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Abstract

Machine Learning (ML) continues to progress in various application areas

such as healthcare, finance, and autonomous vehicles, where the accuracy of

ML models is crucial due to the severe consequences that errors can cause,

including harm to humans. The reliability of these models is paramount,

particularly when dealing with imperfect data, which is often compromised

by various factors: insufficient information due to the high costs associated

with manual labeling, data bias stemming from changing environments and

privacy concerns, label noise caused by human or sensor errors, and vulner-

ability to attacks like adversarial noise and distribution shifts. Despite

substantial research efforts in addressing imperfect data challenges in ML,

the existing methods have several limitations, such as unsupervised outlier

removal can eliminate anomalies but may discard valuable data, reducing

classification accuracy. Robust Huber loss, known to be effective in regres-

sion, performs less well in classification. Regularization techniques miti-

gate overfitting but struggle with noise. This thesis presents methodologies

equipped with robust loss functions that are effective in both classification

and regression. Noise-against-regularization techniques and strategies for

handling label noise are also addressed. It is structured into three distinct

parts, each focusing on addressing specific imperfections in real-world data:

Part I focuses on Semi-Supervised Learning (SSL) under limited labeled

data, Part II on Transfer Learning (TL) across different data domains, and

Part III on Learning with Label Noise, for improving ML model precision

and generalizability.

For Part I of the thesis, Semi-Supervised Learning (SSL) frequently

confronts the challenge of having only a limited amount of labeled data

available for training. Furthermore, the presence of data noise, arising from



various sources such as measurement errors or data collection imperfec-

tions, can undermine the accuracy of SSL models. To tackle these issues,

we introduce Robust Embedding Regression (RER). RER achieves this by

constructing a robust graph that adaptively adjusts weights for each data

point, effectively reducing the influence of data noise on the learning pro-

cess. Additionally, RER incorporates a low-rank representation to enhance

the utilization of limited labeled data and mitigate the impact of redundant

features. Further robustness is achieved through the introduction of appro-

priate norms to both reconstruction and regularization terms, facilitating

feature and sample selection. Our method has been proven through exten-

sive experiments to maintain a classification rate of over 46.67% on datasets

with varying degrees of random noise or continuous noise, representing a

32.67% improvement over comparative semi-supervised methods.

In Part II, domain shift introduces disparities and variations in the data

that can hinder effective knowledge transfer. To address the imperfections

resulting from domain shift, we introduce the Redirected Transfer Learning

(RTL) approach. By reconstructing target samples using the lowest-rank

representation obtained from source samples, RTL effectively mitigates the

impact of domain shift on data imperfections. Additionally, RTL incorpo-

rates the L2,1-norm sparsity on the reconstruction and regularization terms

to enhance robustness against data variations. RTL also introduces a redi-

rected label strategy that transforms binary labels into continuous values,

aiding adaptation to the diverse data distributions resulting from domain

shift. The superiority of our method in classification tasks is confirmed on

several cross-domain datasets, for example, RTL attained about 5%-10%

improvements on average compared to the latest published methods.

Part III of the thesis tackles challenges in Partial Multi-Label Learn-

ing (PML), where instances are associated with the incomplete labeling of

data, making it difficult to build accurate predictive models. Traditional

PML methods, which utilize pre-defined graphs for label disambiguation,

lack adaptability to changing data relationships and diminished effective-

ness in scenarios with label uncertainty. Common two-step graph-based



approaches, involving static graph construction and subsequent label prop-

agation, often result in suboptimal label confidence learning. Addressing

these limitations, our research proposes a novel framework named Adap-

tive Dual Graph Disambiguation (ADGD) that simultaneously learns dual

adaptive graphs and a sparse projection matrix. These graphs, one cap-

turing instance interrelationships and the other focusing on label correla-

tions, are dynamically updated to better handle label noise and enhance

label confidence. The integration of L2,1 norm in both the regression and

regularization terms introduces robustness and ability of feature selection.

Additionally, the sparsity of projection potentially contributes to reducing

label ambiguity, further refining the label disambiguation process in PML.

Extensive experiments conducted on databases with noises in both feature

space and label space have confirmed the superiority of the proposed meth-

ods.
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1

Introduction

1.1 Background

Machine Learning (ML) has seen remarkable advancements in recent years, revolu-

tionizing industries with its ability to process and learn from vast amounts of data,

particularly in areas such as healthcare, finance, and autonomous vehicles. In health-

care [1], ML algorithms are being utilized for diagnostic purposes, drug discovery, and

personalized treatment plans. In finance [47], ML models are applied to fraud detec-

tion, risk management, and algorithmic trading. In the autonomous vehicles sector,

ML is crucial for navigation, obstacle detection, and decision-making [5].

However, the dependence on ML in these fields introduces significant risks. For

example, Figure 1.1, showcasing the torus dataset with extremely sparse labeled points,

vividly illustrates the challenge of limited labeled data availability in machine learning,

particularly in semi-supervised learning scenarios. In this dataset, each class comprises

100 data points, only 3 points per class are labeled. This situation mirrors real-world

scenarios where acquiring labeled data is often costly and labor-intensive, particularly

in expert-driven sectors like healthcare. The scarcity of labels can result in models

that are poorly trained and outperform on new, unseen data. To address this, self-

training techniques [6], where the model iteratively labels the unlabeled data, are used

to expand the training dataset and improve model generalization. Co-training [111]

proposed to utilize two different views of the data to label more examples, capitalizing

on the agreement between different algorithms. Recent research focuses on graph-based

methods [64], which build a graph that captures the relationships between labeled and
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1. INTRODUCTION

Figure 1.1: A 3D scatter plot of a torus dataset used in semi-supervised learning. Torus

dataset contains 100 data points for each class, yet only 3 data points per class are labeled

( and  ). The remaining data points are unlabeled (# and #), demonstrating the

challenge of working with extremely limited labeled data in a semi-supervised learning

context.

unlabeled data points to propagate labels.

Furthermore, as illustrated in Fig. 1.2, we often utilize data from distinct domains,

such as the VisDA-2017 dataset which includes synthetic renderings of 3D models and

real-world images. This comparison exemplifies the difference between data domains

in machine learning. The synthetic images could be from a simulated environment or

a video game, which often have simplified textures and shapes. In contrast, the real

images come from the physical world and contain a higher level of complexity, including

varied lighting, shadows, textures, and backgrounds. Transfer learning emerges as a

crucial methodology to surmount this challenge by applying knowledge gained in one

domain (e.g., synthetic data) to another domain (e.g., real-world data). Models trained

2



1.1 Background

Figure 1.2: Samples from the VisDA-2017 dataset. The top row shows synthetic ren-

derings of various vehicles and the bottom row shows their real-world counterparts. Each

row represents a class category from two domains which exhibit a diverse array of lighting,

angles, and backgrounds, highlighting the significant variation and challenges involved in

transfer learning across different domains.

on synthetic data might not perform well when directly applied to real-world data due to

huge differences. Transfer learning allows these models to adapt to the new domain by

fine-tuning the learned representations or features with a (usually smaller) set of labeled

real-world data, thereby achieving better performance than training from scratch on

the new domain [52].

In the context of learning with label noise, as illustrated by Figure 1.3, training data

may include incorrect labels—such as the mislabeling of an image with an ocean, beach,

and mountain as also containing an airplane, a boat, and a person. This label noise

can severely degrade the performance of machine learning models. Consequently, noise-

robust training algorithms are essential for mitigating the adverse effects of inaccurately

labeled data. These algorithms employ robust loss functions specifically designed to

be less sensitive to label noise [18]. Additionally, noise cleaning techniques [79] are

employed to identify and remove or correct mislabeled data points, thus purifying the

training set. Some approaches go a step further by modeling label noise directly within

the training process [62], enabling the model to account for the possibility of incorrect

labels and adjust its learning trajectory accordingly. By integrating these strategies,

it’s possible to enhance model robustness and maintain high performance even when

label noise is present.

All these issues are part of what is commonly referred to as the imperfect data

problem, and ensuring the accuracy and dependability of ML models in the face of such

challenges is of the utmost importance.
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Figure 1.3: Example of Label Noise in Multi-Label Classification. An image labeled with

multiple concepts, including ’ocean’, ’beach’, ’airplane’, ’mountain’, ’boat’, and ’person’.

However, ’airplane’, ’boat’, and ’person’ serve as examples of label noise—incorrect anno-

tations that can mislead the learning process.

1.2 Motivations

In the preceding section, we tackled the issue of imperfect data—a prevalent challenge

in the field of machine learning. Numerous methods have been developed to deal

with various forms of data imperfection, achieving notable success in enhancing model

performance. Nonetheless, these current methodologies exhibit a range of deficiencies

that necessitate further investigation and innovation. Among the limitations of current

approaches are:

• Semi-Supervised Learning: Although current semi-supervised learning meth-

ods have effectively utilized both labeled data and unlabeled data, most meth-

ods perform badly when confronted with datasets that contain considerable data

noise and redundant information. There’s a pressing need to refine these methods

to reduce their sensitivity to noise and outliers in feature space and to harness

label information more effectively, particularly within an affinity graph for low-

dimensional embedding. These challenges have yet to be adequately addressed

within the semi-supervised learning framework.

• Transfer Learning: Many existing transfer learning techniques employ a 0-1

matrix for labels, which significantly restricts the flexibility of the learning pro-
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cess. Furthermore, a major limitation of these methods is their susceptibility to

the redundant features and noise present in cross-domain data. Such challenges

hinder the effective application of transfer learning in diverse and noisy environ-

ments, necessitating the development of more adaptable and robust approaches.

• Label Noise-Resistant Learning: Rather than only focusing on the presence

of noise within labels, this paper acknowledges that noisy and redundant fea-

tures within the data can also exacerbate the effects of incorrect labels. Current

methods do not adequately counter this issue, leading to a need for more robust

approaches that can perform feature selection and extraction in the presence of

such noise.

Motivated by these challenges, our research proposes innovative machine learning

solutions designed to be robust against the multifaceted nature of data imperfections.

By enhancing the ability to learn from noisy data, improving the transfer of knowledge

across different domains, and refining the process of dealing with label noise, we strive

to create algorithms that can yield accurate and reliable results in the face of imperfect

data.

1.3 Thesis Organization

According to the motivations mentioned previously, the remainder of this thesis consists

of 6 chapters: Chapter 2 reviews the related works from three domains, Chapter 3 in-

troduces the detailed research methodology, Chapter 4 presents a novel semi-supervised

learning method, Chapter 5 proposes a novel method in transfer learning, Chapter 6

addresses the problem of mislabeling and feature noise by designing a novel method.

learning method. Finally, Chapter 7 concludes this thesis and discusses the future work

motivated by the thesis.
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Literature Review

In the realm of machine learning, the presence of imperfect data poses a significant

threat to the efficacy and reliability of algorithms. As machine learning increasingly

permeates various aspects of technology and society, the robustness of these algorithms

against the complexities of data becomes paramount. Imperfect data, characterized by

limited labeled samples, similar yet distributionally diverse data from different domains,

or data annotated with multiple labels that may contain noisy or irrelevant labels,

presents a unique challenge. Numerous methods have been proposed to enhance the

trustworthiness of algorithms when dealing with such data. These methods have shown

promising results in addressing imperfect datasets and thus in this chapter, we will

review these approaches from three perspectives: semi-supervised learning, transfer

learning, multi-label learning, and partial multi-label learning.

2.1 Semi-supervised learning with limited labeled data

2.1.1 Preliminaries

In semi-supervised learning, the algorithm utilizes the labeled instances to learn the

underlying patterns and applies this knowledge to predict the labels of unlabeled in-

stances. It’s a blend of supervised and unsupervised learning approaches, leveraging

the strengths of both to improve learning efficiency, especially when acquiring labeled

data is costly or impractical. Assume we have a set of instances (like images) and

potential labels (A, B, C, D). In a semi-supervised learning scenario, some instances

are labeled while others are not. This can be represented in a matrix as in Figure 2.1,
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2. LITERATURE REVIEW

Figure 2.1: Semi-supervised learning frameworks

where Instance 1 is labeled with A and Instance 2 with B while Instances 3 and 4 do

not have labels. The goal in semi-supervised learning is to predict their labels based

on the labeled data and inherent data patterns.

2.1.2 Related Works

We first begin with a review of the traditional supervised learning methods, which is

the foundation and motivation for proposing semi-supervised learning.

Traditional supervised learning, such as Least squares regression (LSR), which aims

to learn the proper mapping of samples to a new space for regression and is one of the

most popular methods in machine learning and image classification. Based on the

simplicity and effectiveness of LSR, various modified methods have been proposed in

the past few decades. The most representative method is the linear regression (LR) [13].

Many variants have been developed to overcome the potential disadvantages of LSR,

such as weighted least squares regression (WLSR) [34], discriminative least squares

regression (DLSR) [86], robust regression (RR) [26] and partial least squares regression

(PLSR) [78]. To overcome the problem of sensitivity to noises of LR methods, Nie et al.

[48] extended LR for feature selection and proposed a robust feature selection (RFS)

framework by considering robust norm as a basic metric.

In many real-world applications, only a small number of samples are labeled since

labeling requires a significant amount of human labor and time, such as face recog-

nition [68], person re-identification [40], and image retrieval [107]. To overcome this

difficulty, semi-supervised learning (SSL) has attracted significant attention because it

can adequately utilize both labeled and unlabeled data. Gaussian fields and harmonic
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2.1 Semi-supervised learning with limited labeled data

functions (GFHF) [112] as well as local and global consistency (LGC) [108] are among

the most popular SSL methods that construct a weight affinity graph based on the data

distribution to propagate the information of labeled samples to unlabeled samples. A

larger weight value indicates a higher probability of the paired points being in the same

class. Many manifold-based SSL methods have been proposed based on GFHF and

LGC, such as Laplacian regularized least squares (LapRLS/L) [4], flexible manifold

embedding (FME) [49] and semi-supervised orthogonal graph embedding (SOGE) [39].

Qiu et al. [57] extended FME and proposed a fast FME (f-FME) method by building

an anchor graph for accelerating FME and reducing the computation cost. Besides,

Nie et al. [51] proposed a method named semi-supervised adaptive local embedding

learning (SALE) which adaptively constructs two affinity graphs based on labeled data

and all embedding samples separately to explore the local and global structure of data.

Nevertheless, these methods ignore the fact that there are abundant irrelevant and even

noisy features in real-world raw data. Thus, the selection of neighbors and features for

each sample is critical for semi-supervised classification performance improvement. To

address this problem, Chen et al. [10] proposed a semi-supervised learning method

called rescaled linear square regression (RLSR) that introduces a rescaled projection

matrix to rank the importance of each feature. Based on this idea, Nie et al. [50] de-

signed an auto-weighting semi-supervised learning (AWSSL) method which introduces

an auto-weighting matrix for jointly performing label propagation and feature selection.

In general, there are many strategies for manifold-based semi-supervised methods

to construct an affinity graph for exploring the latent correlation between labeled and

unlabeled samples, such as k nearest neighbor (KNN) [110] and local linear representa-

tion [73]. However, these methods suffer from two fundamental problems. First, they

are sensitive to noise and outliers. The weight graph is unreliable when the distribu-

tion of raw data is corrupted. In this case, it is impossible to assign correct labels

to the unlabeled set by the incorrect graph’s guide. Second, these methods perform

graph construction and label propagation separately. To be specific, the weight graphs

exploited to guide label prediction are calculated by neighborhood relationships in the

feature space without label information, that is, in an unsupervised manner. Thus, it

cannot be guaranteed that the learned affinity graph accurately reflects the relation-

ship between the labels of data samples. Recently, low-rank representation (LRR) has

been widely used for manifold learning due to its robustness to the noises or outliers
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in original data [35, 43, 71]. Some methods first leveraged LRR to decompose the cor-

rupted data into a clean matrix and a noisy matrix and then improved affinity graph

construction by exploiting clean data recovered by LRR. For example, Wen et al. [80]

proposed a novel graph learning method named low-rank representation with adap-

tive graph regularization (LRR AGR) to adaptively learn such an ideal graph from

data. Besides, for semi-supervised learning, some studies combined LRR and label

propagation into a unified framework that can perform weight graph construction and

semi-supervised learning simultaneously, such as non-negative low-rank representation

(NNLRR) [81], graph regularized low-rank representation method for semi-supervised

learning (GLR2S2) [91], robust graph learning (RGL) [31] and robust semi-supervised

multi-view graph learning (RSSMvSI) [21].

2.2 Transfer Learning for Cross-Domain Data

2.2.1 Preliminaries

Traditional subspace learning methods generally assume that the training data and

testing data lay on a lower but the same feature subspace with independent identically

distribution (i.i.d.) [30]. However, in many real-world applications, there is a serious

inconsistency between training and testing data distributions, which leads to dramatic

performance degradation in classification tasks [52]. For example, it is quite a challenge

to use a set of labeled childhood photos to recognize a person in his/her adult photos.

In transfer learning, particularly in the context of domain adaptation, the goal is

to apply knowledge acquired from one domain (the source domain) to a different, yet

related domain (the target domain). To illustrate this, consider two datasets repre-

sented in matrix form in Figure 2.2b, where instances are linked to a common set of

labels (A, B, C, D), but the distribution of these labels may vary between the two

domains. In the source domain, the matrix contains labeled data used for training the

model. Each row represents an instance, and the columns correspond to labels. The

target domain matrix consists of unlabeled data, denoted by ’?’ symbols, reflecting

the unknown labels in this new domain. Transfer learning is particularly beneficial

when there is a scarcity or complete absence of labeled data in the target domain. It

significantly reduces the need for manually labeling a new dataset and enhances the

model’s performance in the new domain.
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2.2 Transfer Learning for Cross-Domain Data

(a) Source domain dataset (b) Target domain dataset

Figure 2.2: Transfer learning framework

2.2.2 Related Works

In the past decade, transfer learning [15, 61, 95] has gained a great deal of attention

which can effectively address the problem of different distributions between the source

data (training set) and target data (testing set). It has been exploited in image do-

main adaptation [83], activity recognition [55], and reinforcement learning [105]. The

existing transfer learning methods are divided into two categories: modifying the clas-

sifier for adapting to the variant distributions of domains (classifier-based methods)

[33] and changing the representation of data during the process of transfer learning

(representation-based methods). In this paper, we focus on the latter category.

