which meet the standard of real-time detection.

2.2.5 Statistical experiment of Chinese Yam quantity

This section adapts statistical methods used in pedestrian and vehicle flow monitoring, with

a key distinction: instead of moving detection targets and a fixed camera, it uses fixed detection

targets and a moving camera. This approach involves setting a detection line in the video to count

the flow of Chinese yams.

The method employed is as follows: a red dot is placed on the left border of the target

tracking bounding box to represent the target's trajectory, as shown in Figure 2.14. A virtual

detection line, perpendicular to the camera's direction of movement, is established on the field

road, as depicted in Figure 2.15. When the trajectory of a point representing the target tracking

frame intersects with the detection line, the total yam flow count is incremented, and the

coordinates of the point are recorded. Since the detection targets pass in only one direction,

there is no need for bidirectional counting. The test results are presented in Figure 2.16.

Fig.2.14 Target Tracking Bounding Box With Dot
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Fig.2.15 Virtual Vertical Detection Line

Fig.2.16 Statistical Results of Chinese Yam Traffic

The Chinese yam flow statistical test data collected in this part is manually counted and

compared with the experiment. The results are shown in Table 2.4. Each row of data represents

the traffic flow counted by manual statistics, the original algorithm and the improved algorithm

in the test video. From the results, it can be seen that the accuracy of the improved method

proposed in this research is higher than that of the original algorithm. Due to light problems and

soil coverage on the surface of yams, some yams may be missed, which affects the accuracy of
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target tracking.

Model Result

Manual Count 197

Original YOLOv5s+Deep-SORT 153

Proposed YOLOv5s+Deep-SORT 181

Table 2.4 Chinese Yam tracking experiment

2.2.6 Conclusion

In this chapter, the YOLOv5s model is strategically employed as a detector and seamlessly

integrated with the Deep-SORT target tracking methodology to accurately count the number of

Chinese Yams. This integration significantly amplifies the detector's accuracy, a result of

synergizing the CBAM attention mechanism with the robust capabilities of YOLOv5s. The

adoption of the CIoU Loss function and the DIoU-NMS non-maximum suppression method, in

lieu of the conventional GIoU Loss and standard NMS, marks a pivotal improvement. This

innovative replacement not only refines the detector's localization precision but also markedly

diminishes the occurrences of missed detections, particularly in complex scenarios where

Chinese Yams are densely clustered or overlapping.

Further augmenting the system's proficiency, the original feature extraction network within

Deep-SORT has been meticulously tailored for enhanced input adjustment and re-identification

training. This modification renders the algorithm exceptionally compatible with the unique

attributes of root crops, such as Chinese Yams. By integrating the advanced YOLOv5s detector
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into the algorithmic framework, a comprehensive experiment was conducted to enumerate

Chinese Yams. The experimental outcomes underscore the algorithm's exemplary statistical

precision, demonstrating its effectiveness in accurately identifying and counting Chinese Yams,

even in challenging agricultural environments. This advancement in detection and tracking

technology not only showcases the versatility of the integrated system but also opens up new

avenues for precision agriculture and automated crop monitoring.

Chapter 3 Defect detection and size grading
of yam in harvest

3.1Methodology

Quality assessment of Chinese Yam is an essential step in detecting defects and grading sizes

before market entry. Implementing quality inspection and graded sales enhances the overall

quality and market competitiveness of Yams. Currently, the inspection and grading of Yam quality

predominantly rely on manual processes. However, these methods face challenges such as low

efficiency, inconsistent accuracy, and a lack of uniformity. These issues significantly impede the

quality and efficiency of Yam grading, ultimately affecting market performance.

While traditional techniques have seen some success in detecting defects in Yams, they are

inherently complex, involving multiple steps and suffering from notable limitations in terms of

accuracy and flexibility. This complexity restricts their practical applicability.

Deep learning, with its automatic feature extraction capabilities, offers significant
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improvements over conventional image processing methods. It has already shown promising

results in detecting defects in fruits and vegetables like apples, cucumbers, and carrots, and is

increasingly being applied in assessing the appearance quality of root crops. Despite the

advancements in the performance of deep learning methods, they still face challenges related to

efficiency.

In the realm of size grading research, past studies have typically focused on classifying

agricultural products into 'normal' and 'defective' categories, without further grading within the

'normal' group. In real-world Yam processing, workers often first sort out defective Yams and

then classify the remaining normal Yams into different grades based on size. Therefore, there is a

pressing need to establish a specialized image acquisition system and develop effective methods

for both detecting and grading Yam defects.

The goal of this section is to devise an automated, online system capable of fulfilling the

requirements for accurate, real-time defect detection and the automatic grading of Yams. This

system is envisioned to revolutionize the Yam grading process, offering a high degree of precision

and efficiency. The development of such a system will not only streamline the grading process

but also ensure consistent quality standards, thereby boosting the marketability and consumer

appeal of Chinese Yams.

3.1.1 Materials

The underground tuber is the primary edible part of the Chinese Yam. During harvest, a

specialized two-tractor system is employed. The first tractor is fitted with a plow that efficiently
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uproots the Yams, which are then promptly loaded into containers on the following tractor.

Between these tractors, a team of workers diligently removes the soil from the unearthed Yams

and organizes them in the field. Following this, additional personnel behind the second tractor

engage in a preliminary manual inspection and grading process. They meticulously sort the Yams,

segregating any defective ones and classifying the ordinary Yams into various size-based grades.

This paper focuses on Yams of diverse sizes and shapes as experimental samples, encompassing a

range from healthy, normal Yams to those with defects such as curvature, forked roots, fractures,

or flattening, as illustrated in Fig.3.1.

Fig. 3.1. Defective Chinese Yams and Normal Chinese Yam.
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3.1.2. Dataset collection and Image acquisition

In the development of an automated yam quality assessment system, our

approach encompasses a comprehensive four-step process: dataset collection and

image acquisition, image preprocessing, defect detection, and yam grading. The initial

phase, dataset collection and image acquisition, is pivotal as it establishes the foundation for the

entire system. During this stage, a diverse array of yam images is captured under various

conditions, ensuring a rich dataset that includes multiple representations of yam defects and

varying degrees of ripeness. This step is critical for the success of the subsequent stages, as the

quality and diversity of the image dataset directly influence the system's capability to accurately

identify and classify defects.

The second step, image preprocessing, involves a series of techniques aimed at enhancing

the image quality and preparing the data for effective analysis. This includes standardization of

image sizes, adjustment of lighting conditions, and the application of filters for noise reduction.

By refining the image quality, this step ensures that the defect detection algorithms can operate

more efficiently and accurately.

In the third phase, defect detection, advanced image processing algorithms are employed to

analyze the preprocessed images. The goal here is to accurately identify any deviations from the

standard yam quality, such as blemishes, discolorations, or irregular shapes. This phase often

leverages sophisticated machine learning techniques, including convolutional neural networks, to

discern subtle defects that might be missed by the human eye.



48

The final step in our system is yam grading. Based on the outcome of the defect detection

analysis, each yam is assigned a grade that reflects its overall quality. This grading process

categorizes yams into various classes, ranging from premium to lower quality, based on

established industry standards or specific customer requirements. The grading system is crucial

for determining the market value of each yam and ensuring that quality standards are

consistently met.

Overall, this four-step process forms a robust framework for automated yam quality

assessment, enhancing both the efficiency and accuracy of yam grading in agricultural and

commercial contexts. The integration of advanced image processing and machine learning

techniques is instrumental in achieving high precision in defect detection and grading, thereby

promising significant improvements in the quality control measures for yam distribution. as

presented in Fig.3.2.
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Fig. 3.2. System technical flow chart

In our methodology, during the image acquisition phase, a specialized approach was

adopted to ensure the capture of high-quality images of yams. We utilized a frame-triggered

mode to photograph yams moving at a controlled, low speed. This method was particularly

effective in maintaining consistency in the imaging process, as it allowed for precise timing in

capturing images, thereby reducing motion blur and ensuring clarity. The low-speed movement

of the yams was critical in achieving uniform illumination across each image, which is a vital

factor in subsequent image analysis stages.