To pursue the representation-based methods, one of the best ways is to seek a com-

mon subspace to both data of the source and target domains in such a way that the

subspace minimizes the discrepancy between different domains. During this process,

maximum mean discrepancy (MMD) is exploited in general to measure the distribution

difference between the source and target domains. For example, Pan et al. [53] pro-

posed a transfer component analysis (TCA) method to reduce the discrepancy between

the marginal distributions of different domains by using MMD as a non-parametric

discrepancy metric. Similarly, Zhang et al. proposed a joint geometrical and sta-

tistical alignment (JGSA) [92] method which jointly considered the geometrical shift

and distribution shift. Besides, Si et al. [60] proposed a transfer subspace learning

(TSL) method, which applies the subspace learning algorithms to transfer the knowl-

edge gained in training samples to testing samples. Furthermore, Long et al. [41]

proposed a joint distribution alignment (JDA) method that extends MMD to simulta-
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neously measure the difference in marginal and conditional distributions. Han et al.

[22] proposed a latent elastic-net transfer learning (LET) method by exploring a latent

subspace and gaining better alignment of source and target domains with MMD.

Recent research imposes a low-rank constraint (LRC) [70, 71] on the cross-domain

representation matrix to reduce the domain discrepancy. For example, Shao et al.

[59] proposed to handle the subtle differences between the source and target by re-

constructing the target data with the lowest-rank representation of source data in the

low-dimensional space. Furthermore, Xu et al. [89] proposed to use a sparse and

low-rank representation for preserving the global and local structures of data during

transfer. Besides, Zhang et al. [96] proposed a guide subspace learning (GSL) method

that combines LRC with subspace learning so that each target sample can be repre-

sented by the source samples with a low-rank coefficient matrix in a common subspace.

Note that most of these methods exploit conventional zero-one label matrix as the

regression target. However, this fixed-value label matrix is not optimal in reducing the

disparity of the domain distributions. To solve this problem, researchers proposed to

exploit an ε-dragging technology [86] that relaxes the binary label matrix to a more

discriminative regression target during transfer [22, 89, 96]. It gives labels larger than

one for the true class and less than zero for the false class. In most cases, this technology

brings a better performance. However, this is not the case when data are with noises

and redundant features. This is because (1) it focuses on minimizing the gap between

different domains while ignoring selecting important features from the original high-

dimensional data for feature extraction. (2) It is sensitive to noises which may destroy

the structure of the original data and, thus, lead to overfitting.

2.3 Complex Challenge for Label-Based Learning

2.3.1 Preliminaries

In the contemporary realm of machine learning, the handling of imperfect data man-

ifests in various forms, presenting a complex challenge for robust classification. This

complexity is particularly evident when navigating through the nuances of label as-

signment in datasets. The complexity of this task can be categorized into four distinct

paradigms, each addressing a unique aspect of label ambiguity and complexity. To il-
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(a) Single-label learning (b) Multi-label learning

(c) Patial label learning (d) Partial multi-label learning

Figure 2.3: Four kinds of machine learning frameworks

lustrate these paradigms, consider a dataset where instances are images, and potential

labels are denoted as A, B, C, and D.

Single-Label Classification represents the simplest form, as shown in Figure

2.3 (a), where each instance is associated with a unique label. This paradigm, while

straightforward, often falls short in encapsulating the complexities of real-world data,

as it assumes a one-dimensional label space per instance.

Multi-Label Learning (MLL) extends this concept to scenarios where instances

are inherently multi-dimensional, characterized by multiple labels. As illustrated in

Figure 2.3 (b), this paradigm is more aligned with complex data structures, as it allows

for a richer and more nuanced representation, capturing the multiple attributes that a

single instance might exhibit.

Partial Label Learning (PLL) introduces uncertainty into the classification pro-

cess in Figure 2.3 (c). In PLL, each instance is associated with a set of candidate labels,

but only one is correct. This paradigm addresses scenarios where label assignments are

not definitive and are subject to verification, reflecting a common challenge in datasets

13



2. LITERATURE REVIEW

with noisy or incomplete labeling.

Expanding upon this complexity, Partial Multi-Label Learning (PML) presents

a scenario where each instance is associated with multiple candidate labels, among

which several may be correct. This paradigm is indicative of real-world situations where

instances are often partially labeled, containing a mixture of relevant and irrelevant

labels. In the PML matrix representation in Figure 2.3 (d), ’?’ symbols denote the

uncertainty of each label’s relevance, encapsulating the essence of imperfect data with

multiple possible truths.

These methods together represent the range of label-based classification strategies

in machine learning, each designed for varying complexities and uncertainties of data.

They highlight the ongoing challenge of handling imperfect data in sophisticated ma-

chine learning tasks. This is a vital research area for developing more robust models.

2.3.2 Related Works

Multi-Label Learning (MLL) assigns multiple labels to an object, which is a funda-

mental and intriguing task in various real-world applications such as image retrieval,

autonomous vehicles, and sentiment analysis. There is plenty of literature on MLL,

such as Binary Relevance (BR) [102] and MLKNN [98], which decompose the multi-

label problem into multiple independent binary classification problems. It is one of the

simplest and most fundamental methods in MLL. Some methods focus on exploring

the correlations between labels to improve classification performance. This includes

approaches that consider pairwise label correlations and more complex inter-label rela-

tionships [58, 98]. For example, MDFS [93] proposes an embedded feature selection

method via manifold regularization to select discriminative features for multi-label

learning. Recent research [56] proposes a shared weight matrix with low-rank and

sparse regularization for multi-label learning. It utilizes both the feature manifold and

label manifold to guide the shared weight learning process.

Traditional multi-label methods often assume that all relevant labels for each train-

ing sample are precisely annotated. However, this assumption does not always hold

in real-world applications, where each example is associated with multiple candidate

labels, among which only one is valid. The scenario has been formalized as a learning

framework called Partial Label Learning (PLL) by [12]. The approaches of PLL can be

broadly categorized into several types, such as identifying the true label from the set of

14



2.3 Complex Challenge for Label-Based Learning

candidate labels with disambiguation strategies [101], adapting traditional supervised

learning algorithms to handle partial labels [85], or treating all candidate labels equally

and make predictions based on the average effects of these labels [44].

Partial Multi-Label learning (PML) is a more complicated task than PLL since the

desired predictor is a multi-label one in PML instead of a single-label one in PLL and

the number of ground-truth labels is further unknown. PML is particularly relevant in

tasks like crowd-sourced image tagging [87]. A prevalent approach of PML examples is

disambiguation. It tries to recover ground-truth labeling information from candidate

labels, by either introducing labeling confidences [100] or utilizing a combination of

low-rank and sparse decomposition [65]. For instance, PARTICLE [97] utilizes an iter-

ative process of label propagation to identify reliable labels with high levels of labeling

confidence. Other studies adopt a heuristic approach, based on the assumption that

noisy labels within the candidate set are typically sparse. This leads to the development

of methods where either a noisy label matrix [66] is derived, or a noisy label identifier

[88] is established, both employing sparsity regularization techniques for effective learn-

ing. For example, PMLNI [88] jointly learns a noisy label identifier, which identifies

feature-induced noisy labels, as well as a multi-label classifier for prediction. Although

current methods in partial multi-label classification have made significant advances,

they often overlook the cause of noisy labels in the candidate set, assuming these to be

randomly generated. This assumption doesn’t align with many real-world scenarios.

For example, if an image is tagged with labels such as ’zoo’, ’lion’, and ’tiger’, it simi-

larly increases the likelihood of other animal-related labels, like ’elephant’ or ’giraffe’,

being relevant as well. Therefore, the correlation between labels is crucial. This has

led to a heightened interest in graph-based partial label methods, which seek to exploit

these label correlations for better disambiguation of candidate labels, as evidenced in

various studies [36, 45, 74].

However, existing partial multi-label methods ignore a critical problem: the pres-

ence of excessive redundant and noisy features residing in the original data can greatly

impact the performance. Some multi-label feature selection techniques are proposed to

significantly reduce the complexity of multi-label data by selecting important features.

For example, MDMR [37] introduces a method that assesses each feature by balanc-

ing its redundancy with other features against its relevance to the labels. LRFS [103]
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distinguishes labels into two categories, factoring in label redundancy for feature evalu-

ation. Embedded methods, which combine feature selection with the learning process,

include MDFS [93], which delves into both local and global label correlations within a

manifold structure. Another approach, MLMLFS [109], is tailored for multi-label data

with incomplete labels, integrating feature selection within the label recovery process.

SCMFS [24] utilizes coupled matrix factorization to uncover the interplay between

feature and label matrices. However, these methods fail to select the most effective

features in a partial multi-label context since they are based on the assumption that

all collected labels are accurate. Current partial multi-label feature selection methods,

such as PMLFS [76], directly uses sparse regularization as the feature selection tech-

nique which may have limited performance since it lacks disambiguation strategies for

identifying true labels. PML-FSSO [23] proposed a subspace optimization method that

utilizes the theory of linear weighted to jointly consider the label subspace and feature

subspace.
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Research Methodology

In this chapter, the methodology for solving imperfection data and classification prob-

lems is systematically presented and the related methods are introduced. Additionally,

the imperfect datasets in different learning situations, which are collected from the

real world, are presented. The datasets are used for experimental evaluations of the

proposed algorithms and the compared methods in this thesis.

3.1 Overview of Proposed Reliable and Robust Methods

for Imperfection Data Classification

The goal of this study is to develop a series of high-reliability machine learning meth-

ods for the applications of classification on various complexity datasets. To achieve

this goal, algorithms that correspond to each specific task are developed. For semi-

supervised learning, we proposed a novel method named robust embedding regression

(RER) for semi-supervised learning [3], a transfer learning method named redirected

transfer learning (RTL) for robust multi-layer subspace learning [2], and a partial multi-

label learning method named partial multi-label learning with adaptive dual graph dis-

ambiguation (ADGD). The overall framework of these methods is shown in Figure 3.1

and the content of the framework can be described in four phases.

Phase 1. Imperfection Dataset Construction: To simulate imperfect data in

real-world scenarios and demonstrate the effectiveness and reliability of our experimen-

tal methods, we selected real-world data for model training involving different learning
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Figure 3.1: Architecture of the proposed reliable machine learning framework of four

phases: (1) imperfection dataset construction, (2) semi-supervised learning with robust em-

bedding regression method, (3) transfer learning with redirected transfer learning method,

and (4) Partial multi-label learning with feature selection method.

paradigms such as semi-supervised learning, transfer learning, and multi-label learning.

Key steps in the dataset construction included:

• For semi-supervised learning, we chose a subset of images that naturally encom-

pass both labeled and unlabeled data. This selection mirrors typical real-world

scenarios where obtaining fully labeled datasets is often impractical.

• To train the transfer learning models, we gathered images from a diverse array

of domains. This variety is critical in assessing the models’ ability to effectively

transfer learned knowledge from one domain (source) to another (target), which

is a hallmark of successful transfer learning.

• For partial multi-label learning, our dataset included images with complex label

sets, reflecting the multifaceted nature of real-world objects and scenes. These
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Data Classification

Figure 3.2: Image data classification with robust embedding regression method.

images, associated with multiple labels, provide a realistic challenge for multi-

label classification models.

In addition to these specific selections, a key aspect of our dataset construction was

the introduction of noise into the original, real-world images. This step was crucial in

testing the robustness of our models. By deliberately adding random noise and other

forms of data imperfections, we aimed to simulate the often noisy and imperfect nature

of real-world data. This approach not only challenges the models under more strenuous

conditions but also provides a more authentic evaluation of their performance, partic-

ularly in terms of their resilience and adaptability to real-world data imperfections.

Phase 2. As shown in Figure 3.2, this phase aims to solve the data classification

problem at the image-level for analyzing and reducing the influence of noisy and redun-

dant data in the learning process. The images are read and converted into data matrices

for the robust embedding regression method. The data are usually divided into three

sets: training, validation, and testing. The training set is used to tune parameters

in various algorithms and the validation process is conducted to show the fitting of

the models (this process can be omitted in certain cases). Finally, experiments on the

testing set are conducted to evaluate the effectiveness of the trained method. The ro-

bust embedding regression method synthesizes the strengths of existing semi-supervised

learning frameworks, robust linear regression, and low-rank representation techniques.

The integration of these methods is aimed at enhancing the model’s robustness and

efficacy. The method finally learns projection spaces for image classification.

Phase 3. As shown in Figure 3.3, this phase improves the effectiveness and effi-

ciency of the transfer learning method, which leverages labeled source domain data to

infer classifications on an unlabeled target domain with a different distribution. Every
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Figure 3.3: Data classification with the redirected transfer learning method.

data from different domains is first represented as a data matrix and then analyzed

one by one. This phase trains the model with the source data and tests on target

data. The redirected transfer learning method applies the domain adaptation tech-

nique, redirected label strategy, and pseudo-label learning. The method finally learns

two different spaces for knowledge transformation and data classification separately.

Phase 4. As shown in Figure 3.4, we proposed a novel Partial Multi-Label Learn-

ing (PML) method that focuses on the problem of label ambiguity and redundant

features. Both images with noisy labels and the corresponding label information are

read and converted into data matrices. Our novel approach integrates dual adaptive

graphs and a sparse projection matrix. The dual graphs dynamically capture complex

relationships in the data, one focusing on features and the other on labels, allowing for

a more precise and adaptable representation of the data, leading to enhanced label dis-

ambiguation. Concurrently, the sparse projection matrix, regulated by the L2,1 norm,

optimizes feature-to-label mapping and ensures the model focuses on the most relevant

features. This method aims to not only learn an optimal projection for classification

but also a reliable label confidence matrix for label disambiguation propagation.

3.2 Research Methodology of Semi-Supervised Learning

In this section, we review the related techniques to solve the semi-supervised learning

problem in this thesis, such as robust linear regression, manifold-based semi-supervised
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Figure 3.4: Partial multi-label learning with adaptive dual graph disambiguation.

learning, and low-rank representation.

3.2.1 Definitions of Semi-Supervised Learning

For setting semi-supervised learning, matrix Xl = [x1,x2, ...,xl] ∈ Rd×l denotes the l

labeled data samples, and matrix Xu = [x1,x2, ...,xu] ∈ Rd×u denotes the u unlabeled

data samples, where d is the dimensionality of the features. Matrix Yl = [y1,y2, ...,yl] ∈
Rc×l represents the label matrix of labeled data, and matrix Yu ∈ Rc×u represents

the missing label matrix of unlabeled data, where c is the number of classes. When

xi belongs to the jth (1 ⩽ j ⩽ c) class, yij = 1, otherwise, yij = 0. We define

X = [Xl, Xu] ∈ Rd×n and Y = [Yl, Yu] ∈ Rc×n, where n = l + u. For a matrix

W = (wij), w
i denotes the ith row and wj is the jth column of matrix W . Moreover,

La,b-norm of matrix W ∈ Rd×c is computed as follows:

∥W∥a,b =
(∑d

i=1

(∑c

j=1
|wi,j |a

)b/a)1/b

=

(∑d

i=1

∥∥∥wi
∥∥∥b
a

)1/b

, a > 0, b > 0.

Minimizing ∥W∥2,1 =
∑d

i=1

∥∥wi
∥∥
2
implies to make W sparse in rows, thus feature

selection in a linear model W TX.
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3.2.2 Robust Linear Regression

We first review some robust linear regression methods. Ridge regression is almost the

first robust linear regression method. It minimizes the penalized least square:

min
W

∥∥W TX − Y
∥∥2
F
+ λ ∥W∥2F , (3.1)

where ∥·∥2F (a = 2, b = 2) is Frobenius norm, and λ > 0 is the regularization coefficient.

It has the solution

W =
(
XXT + λI

)−1
XY T . (3.2)

Essentially, ridge regression is applicable only when data are labeled (X = Xl,

Y = Yl). By regularization, the regression has a higher generalization ability than the

linear regression without regularization.

Motivated by ridge regression, robust feature selection (RFS) [48] is proposed to

select the effective features and enhance robustness by imposing the L2,1-norm in both

regression and regularization terms as follows:

min
W

∥∥W TX − Y
∥∥
2,1

+ λ ∥W∥2,1 , (3.3)

where ∥·∥2,1 (a = 2, b = 1) is L2,1-norm. The first term brings robustness in regression

and the second term works as feature selection.

3.2.3 Manifold-Based Semi-Supervised Learning

According to the rapid increase of the data size, semi-supervised learning (SSL) has

obtained more attention for saving the cost of labeling which requires a great amount of

labor in real applications. SSL utilizes unlabeled samples in addition to labeled samples

for designing classifiers. In general, we can expect that if xi and xj are close to each

other in the feature space, they would belong to the same class with a higher probability.

According to the label propagation theory [112], the latent relationship between labeled

samples and unlabeled samples is characterized by a weight undirected graph S. In S,

xi and xj are connected by the similarity sij defined by the following:

sij =

{
exp

(
−∥xi−xj∥22

2σ2

)
if xj ∈ Nk (xi) ∨ or xi ∈ Nk (xj) ,

0 otherwise,
(3.4)

where Nk (xi) means the set of k-nearest neighbors of xi and σ is a heat kernel param-

eter. We denote F = [Fl, Fu] ∈ Rc×n is soft prediction label matrix and Fl = Yl ∈ Rc×l
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denotes the value on the labeled data points. In general, the label propagation method

solves the problem:

min
F,Fl=Yl

n∑
i,j=1

∥fi − fj∥2sij . (3.5)

The problem (3.5) can be rewritten as

min
F :Fl=Yl

tr
(
FLSF

T
)
, (3.6)

where LS is the graph Laplacian induced from S and calculated as LS = D − S, D =

diag(d11, ..., dnn) for dii =
∑

i sij . However, this method fails to construct a classifier

explicitly (out-of-sample problem), because it is an embedding, not a transformation.

To cope with this problem, FME [49] was proposed to perform semi-supervised learning

and linear regression simultaneously as follows:

min
W,F :Fl=Yl

∥∥W TX − F
∥∥2
F
+ λ ∥W∥2F + αtr

(
FLSF

T
)
, (3.7)

Here, the explicit classifier is a linear mapping with W . However, FME is sensitive

to noises and outliers.

3.2.4 Low-Rank Representation

Low-rank representation (LRR) [71] is another critical development route in our ap-

proach. LRR has strong matrix recovery ability and robustness to outliers which as-

sumes the raw data X is not perfect but corrupted by the noises E, i.e., X = XZ +E,

where Z = [z1, z2, ...,zn] ∈ Rn×n is a coefficient matrix, in which zi is the representa-

tion of data point xi by the other points. Thus, in order to recover the clean data and

handle the noisy part, LRR solves the following minimization problem:

min
Z,E
∥Z∥∗ + β ∥E∥2,1 ,

subject to X = XZ + E.
(3.8)

where β is a bias parameter, ∥·∥∗ is the nuclear norm, i.e., the sum of singular values.

The matrix Z ∈ Rn×n is expected to select a small number of samples (columns) of X

to recover X with the low-rank requirement when d < n. In other words, a low-rank

Z performs sample selection.

After obtaining the coefficient matrix Z, some clustering methods construct an

affinity graph by computing S = 0.5(|Z| + |Z|T ) or directly utilize the representation
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graph Z to obtain the final clustering result [90]. However, these methods cannot

find the optimal solution since the graph construction and subsequent optimization are

not in a unified framework. More importantly, the graph is generally learned from raw

data, which usually contains noises or redundant features in reality. Then, the obtained

graph may be inexact or sub-optimal. LRR AGR is proposed to construct an adaptive

graph and extend LRR to the following graph learning model [80]:

min
Z,E

n∑
i,j

∥xi − xj∥22zij + λ1∥Z∥∗ + λ2∥E∥2,1,

subject to X = XZ + E,Z ≥ 0,diag(Z) = 0, ZT1 = 1.

(3.9)

The non-negative and diagonal element constraints (Z ≥ 0 and diag(Z) = 0) are

to ensure that the learned matrix can be directly used as the affinity matrix and avoid

self-representation. The condition ZT1 = 1 is to avoid the case that those elements

of any row of graph Z are all zeros. By introducing a graph regularization term
n∑
i,j
∥xi − xj∥22zij , the similarity relationships between sample points xi and xj can be

truly reflected by the adaptive matrix Z based on reconstruction error minimization.

In this proposed RER algorithm, we borrow the idea of low-rank representation for

sample selection and for extraction of neighborhood relationships among clean feature

vectors.

3.3 Research Methodology of Transfer Learning

In this section, we review the related techniques to solve the transfer learning problem

in this thesis, such as the domain adaptation technique, and redirected label strategy.

3.3.1 Definitions of Transfer Learning

For setting transfer learning [54], assuming there is only one source domain and one

target domain: Given two different domains and corresponding learning tasks, i.e., a

source domain DS and learning task TS , a target domain DT and learning task TT , the

aim of transfer learning is to help improve the learning of target task in DT by using the

knowledge in DS and TS , where DS ̸= DT or TS ̸= TT . In order to address the problem

of different distributions between the source data and target data, recent research paid

attention to representation-based methods with low-rank constraints, which model the

distribution difference between DS and DT and minimize it.

24



3.3 Research Methodology of Transfer Learning

3.3.2 Domain Adaptation with Low-Rank Constraint

For the unsupervised transfer learning method for classification tasks, we assume two

different domains and two different but related probability distributions over them.

Each distribution is defined jointly over X and Y. For more detail, the source domain

DS and a distribution ps (x, y) is assumed. The target domainDT and has a distribution

pt (x, y). We denote the samples separately in the feature space and in the label space,

as X = [XS , XT ] ∈ Rd×n and Y = [YS , YT ] ∈ Rc×n, where c is the number of classes,

d is the number of dimensionality, n = nS + nT , and YT is unknown. The goal of

unsupervised transfer learning is to predict the target labels YT ∈ Rc×nT as precisely

as possible, given (XS , YS) from a source domain and XT from the target domain.

Transfer learning typically aims to seek a common subspace where the source data

XS and target data XT are projected into and have similar distributions. In the com-

mon subspace, we assume each test data from the target domain can be approximately

reconstructed by the data from source domains. This requirement can be formulated

as

min
W,Z

∥∥W tXT −W tXSZ
∥∥2
F
, (3.10)

where W ∈ Rd×c is the transformation matrix and Z ∈ RnS×nT is reconstruction

matrix. The superscript t denotes the transpose. In this formulation, we seek W such

that the target data are linearly approximated by source data (W tXT ≈W tXSZ), that

is, the domain distribution gap is minimized.

For better capturing and exploring the latent structure of cross-domain data, a

low-rank constraint is imposed on the reconstructive matrix Z. Specifically, we solve a

rank minimization problem [59], with α > 0:

min
W,Z,E

1

2
Φ (W,XS , YS) + α · rank(Z) + ∥E∥l,

subject to W tXT = W tXSZ + E,

(3.11)

where rank(·) denotes the rank and ∥·∥l denotes a certain norm, such as L1 or L2,1-norm.

The parameter α controls the intrinsic correlation of the reconstruction matrix. Note

that E represents the reconstructive error, and Φ (W,XS , YS) is a certain regression

error of XS to YS in the source domain. In practice, due to its NP-hardness, instead
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of the rank of Z, the nuclear norm is adopted for Z penalizing [25]:

min
W,Z,E

1

2
Φ (W,XS , YS) + α∥Z∥∗ + ∥E∥l,

subject to W tXT = W tXSZ + E.

(3.12)

However, this method cannot directly apply Φ (W,XT , YT ) to unknown data from

the target domain because of the unavailability of YT .

3.3.3 Linear Regression and Relaxed-Label-Based Regressions

The existing transfer learning methods design the regression error Φ (W,XS , YS) in

(3.12) as a linear regression model as follows [106]:

Φ (W,XS , YS) =
∥∥YS −W tXS

∥∥2
F
+ λ ∥W∥2F . (3.13)

The parameter λ weights the importance of the regularization term. OnceW is obtained

by solving (3.13), classification of a test sample x ∈ Rd in the target domain is made

by assigning class k such that k = argmax
i

(
W tx

)
i
, the largest row.

Usually, Y consists of one-hot vectors taking one only in the class index. However,

in reality, since the distributions are different between source and target domains, strict

zero-one indicators are not appropriate and sometimes even harmful to classification.

Therefore, some methods introduce a label relaxation strategy [22, 89, 96] that the

binary labels are dragged to directions such that the distances of inter-class are enlarged

as much as possible or a better alignment is achieved between two distributions. As

an example, let x1, x2, x3 be three training samples taken from the second, third, and

first class, respectively, that is, Y =

 0 0 1
1 0 0
0 1 0

. Then, a relaxed matrix Ŷ can be

Ŷ = Y + B ◦M =

 −m11 −m12 1 +m13

1 +m21 −m22 −m23

−m31 1 +m32 −m33

 ,mij ≥ 0, where B is defined as

(B)ij that is 1 if yij = 1, otherwise -1, and ◦ is the Hadamard product operator. In this

example, the labels (values) are enhanced so as to increase class separability. Then,

(3.3) becomes

min
W,M

∥∥YS +B ◦M −W tXS

∥∥2
F
+ λ ∥W∥2F ,M ≥ 0. (3.14)

This idea might work for enhancing class separability, but it works equally for

every sample. This equality is not always sufficient for aligning source and target

26



3.4 Research Methodology of Partial Multi-Label Learning

distributions. Therefore, we adopt a ”margin” restriction instead, such as [104], as

follows:

min
W,T

∥∥T −W tXS

∥∥2
F
+ λ ∥W∥2F ,

subject to ti,li −max
j ̸=li

ti,j ⩾ 1,
(3.15)

where li is the true class index of the ith sample. It requires that the margin is larger

or equal to one, in other words, the target value ti,li should be larger at least one to

any other value ti,j (j ̸= li). This way is more flexible than (3.14) in re-labeling.

3.4 Research Methodology of Partial Multi-Label Learn-

ing

In this section, we review the related works to solve the partial multi-label learning

problem in this thesis, including the graph-based label disambiguation propagation

technique and adaptive graph embedding.

3.4.1 Definitions of Partial Multi-Label Learning

The scenario is referred as to partial multi-label (PML) learning which is formalized

by [87]. Formally, denote X = [x1,x2, ...,xn] ∈ Rd×n as the instance-feature matrix

for n instances, Y = [y1;y2; ...;yn] ∈ {0, 1}n×q as the candidate label matrix where

yi corresponds to i-th instance’s label vector, yij = 1 means the j-th label is included

in the candidate label set of instance xi, yij = 0, otherwise. PML aims to learn a

multi-label model from the feature matrix together with the candidate label matrix

and assign the predictive labels for unseen instances.

3.4.2 Disambiguation with Fixed Graph

Graph-based disambiguation strategy [17] is to make use of the local manifold structure

in feature space to help disambiguate the candidate label set. The current partial multi-

label learning methods[11, 74, 97] usually employ such a strategy in a two-stage manner

which first generates latent labeling confidence over the candidate label set by utilizing

the graph structure of feature space and then learns a multi-class model by fitting a

multi-output regressor with the generated labeling confidence.
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In the first stage, graph-based PML methods aim to generate a normalized real-

valued labeling confidence matrix F ∈ Rn×q by adapting the label propagation pro-

cedure based on a weighted graph over training instances. Given a weighted directed

graph G = (V,E, S), V = {xi|1 ≤ i ≤ n} corresponds to the set of training instances,

and the corresponding set of directed edges is E = {(xi,xj) |i ∈ Nk (xi) , 1 ≤ j ≤ n}.

Specifically, weight matrix S ∈ Rn×n is optimized by solving the following minimum

error reconstruction problem

min
S

n∑
j=1

∥∥∥∥xj − n∑
i=1

sij · xi
∥∥∥∥2
2

subject to ST1n = 1n, sij ≥ 0 (i ∈ Nk (xj)) , sij = 0 (i /∈ Nk (xj)) .

(3.16)

After obtaining the graph weight matrix, the labeling confidence matrix F can be

acquired by solving the following problem:

min
F

n∑
j=1

∥∥∥∥fj − n∑
i=1

sij · fi
∥∥∥∥2
2

subject to F1q = 1n, fil ≥ 0 (∀yil = 1) , fil = 0 (∀yil = 0) ,

(3.17)

where 1n is an all 1 vector with size n. For each training example (xi,Yi), fil represents

its corresponding labeling confidence of the lth label being the ground-truth label for

xi. The labeling confidence vector fi ∈ Rq satisfies the following constraints: (I)∑
yil=1

fil = 1 (normalization), (ii) fil ≥ 0 (∀yil = 1) (non-negativity), and (iii) fil =

0 (∀yil = 0). The second constraint implies that the ground-truth label of each example

resides in the candidate label set, and the third constraint guarantees that the labeling

confidence of each non-candidate label must be 0. Note that F is a learnable matrix

and we can learn this matrix by minimizing the following (3.17) once the similarity

graph weights S is determined.

In the second stage, PML methods make use of the confidence labels elicited in

the first stage to induce the multi-label predictive model. Two potential drawbacks

lie in that real-world data are usually contaminated by significant noises and outliers

which make the fixed graph structure recovered from the original feature space less

reliable [77]. Another is the two-stage learning process cannot obtain the optimal label

confidence since it cannot take full advantage of the correlation between feature instance

and label.
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3.4.3 Adaptive Graph Embedding

The quality of S in (3.16) affects learning performance significantly. If S is obtained

directly in feature space, it is challenging for S to reveal the intrinsic structure within

the data since the noise and outliers are high. To this end, Some research [72] pro-

poses an adaptive graph instead of a fixed graph to obtain the similarity matrix and

simultaneously update the label confidence to achieve the best results as follows:

min
F,S

n∑
j=1

∥∥∥∥xj − n∑
i=1

sij · xi
∥∥∥∥2
2

+ α
n∑

j=1

∥∥∥∥fj − n∑
i=1

sij · fi
∥∥∥∥2
2

subject to ST1n = 1n, 0n×n ≤ S ≤ N,
F1q = 1n, 0n×q ≤ F ≤ Y,

(3.18)

where N ∈ {0, 1}n×n is defined as: nij = 1 if i ∈ Nk (xj) and nij = 0 otherwise.

Furthermore, 0n×n is the n× n all 0 matrix, and α is the trade-off parameter between

label space and feature space respectively. However, due to high-dimensional feature

space, complex label correlations and noises in multi-label data, (3.18) has limited

performance since it lacks the feature selection ability. Furthermore, S is constructed

based on data and thus cannot explore both the feature correlation and label correlation

as well as the correlation between the feature space and the label space.
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4

Robust Regression Embedding

for Semi-Supervised Learning

4.1 Preliminaries

To utilize both labeled data and unlabeled data in real-world applications, semi-supervised

learning is widely used as an effective technique. However, most semi-supervised meth-

ods do not perform well when there are many noises and redundant information in the

original data. Therefore, In this chapter, we introduce a novel semi-supervised method

named Robust Embedding Regression (RER) [3], which focuses on coping with the

sensitivity to noise and outliers in feature space and to exploit label information more

effectively in an affinity graph for low-dimensional embedding. These issues have not

been well addressed in the framework of semi-supervised learning so far.

For this goal, we learn several ideas from three research streams of semi-supervised

learning, robust linear regression, and low-rank representation. Specifically, we discuss

the best choice of norms in the proposed objective function so as to have robustness and

employ the low-rank techniques to realize effective label propagation. Thus, RER has

been strengthened functionally by inheriting the functions equipped in semi-supervised

learning, robust linear regression, and low-rank representation (Figure 4.1). Espe-

cially, the robustness comes from robust linear regression and the efficiency of label

propagation comes from low-rank representation.
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Figure 4.1: The development routes of related work. Our method inherits the func-

tions and advantages of the existing methods, including label propagation (LP), manifold

learning (ML), dimension reduction (DR), feature selection (FS), robustness against noises

(RB), data recovery (DRY) and sample selection (SS), for robust semi-supervised classifi-

cation and clustering. The blue boxes present the properties of each method.

4.2 Robust embedding regression for semi-supervised learn-

ing

For SSL methods, how to effectively utilize potential relationships between labeled data

and unlabeled data to predict label information is crucial to a promising performance.

However, the existing methods are sensitive to the noises and outliers in the original

data which may greatly degrade the final performance. Thus, in this section, we will

present a robust semi-supervised regression method that inherits the advantages of the

existing techniques and elaborately integrates them into a unified objective function

for semi-supervised classification.
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(a) A1 (b) A2 (c) B1

Figure 4.2: Three images from the YaleB dataset.

4.2.1 Formulation of RER

We design a novel semi-supervised regression method that aims to improve the robust-

ness of the algorithm by elaborately integrating robust linear regression, low-rank rep-

resentation, and semi-supervised learning into a unified optimization objective function.

Specifically, the relationship between the labeled and unlabeled samples is captured by

an adaptive graph rather than the pre-defined graph, more specifically, Laplacian LZ of

noiseless data instead of Laplacian LS of raw data with noise, in which LRR technique

is used to remove the noises and outliers in LZ . More importantly, the proper norm

selection for both reconstruction and regularization terms further brings the robustness

of the algorithm and obtains promising classification performance. Therefore, we have

the following objective function of RER:

min
W,F,Z,E

∥∥W TXZ − F
∥∥
∗ + λ1 ∥W∥2,1 + λ2tr

(
FLZF

T
)
+ λ3∥E∥2,1

subject to Fl = Yl, X = XZ + E,diag(Z) = 0, Z ≥ 0, ZT1 = 1,
(4.1)

where λ1, λ2 and λ3 are non-negative trade-off parameters. We directly use Z as an

affinity matrix whose (i, j)-edge is weighed by zij . LZ is the Laplacian matrix which is

computed as D − Z, where (D)ii =
∑

i ̸=j zij .

In (5.7), we use a more robust norm, the nuclear norm, rather than the Frobenius

norm as a basic metric to encode the reconstruction term ( i.e.,
∥∥W TXZ − F

∥∥
∗), which

has been proven its effectiveness in recent research [35, 43]. The second term imposes

a row-sparsity norm constraint on projection W to accomplish feature selection. The

third term with constraint Fl = Yl functions as label propagation in SSL. It constructs

an adaptive graph and induces the label information for the unlabeled data points in

a unified objective function. The constraint X = XZ + E is utilized to ensure the

graph construction based on the clean data and reduce the negative influence of noises

and outliers. The last term ensures the sparsity of the corruption matrix and further

improves the robustness by introducing L2,1-norm.
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(a) The visualization of 5 fea-

tures of torus data (Features 1

and 5 are noise features)

(b) The projection matrix W

obtained by RER

(c) Visualization results of

original data without noises

(d) Visualization results of

matrix F obtained by RER

(e) Visualization results of ma-

trix WTX obtained by RER

(f) Visualization results of ma-

trix WTXZ obtained by RER

(g) The similarity matrix S of the pre-

constructed graph obtained by KNN

(h) The similarity matrix Z of the adap-

tive graph obtained by RER

Figure 4.3: Illustration of various visualization results and matrices.
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Table 4.1: Comparison of the distance between the images using different norms.

Dist(A,B) = ∥A−B∥a,b according to chosen norm.

Dist(A1,A2) Dist(A1,B1)

∥·∥∗ 2278 < 4232

∥·∥1 1414 > 1369

∥·∥2F 1329 > 1282

4.2.2 Support Examples

On the toy problem, we demonstrate the validity of chosen norms and functional ad-

vantages.

The justification for the nuclear norm in the regression residual can be demonstrated

by a simple example. We reproduce the experiment in [43]. We show 3 images of 2

people in Figure 4.2, in which (a) A1 and (b) A2 are from one person A and (c)

B1 is from person B. The distances between the images of the same person and a

different person are computed by the nuclear norm, L1-norm, and Frobenius norm,

respectively, as shown in Table 4.1. From the results, we can observe that both L1-

norm and Frobenius norm cannot properly classify the image of person A since the

distance between A1 and A2 is larger than A1 and B1. The nuclear norm correctly

classifies the images since the distance between A1 and A2 is smaller than A1 and B1.

This example proves that it is a better choice to use the nuclear norm in our method.