To address the challenges associated with varying lighting conditions and to achieve

brightness equalization in the captured images, we employed a novel approach centered around

the Ohta color space. The Ohta color space, known for its effectiveness in color segmentation and

insensitivity to illumination changes, provided a robust framework for our grayscale conversion
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method. By referring to the Ohta color space, we developed a new grayscale method that

significantly enhanced the detection of subtle variations in yam surface textures and defects,

which are often missed in standard RGB color space conversions.

This grayscale method in the Ohta color space involved converting the color images into a

format where the luminance (brightness) information is separated from the color information. By

focusing on luminance, we could more accurately analyze the textural and shape-related features

of the yams, which are crucial for defect detection. This method proved to be highly effective in

reducing the influence of color variations and shadows, leading to more reliable and consistent

image data for further processing steps.

The integration of the frame-triggered image acquisition mode with the advanced grayscale

conversion technique based on the Ohta color space was a significant advancement in our image

processing methodology. It ensured that the captured images of yams were of high quality, with

uniform brightness and enhanced detail visibility, setting a strong foundation for the subsequent

stages of image preprocessing, defect detection, and yam grading. This approach highlights the

importance of innovative techniques in overcoming common challenges in agricultural image

analysis, particularly in the context of automated quality assessment systems. we used a new

grayscale method calculated by Eq (3.1)

bgrgray IIII 5.025.2  (3.1)
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where Ir, Ig and Ib represent the red, green and blue components of the source image

Igray, respectively. The process of image preprocessing is illustrated in Fig.3.3.
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Fig.3.3 Illustration of image preprocessing. (a) Original Chinese Yam image of normal; gray image

and its binary images; gray image calculated by Eq.1 and its binary images. (b) Original Chinese Yam

image of fracture; gray image and its binary images; gray image calculated by Eq.1 and its binary

images. (c) Original Chinese Yam image of fork root; gray image and its binary images; gray image

calculated by Eq.1 and its binary images.

3.1.3. Chinese Yam defect detection model based on deep learning

In the development of our Yam Defect Detection Network (CDDNet), we strategically chose

to base our architecture on ShuffleNet, a network known for its lightweight and low-complexity

design. ShuffleNet is particularly renowned in the field of deep learning for its efficiency in
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processing, which stems from its unique use of pointwise group convolutions and channel shuffle

operations. These features enable ShuffleNet to maintain a balance between computational

efficiency and model accuracy, making it an ideal choice for applications where resources are

limited or where real-time processing is crucial.

Given the constraints often associated with training data in specialized domains like

agricultural product analysis, we integrated transfer learning into our CDDNet. Transfer learning is

a powerful technique in machine learning where a model developed for one task is repurposed

on a second, related task. By leveraging pre-trained models on extensive datasets, transfer

learning allows for significant improvements in learning efficiency and performance, especially in

scenarios with limited training data. This approach is particularly effective in object recognition

tasks, where nuanced features and patterns need to be discerned for accurate classification.

In the context of our system, the combination of ShuffleNet and transfer learning offers a

highly effective solution for online defect detection of Chinese Yams. The lightweight nature of

ShuffleNet ensures that our network remains computationally efficient, a critical factor for

real-time processing in online systems. Concurrently, the application of transfer learning

enhances the network's ability to accurately recognize and classify various defects in yams,

despite the potential limitations in the volume and variety of the training data.

The CDDNet, therefore, represents an innovative approach in the realm of agricultural

quality control, particularly suited to the challenges of detecting defects in Chinese Yams. This

network not only provides the accuracy needed for thorough defect detection but does so with

the efficiency required for integration into online processing systems, where speed and resource

optimization are key considerations, as illustrated in Fig. 3.4
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Fig.3.4 Model architecture of the proposed defect detection model. CDDNet model and its ShuffleNet

unit.

The proposed defect detection model, CDDNet, incorporates the advanced ShuffleNet unit,

a crucial element that significantly contributes to the model's efficiency and effectiveness. The

ShuffleNet unit, a key component of our CDDNet architecture, operates on a unique workflow

designed to optimize processing speed while maintaining high accuracy, making it particularly

suitable for real-time applications like defect detection in agricultural products.The workflow of

the ShuffleNet unit is characterized by its innovative use of grouped convolutions and a channel

shuffle operation. The grouped convolution technique divides the input channels into several

groups, and convolutions are performed within these groups. This approach reduces



55

computational complexity by decreasing the number of connections between layers compared to

standard convolutions. However, this reduction could lead to information bottlenecks as each

group is processed independently. To counter this, the ShuffleNet unit employs a channel shuffle

operation, which effectively rearranges the output channels of grouped convolutions. This

shuffling ensures cross-group information flow, allowing the network to maintain powerful

representational capabilities despite the reduced computational cost.

Additionally, the ShuffleNet unit integrates depth-wise separable convolutions, further

enhancing its efficiency. This involves decomposing a standard convolution into a depth-wise

convolution and a point-wise convolution, drastically reducing the number of parameters and

computational expense. The depth-wise convolution applies a single filter per input channel, and

the point-wise convolution, which is essentially a 1x1 convolution, combines the outputs of the

depth-wise layer. This separation allows for efficient feature extraction and combination, making

the ShuffleNet unit highly effective for processing complex image data like that of yam defects.In

the context of the CDDNet model, the incorporation of the ShuffleNet unit brings forth significant

advantages. It enables the model to rapidly process high volumes of image data, essential for

real-time defect detection, without compromising on the depth and quality of feature extraction

and analysis. This balance of speed and accuracy is pivotal in achieving a reliable and efficient

defect detection system, as required in the high-throughput and precision-oriented domain of

agricultural quality control. The ShuffleNet unit, with its unique workflow, stands as a core

component that elevates the CDDNet model to an advanced level of performance in the field of

automated defect detection.
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3.1.4. Size grading methods based on MBR fitting and convex polygon approximation

In our research, we developed an innovative approach for size grading of Chinese Yams,

integrating Minimum Bounding Rectangle (MBR) fitting and convex polygon approximation

methods. This technique was particularly designed to classify yams into different size

specifications based on their length, following the initial defect detection phase. Understanding

the correlation between the pixel dimensions in images and the actual physical dimensions of

yams is crucial for accurate size grading. Our method focuses on accurately estimating this

relationship, paving the way for precise and automated size classification.The process begins with

the calculation of the pixel length of the yams, which is achieved by determining the minimum

bounding rectangle (MBR) of the yam region in the image. The MBR fitting involves encapsulating

the yam in the smallest possible rectangle within the image frame, thus providing a pixel-based

representation of the yam's length and width. This method is advantageous as it simplifies the

complex shape of the yam into a more manageable geometric form, allowing for easier and more

accurate measurements.

However, to translate these pixel measurements into actual physical lengths, a new

regression method was proposed. This method involves using linear fitting techniques to

establish a robust relationship between the pixel length measured by the MBR and the real

length of the Chinese Yam. By analyzing a dataset of yams with known dimensions, we were able

to develop a regression model that accurately predicts the actual length of the yams based on

their pixel representation in the images.

Furthermore, to enhance the accuracy of our size grading method, we incorporated convex
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polygon approximation. This technique involves approximating the shape of the yam using a

convex polygon, which provides a more precise representation of the yam's outline compared to

the MBR. By combining the MBR fitting with convex polygon approximation, we were able to

refine our measurements and improve the overall reliability of our size grading approach.

In summary, the integration of MBR fitting and convex polygon approximation into our size

grading methods represents a significant advancement in the field of agricultural product

processing. This approach not only facilitates accurate size classification of Chinese Yams but also

exemplifies the potential of geometric and computational techniques in enhancing the efficiency

of agricultural sorting and grading systems. The development of such sophisticated methods is

crucial in meeting the growing demands for precision and automation in agricultural production

and distribution.

Can be described as follows:

Step 1: Convert the source image (Fig. 3.5) into binary image.
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Fig. 3.5 Fitting of Yam length：Source image; minimum bounding rectangle computation;

calculation of Lp;

Step 2: Compute the minimum bounding rectangle of the Chinese Yam region (Fig. 6) based on

approximation algorithm, and MBR[15]corner point positions tl (tlx, tly), tr (trx, try), bl (blx, bly),

br (brx, bry) can be obtained by the formula in Eqs. (3.2)–(3.5):
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In the realm of bounding rectangle, where θ is the angel (radian) of the object orientation.

(x1, y1) is the top edge point of Chinese Yam region, (x2, y2) is the bottom edge point, (x3, y3) is the

left edge point, and (x4, y4) is the right edge point. These markers are used to define the four

corners of the rectangle and thus determine the position and size of the bounding box. Through

these coordinates, the position and size of the rectangle can be clearly specified for graphics

processing and calculations.

Step 3: Calculate the pixel length Lp of Chinese Yam (Fig. 3.5).

Step 4: Establish the relationships between the actual length La (cm) and the pixel length Lp by

linear fitting (Fig. 3.6):

3241.01115.0L  pa L
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Fig. 3.6 linear fitting of La and Lp.

After obtaining the actual length L (cm), normal Chinese Yams can be divided into four size

grades: S, M, L and 2L by:

Grade=｛ S：La≤30cm;

M: 30cm<La≤50cm；

L：50cm<La≤70cm;

2L: La >70cm;

According to the grading requirements for Chinese Yam sales, the normal shape of Chinese

Yam should be natural and uniform. Based on the shape characteristics of Yams, a convex polygon

approximation method is proposed, dividing each specification into two levels (Level 1 and Level

2) to maintain consistency and uniformity in appearance (Fig. 3.7). An external convex polygon is
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generated to approximate the contour of the Chinese Yams, and shape regularity Rs was defined

as (3.6):

p

c
s A

A
R

where Ac is the area of Chinese Yam region and Ap is the area of its external

convex polygon. Rs is used to measure the regularity of Chinese Yam shape, and its

value ranges from 0 to 1. The bigger the Rs, the more regular the Yam is. In addition,

it is not affected by image size and ChineseYam position, and has good adaptability.

Fig. 3.7 Two specifications divided with convex polygon.

A threshold T can be set to classify ChineseYam into two levels (Fig.3.8):
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Fig.3.8 Two specifications divided into two levels

3.1.5 Algorithm of defect detection and grading

In this part, it present a detailed algorithm for defect detection and grading of

agricultural products, specifically focusing on Chinese Yams. This algorithm, referred

to as Algorithm 3.1: Defect Detection and Grading, is a comprehensive process that

integrates advanced image analysis techniques with custom-designed classification

rules.

The algorithm commences with an input source image, denoted as 'I', of a yam.
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The initial step involves setting a decision signal, 's', to -1, which acts as a flag for the

processing status. The core of the algorithm is a loop that applies our custom-designed

CDDNet model for defect detection on each image 'i' derived from the source image

'I'. The CDDNet model evaluates the image and returns a defect flag, 'dFlag'. If 'dFlag'

equals 'defective', the algorithm sets the decision signal 's' to 0, indicating the

presence of a defect, and terminates further processing for that particular image.

In cases where no defects are detected, and 's' remains at -1, the algorithm

proceeds to the grading phase. This involves calculating the actual length 'La' of the

yam using the Minimum Bounding Rectangle (MBR) fitting method. The MBR

method provides an efficient way to measure the yam's size based on its pixel

dimensions in the image.

Depending on the computed length 'La', the yam is then classified into different

levels using a set of predefined size thresholds and the polygon approximation method.

For instance, if 'La' is less than or equal to 30, the yam is classified into one of two

levels (s=1 or 2). Similarly, yams with lengths within the ranges of 31-50, 51-70, and

above 70 are classified into levels s=3,4; s=5,6; and s=7,8, respectively. This

classification is based on both the size and shape of the yams, with the polygon

approximation method offering a refined analysis of the yam's geometric properties.

The output of the algorithm is the decision signal 's', which provides a

comprehensive assessment of each yam, indicating both its quality in terms of defect

presence and its size category.
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Algorithm 3.1. Defect detection and grading

Algorithm 3.1: Defect detection and grading

Input:Source image I ;

Output:Decision signal s ;

Initialization s= -1 ;

for i do

Defect detection on image i by CDDNet: dFlag=CDDNet(i)

if(dFlag=’defective’)

S=0;

exit for

end if

end for

if(s=-1)

Calculate the actual length La of image I by MBR fitting method;

If(La≤30)then classify I into two levels(s=1,2)by polygon Approximation

method;

else if(La≤50)then classify I into two levels(s=3,4);

else if(La≤70)then classify I into two levels(s=5,6);

else classify I into two levels(s=7,8);

end if
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end if

return s;

3.1.6 Evaluation standards

In the evaluation of proposed model for defect detection and grading of

agricultural products, particularly Chinese Yams, implemented comprehensive

standards to assess its performance rigorously. To ensure an objective and

multifaceted analysis, five key statistical parameters were calculated: Accuracy,

Recall, Specificity, Precision, and F1-Score. These parameters are foundational in the

field of machine learning and provide a holistic view of the model's effectiveness.

Accuracy: This parameter measures the overall correctness of the model and is

calculated as the ratio of correctly identified instances (both true positives and true

negatives) to the total number of instances. It provides a general idea of the model's

performance across all classes.

Recall (Sensitivity): Recall assesses the model's ability to correctly identify

positive instances. It is the ratio of true positives to the sum of true positives and false

negatives. In the context of defect detection, it reflects the model's capability to
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correctly identify all defective yams.

Specificity: Specificity measures the model’s ability to correctly identify

negative instances. It is the ratio of true negatives to the sum of true negatives and

false positives. This is crucial for ensuring that non-defective yams are not incorrectly

classified as defective.

Precision: Precision indicates the accuracy of positive predictions. It is calculated

as the ratio of true positives to the sum of true positives and false positives. A high

precision means that a large proportion of yams predicted as defective are indeed

defective.

F1-Score: The F1-Score is the harmonic mean of precision and recall. It is a

single metric that combines both precision and recall to give a balanced view of the

model's overall performance, particularly when the classes are imbalanced.

which are specified by Equations(3.7)(3.8)(3.9)(3.10)(3.11) :

FNFPTNTP
TNTPAccuracy
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

 (10)
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

S (12)
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FPTP
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callecision
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
 (14)

These parameters were derived from the confusion matrix elements: True

Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).

These elements represent the correctly and incorrectly classified instances in different

categories. To validate model, constructed four distinct image datasets, each designed

for different experimental purposes. These datasets were collected using our

specialized image acquisition system, ensuring a variety of scenarios and conditions

typical in yam processing and grading. The diversity of these datasets is critical for

testing the robustness and adaptability of the model under different conditions,

ranging from varying lighting and background scenarios to different yam sizes and

defect types.
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Dataset Name Categories Training size Validation size Total size

Dataset 1 Normal 1684 726 2439

Defective 3579 1566 5227

Dataset 2 Normal 700 300 1000

Fork roots 212 91 303

Curve 409 75 478

Fracture 988 422 1396

Dataset 3 S - 238 238

M - 245 245

L - 211 211

2L - 211 211

Dataset 4 Level 1 - 649 649

Level 2 - 217 217

Table 3.1 Description of four image datasets.

3.2 Results and Discussion

3.2.1 Effects of model parameters on CDDNet

This part of the research is dedicated to analyzing how various parameters within

the CDDNet model influence its overall performance and efficiency, particularly in
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the context of defect detection in Chinese Yams. CDDNet, being a deep learning

model, consists of numerous parameters that can be tuned to optimize its performance.

These parameters include, but are not limited to, the number of layers, the size of the

convolutional filters, learning rate, and the number of neurons in each layer. The

impact of these parameters on the model's ability to accurately detect defects in yams

is critical to the success of the system.

Number of Layers and Filter Size: The depth of the network (number of layers)

and the size of the convolutional filters play a crucial role in determining the model's

capability to extract and learn features from the input images. A deeper network with

more layers can potentially learn more complex features, but it also increases the risk

of overfitting and requires more computational resources. Conversely, shallower

networks are quicker and require less data to train but might not capture detailed

features effectively.