Next, to gain an intuitive understanding and analyze the properties of RER, we

implemented experiments on a synthetic dataset, i.e., torus data, which contains two

classes (remarked as red and blue in Figure 4.3, respectively). Every sample includes 5

features: the first and last features are noise features while the rest are distributed in

a two-moon shape. For each class, we randomly assign 30 labeled samples and the rest

as the unlabeled set.

It can be seen in Figure 4.3 (a) and (b) that the projector matrix W does not

include noise features, this means RER successfully selected the right features due to

L2,1-norm in the second term in (5.7). Comparison between (e) and (f) shows that Z

in W TXZ succeeds in extracting the manifold structure. This shows that the structure

is extracted from noiseless data through the third term with condition X = XZ + E.
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The visualized separability is also confirmed in Figure 4.3 (d) and (f). This is also the

effectiveness of the third term as label propagation.

Figure 4.3 (g) and (h) show that the separability of two classes is enhanced by

adopting LZ instead of LS . Specifically, the similarity graph LZ obtained by our

method has a clearer and cleaner block structure than the pre-defined graph LS since

the noisy points and outliers in (h) are removed by the constraint X = XZ + E and

each sample point in (g) can be continuously refined in the process of label propagation

by the adaptive graph LZ .

4.2.3 Optimization Solution

Since it is impossible to simultaneously obtain the optimal solutions for variables

F,W,Z and E in the model (5.7), thus, we use alternative iterations, that is, up-

dating each variable by fixing the other variables. In this subsection, we present an

algorithm that uses the alternating direction method of multipliers (ADMM) [71]. We

first introduce two auxiliary variables K and S to separate the objective function as

follows:

min
F,W,Z,E,K,S

∥K∥∗ + λ1∥W∥2,1 + λ2tr
(
FLSF

T
)
+ λ3∥E∥2,1

subject to Fl = Yl, X = XZ + E,K = F −W TXZ,

Z = S,diag(S) = 0, S ≥ 0, ST1 = 1.

(4.2)

Then, we minimize the augmented Lagrangian function of the problem (5.8) as

follows:
Γ (F,W,Z,E,K, S) = ∥K∥∗ + λ1∥W∥2,1
+λ2tr

(
FLSF

T
)
+ λ3∥E∥2,1

+
µ

2

∥∥∥∥X −XZ − E +
M1

µ

∥∥∥∥2
F

+
µ

2

∥∥∥∥F −W TXZ −K +
M2

µ

∥∥∥∥2
F

+
µ

2

∥∥∥∥Z − S +
M3

µ

∥∥∥∥2
F

− 1

2µ

(
∥M1∥2F + ∥M2∥2F + ∥M3∥2F

)
,

(4.3)

where M1, M2, and M3 are Lagrangian multipliers and µ>0 is the penalty parameter.

We update the variables alternately with others fixed by solving the sub-problems:

The F sub-problem: We first split the Laplacian matrix LS into four blocks after

the lth row and column as LS =

[
Lll Llu

Lul Luu

]
. When the other variables are fixed
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except F , problem (5.9) can be converted to:

min
F,Fl=Yl

λ2tr
(
FLSF

T
)
+

µ

2

∥∥∥∥F −W TXZ −K +
M2

µ

∥∥∥∥2
F

. (4.4)

Since Fl = Yl, the optimal Fu can be obtained by taking the partial derivative of

(4.4) with respect to Fu and set it to zero as follows:

∂L (Fu)

∂Fu
= 2λ2FuLuu + 2λ2YlL

T
ul + µFu − µ

(
Ku +W TXZu −

M2,u

µ

)
= 0 (4.5)

Then we have:

Fu = (2λ2Luu + µIn)
−1

(
µ

(
Ku +W TXZu −

M2,u

µ

)
− 2λ2YlLlu

)
. (4.6)

The W sub-problem: When other variables are fixed except W , problem (5.9)

can be converted to:

min
W

λ1∥W∥2,1 +
µ

2

∥∥∥∥F −W TXZ −K +
M2

µ

∥∥∥∥2
F

. (4.7)

From the definition of L2,1-norm, we first define diagonal matrix DW as follows:

(DW )jj =
1

2
∥∥wj

∥∥
2

. (4.8)

Thus we can rewrite (4.7) as

min
W

λ1tr
(
W TDWW

)
+

µ

2
tr
(
Q−W TXZ

)T (
Q−W TXZ

)
, (4.9)

where Q = F−K+M2
µ . The optimalW can be obtained by taking the partial derivative

of (4.9) with respect to W and set it to zero as follows:

∂L (W )

∂W
= 2λ1DWW − µXZQT + µZXZTXTW. (4.10)

Then we have:

W =
(
2λ1DW + µXZZTXT

)−1 (
µXZQT

)
, Q = F −K +

M2

µ
. (4.11)
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The Z sub-problem: When other variables are fixed except Z, problem (5.9) can

be converted to:

min
Z

µ

2

∥∥∥∥X −XZ − E +
M1

µ

∥∥∥∥2
F

+
µ

2

∥∥∥∥F −W TXZ −K +
M2

µ

∥∥∥∥2
F

+
µ

2

∥∥∥∥Z − S +
M3

µ

∥∥∥∥2
F

.

(4.12)

We take the derivative of (4.12) with respect to Z and set it to 0. Then we can

obtain the following:

Z =
(
XTX +XTWW TX + In

)−1 (
XTL1 +XTWL2 − L3

)
, (4.13)

where L1 = X − E + M1
µ ,L2 = F −K + M2

µ , L3 =
M3
µ − S.

The E sub-problem: When other variables are fixed except E, problem (5.9) can

be converted to:

min
E

λ3∥E∥2,1 +
µ

2

∥∥∥∥X −XZ − E +
M1

µ

∥∥∥∥2
F

. (4.14)

The solution of E can be obtained by a shrinkage operator as follows:

∂L

∂ei
= λ3

1

∥ei∥
ei +

µ

2

(
ei − ai

) (
ei is the ith row of E

)
=

(
λ3

1

∥ei∥
+

µ

2

)
ei − µ

2
ai = 0

(4.15)

Thus, ∥∥ei∥∥ =
∥∥ai∥∥− 2λ3

µ (4.16)

Substituting the (4.16) to (4.15), under condition
∥∥ei∥∥ =

∥∥ai∥∥− 2λ3
µ ⩾ 0, we have

ei = Ωλ3/µ

(
ai
)
:=


∥∥ai∥∥− 2λ3

µ

∥ai∥
ai
(∥∥ai∥∥ ⩾

2λ3

µ

)
0 (otherwise)

, (4.17)

where Ω(·) denotes the shrinkage operator.

Applying this solution to (4.14), we have:

E = Ωλ3/µ

(
X −XZ +

M1

µ

)
. (4.18)
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The K sub-problem: Optimizing K using (5.9) when the other variables are fixed

is equivalent to the following problem:

min
K
∥K∥∗ +

µ

2

∥∥∥∥F −W TXZ −K +
M2

µ

∥∥∥∥2
F

. (4.19)

Subsequently, K is solved using the Singular Value Thresholding (SVT) operator

[9], as follows:

K = Φ1/µ

(
F −W TXZ +

M2

µ

)
, (4.20)

where Φ is the SVT operator defined as Φτ (A) = UΦτ (
∑

)V T ,Φτ (
∑

) = diag(
{
(σi − λ)+

}
)

for A = U
∑

V T .

The S sub-problem: When other variables are fixed except S, optimizing S by

(5.9) is equivalent to the following problem:

min
S

λ2

n∑
i=1

n∑
j=1

∥fi − fj∥22 sij +
µ

2

∥∥∥∥Z − S +
M3

µ

∥∥∥∥2
F

=min
S

λ2

n∑
i=1

n∑
j=1

gijsij +
µ

2
∥S −H∥2F

(gij = λ2 ∥fi − fj∥22 , H = Z +
M3

µ
)

=min
S

tr
(
GTS

)
+

µ

2
∥S −H∥2F , (G = (λ2gij))

subject to diag(S) = 0, S ≥ 0, ST1 = 1.

(4.21)

This problem can be solved column-wisely as

min
si

sTi g
i +

µ

2
∥si − hi∥2 ,

subject to sii = 0, si ⩾ 0, si
T1 = 1.

(4.22)

Therefore, forgetting condition si = 0 for some i for the time being, and assuming

µ > 0, we consider the following equivalent minimization problem:

min
s

1

2
∥s∥2 − sT c, c = h− 1

µ
g

subject to s ⩾ 0, sT1 = 1.

(4.23)

In the case of µ = 0, the optimal solution is s taking one at k only such that

k = argmingi. This can be solved with the Lagrangian function:

J =
1

2
∥s∥2 − sT c+ α

(
sT1− 1

)
− βT s, β ⩾ 0.
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The solution satisfies

∂J

∂s
= s− c+ α1− β = 0, (4.24)

with KKT condition

sT1 = 1, s ⩾ 0, βT s = 0, β ⩾ 0. (4.25)

Note that the third condition means βisi = 0 for any i. Thus, if βi > 0, then si = 0

and thus ci + βi − α = 0 from (4.24). If si > 0, then βi = 0 and thus si = ci − α > 0.

Combining those two cases we have two index sets covering {1, 2, ..., d}:

I = {i|si = ci − αI > 0, βi = 0},
J = {j|sj = 0, βj = α− cj ≥ 0}. (4.26)

In addition, from sT1 = 1, s ⩾ 0,
d∑

i=1
si =

∑
i∈I

si =
∑
i∈I

ci−α |I| = 1. Thus, α = αI =

1
|I|
∑
i∈I

ci − 1
|I| .

After all,

I = {i|si = ci − α > 0, βi = 0},
J = {j|sj = 0,−βj = cj − αI ≤ 0}. (4.27)

Note that this is a self-referenced definition, so we cannot solve this directly. For-

tunately, we notice also that αI plays a role of a threshold for I and J . So we have the

following algorithm.

Algorithm 1

1. Sort ci in decreasing order

2. Find the first k satisfying ck > α{1,2,...,k} ≥ ck+1

3. Return s corresponding {c1, ..., ck}

The M1,M2,M3, µ sub-problems: We update the Lagrange multipliersM1,M2,M3,

and parameter µ by solving the following formulas:

M1 ←M1 + µ (X −XZ − E) ,

M2 ←M2 + µ
(
F −W TXZ −K

)
,

M3 ←M3 + µ (Z − S) ,

µ← min (ρµ, µmax) , (4.28)

where ρ>1 and µmax are the constants.

The steps involved in the concrete solution are presented in Algorithm 2.

40



4.2 Robust embedding regression for semi-supervised learning

Algorithm 2 Iteration Algorithm of RER for (5.8)

Initialization: k = 0, M1,k = M1,k = M1,k = 0, µmax = 107, µk = 0.01, ρ = 1.01,

η = 10−7, ε = 10−7

Input: original data X ∈ Rd×n, label matrix Yl ∈ Rc×l, parameters λ1, λ2, and λ3

while not converged do

1. Update F by solving (5.10)

2. Update W by solving (5.11)

3. Update Z by solving (5.12)

4. Update E by solving (5.13)

5. Update K by solving (5.14)

6. Update S by solving (5.15)

7. Update multipliers M1,M2,M3 and µ by solving (5.16)

8. Convergence check: if ∥X −XZk+1 − Ek+1∥∞ < ε and∥∥Fk+1 −W T
k+1XZk+1 −Kk+1

∥∥
∞ < ε and ∥Zk+1 − Sk+1∥∞ < ε, stop; else

k = k + 1

end while

Output: F ∗ ← Fk+1, W
∗ ←Wk+1, Z

∗ ← Zk+1, E
∗ ← Ek+1.

4.2.4 Computational Complexity and Convergence Analysis

We now analyze the computational complexity of the proposed method. Let d be the

dimensionality of data. It’s obvious that Steps 1, 2, and 3 have the major computational

burden. In Step 1, computing F requires approximately O
(
n3
)
. In Step 2, computing

W requires a matrix inverse operation, which costs approximately O
(
d2n+ dnc

)
. In

Step 3, computing Z requires approximately O
(
d2n+ dn2

)
. In summary, the total

computational cost is O
(
t
(
n3 + d2c+ d2n+ dn2

))
, where t denotes the number of it-

erations. We used PCA as a preprocessing step to reduce the computational complexity

in the experiments. About the convergence of our methods, it has been proven that

ADMM convergences when the number of variables is not over two [71]. However, it is

difficult to theoretically prove the solutions of our model converge to the global opti-

mum or generally ensure the convergence of ADMM with over 2 variables. In fact, we

will show in the experimental section that the iterative algorithm will converge very

fast. Usually, the outer loop of the algorithm will converge within 3 to 10 iterations.
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Table 4.2: The summary of objectives of the proposed method and the most related

methods

Methods Objectives Properties

FME [49] min
W,F :Fl=Yl

∥∥W TX − F
∥∥2
F
+ λ1 ∥W∥2F + λ2tr

(
FLSF

T
) Label Propagation

Manifold Learning

Dimension Reduction

NNLRR [50]
min

W,F,Z,E
∥Z∥∗ + λ2tr

(
FLZF

T
)
+ λ3∥E∥2,1

subject to Fl = Yl, X = XZ + E,diag(Z) = 0, Z ≥ 0, ZT1 = 1,

Label Propagation

Manifold Learning

Data Recovery

Sample Selection

AWSSL [81]
min
Θ,S,F

n∑
i,j
∥Θxi −Θxj∥22sij + λ1 ∥W∥2F + λ2tr

(
FLSF

T
)
,

subject to Fl = Yl, S ≥ 0,diag(S) = 0, ST1 = 1,Θ ≥ 0,Θ = diag(θ),1T θ = 1

Label Propagation

Manifold Learning

Dimension Reduction

Feature Selection

RER
min

W,F,Z,E

∥∥W TXZ − F
∥∥
∗ + λ1 ∥W∥2,1 + λ2tr

(
FLZF

T
)
+ λ3∥E∥2,1

subject to Fl = Yl, X = XZ + E,diag(Z) = 0, Z ≥ 0, ZT1 = 1,

Label Propagation

Manifold Learning

Dimension Reduction

Feature Selection

Sample Selection

Data Recovery

RoBustness against noises

4.2.5 Difference From the Existing Works

For easy comparison, we summarized the objective functions of the related three meth-

ods in Table 2. Although our RER superficially seems similar to the existing methods

[49, 50, 81], it is essentially different in the following points. (1)Compared with FME: our

method imposes L2,1-norm on both regression term and regularization term while FME

utilizes Frobenius norm and L2 norm for these terms separately, thus FME is not ro-

bust to the noise and cannot learn sparse projection to differentiate relevant and irrel-

evant features. (2) Compare with NNLRR: both RER and NNLRR exploit low-rank

reconstruction property to boost label propagation and improve the robustness of the

algorithm, but RER surmounts the out-of-sample problem from which NNLRR suffers.

That is, NNLRR cannot handle new data unlike RER. (3) Compare with AWSSL: RER

and AWSSL share the same idea to construct an adaptive graph for propagating label

information and using special strategies for ranking the importance of features. How-

ever, RER performs better since RER introduces the low-rank property for effectively

reducing the negative influence caused by noises and outliers. Besides, RER can recover

clean data from noisy data owing to the low-rank property that AWSSL does not have.

More quantitative comparison is made in Section 4.
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4.3 Experiments

In this section, we describe the datasets, experimental settings, and experimental re-

sults. First, we evaluated the classification performance of RER compared with semi-

supervised methods on benchmark image datasets. Subsequently, we verified the su-

periority and robustness of the proposed method on noisy face datasets. In addition,

we compared the clustering results with related methods. Finally, we conducted a

visualization experiment to prove the effectiveness of our algorithm.

4.3.1 Datasets

Figure 4.4: Sample images. From top to bottom, AR, COIL20, LFW, CMU PIE, and

YaleB datasets.

Table 4.3: Characteristics of five benchmark datasets.

Dataset Image size #samples #features #classes #samples per class

AR 40 × 50 2400 2000 120 20

COIL20 32 × 32 1440 1024 20 72

LFW 112 × 96 4324 1024 158 >10

CMU PIE 32 × 32 1632 1024 68 24

YaleB 32 × 32 2432 1024 38 64

We evaluated the performance of the proposed RER method on five benchmark

image datasets: AR [51], COIL20 [51], LFW [27], CMU PIE [63], and YaleB [19].

The face images of the AR dataset contain real occlusions, such as sunglasses and

scarf occlusions. The face images of the CMU PIE, LFW, and YaleB datasets show

dramatic variations in poses, expressions, and illumination. The object images of the

COIL20 dataset are captured from different viewing directions. The statistics of these

datasets are listed in Table 3, and some of the image samples are shown in Figure 4. For
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(a) Block (b) Salt-and-pepper

Figure 4.5: Some examples of corrupted images under varying levels of contiguous occlu-

sions and different percentages of salt-and-pepper noises.

LFW datasets, we first exploited the deep convolutional neural network (CNN) [82] to

learn deep features from the original data, and then used these features to train all the

methods in our experiments. The final dimension of the LFW dataset was d = 1024.

For the YaleB dataset, we selected the first 15 people in our experiments. In addition,

the images in this dataset were added with different sizes of contiguous occlusions and

percentages of the salt-and-pepper noise as follows:

1) Contiguous occlusions: We randomly chose the locations to add the block occlu-

sions on images. The size of the added black blocks was 5×5, 7×7, and 10×10. Figure
5 (a) shows examples of the original and corrupted images.

2) Different percentages corruptions: We corrupted the images by the salt-and-

pepper noises with 5%, 10%, and 15% densities. Figure 5 (b) shows examples of

corrupted images.

4.3.2 Experimental Settings

For comparison, we selected five semi-supervised learning methods: linear Laplacian

regularized least squares (LapRLS/L) [4], flexible manifold embedding (FME) [49], fast

flexible manifold embedding (f-FME) [57], semi-supervised orthogonal graph embed-

ding (SOGE) [39], rescaled linear square regression (RLSR) [10], non-negative low-rank

representation (NNLRR) [81], auto-weighting semi-supervised learning (AWSSL)[50],

robust graph learning (RGL) [31] and semi-supervised adaptive local embedding learn-

ing (SALE) with orthogonal constraint [51]. These are summarized as follows:

1. LapRLS/L not only captures the relationship between labeled and unlabeled

data by constructing a weight graph but also exploits the linear regression function

to learn a projection matrix.
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2. FME is based on LapRLS/L but relaxes the hard linear constraint for better

handling the data lying on a nonlinear manifold.