Learning Rate: The learning rate is a key hyperparameter that controls the rate at

which the model learns. A higher learning rate allows the model to learn faster, but it

can overshoot the optimal solution. A lower learning rate ensures more precise

learning but at the cost of increased training time.

Regularization Techniques: Parameters concerning regularization techniques like

dropout rates and L2 regularization are also vital. These techniques help prevent
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overfitting by penalizing the model for complexity, ensuring that the model

generalizes well to new, unseen data.

Batch Size and Epochs: The batch size and the number of epochs the model is

trained for are other crucial parameters. The batch size determines the number of

samples the model sees before updating its weights, and the number of epochs

determines how many times the entire dataset is passed through the network.

In this section, provide a detailed analysis of how these parameters were adjusted

and the consequent effects on the model's performance. For instance, we discuss the

trade-offs between model complexity and computational efficiency, and how we

struck a balance to ensure real-time processing capabilities without sacrificing

accuracy. This involved rigorous experimentation, where the model was trained and

tested under various parameter configurations, and the results were meticulously

recorded and analyzed.The discussion also includes insights into how certain

parameter choices led to improvements in specific aspects of the model, such as

increased accuracy in defect detection or faster processing times, which are crucial for

real-time applications. This comprehensive analysis not only demonstrates the

effectiveness of CDDNet in its current configuration but also provides a valuable

foundation for future research.

Effect of batch size:
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In our research, we conducted a detailed exploration of the impact of batch size

on the training dynamics and detection performance of CDDNet, our convolutional

neural network model designed for defect detection in Chinese Yams. Batch size, a

critical hyperparameter in CNN training, essentially dictates the number of samples

processed before the model updates its internal parameters. This size plays a

significant role in determining the direction and stability of the gradient descent

during optimization, influencing both the training efficiency and model accuracy.For

smaller datasets, it's often feasible to use the entire dataset as the batch size,

benefiting from a precise gradient calculation at each step. However, with larger

datasets, such an approach becomes impractical due to memory constraints. Moreover,

excessively large batch sizes can lead to insufficient memory errors, halting the

training process. Therefore, selecting an appropriate batch size is crucial for balancing

memory usage with the speed and stability of the training process.

In our experiments, we tested various batch sizes (10, 20, 40, 80, and 160) to

train and validate CDDNet on dataset 1. Figure 10 in our paper illustrates the

relationship between batch size and two key outcomes: validation accuracy and

training time, over 10 epochs of training. Validation accuracy, a measure of the

model’s generalization ability, exhibited a trend where it initially increased with batch

size and then decreased, suggesting an optimal point. Notably, the highest accuracy

was observed at a batch size of 40.Concurrently, the analysis of training time revealed

that it decreased with increasing batch size up to 40, beyond which no significant

change was observed. This suggests that larger batch sizes do not necessarily confer a
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time advantage, likely due to the overhead of processing larger data chunks per

iteration.

Considering these findings, a batch size of 40 was identified as the optimal

choice for CDDNet. This size offers a balanced trade-off between the model's

generalization ability and training efficiency. By optimizing the batch size, we were

able to enhance the training process, ensuring quicker convergence to high accuracy

levels, which is pivotal for the practical deployment of the model in real-world

agricultural settings.

Effect of the learning rate:

The learning rate is a fundamental hyperparameter in deep learning that plays a

pivotal role in the convergence of the objective function during model training. It

essentially determines the step size at each iteration while moving toward a minimum

of the loss function. A well-chosen learning rate ensures that the model learns

efficiently and effectively, striking a balance between the speed of convergence and

the risk of overshooting the minimum. In our study, we conducted thorough

experiments to identify an optimal learning rate for CDDNet, a model specifically

designed for detecting defects in Chinese Yams. For this purpose, CDDNet was

trained and validated on dataset 1 using a range of learning rates: 0.05, 0.01, 0.005,

0.001, 0.0005, 0.0001, 0.00005, and 0.00001. These experiments were critical in
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understanding how different learning rates impact the model's ability to generalize, as

reflected by its validation accuracy.

The results, as presented in Figure 3.9 of our study, indicate a clear pattern: both

excessively high and excessively low learning rates lead to suboptimal validation

accuracy. Specifically, a learning rate of 0.00001 was too small, causing the model to

learn very slowly and possibly get stuck in local minima, while a rate of 0.05 was too

large, leading to erratic and unstable training progress, where the model potentially

overshoots the optimal point in the loss landscape. The optimal performance was

observed at a learning rate of 0.0005. This rate strikes an effective balance, providing

a sufficiently fast convergence rate while maintaining stability in the training process.

It allowed the model to steadily decrease the loss and avoid getting trapped in local

minima or skipping over the global minimum.

Selecting this appropriate learning rate was crucial for the efficiency and

effectiveness of the CDDNet model. It demonstrates the sensitivity of deep learning

models to learning rate settings and highlights the necessity of meticulous

hyperparameter tuning in developing robust models for practical applications, such as

in agricultural defect detection where precision and reliability are of utmost

importance.
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Fig. 3.9 Validation accuracy of different learning rate.

3.2.2 Performance of CDDNet to detect defective Chinese Yams

To rigorously assess the efficacy of CDDNet in detecting defects in Chinese

Yams, we conducted a series of experiments using two distinct datasets: Dataset 1,

which focused on binary classification (defective or non-defective), and Dataset 2,

aimed at multiclass classification (categorizing various types of defects). These

experimental trials were essential for evaluating CDDNet's performance in real-world

scenarios and for benchmarking it against traditional manual inspection methods

employed by workers, as well as comparing it with several prominent deep learning

models, including AlexNet, ResNet, MobileNet v2, and ShuffleNet.

In these comparative analyses, the performance of CDDNet and the other deep

learning models was quantified using average values of statistical parameters, as

defined by specific equations in our study. These parameters included metrics such as
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accuracy, precision, recall, F1-score, and specificity, offering a comprehensive view

of each model's capabilities in terms of both accuracy and reliability in defect

detection. All deep learning models in our study, including CDDNet, were trained

over a span of 10 epochs. This duration was chosen to balance between adequate

learning and computational efficiency. We employed the cross-entropy loss function

and the Adam optimizer for training, with the learning rate set to 0.0005, a value

determined from previous experiments to be optimal for our model's performance.

The experimental setup consisted of a computer equipped with an Intel(R)

CoreTM i7-6700 processor at 3.20GHz, 16GB RAM, and running on Windows 11

operating system. This hardware configuration ensured sufficient computational

power to handle the demands of training complex deep learning models without

significant bottlenecks in processing speed. These experiments not only provided

insights into CDDNet's performance in comparison to both traditional and modern

automated methods but also highlighted the model's potential in revolutionizing

defect detection in agricultural products. By comparing CDDNet with both manual

inspection methods and other deep learning approaches, we aimed to demonstrate its

practical applicability and superiority in various aspects, including accuracy,

consistency, and efficiency in defect detection. Such comprehensive evaluation is

crucial for advancing agricultural technology and meeting the increasing demand for

quality and precision in food production and processing.

Performance evaluation of CDDNet for binary classification:
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Table 3.2 in our study provides a comprehensive overview of various

performance metrics for different deep learning models, including AlexNet, ResNet50,

MobileNet v2, ShuffleNet, and our proposed CDDNet, in the context of binary

classification of Chinese Yam defects. These metrics encompass accuracy, recall,

specificity, precision, F1-Score, training time, processing time, and model size.

Notably, the accuracy of manual defect detection methods by workers was

significantly lower compared to these advanced deep learning models. Traditional

manual methods typically involve several complex and inflexible steps such as

background removal, region of interest detection, and custom feature design for each

type of defect. In contrast, deep learning models have the capability to automatically

extract features relevant to Yam defects with minimal prior knowledge, offering a

more efficient and accurate approach.