3. f-FME is an extended work of FME that replaces the traditional graph with an

anchor graph to accelerate the speed of performance and reduce the computation

cost.

4. SOGE aims to seek an optimal projection under the orthogonal constraint for

semi-supervised regression learning.

5. RLSR is a semi-supervised regression method that introduces a rescale projection

matrix to enhance important features.

6. NNLRR combines the LRR and GFHF into a unified framework to perform

affinity graph construction and label propagation simultaneously and guarantees

the overall optimum.

7. RGL learns a graph based on the clean data obtained from recovered technology

and then uses the robust graph for enhancing semi-supervised classification.

8. AWSSL integrates the adaptive graph construction and label propagation into

a unified optimization model and learns an auto-weighting matrix to select im-

portant features from all data points.

9. SALE with orthogonal constraint adaptively constructs a k1 Nearest Neighbors

graph based on labeled data and a k2 Nearest Neighbors graph based on the

mapped both labeled and unlabeled data for exploring the intrinsic structure of

labeled data and global structure of all samples simultaneously.

In addition, we used PCA to preserve 95% of the information for each dataset. For a

fair comparison to gain more efficiency and avoid singular solutions, we constructed the

weight graph for the methods involving inputs Laplacian matrix L by directly following

[39], such as LapRLS/L, FME, and SOGE. For each dataset, we first randomly selected

50% of the data for training and retained the remaining 50% for testing. Then, to simu-

late a semi-supervised scenario from a training subset, we randomly selected p samples

per class as labeled and left the rest unlabeled. Consequently, each image dataset was

divided into three parts: labeled, unlabeled, and testing samples. We chose p as 4, 5,
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and 6 for AR, COIL20, LFW, CMU PIE, and 30 for YaleB. Such a small number of p

values were adopted to clarify the effect of semi-supervised learning. All experiments

were repeated ten times for stable classification rates. For the RER algorithm, we tuned

all the balanced parameters using a grid search over
{
10−6, 10−5, ..., 105, 106

}
. The

parameters for the other methods were set according to the corresponding references.

4.3.3 Semi-Supervised Classification

Table 4.4: Accuracy rate and standard deviations (%) of several methods on three image

datasets with the different number of labels (p represents the number of labeled data per

class and bold fonts mark the best performance).

Dataset Method

The number of labeled data per class (p)

4 5 6

Unlabel Test Unlabel Test Unlabel Test

AR

LapRLS/L 69.56±7.99 74.71±5.96 74.58±5.27 80.05±6.80 76.54±5.40 82.67±6.91
FME 91.83±1.45 91.64±2.49 94.36±1.81 94.55±1.95 95.77±1.25 96.24±1.49
f-FME 93.86±1.11 95.61±0.98 94.67±1.26 96.93±1.06 97.08±1.07 98.14±0.83
SOGE 84.51±1.43 86.92±1.43 87.65±3.23 90.56±2.21 90.00±2.75 92.71±1.34
RLSR 74.31±3.71 81.08±3.01 74.93±3.58 87.08±1.45 85.41±2.28 88.34±2.14
SALE 88.67±2.14 90.78±1.71 91.63±1.89 93.67±1.12 92.56±1.52 94.82±1.20
RER 94.72 ± 0.89 96.05± 1.27 95.21± 0.82 97.85 ± 0.74 97.62±0.67 98.58±0.45

COIL20

LapRLS/L 66.93±2.52 69.79±2.37 69.70±2.57 73.51±2.54 73.4±1.56 76.25±1.71
FME 81.09±1.40 82.25±1.58 83.14±2.14 84.56±2.04 85.67±1.73 87.22±1.53
f-FME 83.43±2.14 84.78±1.67 84.23±2.03 85.62±2.15 86.33±0.21 87.55±2.11
SOGE 74.31±2.10 76.51±1.08 78.51±2.52 80.18±2.52 78.60±1.95 80.90±1.85
RLSR 76.25±4.09 78.72±3.76 76.61±2.92 78.98±2.23 78.27±3.78 82.25±3.22
SALE 79.84±2.64 81.11±1.94 82.88±2.77 84.95±2.21 85.61±2.22 87.58±1.64
RER 80.19±1.41 81.49±1.75 84.11±1.88 85.65±2.42 87.36±2.24 87.90±1.77

LFW

LapRLS/L 66.09±1.48 64.51±2.73 69.93±0.89 67.88±2.05 71.32±2.00 70.62±0.93
FME 79.68±2.34 80.53±1.86 83.86±1.43 84.17±1.43 85.44±2.25 86.45±1.06
f-FME 96.18±0.69 96.46±0.29 96.89±1.02 97.02±0.32 97.21±1.21 97.33±0.23
SOGE 84.47±1.50 87.03±1.17 86.77±1.19 89.19±0.56 87.02±3.64 90.88±0.77
RLSR 74.31±2.79 81.09±3.21 78.61±2.75 83.24±1.86 80.68±4.41 85.94±3.11
SALE 97.93±0.48 97.77±0.25 98.32±0.57 98.05±0.21 98.41±0.80 98.18±0.17
RER 97.82±0.45 98.16±0.16 98.41±0.92 98.46±0.36 98.22±0.77 98.39±0.19

In this section, in semi-supervised classification tasks, we compared RER with rep-

resentative dimension reduction methods, including LapRLS/L, FME, f-FME, SOGE,

RLSR, and SALE. We employed the 1-nearest neighbor (1NN) classifier with Euclidean

distance to evaluate classification accuracy after dimension reduction. Tables 4-7 show

the mean classification accuracy (%) with standard deviation and highest accuracy

(%) (highlighted in bold) for each method on AR, COIL20, LFW, and YaleB datasets,
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respectively. The difference between different base classifiers was not much and the

tendency was the same (Table 7).

Table 4.5: Accuracy rate and standard deviations (%) on the YaleB dataset with different

corruption percentages (p = 30).

Cor.rate LapRLS/L FME f-FME SOGE RLSR SALE RER

0
Unlabel 39.33±6.63 69.67±8.95 85.33±2.36 73.67±10.35 41.33±8.91 87.03± 2.87 86.67±10.93
Test 69.37±4.71 82.42±5.53 87.91±1.93 85.50±4.59 87.67±3.49 86.60±3.53 88.12±3.11

5%
Unlabel 27.67±11.45 65.33±8.49 70.67±11.65 33.67±9.08 34.33±7.03 70.76±4.05 73.33±11.03
Test 62.75±4.89 80.15±5.11 88.45±4.25 60.72±5.01 81.60±5.09 87.79±4.54 88.50±3.61

10%
Unlabel 26.67±4.79 60.00±6.08 63.33±8.49 22.67±6.81 25.33±6.51 63.73±4.31 64.33±8.38
Test 59.08±5.48 77.72±5.39 85.02±4.05 55.81±4.89 75.81±5.14 84.08±3.21 85.18±4.29

15%
Unlabel 25.00±7.73 56.33±5.97 60.00±8.91 18.67±8.04 25.00±8.92 58.93±4.29 60.33±8.52
Test 58.16±5.09 75.10±5.11 78.10±4.14 54.45±5.27 70.77±5.75 78.08±4.06 78.97±5.09

Table 4.6: Accuracy rate and standard deviations (%) on the YaleB dataset with different

occlusion sizes of corruption (p = 30).

Occ.size LapRLS/L FME f-FME SOGE RLSR SALE RER

5×5
Unlabel 31.00±8.32 64.00±8.72 69.33±6.04 56.00±6.67 47.00±10.71 60.28± 3.84 62.67±8.16
Test 64.27±3.11 80.85±4.54 95.08±2.27 76.75±2.93 85.02±3.92 92.21±3.99 95.18±2.11

7×7
Unlabel 22.67±4.71 53.00±10.71 59.67±6.17 54.00±5.66 46.67±9.53 60.02±4.32 60.00±8.46
Test 62.18±7.50 79.17±4.89 93.12±2.04 74.04±3.16 83.52±2.76 91.85±5.47 94.37±2.59

10×10
Unlabel 14.00±5.83 46.34±7.54 46.66±7.73 46.33±8.08 33.33±6.05 46.53±6.61 46.67±7.69
Test 58.14±4.98 76.64±4.06 91.14±2.33 62.33±3.43 80.63±2.34 90.33±1.26 92.33±1.94

Table 4.7: Accuracy rate and standard deviations (%) on the COIL20 dataset with

different base classifiers (p = 10). The bandwidth of RBF kernel is 3.

Classifiers LapRLS/L FME f-FME SOGE RLSR SALE RER

1NN
Unlabel 83.15±3.63 85.83±1.37 90.00±1.47 83.54±1.83 81.35±1.84 90.06±1.97 90.12±1.55
Test 84.83±1.88 86.43±1.65 92.23±1.24 86.59±1.60 84.44±1.12 92.35±1.00 92.53±1.34

SVM
Unlabel 78.09±4.07 87.32±1.77 91.15±1.68 83.09±2.41 85.30±2.59 89.50±1.76 91.23±1.83
Test 80.83±2.98 87.97±1.95 91.50±1.22 86.60±1.83 86.39±3.01 91.50±1.16 93.57±1.35

4.3.4 Semi-Supervised Clustering

In this section, we investigated the effectiveness of our RER technique toward clustering

tasks, in other words, proper representation ability. We compared RER with the other

three representation methods, NNLRR, AWSSL, and RGL, on a number of benchmark

datasets.
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Figure 4.6: The example of using RER to recover the corrupted YaleB face images. Left:

the contaminated matrix X. Middle: the corrected data XZ. Right: the error E.

Table 4.8: Predicted accuracy (PreACC) rate and standard deviations (%) of several

methods on three image datasets with the different number of labels (p represents the

number of labeled data per class and bold fonts mark the best performance).

Dataset Method
The number of labeled data per class (p)

4 5 6

AR

NNLRR 43.33±6.73 47.55±6.17 50.58±6.88
AWSSL 53.90±0.23 61.98±0.21 71.69±0.05
RGL 69.24±0.06 73.77±0.05 74.79±0.07
RER 74.40 ± 0.02 80.27± 0.02 86.16± 0.02

COIL20

NNLRR 75.31±2.68 82.46±2.04 84.68±1.75
AWSSL 85.58±0.02 87.05±0.02 87.32±0.01
RGL 85.31±0.02 86.61±0.02 88.50±0.02
RER 85.28±0.01 85.83±0.02 88.75±0.02

LFW

NNLRR 96.83±0.74 97.56±0.44 97.96±1.07
AWSSL 97.58±0.01 98.37±0.03 98.99±0.01
RGL 97.75±0.01 98.33±0.11 99.05±0.01
RER 97.97±0.01 98.39±0.01 98.80±0.92

We used the proportion of correct-classified data points, namely predicted accuracy

(PreACC) to measure. After we get the optimal solution of F in Algorithm 1, the

unlabeled data points can be labeled based on the following decision function:

f̂ i = arg min
j=1,2,...,c

fij ∀i = l + 1, l + 2, ..., n.

Let f̂i and yi are the predicted label and true label of xi, respectively. Then PreACC

is defined as follows:

PreACC =

∑n
i=l+1 δ

(
yi, f̂i

)
n

,

where δ(y, f̂) = 1, when y = f̂ ; δ(y, f̂) = 0, otherwise.

Table 8 shows the mean clustering accuracy with standard deviation (%) and highest

accuracy (%) (highlighted in bold) for each method on AR, COIL20, and LFW datasets,

respectively.
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4.3.5 Experimental Results and Analysis

We employed our RER for the challenging task that recovering a clear face image from

the images contaminated by block noises. The recovery results of our algorithm on

noisy images of the YaleB dataset are shown in Figure 6, in which these images with

corruption are approximately recovered.

Based on the experimental results in all the tables and figures, the following con-

clusions can be drawn.

• Tables 4-8 show the superiority of RER in semi-supervised learning on bench-

mark datasets, especially on the AR datasets. As the number of labeled samples

increases, each algorithm can obtain higher classification rates, but the proposed

RER method grows most rapidly among the compared methods. The major

reason is that the unified optimization model for SSL significantly brings per-

formance improvement in image classification. In addition, we can observe that

RER makes a significant improvement even in clustering tasks (Table 8).

• In some cases, RER is not the best, for example, FME and f-FME work better

than RER on COIL20 when p = 4, 5. These three methods are similar in terms

but different in the norms in their objective functions (Table 2), so that they work

together in COIL20. A possible reason for the inferiority of RER is sparsity:

RER might impose sparsity too much in this dataset. Another reason is the

property of COIL20 which has images of the same object taken from different

angles. A shot from different angles is not always regarded as noise that can be

appropriately dealt with by RER. SALE performs sometimes best. It constructs

two graphs for labeled-labeled pairs and another for labeled-unlabeled pairs while

RER constructs a single graph for unlabeled-unlabeled pairs subject to known

labeled-labeled pairs. This difference makes one better than the other e.g. on the

AR dataset, RER is better than SALE at 6%.

• Tables 5-6 prove the robustness of RER is robust to two kinds of noises. It is worth

noting that RER performs less than 26% slight reduction in terms of accuracy

as the corruptions become more severe and obvious while the performance of the

competitors shows a dramatic drop, e.g. nearly 55% reduction for SOGE.
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(a) Original (b) FME (c) RER

Figure 4.7: Visualization by tSNE of the COIL20 dataset of 20 classes. (a) The original

sample distribution, (b) the sample distribution learned by FME, and (c) RER. Different

colors represent different classes.

• In the clustering task (Table 8), RER is slightly better than RGL and AWSSL

on COIL20 and LFW datasets, and best on AR dataset. The result also shows

robustness against image noises because AR images have many real occlusions

and illusion variations.

• The experimental results on the LFW dataset show that RER can work with the

deeply learned features in classification.

In conclusion, RER is an effective semi-supervised method for both unlabeled training

data and testing data, especially in contaminated situations.

4.3.6 Visualization Experiments

In this section, we evaluated the classification performance of the proposed RERmethod

on a real-world image dataset.

We conducted experiments on a real-world image dataset COIL20 for the object

classification task. We set p = 6 labeled data for each class and the rest as an unlabeled

set. Figure 7 illustrates the 2D visualization of the original distribution of data points

and the distribution after projecting them by FME and our RER of 20 classes (different

colors represent different classes). It can be observed that RER preserves the close

structure for each class better than FME in W subspace, suggesting the proposed

method can effectively utilize advantages inherited from traditional methods to obtain

better classification and clustering performance.
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(a) λ1 (b) λ2 (c) λ3

Figure 4.8: Sensitivity analysis of parameters λ1 (regularization term), λ2 (label prop-

agation term), and λ3 (error term) of RER on AR dataset (p = 6). One parameter was

changed, whereas the other two were fixed empirically.

4.3.7 Parameter Sensitivity and Convergence Analysis

Here we conducted a sensitivity analysis on three parameters λ1, λ2, and λ3 of RER.

They are brought by sparse projection learning, label propagation, and reconstruc-

tion error, respectively. The three parameters are selected from a discrete set S =

{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104, 105, 106} for each dataset. We

utilize the grid search with cross-validation to obtain the optimal parameter combina-

tions on each dataset to obtain the highest classification rates. From Figure 8, we see

the accuracy that is a little sensitive to λ1 only. As a rule of thumb, λ2 needs to be

larger than a threshold θ2, say θ2 = 10, 100, λ3 to be smaller than θ2, say θ2 = 1, 0.1,

and λ1 should be carefully chosen in the range [10−3, 103].

Figure 9 shows the speed of convergence curves of the objective value versus the

number of iterations for the three datasets. We can see RER converged very fast within

five iterations. Although the objective function of (5.7) is not convex, each sub-problem

is convex with respect to variables W,F,Z,E, respectively, which is easy to prove. To

the best of the author’s knowledge, there is no guarantee of convergence of this type of

objective function, although some studies suggest the possibility [38].

4.3.8 Ablation Analysis

For a better insight into the model, an ablation analysis was performed. We designed

three inferior versions of RER. First, to analyze the effectiveness of the nuclear norm

against the Frobenius norm as a measurement of regression residual, we impose the
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(a) AR (b) COIL20

(c) LFW (d) YaleB

Figure 4.9: Convergence of RER on (a) AR (p = 4), (b) COIL20 (p = 5), (c) LFW

(p = 6), and YaleB (p = 6).

Frobenius norm on the regression term in (5.7) as follows:

min
W,F,Z,E

∥∥W TXZ − F
∥∥2
F
+ λ1 ∥W∥2,1 + λ2tr

(
FLZF

T
)
+ λ3∥E∥2,1

subject to Fl = Yl, X = XZ + E,diag(Z) = 0, Z ≥ 0, ZT1 = 1,
(20)

We refer to (20) as RER-F. Second, to analyze the effectiveness of the weight graph

of RER against the pre-constructed Laplacian graph, we designed a method as follows:

min
W,F,Z,E

∥∥W TXZ − F
∥∥
∗ + λ1 ∥W∥2,1 + λ2tr

(
FLSF

T
)
+ λ3∥E∥2,1

subject to Fl = Yl, X = XZ + E,
(21)

where LS denotes a predefined Laplacian matrix. We refer to (21) as RER-pre.

To analyze the effectiveness of introducing the row-sparsity constraint on the regu-

larization term, we set λ1 → 0, and RER is degraded into

min
W,F,Z,E

∥∥W TXZ − F
∥∥
∗ + λ2tr

(
FLZF

T
)
+ λ3∥E∥2,1

subject to Fl = Yl, X = XZ + E,diag(Z) = 0, Z ≥ 0, ZT1 = 1,
(22)

We refer to (22) as RER-λ. We compared three methods and RER on the CMU

PIE dataset (p = 6) with different block sizes of corruption such as 5×5 and 7×7.
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Table 4.9: Accuracy rate and standard deviations (%) on the CMU PIE dataset with

different occlusion sizes of corruption.