Focusing on CDDNet, the model demonstrated exceptional performance, with

accuracy, precision, specificity, sensitivity, and F1-Score being 98.94%, 99.02%,

98.93%, 98.76%, and 98.87%, respectively. These figures are only marginally lower

than those of ResNet, which had 98.98%, 100%, 98.93%, 98.71%, and 98.92%

respectively. However, the most significant advantage of CDDNet over ResNet lies in

its training and processing efficiency, as well as its compact model size. CDDNet's

training time is only about one-eighteenth of that required by ResNet, and its model

size is merely one-thirtieth of ResNet’s. When compared to the original ShuffleNet,

CDDNet showed a reduction in model size but still maintained high detection
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accuracy. These characteristics underline the importance of selecting an appropriate

model and network structure tailored for ChineseYam defect detection.

Furthermore, time efficiency is a critical factor in the grading of Yams. As

illustrated in the data, CDDNet not only provides high accuracy in defect detection

but also meets the requirements for real-time processing. With a processing time of

only 25 milliseconds per image and a substantially reduced model size of 2.1 MB,

CDDNet is well-suited for integration into automated systems where rapid, on-the-fly

defect detection is essential. This combination of high accuracy, speed, and

compactness makes CDDNet an outstanding model for real-time defect detection,

significantly outperforming traditional methods and offering a practical solution in

agricultural grading and quality control processes.

Methods AlexN

et

ResNe

t50

Mobile

Netv2

Shuffl

eNet

CDD

Net

Accurac

y(%)

97.98±

0.60

98.98±

0.90

98.06±0

.19

98.89±

0.27

98.94±

0.11

Recall(%

)

98.10±

0.76

100 100 99.08±

0.06

99.02±

0.10

Specifici

ty(%)

97.92±

0.97

98.93±

0.11

97.56±0

.29

98.80±

0.32

98.93±

0.19

Precision

(%)

96.64±

1.98

98.71±

0.32

95.88±0

.59

98.45±

0.57

98.76±

0.32
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F1-Score

(%)

97.35±

0.91

98.92±

0.13

97.47±0

.30

98.76±

0.33

98.87±

0.17

Training

time(min)

243.2 2033.2 245.7 114.0 107.5

Processi

ng time(ms)

54.4 84.7 48.7 26.4 25.0

Model

size(MB)

213.5 85.9 7.8 2.7 2.1

Table 3.2. Experimental results of the defect detection performance of binary classification

3.2.3 Performance evaluation of CDDNet for multiclass classification

Table 3.3 in research provides a detailed comparison between various deep

learning models and traditional handcrafted methods in a multi-class classification

task, focusing on the detection of different types of defects in Yams. The models

compared include well-known deep learning architectures such as AlexNet, ResNet50,

MobileNetv2, ShuffleNet, and our proposed model, CDDNet. The defects categorized

for this experiment are normal, curve, fork root, and fracture.

Methods Handcr

afted

Ale

xNet

ResN

et50

MobileNe

tv2

Shuffl

eNet

CD

DNet
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Normal(

%)

91.12 95.

71±3.62

97.03

±2.16

98.09±0.8

8

97.98

±0.96

97.

45±0.95

Curve(

%)

93.84 90.

31±9.80

95.29

±1.76

91.59±2.9

1

92.08

±4.80

96.

93±2.36

Fork

root(%)

95.43 93.

17±3.41

90.59

±8.41

90.81±8.3

0

95.66

±2.88

91.

05±7.22

Fracture

(%)

81.09 84.

25±11.1

4

88.43

±3.10

80.89±6.9

1

83.04

±7.84

76.

87±6.94

Total(%

)

90.92 91.

19±4.10

94.19

±0.60

91.56±1.8

0

92.54

±1.46

92.

92±1.60

Training

time(min)

- 55 446 91 44 43

Processi

ng time(ms)

- 54.

4

84.7 48.7 26.4 25.

0

Table 3.3 Experimental results of the multiclass detection performance.

The ResNet model emerged as the top performer in terms of detection accuracy,

achieving 94.19%, while CDDNet recorded an accuracy of 92.92%. Although slightly

lower in accuracy, CDDNet's most notable advantage lies in its significantly shorter

training time compared to ResNet. This balance between time efficiency and accuracy

demonstrates CDDNet's overall superiority in the multiclass classification task.An

intriguing observation from the experiment is the variance in detection accuracy
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across different defect types. The accuracy for detecting normal and curved Yams is

relatively high, indicating effective feature recognition by the models for these

categories. However, the accuracy significantly drops for fork roots and fractures,

with fractures being particularly challenging. This discrepancy can be attributed to

two primary factors:

Sample Imbalance Problem: The dataset used in the experiment exhibits a

substantial imbalance in sample sizes among different defect categories. For example,

there are 138 curve samples but only 29 fibrous root samples. This imbalance can lead

to a bias in the classification models, as they tend to perform better on defect types

with more abundant data. To mitigate this issue, various strategies can be employed,

such as data augmentation, oversampling and undersampling techniques, or manual

generation of data samples. In future work, we plan to expand the dataset by

collecting more Yam samples or employing data augmentation techniques to enhance

the diversity and volume of image samples, thereby improving CDDNet's

performance.

Variety of Defect Appearance: Different types of defects, such as mechanical

damage, decay, bruises, and wormholes, result in a wide variance in surface

appearance. This diversity makes it challenging for CDDNet to extract effective

features consistently across all defect types. One potential solution to this issue is to

categorize each distinct appearance as a separate category, allowing the model to
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specialize in recognizing specific defect characteristics.

Overall, the findings from Table 3.3 highlight the complexities involved in defect

detection in agricultural products and underscore the necessity for continuous

improvement and adaptation of deep learning models like CDDNet. By addressing

these challenges, we aim to enhance the accuracy and reliability of defect detection,

thereby contributing to more efficient and effective quality control processes.

3.2.4 Comparison with previous studies

We delve into the complexities of comparing our CDDNet model with other

studies in the realm of agricultural defect detection. A notable challenge in this

comparative analysis stems from the absence of universally accessible, standardized

datasets that can serve as benchmarks within this field. The majority of existing

studies on defect detection in agricultural products rely on their unique, proprietary

datasets. This practice, while understandable, poses significant obstacles in directly

comparing the effectiveness of different models, as each is tailored to specific data

characteristics.To ensure a level playing field for comparison, our study adopts a

uniform approach in training all evaluated deep learning models, employing

consistent model parameters across the board. This strategy includes the use of a

pre-trained AlexNet model for experimental purposes, avoiding direct comparisons
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with the experimental results of other studies. Consequently, our research focuses on

comparing the performance of CDDNet with our previous work, as well as with some

of the most prevalent deep learning methods, namely AlexNet, ResNet, and

ShuffleNet, utilizing our own specifically curated dataset.

While acknowledging the limitations of not having a comprehensive comparison

with a wide array of studies, it is important to note the specific context of our research.

Given the relatively few studies that employ computer vision for defect detection in

Chinese Yams, our work presents several distinct advantages. Notably, CDDNet

demonstrates robust defect detection capabilities without the need for manually

defined features or extensive preprocessing. This attribute suggests that CDDNet can

be readily adapted for use with other agricultural products, provided a sufficiently

comprehensive dataset is available. Consequently, our model holds promising

potential for application in the defect detection of a broad range of root and tuber

agricultural products, demonstrating its versatility and broad applicability in the

agricultural sector. This aspect of CDDNet underscores its value not only as a tool for

Yam inspection but also as a flexible solution adaptable to various agricultural quality

control scenarios.

3.2.5 Evaluation of MBR fitting method

We present an in-depth analysis of the effectiveness of our proposed method for
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grading ChineseYams based on size. For this experiment, a total of 419 ChineseYams,

categorized into four distinct size grades (S, M, L, 2L), were selected as experimental

samples from a farm in Obihiro, Hokkaido. Utilizing a computer vision system,

images of these yams were captured and subsequently graded using the MBR

(Minimum Bounding Rectangle) fitting method. The accuracy of the MBR fitting

method was thoroughly validated against traditional manual measurements. The

manual grading process involved measuring the actual length of each Yam with a ruler,

the results of which are depicted in Figure 3.10 of our research. It's important to note

that manual methods are subject to significant subjectivity and variability in stability.

This inconsistency is evident even when the same individual performs repeated

measurements, leading to fluctuations in the results.
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Fig 3.10 Confusion matrix of (a) manual method by workers and (b) proposed method.

Our experimental findings demonstrated that the overall accuracy achieved by

our MBR fitting method was an impressive 92.8%, markedly surpassing the accuracy

of the manual method, which stood at 83.1%. When delving into the accuracy across

different size grades, it was observed that the manual method's accuracy varied

substantially. For smaller sizes (S and M), the accuracy was notably lower at 78.4%

and 69.9%, respectively. In contrast, for larger sizes (L and 2L), the accuracy

improved significantly, reaching 90.7% and 95.8%. Meanwhile, the MBR fitting

method consistently maintained high accuracy across all size grades: 91.7% for S,

89.4% for M, 94.4% for L, and an impressive 96.3% for 2L. These results

unequivocally demonstrate the superior reliability and accuracy of our method

compared to manual grading.

To the best of our knowledge, there is currently no existing research focusing on

the fitting and grading of Chinese Yam size using a method similar to ours. Therefore,

in this study, our comparison is primarily limited to manual methods. The drawbacks

of manual grading, including its low accuracy and inherent instability, are clearly
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highlighted through our analysis. In contrast, our MBR fitting method offers

substantial improvements in classification accuracy and reliability. This advancement

is not just a step forward in the precision and efficiency of Yam classification but also

a significant contribution to the field of agricultural product grading, showcasing the

potential of computer vision and machine learning techniques in modern agricultural

practices.

3.2.6 Practicability of the proposed approach

The practicability of our proposed approach is demonstrated through the

development of a comprehensive defect detection and image recognition system,

specifically tailored for Chinese Yam grading. This system integrates the practical size

and grade specifications prevalent in the processing of Chinese Yams. It employs

CDDNet, our custom-developed deep learning model, to initially screen and identify

defective Yams, which may include various defects such as curvature, fork roots,

fractures, or flatness. Subsequently, the system utilizes an advanced grading method

to classify the non-defective, or normal, Chinese Yams into their respective

specifications and grades.This integrated approach marks a significant advancement

over previous methodologies. Our system aligns closely with the actual operational

processes involved in Yam grading and is designed for ease of application in

real-world scenarios. The CDDNet model within this system exhibits a high

proficiency in detecting most defects that can affect the appearance quality of Chinese
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Yams, thereby enhancing the overall efficacy of the grading process.

Currently, most relevant research in the field predominantly focuses on the

detection of surface defects in root crops prior to harvesting. However, reports on

post-harvest yam grading using computer vision are relatively scarce. Our method

fills this gap, providing a straightforward and practical solution for yam grading.

Despite existing grading standards for yams, which often consider factors like shape

uniformity, surface smoothness, color uniformity, and maturity, many of these criteria

are qualitative and challenging to quantify objectively.

Looking forward, our research aims to delve deeper into establishing more

precise and quantifiable quality grading standards for yams. This future work will

encompass a broader range of factors, including but not limited to flatness, color

uniformity, size, and maturity. By integrating these additional parameters into our

grading system, we seek to develop a more holistic and accurate approach to yam

quality assessment. This endeavor is not just a technical challenge but also a step

towards modernizing agricultural practices, ensuring consistent quality in food

products, and meeting the increasing demands for precision in agricultural production

and processing.

3.2.7 Conclusion

In conclusion, this chapter highlights the significant research importance and
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practical application value of combining deep learning with computer vision for the

detection of defects and automatic size grading in Chinese Yams. This innovative

approach surpasses the limitations inherent in traditional worker manual methods,

utilizing advanced computer vision and deep learning technologies to achieve

accurate detection and automated grading of Chinese Yam defects. This methodology

not only enhances the efficiency of quality inspection processes but also provides

robust support for the estimation of harvest yields of Chinese Yams and other similar

root crops.

Throughout this chapter, we have comprehensively discussed various aspects of

quality inspection, including the design of the image acquisition system, the

development of quality inspection methods, and the establishment of grading

standards. A pivotal component of our research is the development of CDDNet, a

lightweight network based on ShuffleNet and transfer learning, specifically tailored

for defect detection in ChineseYams. Additionally, we introduced a novel size grading

method that employs MBR fitting and convex polygon approximation, demonstrating

the versatility of our approach.

The experimental results underscore the effectiveness of our proposed methods.

CDDNet achieved impressive detection accuracies of 98.94% in binary classification

and 92.92% in multiclass classification. Furthermore, the size grading accuracy using

MBR fitting and convex polygon approximation was recorded at 92.8% and 95.1%,

respectively. These results not only fulfill the objectives of this study but also validate

the feasibility of using deep learning for Chinese Yam defect detection. They pave the
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way for implementing similar techniques in the defect detection and size grading of a

broader range of root crops.

Overall, the integration of deep learning and computer vision in this domain

represents a significant step forward in agricultural technology. It offers a practical

and highly effective solution for enhancing the quality control processes in the

agricultural sector, promising to revolutionize how we approach crop grading and

yield estimation. As we continue to refine and improve these techniques, there is a

clear potential for broader applications, extending beyond Chinese Yams to other root

corp products, thereby contributing to more efficient, precise, and sustainable

agricultural practices.

Chapter 4 Geospatial mapping of yam count
and its visualization

The integration of geospatial technology in agricultural practices, particularly in

crop analysis and harvesting, has emerged as a transformative approach in modern

farming. This chapter focuses on the innovative use of Geospatial Navigation Satellite

System (GNSS) technology and Geographic Information Systems (GIS), specifically

QGIS, for the mapping and visualization of yam counts. These technologies provide
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farmers with invaluable insights, facilitating informed decision-making and

optimizing resource allocation for both pre- and post-harvesting activities.

4.1Methodology

4.1.1 Overview of geospatial mapping in agriculture

Geospatial mapping in agriculture refers to the use of geographic information

system (GIS) technologies to collect, display, and analyze spatial data related to

agricultural activities. This technology is increasingly important in modern farming,

as it allows for more precise and efficient practices. Here are some key aspects and

applications of geospatial mapping in agriculture:

(1) Land Use Planning and Management: Farmers and agricultural planners use

geospatial data to assess land suitability for various crops, understand soil types and

topography, and plan land use to optimize crop yields.

(2) Precision Agriculture: Geospatial technologies enable precision agriculture,

where farmers can apply inputs like water, fertilizer, and pesticides in exact amounts

needed at specific locations in a field. This is made possible through the use of GPS

technology, satellite imagery, and field sensors.

(3) Crop Monitoring and Health Assessment: Satellite and drone imagery are

used to monitor crop growth, identify stress areas, and detect diseases or pest

infestations. This allows for timely intervention to protect crops.
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(4) Irrigation Management: Geospatial mapping helps in designing efficient

irrigation systems and managing water resources effectively. It can identify areas of a

field that require more or less water, aiding in conservation and reducing waste.

(5) Yield Prediction and Harvest Planning: By analyzing historical geospatial

data alongside current conditions, farmers can predict crop yields more accurately.

This helps in harvest planning and logistics management.

(6) Climate Change Impact Analysis: Geospatial mapping plays a crucial role in

understanding the impacts of climate change on agriculture. It helps in modeling

future scenarios and developing adaptation strategies.

(7) Supply Chain and Distribution Optimization: Geospatial data aids in

optimizing the supply chain for agricultural products. It helps in identifying the best

routes for transportation, reducing costs and improving efficiency.

(8) Disaster Management and Mitigation: In the event of natural disasters like

floods or droughts, geospatial mapping can help assess damage, plan recovery efforts,

and develop mitigation strategies.

(9) Regulatory Compliance and Reporting: Farmers can use geospatial data to

ensure compliance with environmental regulations and reporting requirements, such

as proving adherence to sustainable farming practices.

(10) Educational and Research Applications: Academics and researchers use

geospatial data to study agricultural trends, develop new farming techniques, and

educate future generations of farmers.