Occ.size RER-pre RER-F RER-λ RER

0
Unlabel 71.83±8.56 81.76±3.45 82.13±7.12 83.50±7.42
Test 83.55±4.19 88.28±4.44 88.83±4.02 89.30±4.28

5×5
Unlabel 41.69±11.84 51.02±3.45 80.63±6.53 81.86±7.15
Test 58.12±15.58 67.16±3.84 86.15±3.17 87.62±2.62

7×7
Unlabel 35.29±13.78 30.88±7.23 80.47±6.64 80.98±6.54
Test 44.73±12.34 50.62±3.73 86.27±4.52 87.24±4.03

The experimental results are presented in Table 9. It is evident that RER outperforms

its incomplete variants, which demonstrates that every component contributes to its

performance. In addition, RER-pre and RER-F perform poorly when encountering

corrupted scenarios, which demonstrates that introducing the nuclear norm on the

regression term significantly improves the robustness to noisy data, and fully exploiting

the correlation between the weight graph and label information can result in higher

classification rates.

4.4 Discussion

Although the proposed RER showed the best results in total, there are some potential

limitations. 1) We experimented with image datasets only, so it is questionable how

RER for the other data domains, such as speech, text, and video. 2) RER has a strong

sparsity so there is a risk that RER might be too sparse to obtain sufficient discriminant

features for the dataset with less noiseless or few redundant features. 3) RER is a linear

method so it cannot handle nonlinearly distributed data in essence. 3) RER does not

scale to the large-scale data due to the time complexity of Ô(n3). To cope with these

limitations, we will examine the applicability of RER to domains other than images

in terms of the robustness to noises in those domains. To extend RER to a nonlinear

method, we will try to use kernel methods. Some techniques useful to reduce the time

complexity and speed up will also be considered, e.g. anchor graph.

53



4. ROBUST REGRESSION EMBEDDING FOR SEMI-SUPERVISED
LEARNING

4.5 Conclusion

In this paper, we have presented a general framework called RER for semi-supervised

learning, in which the robust linear regression, low-rank representation, and semi-

supervised learning are elaborately integrated into a unified optimization objective

function. RER aims to address the robustness issue of the semi-supervised learning

method since the robust norms are selected for our algorithm to earn feature selection

and robust regression. Furthermore, our algorithm inherits the advantages of the ex-

isting techniques, including label propagation, manifold learning, dimension reduction,

feature selection, data recovery, and sample selection. An efficient algorithm based on

the augmented Lagrangian method is also proposed for solving the RER model. The

experimental results on some datasets show that the proposed RER model outperforms

many state-of-the-art semi-supervised approaches, even on the datasets contaminated

seriously.
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5

Redirected Transfer Learning for

Robust Multi-Layer Subspace

Learning

In this section, we present the details of the paper named redirected transfer learning

for robust multi-layer subspace learning [2].

5.1 Motivations

To deal with the data sharing the same in the task but different in distribution, in

recent years, more research [29, 60] focuses on low-rank representation-based transfer

learning. The idea is that in some low-rank subspace, the target data could be ap-

proximately reconstructed by the neighbor samples of source data, W tXT ≈ W tXSZ

in (3.10) so that the domain distribution gap is minimized. One problem in this ap-

proach, as already stated, is that it uses zero-one indicators Y in spite of the fact that

cross-domain data might distribute differently. Therefore, to cope with this problem,

ε-dragging technology or margin-restriction technology is considered [86, 104]. In our

model, we propose to directly learn the labels from data and adaptively arrange a more

feasible value for each data by enforcing a strong marginal constraint. In addition, we

impose L2,1-norm not only on the reconstruction error but also on the regularization

term, which brings the following two advantages. First, the row-sparsity requirement

realized by the L2,1-norm in the regularization term works for selecting the most dis-
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5. REDIRECTED TRANSFER LEARNING FOR ROBUST
MULTI-LAYER SUBSPACE LEARNING

criminative features. The column-sparsity requirement realized by L2,1-norm in the

regression term works for reducing the negative influence of noise and outliers residing

in the source and target domains. To accomplish the above requirements, we design a

multi-layer subspace structure that can decouple the input and output from distinctive

distributions, so that the final classification results are not affected by a significant

discrepancy of domain distributions.

5.1.1 Model Formulation

Based on the above analysis, we design a multi-layer subspace learning structure to

unify two requirements of low-rank reconstruction and redirected label regression into

one objective function.

In the first layer, we design a linear mapping W such that the discrepancy of

different domains is minimized. In addition, the irrelevant features and noisy samples

residing in the domains are eliminated in the first layer. It is realized by minimizing

the following objective function:

min
W,Z

∥∥W tXT −W tXSZ
∥∥
2,1

+ λ1∥Z∥∗ + λ2∥W∥2,1, (5.1)

where λ1 > 0, λ2 > 0 are parameters that weigh the importance of low-rank property

and sparsity.

In (5.1), the first two terms
∥∥W tXT −W tXSZ

∥∥
2,1

+ λ1∥Z∥∗ works for attaining a

good domain alignment by reconstructing target data with the lowest-rank represen-

tation of source data samples. The L2,1-norm makes the solution robust against noise

and outliers compared with the Frobenius norm. The regularization term λ2∥W∥2,1
works for feature selection, by which the redundant features and noises are suppressed

or even removed.

In the second layer, RTL learns a discriminative projection P for redirected label

regression based on robust and low-rank data representation. By combining these two

layers into a unified objective function, we obtain the objective function of RTL:

min
W,P,Z,T

∥∥W tXT −W tXSZ
∥∥
2,1

+ λ1∥Z∥∗ +
1

2

∥∥T − PW tX
∥∥2
F
+ λ2∥W∥2,1,

subject to ti,li −max
j ̸=li

ti,j ≥ 1, P tP = I,
(5.2)

where T is the redirected label matrix and X = [XS , XT ]. We impose the orthogo-

nal constraint on P to avoid a trivial solution. In this multi-layer subspace learning
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structure, the final classification results are not affected by any domain distributions

or noises residing in the original data space. It worth noting that the corresponding

label matrix of X is defined as Y = [YS , ŶT ] where ŶT ∈ {0, 1}c×nT is the target pseudo

labels. Then we force PW tXS to be close to the source label YS and PW tXT to be

close to the pseudo label ŶT simultaneously. Note that Y gives the basis of the margin

condition of T , then we learn a redirected label matrix T with more rich and discrim-

inative information than traditional 0-1 label matrix Y under the margin constraint,

thereby boosting the classification performance.

For obtaining pseudo-target labels, we predict ŶT from XT by a base classifier, such

as SVM, for PW tXT , where P and W are updated to minimize (5.2). The detailed

procedure of updating ŶT is shown in Algorithm 3 as the outer loop and solving the

problem (5.2) is shown in Algorithm 4 as the inner loop, respectively.

Algorithm 3 Outer Loop Iteration Algorithm of RTL for Pseudo-Labels (5.2)

Require: data X = [XS , XT ], labels of source domains YS

Ensure: A∗ and ŶT

1: Initialisation: W = I, P = I

2: while not converged do

3: Update ŶT using SVM classifier:

4: ŶT = SVM classifier(PW tXS , PW tXT , YS)

5: Construct label matrix Y = [YS , ŶT ]

6: Fix Y and update P and W by Algorithm 4

7: A = PW t

8: t = t+ 1

9: Check convergence:

∥∥∥A(t)
t −A

(t−1)
t

∥∥∥2
F∥∥∥A(t−1)

t

∥∥∥2
F

< ε

10: end while
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Algorithm 4 Inner Loop Iteration Algorithm of RTL for Solving Problem (5.2)

Require: source domain data XS ∈ Rm×nS , target domain data XT ∈ Rm×nT , label

of source and target domains Y ∈ Rc×n, parameters λ1 and λ2

Ensure: P and W

1: Initialisation: M1 = M2 = M3 = 0, µmax = 107, µ = 0.1, ρ = 1.01, ε = 10−7

2: while not converged do

3: Update W by solving (5.6)

4: Update P by solving (5.9)

5: Update A by solving (5.11)

6: Update Z by solving (5.13)

7: Update E by solving (5.15)

8: Update T by solving (5.17)

9: Update J by solving (5.19)

10: Update M1,M2,M3 and µ by solving (5.20)

11: Check convergence: ∥Z − J∥∞ < ε

12: end while

5.1.2 Optimization

We design an iterative algorithm to update each variable when other variables are fixed.

First, we introduce auxiliary variables E, J and A, then convert (5.2) as follows:

(W ∗, P ∗, A∗, Z∗, E∗, T ∗, J∗) = arg min
W,P,A,Z,E,T,J

∥E∥2,1 + λ1∥J∥∗

+
1

2
∥T −AX∥2F + λ2∥W∥2,1,

subject to ti,li −max
j ̸=li

ti,j ≥ 1,P tP = I, Z = J,A = PW t,

W tXT −W tXSZ = E.

(5.3)

Then the optimization problem (5.3) can be solved by utilizing the alternating

direction method of multipliers (ADMM) [7] algorithm. We can obtain the following

augmented Lagrangian function:

L =∥E∥2,1 + λ1∥J∥∗ +
1

2
∥T −AX∥2F + λ2∥W∥2,1

+
〈
M1,W

tXT −W tXSZ − E
〉
+ ⟨M2, Z − J⟩+

〈
M3, A− PW t

〉
+

µ

2

(∥∥W tXT −W tXSZ − E
∥∥2
F
+ ∥Z − J∥2F +

∥∥A− PW t
∥∥2
F

)
,

(5.4)

where M1,M2,M3 are Lagrange multipliers and µ > 0 is a penalty parameter. In

order to solve (5.4), we adopt the alternating optimization strategy, i.e., each variable
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is optimized by fixing other irrelevant variables. The predicted pseudo-labels of target

data are updated in each iteration.

Update W : W can be solved by fixing other irrelevant variables and optimized by

the following problem

W ∗ = argmin
W

λ2∥W∥2,1 +
µ

2

∥∥∥∥W tXT −W tXSZ − E +
M1

µ

∥∥∥∥2
F

+
µ

2

∥∥∥∥A− PW t +
M3

µ

∥∥∥∥2
F

.

(5.5)

Then we take partial derivative of (5.5) with respect to W equal to zero, a closed-form

solution W ∗ can be obtained as

W ∗ =
(
2λ2G+ µK1K

t
1 + µI

)−1
(µK1K

t
2 + µK3

tP ), (5.6)

where K1 = XT −XSZ,K2 = E − M1
µ ,K3 = A− M3

µ . G ∈ Rm×m is a diagonal matrix

and its each diagonal element (G)ii =
1

2∥(W )i∥
2

, where (·)i denotes the ith column of a

matrix.

Update P : P can be solved by fixing other irrelevant variables and optimized by

the following problem

P ∗ = argmin
P

µ

2

∥∥∥∥PW t −A+
M3

µ

∥∥∥∥2
F

subject to P tP = I. (5.7)

we can convert (5.7) to the following maximization problem:

max
P

µ

2
tr
(
µK3WP t

)
subject toP tP = I. (5.8)

Let the SVD of µK3W . Then, according to [113], the optimal solution to the

problem above is

P ∗ = UV t , (5.9)

where U, V is the SVD decomposition value of µK3W .

Update A: A can be solved by fixing other irrelevant variables and optimized by

the following convex problem

A∗ = argmin
A

1

2
∥T −AX∥2F +

µ

2

∥∥∥∥PW t −A+
M3

µ

∥∥∥∥2
F

. (5.10)
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Then we take partial derivative of (5.10) with respect to A equal to zero, a closed-

form solution A∗ can be obtained as

A∗ =

(
TXt + µ

(
PW t +

M3

µ

))(
XXt + µI

)−1
. (5.11)

UpdateZ: Z can be solved by fixing other irrelevant variables and optimized by

the following convex problem

Z∗ = argmin
Z

µ

2

∥∥∥∥W tXT −W tXSZ − E +
M1

µ

∥∥∥∥2
F

+
µ

2

∥∥∥∥Z − J +
M2

µ

∥∥∥∥2
F

. (5.12)

Then we take partial derivative of (5.12) with respect to Z equal to zero, a closed-

form solution Z∗ can be obtained as

Z∗ =
(
Xt

SWW tXS + Ins

)−1
[
Xt

SW
(
W tXT − E + M1

µ

)t
+ J − M2

µ

]
. (5.13)

Update E: E can be solved by fixing other irrelevant variables and optimized by

the following convex problem

E∗ = argmin
E
∥E∥2,1 +

µ

2

∥∥∥∥E −W tXT +W tXSZ −
M1

µ

∥∥∥∥2
F

. (5.14)

According to [38], the optimal E∗ can be computed as

(E∗):,i =


∥K:,i∥2 − 1

∥K:,i∥2
K:,i, ∥K:,i∥2 >

1

µ
;

0, otherwise,

(5.15)

where K = W tXT −W tXSZ + M1
µ .

Update J : J can be solved by fixing other irrelevant variables and optimized by

the following convex problem

J∗ = argmin
J

λ1∥J∥∗ +
µ
2

∥∥∥Z − J + M2
µ

∥∥∥2
F
. (5.16)

The optimal J∗ can be computed by utilizing singular value thresholding (SVT)

algorithm [9] as

J∗ = Ωλ1
µ

(
Z + M2

µ

)
(5.17)

where Ω is the singular value shrinkage operator.
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Update T : T can be solved by fixing other irrelevant variables and optimized by

the following convex problem

T ∗ = argmin
T

1

2
∥T −AX∥2F subject to ti,li −max

j ̸=li
ti,j ≥ 1. (5.18)

It is obvious that problem (5.18) can be decomposed into the following sub-problems

min
ti,li−max

j ̸=li
ti,j⩾1

∥Ti,: −Ri,: ∥2F , (5.19)

where R = AX. According to Theorem 2 in [104], after solving problem (5.19)

by solving for all columns of T separately, we can obtain the optimal solution Ti,: of

problem (5.18).

We also update M1,M2,M3 and µ by
M1 ⇐M1 + µ

(
W tXT −W tXSZ − E

)
,

M2 ⇐M2 + µ (Z − J),
M3 ⇐M3 + µ

(
PW t −A

)
,

µ⇐ min (ρµ, µmax),

(5.20)

where ρ>0 and µmax are constants.

5.1.3 Computational Complexity

In Algorithm 4, the computation cost of RTL mainly burdens in the following steps:

1) Matrix inversion and multiplication in steps 3 (optimizing W ), 5 (optimizing A),

and 6 (optimizing Z), which involve the computational cost of O
(
m3
)
, O
(
m3
)
, O
(
n3
S

)
,

respectively, in each iteration.

2) SVD in steps 4 (optimizing P ) and 8 (optimizing J), which involve the compu-

tational cost of O
(
min (c, d)3

)
and O

(
n3
S

)
respectively, in each iteration.

Suppose the number of iterations for Algorithm 3 and Algorithm 4 is touter and

t, respectively. Since d ≪ m, the total computational complexity of RTL is at most

ttouter

(
O
(
min (c, d)3

)
+ 2O

(
m3
)
+ 2O

(
n3
S

))
. It is obvious that RTL is not fast enough

on large-scale datasets, but it works well with deep features of large-scale datasets ex-

tracted by deep learning methods, which is proven in the following experiments.
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5.1.4 Convergence Analysis

The convergence of ADMM with less than three variables has been proved in the con-

dition that the objective function is smooth [7]. However, it is difficult to prove the

convergence of our method since there are over three variables (seven variables in Al-

gorithm 4). Also, the objective function in (5.2) is not absolutely smooth. Fortunately,

according to [16, 89], there are three sufficient conditions to provide some assurances

about the convergence property of the proposed method.

(1) The parameter µ in step 10 should be upper bounded.

(2) The so-called dictionary D ( XS denotes as D in our paper) should be of full

column rank.

(3) For each iteration step, the optimal gap produced by εk = ∥(Zk, Jk)− (Z∗, J∗)∥2F
is monotonically decreasing, where Zk and Jk denote the solutions obtained at kth

iteration, respectively, and Z∗ and J∗ represent the optimal solutions of the model

argmin
Z,J

L.

Although the third condition is difficult to satisfy, we show some experimental

evidence to prove it does hold convergence in the previous Section. Algorithm 3 as the

outer loop and Algorithm 4 as the inner loop seem to be independent, but we provide

sufficient evidence that these two algorithms can promote each other and gradually

converge by simultaneously optimizing the variables P and W and ŶT in Figure 5.4.

When the vertical interval is quite large (right column in Figure 5.4), we can see that

our objective values reduce reasonably well (less 10 iterations). When the vertical

interval is very small (left column in Figure 5.4), the objective function value quickly

decreases as the number of iterations increases and then has slight fluctuation.

5.1.5 Differences from Previous Work

Two previous methods TSL LRSR [89] and LET [22] are close to the proposed RTL.

The objective function of TSL LRSR is as follows:

min
W,Z,M

∥∥W tXT −W tXSZ
∥∥2
F
+ ∥Z∥∗ + ∥Z∥1

+
1

2

∥∥W tX − (Y +B ⊙M)
∥∥2
F
,

subject to M ≥ 0.

(5.21)
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(a) TSL LRSR (b) LET

(c) RTL

Figure 5.1: Projections learned by TSL LRSR, LET, and RTL for the task C1 → C2.

Note: all figures are shown in the HSV color space. For better comparison, we only plot

the first 100 rows of these projections. From the colorbar, we can infer all element values of

these projections. It is seen that the element values in some rows are equal or approximate

to zeros in (c).
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The objective function of LET is as follows:

min
W,P,M

1

2

∥∥PW tX − (Y +B ⊙M)
∥∥2
F
+ λ1∥P∥∗ +

1

2
λ2∥P∥2F

+ λ3tr
(
W tXLXtW

)
,

subject to M ≥ 0,W tW = I.

(5.22)

They are similar to RTL in the way of domain alignment and multi-layer subspace

learning, respectively, but different in some points. (1) The norm is replaced with

L2,1-norm from Frobenius norm. Therefore, RTL is more robust than TSL LRSR. (2)

RTL exploits redirected label learning technique that is not adopted in TSL LRSR.

(3) Both LET and RTL take multi-layer subspace learning, but only RTL employs the

redirected label technology and feature extraction. Besides, the way of diminishing

the discrepancy between the source and target domains is different, LET uses the

empirical maximum mean discrepancy (MMD) for domain alignment. The low-rank

reconstructions used in RTL and TSL LRSR are more robust.

To give a better insight into the projection constrained with L2,1-norm, in Figure

5.1c, we have plotted the 2D projection matrix W ∈ Rm×c learned by TSL LRSR, LET,

and RTL for the task C1 → C2, where m = 1000 and c = 20 on the COIL20 dataset.