In summary, geospatial mapping is a crucial tool in modern agriculture,
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enhancing productivity, sustainability, and resilience. Its applications range from

day-to-day farm management to long-term strategic planning and policy-making.

4.1.2 Importance of precise yam count and mapping for yield estimation

The precise counting and mapping of yam plants are critically important for yield

estimation in agriculture, particularly in regions where yams are a staple food and a

key agricultural product. Accurate yam count and mapping provide several significant

benefits:

(1) Yield Prediction and Planning: Accurate yam counts allow for better

prediction of crop yields. This information is vital for farmers to plan for the market

supply, manage storage needs, and forecast income. It also assists in making informed

decisions about resource allocation for the upcoming planting seasons.

(2) Resource Optimization: Knowing the exact number of yam plants helps in

optimizing the use of resources like fertilizers, water, and pesticides. Precise mapping

ensures that these resources are applied efficiently, targeting areas that need them

most, thus reducing waste and cost.

(3) Disease and Pest Management: With precise mapping, farmers can quickly

identify areas where yam plants may be suffering from diseases or pest infestations.

This allows for targeted interventions, minimizing the spread of problems and

reducing the overall use of pesticides.

(4) Irrigation Management: In areas where irrigation is necessary, knowing the

exact location and density of yam plants aids in designing more effective irrigation
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systems. This ensures that water is distributed evenly and optimally across the entire

crop.

(5) Land Use Efficiency: Precise yam counting and mapping help in

understanding the spatial distribution of the crops, which in turn aids in better land

use management. This can lead to more efficient planting strategies and higher overall

productivity per unit of land.

(6) Data for Research and Improvement: Accurate data on yam counts and their

spatial distribution is valuable for agricultural research. It can be used to study plant

growth patterns, breed improvement, and the development of more efficient farming

techniques.

(7) Market and Supply Chain Management: For stakeholders in the supply chain,

precise yield estimation is crucial for planning transportation, storage, and distribution.

It helps in managing the supply chain more effectively, reducing losses and improving

market supply.

(8) Financial Planning and Credit Access: Farmers with accurate yield estimates

can better plan their finances. This information can also be important when seeking

credit, as it provides a more reliable estimate of the farmer's potential income.

(9) Policy Making and Food Security: On a larger scale, accurate information

about yam yields is important for regional and national agricultural policy-making. It

contributes to assessments of food security and can guide investment in agricultural

infrastructure and support services.

In summary, the precise counting and mapping of yams are fundamental for
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efficient agricultural practices, optimal resource use, effective market planning, and

the overall sustainability of yam farming. This precision aids not only individual

farmers but also contributes to larger economic and food security strategies.

4.1.3 GNSS in Precision Agricultural

Today, there are two Global Navigation Satellite Systems (GNSS) that are fully

operational and commercially available to provide all-weather guidance virtually 24 h

a day anywhere on the surface of the earth. GNSS are the collection of localization

systems that use satellites to know the location of a user receiver in a global

(Earth-centered) coordinate system and this has become the positioning system of

choice for precision agriculture technologies. At present North American Positioning

System known as Navigation by Satellite Timing and Ranging Global Position

System (NAVSTAR GPS or simply GPS) and Russian Positioning System known as

Globalnaya Navigatsionnaya Sputnikovaya Sistema or Global Navigation Satellite

System (GLONASS) both qualify as GNSS.

The basic principle of operation on which GNSS systems is based is often

referred to as resection (also called triangulation), and it involves estimating the

distances from at least three satellites orbiting the Earth along different and

sufficiently separated trajectories to determine the position of an object in 2-D along
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with the uncertainty in measurement. Typically, each GPS satellite continuously

transmits at least two carrier waves consisting of two or more codes, and a navigation

message. GNSS receivers measure the time it takes for the signal to travel from the

transmitter on the satellite to the receptor in the receiver antenna and use that time to

calculate the distance (or range) between them. To perform a positioning or navigation

task, a GNSS receiver must lock onto the signals from at least three satellites to

calculate a two-dimensional (2D) position (latitude and longitude). If four or more

satellites are in view, the receiver can determine three-dimensional (3D) position

(latitude, longitude, and altitude) of the user.

(1) Applications of GNSS in agriculture

The use of satellite-based localization solutions, particularly GNSS receivers, has

become increasingly sophisticated and prevalent in agriculture. These receivers play a

crucial role in precision agriculture technologies, where accurate position information

is essential for site-specific crop management. However, the level of positioning

accuracy required varies depending on the agricultural task. For operations such as

yield monitoring, soil sampling, or variable rate applications, submeter accuracy

differential GPS (DGPS) is sufficient, as errors below 1 meter are acceptable. In

contrast, tasks like mechanical intra-row weed control, thinning of crop plants, precise

planting, or autonomous navigation within tight rows require decimeter- or even

centimeter-level accuracy. This higher degree of precision can be achieved with

real-time kinematic GPS (RTK-GPS).
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While there are various global positioning satellite systems available, GPS and

GLONASS are currently the only two fully operational GNSS systems. Both systems

are similar, but the North American GPS has been in continuous use since the

mid-1990s and many agricultural applications have been developed using this

system.In recent years, the application of GPS in agriculture has surged, and the

literature is replete with many interesting examples. This discussion will focus on six

specific applications, which the authors have been closely involved in:

1) Yield monitoring;

2) Compaction profile sensing;

3) Site-specific fumigant application for tree planting;

4) RTK GPS-based plant mapping;

5) Precise weed management system;

6) Robotic applications in agriculture.

(2)Yield monitors

The ability to continuously monitor and map yield during harvest, and to

understand its spatial variability, is a crucial aspect of site-specific crop management.

This spatial variation in yield data often mirrors differences in soil composition, plant

growth, and environmental factors within a field. Yield monitors, extensively used by

farmers, consultants, and researchers, have been instrumental in mapping the yields of
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various crops. However, the adoption of precision agriculture practices has been most

prominent in grains, oilseeds, and cotton.

In terms of technology, cereal grain combines typically employ physical sensors

to gauge grain flow, whereas cotton yield monitors utilize microwave or near-infrared

sensors to quantify the cotton harvest. A GPS device is integral to the yield monitor

system, providing essential position data to pinpoint spatial variations in crop yield.

Additionally, other sensors like a forward speed sensor (such as radar, ultrasonic

sensor, or magnetic pickup on the transmission drive shaft), crop moisture sensor, and

header height sensor are mounted on the combine. The synergy of these sensors and

instruments enables the mapping of spatial yield variability, leading to the creation of

detailed yield maps. These maps are invaluable in tracking field performance over

time and in delineating different management zones for field inputs.In a specific study,

soil samples were collected from a depth of 0-20 cm in the spring, on a 20x20 m grid,

resulting in 133 samples. The soil was analyzed for various properties, including

texture (sand, silt, clay), organic matter (OM), phosphorus (P), and potassium (K).

Kriged maps of each soil property and crop yield were created using Surfer software.

In this particular case, the main contributor to spatial variability in cotton yield was

identified as the variation in soil texture, especially in sand and clay content. This

variation significantly affected water content distribution and, consequently, the

uniformity of plant growth.
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4.1.4 QGIS in mapping agricultural

The development of GIS follows two principal development paradigms: the open

source or the closed source development model. In the open-source model, the

source code is typically published under a free software license, which grants the user

four essential freedoms: the right to run the code for any purpose; to study how the

code works and to modify it; to redistribute copies and even redistribute modified

copies. Besides the desktop GIS applications, the QGIS project also provides server

and related web mapping applications, as well as versions adapted to the

requirements of mobile devices.

QGIS is an open-source GIS project, which was started in 2002. The initial goal

of the QGIS project was to create a spatial data viewer. Today, QGIS has reached

a point in its evolution where it is used by a variety of users for daily spatial data

viewing, editing and analysis tasks as well as in education . Plugins are defined as

components that can form user interfaces and interact with users to realize

algorithms.

QGIS runs on most Linux and Unix platforms, windows and Mac OS X and it

has been published under the GNU and General Public License (GPL). The QGIS

core is developed using the Qt toolkit and C++. Furthermore, QGIS provides a python

interface (API), which is used to expand its functionality. As noted, a powerful python

interface can help to efficiently exploit the capabilities of a GIS and integrate different
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tools and programming languages to expand it. This effect an increasing number of

contributions, has been very noticeable since the introduction of the QGIS python API

in QGIS 3.3 when the new developers started to add functionality using python

plugins.

4.1.5 Transferring and loading GPS data

In the realm of geospatial analysis, the integration of GPS data into GIS software

stands as a crucial process, and Quantum GIS (QGIS) offers a robust platform for

such integration. The procedure of transferring and loading GPS data into QGIS

involves several key steps, starting with the acquisition of data in standard GPS

formats, such as GPX (GPS Exchange Format). This data, often comprising

waypoints, tracks, and routes, encapsulates critical spatial information collected in the

field. Upon initiating QGIS, this data is imported through the ‘Add Vector Layer’

function, found under the 'Layer' menu, facilitating a seamless transition from raw

GPS data to a geospatially-referenced format displayed on the QGIS interface. The

significance of this process lies not only in the visual representation of the data on a

map but also in its readiness for subsequent analytical tasks. QGIS, with its

comprehensive toolbox, allows for a range of manipulations and analyses, including

but not limited to spatial querying, overlay analysis, and temporal-spatial mapping.

This integration thus plays a pivotal role in transforming raw field data into actionable
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insights, applicable across a myriad of disciplines such as environmental monitoring,

urban planning, and agricultural management. Through this methodology, QGIS

effectively bridges the gap between on-field GPS data collection and desktop-based

geospatial analysis, underscoring its utility as a powerful tool in the arsenal of

researchers and practitioners in the field of geographic information systems, as Figure

4.1. and 4.2

Fig. 4.1 Load GPS data dialog box

Fig. 4.2 QGIS map containing geographical information of collected data
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4.2Results and Discussion

4.2.1 Algorithm for correlating geographical Data with Video Frames

GNSS capturing is synchronized with GoPro video capturing so we are able to

match the GNSS coordinates with the video during the counting process. During data

gathering, the GoPro consistently records its current coordinate, as Figure 4.3. After

video data capturing and analysis are complete, we annotate the counts from the video

frames with their respective location on a map. To accomplish this, we record the

frequency at which the GPS points are captured and assign a GPS point to a set of

frames. In this research, we record 1 GPS point every 15 s (GPS period). Our video is

recorded at 30 frames per second, which means 1 GPS point is assigned to every 450

frames (15 * 30). Then formulate an equation for the frames per GPS point in

Equation (4.1).

frames_per_GPS_point = GPS_period∗ frames_per_second (4.1)
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Fig. 4.3 Track recording of GoPro video capture

We then utilize YOLO+Deepsort to pass the line count (Chapter 2) next to the

yam counting pipeline, which increments until the maximum number of frames per

GPS point is reached. As such, the count is precisely recorded with the exact

geolocation. The counter is reinitialized after each GPS annotation and the following

GPS point is ready to be assigned.

Lat Lng Count

42.71909 143.26337 13

42.71909 143.26337 15

42.71909 143.26337 10

42.71832 143.26251 8
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42.71832 143.26251 9

42.71832 143.26251 12

42.71740 143.26109 10

42.71740 143.26109 8

42.71740 143.26109 13

Table 4.1 A sample from the GNSS data in an excel sheet after counting.

The GPS coordinates and their recorded count are used to provide better

visualization of the data. (Table 4.1) Research aim is to create a map containing the

yield information at a point-by-point basis on a map. To do so, then use the Folium

package in Python based on the QGIS and create a map containing GPS points with a

tooltip containing the count in an OpenStreetMap template. A runtime visualization is

shown in Figure 4.4
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Fig. 4.4 Mapping the data after counting.

4.2.2 Statistical Methods for Spatial Data

It is an essential topic in the field of spatial analysis, focusing on understanding

the distribution patterns of various phenomena, central to this study are spatial auto

correlation techniques like Moran's I and Geary's C. These methods are instrumental

in deciphering whether high yam counts are mere random occurrences scattered

across a field or if they exhibit a pattern of clustering in specific areas. Moran's I is

particularly adept at identifying and measuring the degree of clustering or dispersion,

providing insights into the spatial relationships between observed data points. On the

other hand, Geary's C offers a contrasting approach, emphasizing the dissimilarities

between neighboring data points, As Equation (4.2) Together, these techniques
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empower researchers and agronomists to analyze yam counts more comprehensively,

leading to a deeper understanding of their spatial distribution.
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Where I is is Moran's I, N is the number of spatial units indexed by i and j,Wij is

the spatial weight between units i and j, Xi is the value at unit i.

4.2.3 Visualizing the Yield Distribution Map

This Figure 4.5 is a testament to the capabilities of QGIS in transforming raw

agricultural data into a comprehensive visual tool for yield analysis. It presents a yield

distribution map of Chinese yam crops overlaid on a high-resolution satellite image of

the farmland. The map is divided into a grid, where each cell is color-coded to

represent varying levels of yield. In this instance, lighter shades indicate areas with

lower yields of Chinese yam, providing a clear visual cue to areas that may require

more attention or different cultivation strategies. Conversely, the cells with darker

hues pinpoint regions of higher productivity, highlighting the most fertile and efficient

areas of the farm. This differentiation allows for a nuanced analysis of the land,

enabling farmers to identify patterns in root crop performance that correlate with

environmental and management variables. The precise GNSS coordinates associated

with each cell ensure the accuracy of the data, lending credibility to the subsequent

analytics derived from the map. By offering a spatially explicit representation of yield
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variability, this map serves as an invaluable resource for decision-making, allowing

for targeted interventions that can enhance both the yield and sustainability of the

farming practices employed for Chinese yam cultivation.

Fig. 4.5 Chinese yam yield map visualization
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Chapter 5 Conclusion

In summary, this research introduces a groundbreaking approach in the realm of

precision agriculture, specifically tailored for the yield estimation of Chinese Yams

(Dioscorea polystachya). As a vital root crop in Japan, the accurate assessment of

yam yield is crucial for efficient agricultural planning and management. This study

presents an innovative framework that marries the capabilities of computer vision

and deep learning, offering a sophisticated yet practical solution for farmers. The

primary objective is to provide accurate yield estimates from video footage of

harvested yams, with the added benefits of defect detection and size grading.

Key components of the framework include:

Counting Yams with Enhanced Detection: This research has made a significant

leap in object detection by integrating the attention module Convolutional Block

Attention Module (CBAM) into the YOLOv5s network. This integration has led to a

marked improvement in feature extraction capabilities, essential for accurate yam

counting. The system is designed to count yams as they pass a virtual detection line

in video footage. It employs the Complete Intersection over Union (CIoU) Loss

function, which enhances the accuracy of bounding box predictions. Further

refinements to the Deep-SORT network reduce the issues of identity switches and

target overlap, common challenges in object tracking. This robust system ensures
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precise yam counting, which is a fundamental aspect of yield estimation.

Defect Detection and Size Grading: Recognizing the importance of quality

assessment, the study introduces the CDD Net, a lightweight deep learning model.

This model is ingeniously crafted using Shuffle-Net architecture and transfer learning

techniques, enabling it to accurately identify yams with surface and shape defects.

The approach takes into account the diverse nature of defects that can occur in yams,

ranging from minor blemishes to significant shape deformities. To further enhance

the model's accuracy, methodologies involving Minimum Bounding Rectangle (MBR)

fitting and convex polygon approximation are employed. These methodologies allow

for not only high-accuracy defect classification but also precise size grading of the

yams. Such detailed assessment is invaluable for quality control and helps in

categorizing yams for various market requirements.

This research represents a significant advancement in agricultural technology,

offering a scalable and efficient solution for yam yield estimation. It demonstrates

how innovative technology can be effectively harnessed to address specific

challenges in agriculture, thereby contributing to the broader goals of sustainable

farming and food security.
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