For better comparison, we only presented the first 100 rows of these projections. Since

only the projection W learned by RTL has enforced sparsity by L2,1-norm, some rows

of projection W of RTL are equal or close to zeros while the other two projections do

not show this phenomenon. Thus, the features of the original data corresponding to

these rows will not be selected by RTL. This implies that RTL performs a self-adaptive

feature selection and effectively eliminates the negative influence of redundant and noisy

data.

5.2 Experiments

To evaluate the classification performance of the proposed method RTL, we conducted

extensive experiments and compared RTL with the state-of-the-art approaches, includ-

ing nearest neighbor (1NN), TCA [53], JDA [41], JGSA [92], TSL LRSR [89], GSL [96],

and LET [22]. We also compared RTL with some deep learning methods, e.g. AlexNet

[32] and DDAN [75].
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5.2.1 Datasets Introduction

We used four datasets including three image datasets: 4DA [20], CMU PIE [69], COIL20

[41], and one text dataset: Reuters-21578 [42]. We summarize the details of each dataset

in Table 5.1.

1) 4DA is usually used for object image classification, which includes four object

domains with different distributions, A (Amazon), W (Webcam), D (DSLR) and C

(Caltech-256). Each domain contains 10 common classes selected from the 3DA dataset

[20] and an extra Caltech 256 dataset. 12 cross-domain object classification tasks

are constructed by randomly deploying two domains as source and target domains

alternatively, e.g., C → A, A → C, C → W, ..., D → W. We used two sets of

features, e.g., shallow features (SURF) and deep features (DeCAF7) which are learned

by a convolutional neural network (CNN) [32], for traditional and deep learning image

classification separately. The example images of subsets of the 4DA dataset are shown

in Figure 5.2 (a).

2) CMU PIE is also used for face image classification, which contains 68 persons

with 41,368 images as a whole. We selected five subsets to test different methods: e.g.,

P1 (C05) with 3332 images, P2 (C07) with 1629 images, P3 (C09) with 1632 images,

P4 (C27) with 3329 images and P5 (C29) with 1632 images. All these face images were

cropped to 32 x 32 pixels. 20 cross-domain face classification tasks are constructed by

randomly deploying two subsets as source and target domains alternatively, e.g., P1

→ P2, P2 → P1, P1 → P3, ..., P5 → P4. Furthermore, to verify the robustness of

algorithms, we added 5 × 5 block size of noises on the random position of each image.

The example images of subsets of the CMU PIE dataset are shown in Figure 5.2 (b).

3) COIL20 is one more object image dataset, which contains 20 objects with 72

gray-scale images per object. The objects were placed on an electric turntable and

rotated 360 degrees at five-degree intervals. Each image has 32 × 32 pixels. We selected

two subsets C1 (COIL1) and C2 (COIL2) in our experiments. 2 cross-domain object

classification tasks are constructed by randomly deploying C1 and C2 as source and

target domains alternatively as follows: C1 → C2, C2 → C1. The example images of

subsets of the COIL20 dataset are shown in Figure 5.2 (c).

4) Reuters-21578 is usually used for text classification. It has three top categories

i.e., orgs, people, and place, each of which is comprised of many subcategories. We
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assume that the samples belonging to different subcategories are drawn from different

domains and generated 6 cross-domain tasks, i.e., org → people, people → org, org →
place, place → org, people → place, and place → people.

Table 5.1: Detailed information of different datasets

Dataset Subset Abbr. Images Features Classes

4DA

Amazon A 958

10
Caltech C 1,123 SURF(800)

DSLR D 157 DeCAF7(4096)

Webcam W 295

CMU PIE

PIE05 P1 3,332

Pixel(1,024) 68

PIE07 P2 1,629

PIE09 P3 1,632

PIE27 P4 3,329

PIE29 P5 1,632

COIL20
COIL1 C1 720

Pixel(1,024) 20
COIL2 C2 720

Reuters-21578

orgs org 1,237

Pixel(4,771) 2people peo 1,208

place pla 1,016

5.2.2 Experimental Setting

In this experiment, we exploited all the source domain instances during the training

process and target domain instances as a testing set. We adopt the traditional 1-

Nearest Neighbor classifier (1NN) with Euclidean distance and the Support Vector

Machine classifier (SVM) with an RBF kernel as the baseline classifiers to calculate

classification accuracy. SVM is trained on the labeled source data and then tested on

the unlabeled target data. We used both classifiers 1NN and SVM only in 4DA (SURF)

because they showed the same tendency in all datasets. For the other datasets, we used

SVM only. SVM is used also to progressively update the pseudo labels ŶT of the target
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Figure 5.2: Images samples of different datasets, including (a) 4DA dataset, (b) CMU

PIE dataset with clean images and corrupted images, (c) COIL20 dataset.

domain. The parameters setting of the SVM classifier is optimized by grid-search,

including selecting the penalty term C and bandwidth δ of RBF kernel. For pseudo-

label-based methods, JDA, JGSA, and GSL, we also tuned parameters according to

their corresponding reference.

There are two parameters in RTL to be tuned, λ1 and λ2. We set the subspace

dimensionality d ≥ c empirically such that the dimension is at least greater than the

number of classes, for guaranteeing better classification results. We tuned the param-

eters λ1 and λ2 in the range of
[
10−2, 10−1, 1, 101, 102

]
by gird-search strategy for all

datasets. The optimal parameters in other methods are selected according to the cor-

responding papers. Please note that the partial results of AlexNet are directly quoted

from [46]. To facilitate fairness, we modified the semi-supervised transfer learning

method LET as an unsupervised version by utilizing all labeled source data for train-

ing and unlabeled target data for testing.

5.2.3 Classification and Evaluation Metric

In transfer learning, there are usually two different domains and corresponding learning

tasks, i.e. a source domain ps(x, y) and learning task TS , a target domain pt(x, y) and

learning task TT , the process of classification is using TS (model training on source

data) to help improve TT (classification of unlabeled target data). 1NN is trained

on the labeled source data, and tested on the unlabelled target data. TCA, JDA,

JGSA, TSL LRSR, GSL, LET, and the proposed RTL methods perform on source and

target data as a dimensionality reduction procedure. Finally, the nearest neighbor
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(NN) classifier or support vector machine (SVM) is trained on the labeled source data

for classifying the unlabelled target data. The classification rate on the target task is

calculated as

Accuracy =
|x : x ∈ DT ∧ ŷ (x) = y (x)|

|x : x ∈ DT |
(5.23)

where DT is the set of unlabeled target data, y(x) is the truth label of x, ŷ (x) is the

label predicted by the classification methods.

Table 5.2: Accuracy(%) on the 4DA dataset with SURF features. The best is typed in

boldface and ∗ denotes the pseudo-target label-based method.

NN classifier SVM classifier

Source → Target NN JDA∗ TCA JGSA∗ TSL LRSR LET GSL∗ RTL∗ JDA∗ TSL LRSR GSL∗ RTL∗

A→D 17.83 28.66 28.03 28.66 28.66 30.57 39.49 43.31 38.85 33.76 40.76 48.41

A→W 15.93 26.10 26.78 26.10 31.53 31.53 35.93 36.61 36.27 33.56 36.61 47.73

A→C 15.32 33.04 32.06 33.04 42.12 32.77 41.41 47.73 42.38 43.99 43.10 49.15

D→A 18.79 29.96 29.33 29.96 19.83 17.54 29.02 37.79 25.68 27.97 35.07 39.98

D→W 32.88 65.42 60.34 60.00 68.81 66.44 63.05 72.54 45.08 74.58 75.93 75.25

D→C 11.93 29.21 28.58 29.21 21.55 28.41 25.82 32.15 28.85 27.87 30.01 32.50

W→A 15.66 34.66 28.71 28.50 24.32 30.48 24.95 40.08 37.89 33.61 34.97 42.59

W→D 30.57 66.88 65.61 64.97 64.33 81.53 70.06 84.08 68.79 80.25 83.44 85.35

W→C 11.58 29.30 28.05 29.30 21.10 24.31 27.43 33.57 33.84 28.58 31.79 37.22

C→A 20.35 36.74 35.80 36.74 42.90 39.35 49.69 53.55 51.25 51.36 51.25 57.93

C→D 12.10 28.03 29.30 28.03 44.59 33.76 42.04 50.32 43.95 44.59 45.22 54.14

C→W 14.24 26.44 25.42 26.44 35.59 30.85 38.31 50.85 45.08 40.00 45.42 56.27

Average 18.09 36.20 34.83 35.08 37.11 37.30 40.60 50.69 44.08 43.34 46.13 51.89

Table 5.3: Accuracy(%) on the 4DA dataset with DeCAF7 features. The best is typed

in boldface, and * denotes deep learning methods.

SVM classifier

Source → Target JDA TCA JGSA TSL LRSR LET GSL AlexNet∗ DDAN∗ RTL

A→D 84.08 79.62 88.54 86.62 85.99 87.26 87.41 88.53 96.18

A→W 74.58 75.25 83.39 76.27 77.97 78.64 79.50 90.85 92.20

A→C 83.62 84.24 88.60 85.04 85.49 85.40 83.01 89.10 89.14

D→A 87.79 37.47 37.68 38.94 75.99 82.67 87.09 93.21 81.11

D→W 99.32 51.53 43.05 52.88 99.32 99.66 97.65 98.64 99.32

D→C 79.43 36.69 37.76 39.89 69.01 74.89 79.00 88.51 76.22

W→A 75.16 60.44 72.34 56.47 77.66 79.02 83.81 92.17 89.87

W→D 100.00 90.45 72.61 87.90 100.00 100.00 100.00 93.36 100.00

W→C 71.06 35.80 38.82 52.00 70.97 70.79 73.03 88.96 84.51

C→A 91.02 76.62 80.69 83.82 92.07 92.12 91.88 93.01 93.84

C→D 88.54 78.34 80.25 84.08 85.99 87.26 87.10 89.81 90.45

C→W 79.32 64.07 65.76 68.47 78.64 77.97 83.66 91.19 84.07

Average 84.49 64.21 65.79 67.69 83.25 84.63 86.10 91.45 89.74
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Table 5.4: Accuracy(%) on the CMU PIE dataset corrupted by 5× 5 block size occlusions.

The best is typed in boldface, and ∗ denotes label relaxation strategy-based methods.

SVM classifier

Source → Target JDA TCA JGSA TSL LRSR∗ LET∗ GSL∗ RTL∗

P1→P2 28.73 6.69 16.02 36.10 42.60 28.73 51.81

P1→P3 27.51 6.00 17.52 34.87 48.41 29.60 50.18

P1→P4 37.61 10.33 9.16 59.78 71.07 40.70 82.79

P1→P5 17.28 4.96 8.64 35.17 39.64 20.04 43.81

P2→P1 21.76 6.36 13.63 31.15 44.33 26.74 54.08

P2→P3 25.25 4.60 14.89 31.00 45.10 31.50 48.77

P2→P4 52.93 5.86 4.75 57.61 73.57 54.97 76.45

P2→P5 21.38 6.31 11.34 25.43 37.01 23.65 35.48

P3→P1 26.77 5.82 17.14 40.97 46.82 30.67 58.07

P3→P2 28.36 7.12 15.22 35.79 45.30 31.31 48.56

P3→P4 52.93 6.37 2.34 59.72 66.84 54.40 70.47

P3→P5 25.25 4.90 9.93 35.48 46.57 30.76 52.02

P4→P1 47.93 7.11 22.99 63.21 81.03 54.65 87.00

P4→P2 65.75 6.94 20.99 67.89 75.57 66.05 79.86

P4→P3 65.87 7.54 14.64 69.06 73.84 65.87 78.80

P4→P5 40.93 5.09 16.30 47.86 63.97 43.26 67.59

P5→P1 29.56 2.49 15.22 42.74 44.66 29.98 51.53

P5→P2 28.12 3.68 12.28 35.79 40.64 28.30 44.63

P5→P3 30.15 3.80 10.05 38.36 48.84 32.90 53.25

P5→P4 41.75 2.43 12.77 55.42 58.01 43.86 67.02

Average 35.79 5.72 26.58 45.17 54.69 45.38 60.11

Table 5.5: Accuracy(%) on the COIL20 dataset. The best is typed in boldface

SVM classifier

Source → Target JDA TCA JGSA TSL LRSR LET GSL RTL

C1→C2 79.03 55.28 53.61 76.39 71.94 80.69 84.58

C2→C1 76.39 49.17 54.86 77.22 72.78 82.64 85.56

Average 77.71 52.23 54.24 76.81 72.36 81.67 85.07
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(a) COIL20

(b) TSL LRSR

(c) LET

(d) RTL

Figure 5.3: The t-SNE visualization of (a) original data, and the extracted features

generated by (b) TSL LRSR, (c) LET, (d) RTL, on the C1→C2 task respectively. In the

first column, the red cross ’x’ denotes source samples of C1 domain, the blue hollow circle

’◦’ denotes target samples of C2 domain, and in the second column, the solid circle ’•’ with
20 colors denotes the samples corresponding to 20 classes.
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Table 5.6: Accuracy(%) on the Reuters-21578 dataset. The best is typed in boldface

SVM classifier

Source → Target JDA TCA JGSA TSL LRSR LET GSL RTL

org→peo 75.99 73.76 79.80 77.40 61.01 75.50 80.05

peo→org 77.12 74.54 82.78 78.66 54.65 74.62 86.42

org→pla 71.33 69.45 56.28 60.88 52.06 69.80 71.14

pla→org 63.88 62.58 58.17 60.83 49.70 61.71 85.24

peo→pla 59.89 58.17 57.66 53.20 49.77 57.38 63.25

pla→peo 54.60 60.54 60.54 58.03 49.58 57.38 58.12

Average 67.14 66.51 66.37 64.83 52.80 66.07 74.04

5.2.4 Experimental Results

1) Results on the 4DA dataset with (shallow) SURF features: the classification results

on the 4DA dataset with SURF features are shown in Table 5.2, from which we observe

that RTL ranks the first (50.69% and 51.89%) in average by applying the NN classifier

and SVM classifier, respectively. RTL attained about 5%-10% improvements on average

compared to the second-best competitor GSL. It is noteworthy that RTL substantially

promotes the classification accuracy on the hard transfer task D → A. In addition,

we observe that predicting pseudo labels works well, as seen in JDA, GSL, and the

proposed RTL. We also observe that RTL does not much depend on the classifier, that

is, whether SVM or 1NN.

2) Results on the 4DA dataset with (deep) DeCAF7 features: the classification re-

sults on the 4DA dataset when DeCAF7 features are used are shown in Table 5.3. It

is seen that deep features are more discriminative than shallow features. Among all

conventional methods, only RTL is comparable to two deep learning methods and out-

performs the other state-of-the-art non-deep transfer learning methods. By comparing

with deep transfer learning methods denoted with *, the proposed RTL is merely worse

than DDAN with 1.71% in accuracy, while it outperforms the AlexNet with 3.64%. The

comparison shows that the proposed RTL, as a shallow learning method, has attractive

competitiveness.

3) Results on the CMU PIE dataset with noises: the classification results on the

CMU PIE dataset with 5×5 block size noises are shown in Table 5.4. We can see
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that the proposed RTL wins 19 out of 20 tasks and outperforms the other competitive

method with 60.11% in accuracy. It is further noteworthy that the proposed RTL

cannot achieve state-of-the-art performance on the complicated scenario P2 → P5,

mainly because the block noises hide the important features to identify faces, such as

the eyes, nose, and ears, and thus the discrepancy between domains becomes large.

4) Results on the COIL20 dataset: the classification results on the COIL20 dataset

are shown in Table 5.5 in which RTL shows the best performance (85.07%) in average.

To figure out the reason, we visualized extracted features from TSL LRSR, LET, GSL,

and RTL on the adaptation task C1→ C2 in Figure 5.3. It is worth noting that Figure

5.3 is the 2D projection of data points by applying the technique of t-SNE [67]. In the

first column of Figure 5.3, the red cross ’x’ denotes source samples of C1 domain, the

blue hollow circle ’◦’ denotes target samples of C2 domain, and in the second column

of Figure 5.3, the solid circle ’•’ with 20 colors denotes the samples corresponding

to the different classes. In Figure 5, the first column intuitively reflects the results

obtained by different methods by reducing the distribution gap between domains, and

the second column shows the visualized results of the classification performance of data

of different classes. The smaller the gap between the source domain and the target

domain and the more points are clustered according to the corresponding class, the

greater the performance of the method. We can see that only in Figure 5.3 (d), the

source samples are uniformly distributed and close to the target samples. TSL LRSR

and LET could not divide data points into 20 clusters accurately, while RTL succeeded

in making compact clusters and keeping the structure.

5) Results on the Reuters-21578 dataset: the classification results on the text

Reuters-21578 dataset are shown in Table 5.6. The Reuters-21578 dataset is a challeng-

ing dataset since there are many subcategories for each main category. Thus, it is more

difficult to propagate the label information between domains for knowledge transfer.

Although the proposed RTL shows slightly inferior to TCA and JGSA in pla→peo

task, RTL still achieves strong performance with 74.04% average accuracy on the other

complex transfer tasks, which further demonstrates the efficiency of the proposed RTL

when encountering a large domain discrepancy.

5.2.5 Convergence and Parameter Sensitivity Analysis

Although Algorithm 3 and Algorithm 4 are dependent, we still need to check the
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convergence of RTL by running the Algorithm 3 (outer loop) and Algorithm 4 (inner

loop) respectively. We show the convergence curves versus the iteration gap ∆Atouter

in Algorithm 3 (first column of Figure 5.4), and convergence curves versus the value

of the objective function in Algorithm 4 (second column of Figure 5.4), respectively.

We can obviously find that the value of ∆Atouter is monotonically decreasing till to the

stationary point with the iteration increasing, which proves the convergence property

of Algorithm 3. Furthermore, we can observe that Algorithm 3 also converges very fast

(less than 10 iterations).

Figure 5.5 provides the classification accuracy of RTL on different cross-domain

tasks when parameters λ1 and λ2 were selected from the set [10−2, 10−1, 100, 101, 102].

We can observe the classification performance of RTL is not sensitive to the variations

of λ1 and λ2. This also proves that low-rank property (controlled by λ1) and sparsity

(controlled by λ2) are indispensable for superior performances, and the best classifi-

cation accuracies are achieved when both parameters are nonzero. In conclusion, our

method is robust to the selection of λ1 and λ2 to some extent.

5.2.6 Time Comparison

To explicitly present the computational complexity of the proposed method, we take

the C1 → C2 task as an example to test the efficiency of competing methods. The

MATLAB codes of all algorithms are obtained from the corresponding authors, and all

algorithms were implemented in MATLAB on a 2.90GHz CPU Windows 10 machine

with 8GB memory. We train all the algorithms on the C1 subset and test on the C2

subset. The run time comparisons of different algorithms with respect to the training

and test time are listed in Table 7. The low-rank representation-based methods, such

as TSL LRSR, GSL, and RTL, require a lot of time to solve the rankness optimization

problem and thus the training speed is too slow while the performance of these methods,

especially RTL, is greatly superior to the faster algorithms.

Table 5.7: Run time (s) comparisons of different methods

JDA TCA JGSA TSL LRSR LET GSL RTL

Train 20.21 24.45 16.07 17.04 13.36 20.71 16.96

Test 0.27 0.30 0.07 0.51 0.46 0.30 0.21
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(a) D→W

(b) P3→P4

(c) C2→C1

(d) pla→peo

Figure 5.4: Convergence curves on the selected cross-domain datasets. (a) Task D→W

in 4DA, (b) Task P3→P4 in CMU PIE, (c) Task C2→C1 in COIL20, (d) Task pla→peo

in Reuters-21578.
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(a) C→A (b) W→A

(c) C2→C1 (d) P2→P4

Figure 5.5: Sensitivity of RTL to its parameters λ1 and λ2. (a) 4DA (SURF feature),

(b) 4DA (DeCAF7 feature), (c) COIL20, and (d) CMU PIE datasets.
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5.2.7 Ablation Studies

Table 5.8: Accuracy(%) on the 4DA dataset with SURF features. The best is typed in

boldface

SVM classifier

Source → Target RTL-A RTL-B RTL-C RTL

A→D 31.21 35.03 36.94 48.41

D→W 64.41 66.44 65.79 75.25

W→D 73.89 71.97 71.97 85.35

C→D 42.68 42.04 40.13 54.14

Average 53.05 53.87 53.71 65.79

To gain a better insight into each subspace in RTL, we compared the proposed RTL

with the single subspace learning structure learning method named RTL-A:

min
W,Z

∥∥W tXT −W tXSZ
∥∥
2,1

+ λ1∥Z∥∗ +
1

2

∥∥Y −W tX
∥∥2
F
+ λ2∥W∥2,1. (5.24)

RTL-A learns a single robust subspace but is limited by strict binary labels which

results in performance degradation.

In addition, we have another variant named RTL-B:

min
W,Z,T

∥∥W tXT −W tXSZ
∥∥2
F
+ λ1∥Z∥∗ +

1

2

∥∥T −W tX
∥∥2
F
+ λ2∥W∥2F

subject to ti,li −max
j ̸=li

ti,j ≥ 1.
(5.25)

RTL-B learns a single discriminative subspace using the Frobenius norm which

results in being sensitive to the noisy data and redundant features residing in domains.

We also verify the effect of the pseudo-label in our method so we design a model

named RTL-C which only uses the label of source data for training as follows:

min
W,Z,T

∥∥W tXT −W tXSZ
∥∥
2,1

+ λ1∥Z∥∗ +
1

2

∥∥T −W tXS

∥∥2
F
+ λ2∥W∥2,1

subject to ti,li −max
j ̸=li

ti,j ≥ 1.
(5.26)

The results of RTL-A, B, and C of several tasks on the 4DA dataset with shallow

features are shown in Table 5.8, from which we can find that each subspace is indis-

pensable. The robust subspace learning of RTL-A has a great impact on performance

since large discrepancies existing in the different domains can be efficiently minimized
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(a) original data (b) RTL-A

(c) RTL-B (d) RTL-C

(e) RTL

Figure 5.6: The t-SNE visualization of RTL on the A→W task. The solid circle ’•’ with
10 colors denotes the samples corresponding to the different classes. There are 10 classes

in the 4DA dataset.
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and the redundant features and noisy points can be eliminated substantially. Then

we observe that the discriminative subspace of RTL-B is also important because the

minimum discrepancy is not enough to guarantee the best classification performance.

In addition, we find that the performance of RTL-C shows a clear drop compared with

RTL, which proves the effectiveness of the pseudo labels.

To obtain a deeper insight into these methods, in Figure 5.6, we present the visu-

alized results for classifying 10 classes samples of task A → W from the 4DA dataset.

It is worth noting that Figure 5.6 is the 2D projection of data points by applying the

technique of t-SNE. The dataset of A→ W is complex in which there are many noisy

and irrelevant data points and the data from different classes overlap together (see

Figure 5.6(a)). RTL-A can alleviate the problem with robust norm selection, however,

the margins between different classes are not large enough (see Figure 5.6(b)). RTL-B

reduces the margins of the intra-class as much as possible and enlarges the margins of

the inter-class simultaneously, however, compared to RTL-A, the marginal distribution

of RTL-B is somewhat more discrete and more misclassified points, which is due to the

lack of redirected label strategy (see Figure 5.6(c)). The class boundary obtained by

RTL-C is inferior since only source data labels are available is not enough for unsu-

pervised scenarios while the pseudo-label technique fully considers the labels from all

domains and benefits the classification accuracy (see Figure 5.6(d)). As shown in Fig-

ures 5.6(e), the data from the same class exhibits a compact and clean structure which

proves that lacking any component of RTL will lead to worse classification performance

than the full model of (5.2).

5.3 Conclusion

We have proposed a novel transfer learning method named RTL for unsupervised clas-

sification. RTL surmounts the disadvantages of existing transfer learning methods in

the following three aspects. First, RTL overcomes the limitation of the rigid 0-1 la-

bels by adopting a redirected label matrix of continuous values. This improved the

discriminative ability and robustness. Second, RTL employs a multi-layer subspace

learning structure so that the final classification results are not affected by the differ-

ences in domain distributions or noises residing in the original data space. Third, RTL
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pre-constructs the pseudo-label for target domain data to further improve the discrimi-

native ability. The classification experimental results of the proposed method on image

datasets show can reach 89.74%, and even on text dataset can reach 74.04%, which is

6.9% higher than the competing methods. Furthermore, we overcome the shortcomings

of the existing methods that they are sensitive to noises and achieve a great effect of

more than 60% on the corrupted dataset.

In our experiments, we show the computation time of competing methods. How-

ever, the training speed is fast only when the number of training samples is relatively

small. The computation complexity of RTL is cubic in the size n of training samples.

Therefore, the scalability is a limitation of the current RTL. In the future, we will

explore more efficient algorithms to improve computational efficiency.
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6

Partial Multi-label Learning with

Adaptive Dual Graph

Disambiguation

6.1 Preliminaries

In Section 3.4, we scrutinize the inherent limitations of conventional graph-based label

disambiguation methods in Partial Multi-Label Learning (PML). We identify two pri-

mary shortcomings in the existing approaches. Firstly, these methods generally adhere

to a two-stage process, segregating the construction of the graph structure from model

training. This segregation leads to inaccuracies in label confidence determination and

suboptimal classifier performance. Secondly, these methods exhibit a significant vulner-

ability to the complexities of real-world data, especially in the presence of substantial

noise and outliers.

Recent research for partial label learning [72] has suggested using adaptive graph

embedding as a more effective alternative for single partial label tasks. This approach

is deemed superior in capturing the intrinsic relationship between data and labels and

shows enhanced robustness against noisy data, compared to fixed graph-based disam-

biguation methods. However, in the context of partial multi-label learning tasks, which

confront challenges in both high-dimensional feature and label spaces, there is a press-

ing need for a more robust and efficient method. This method should be capable of

simultaneously exploring the feature correlation and label correlation as well as the
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correlation between the feature space and the label space.

In response to these challenges, instead of a two-stage learning strategy, we pro-

posed a unified framework, named Adaptive Dual Graph Disambiguation (ADGD),

which jointly performs adaptive dual graph learning, candidate label disambiguation,

and predictive model induction in an objective function. Furthermore, we integrated

two different graphs, a data-based graph and a label-based graph to guide the disam-

biguation in the PML problem. Finally, we employ L2,1-norm on both regression and

regularization terms to improve the robustness of noises and reduce the dimensionality

of feature space and complexity of label space. In the following parts, we will present

the details of the proposed ADGD and introduce an alternative optimization algorithm

to solve the objective function.

6.2 Formulation of ADGD

The proposed ADGD method simultaneously learns dual adaptive graphs and a sparse

projection matrix in a joint PML framework. These graphs, one capturing instance

interrelationships and the other focusing on label correlations, are dynamically updated

to better handle label noise and enhance label confidence. Our objective function is

illustrated as follows:

min
W,F,SX ,SY

∥∥XTW − F
∥∥2
F
+ λ1∥W∥2,1 + λ2

n∑
i,j

sXij
∥∥f i − f j

∥∥2
2
+ λ3

q∑
i,j

sYij ∥wi −wj∥22,

subject to SX
T

1d = 1d, 0d×d ≤ SX ≤ n,

SY
T

1q = 1q, 0q×q ≤ SY ≤ n,
(6.1)

where λ1, λ2, and λ3 are the trade-off parameters for sparse regularization, label-based

regularization, and instance-based regularization. W ∈ Rd×q is a mapping from the

feature space into the label space.

However, the loss function is in the form of a squared Frobenius norm, which in-

evitably results in sensitivity to outliers or noise. Therefore, to address this issue,

motivated by (3.3), which avoids the dilemma by jointly minimizing the L2,1-norms.
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The objective function of RFS with our notations can be written as follows:

min
W,F,SX ,SY

∥∥XTW − F
∥∥
2,1

+ λ ∥F − Y ∥2,1 + λ1∥W∥2,1

+λ2

n∑
i,j

sXij
∥∥f i − f j

∥∥2
2
+ λ3

q∑
i,j

sYij ∥wi −wj∥22,

subject to SX
T

1d = 1d, 0d×d ≤ SX ≤ n,

SY
T

1q = 1q, 0q×q ≤ SY ≤ n,

(6.2)

From (6.2), we can find ADGD explores both instance graph regularization and

label graph regularization, as well as a robust loss function, which has excellent guiding

significance for conducting effective partial multi-label feature selection. the first and

second terms minimize the discrepancy between the predicted label and the actual label,

ensuring the model accurately maps instances to labels. Besides, the joint L2,1-norm

is also performed to resist outliers. The third term ensures that the projection matrix

is sparse, which helps in feature selection and improves the model’s interpretability

and robustness against irrelevant or noisy features. Regularization in the fourth term

performs label disambiguation based on the similarity between data and regularization

in the fifth term maintains the local geometric structure of labels according to the

manifold assumption, that is if the similarity of label yi and yj is large, then wi and

wj should be similar as well.

6.3 Alternative Optimization

As shown in the previous subsection, the joint optimization problem (6.2) contains

four sets of variables with different regularizations and constraints, thus it is hard

to be tackled directly. In this subsection, we show that this problem can be solved

by applying the alternative optimization. Specifically, each set of variables will be

iteratively optimized by fixing other sets of variables until convergence or the maximum

number of iterations is reached.

Firstly, through some algebra formulations, the objective function in (6.2) can be

transformed into

min
W,F,SX ,SY

∥∥XTW − F
∥∥
2,1

+ λ ∥F − Y ∥2,1 + λ1∥W∥2,1
+λ2tr(F

TLY F ) + λ3tr(WLXW T ),

subject to SX
T

1d = 1d, 0d×d ≤ SX ≤ n,

SY
T

1q = 1q, 0q×q ≤ SY ≤ n,

(6.3)
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where LX = DX − SX (resp. LY = DY − SY ) is the graph Laplacian matrix of

the instance-level graph (resp. label-level graph), DX (resp. DY ) is a diagonal

degree matrix whose entries are given by DX = diag
(∑d

i

(
SX
)
ij

)
(resp. DY =

diag
(∑q

i

(
SY
)
ij

)
).

Update W with fixed F , SX , and SY : Since F , SX , and SY are fixed, (6.3)

can be reduced to

min
W

∥∥XTW − F
∥∥
2,1

+ λ1∥W∥2,1 + λ3tr(WLXW T ). (6.4)

Take partial derivative of (6.4) with respect to W and setting it to 0, we obtain

(
XG1X

T + λ1G3

)
W + λ3WLy = XG1F, (6.5)

where G1 ∈ Rn×q is the diagonal matrix with the iith entries 1
/∥∥(XTW − F )i,:

∥∥
2
and

G3 ∈ Rd×d is the diagonal matrix with the iith entries 1
/
∥Wi,:∥2. (6.5) is a Sylvester

equation [28] and we use the Lyapunov function [8] to optimize W as follows:

W ←
(
XTG1X + λ1G3 + αId×d

)−1
XG1F, (6.6)

where α is a tradeoff parameter.

Update F with fixed W , SX , and SY : By fixing other variables, the optimal F

can be obtained by minimizing the following problem:

min
F

∥∥XTW − F
∥∥
2,1

+ λ ∥F − Y ∥2,1 + λ2tr(FLXF T ). (6.7)

Take partial derivative of (6.7) with respect to F and setting it to 0, we obtain

F = (G1 +G2 + λ2LX)−1 (G1X
TW +G2Y

)
. (6.8)

where G2 ∈ Rn×q is the diagonal matrix with the iith entries 1
/
∥(F − Y )i,:∥2

Update SX with fixed W , F , and SY : By fixing other variables, the optimal

SX can be obtained by minimizing the following problem:

min
SX

λ2

d∑
i,j

sXij ∥xi − xj∥22,

subject to SX
T

1d = 1d, 0d×d ≤ SX ≤ n.

(6.9)
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which means that each subproblem of i and j is independent of each other. Then,

problem (6.9) can be further simplified to

min
SX

λ2

d∑
i,j

sXij ti,

subject to SX
T

1d = 1d, 0d×d ≤ SX ≤ n.

(6.10)

Accordingly, the optimal solution of (6.10) can be directly determined by k nonzero

smallest values in vector ti according to Section 4.2.3.

Update SY with fixed W , F , and SX : By fixing other variables, the optimal

SY can be obtained by minimizing the following problem:

min
SY

λ3

q∑
i,j

sYij ∥fi − fj∥22,

subject to SY
T

1n = 1n, 0n×q ≤ SY ≤ n.

(6.11)

which means that each subproblem of i and j is independent of each other. Then,

problem (6.11) can be further simplified to

min
SY

λ3

d∑
i,j

sYijhi,

subject to SY
T

1q = 1q, 0q×q ≤ SY ≤ n.

(6.12)

Accordingly, the optimal solution of (6.12) can be directly determined by k nonzero

smallest values in vector hi according to Section 4.2.3.

The pseudocode of ADGD is illustrated in Algorithm 5.

6.3.1 Convergence Proof

In this section, we prove that the iterative optimization converges due to the fact that

the optimization is convex in terms of W , F , SX , and SY . The proof of the convergence

of Algorithm 5 is as follows:

Theorem 1. Algorithm 5 converges.

Proof. For convenience, we denote (6.2) as

ϕ(W,F, SX , SY ) =
∥∥XTW − F

∥∥
2,1

+ λ ∥F − Y ∥2,1 + λ1∥W∥2,1
+λ2tr(F

TLY F ) + λ3tr(WLXW T )
(6.13)
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Algorithm 5 The ADGD Algorithm

Require: Instance data X ∈ Rd×n, candidate label matrix Y ∈ {0, 1}n×q, parameters

λ, λ1, λ2 and λ3

1: Initialize G1 ∈ Rn×q, G2 ∈ Rn×q and G3 ∈ Rd×q as the identity matrices, build SX

and SY , initialize W and label confidence F .

2: while not converged do

3: Update W by solving (6.6).

4: Update F by solving (6.8).

5: Update SX by solving (6.10).

6: Update SY by solving (6.12).

7: Update (G1)ii = 1
/∥∥(XTW − F )i,:

∥∥
2
.

8: Update (G2)ii = 1
/
∥(F − Y )i,:∥2.

9: Update (G3)ii = 1
/
∥Wi,:∥2.

10: Convergence or reaching the maximum number of iterations.

11: end while

Ensure: Label confidence matrix F , feature weight matrix W , similarity matrices SX

and SY of dual graph.

Suppose Wt, Ft, S
X
t and SY

t are prepared in the tth iteration. With fixing the F ,

SX and SY , solving W to yield the optimal W t+1 via

ϕ(W ) = tr(XTW − F )TG1(X
TW − F ) + λ1tr(W

TG3W ) + λ3tr(WLXW T ) (6.14)

As we know, the standard L2,1-norm regularization is convex. Thus, the sum of the

three functions is also a convex function. Therefore, we have:

ϕ(Wt+1) ≤ ϕ(Wt) (6.15)

With fixing the W , SX and SY , solving F yields the optimal Ft+1 via

ϕ(F ) = tr(XTW − F )TG1(X
TW − F ) + λ2tr(F

TLY F ) (6.16)

Since this sub-problem is convex, naturally, we have

ϕ(Ft+1) ≤ ϕ(Ft) (6.17)

Similarly, LX and LY are positive semi-definite, and F TLXF ≥ 0 and WLY W
T ≥ 0

hold for any non-zero F and W hold. Thus, the sub-problem (6.10) and (6.12) to

variable SX and SY are convex, we can easily have the following inequality:

ϕ(SX
t+1, S

Y
t+1) ≤ ϕ(SX

t , SY
t ) (6.18)
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Thus, the objective function in (6.2) monotonically decreases and Theorem 6.5 is

proved.

6.3.2 Time Complexity Analysis

In this section, we analyze the computational complexity of Algorithm 5 using big O

notation. We denote T the number of iterations, N is the number of all samples, D

the dimensionality of the subspace, and Q the number of classes. The time complexity

of ADGD comes from the time spent on constructing feature weight W , similarity

matrices SX and SY of the dual graph, which needs totally O(N2M + NM2). The

update of label confidence F has a complexity of O(N3 +N2Q). The total complexity

for the iterations is O(T (N2M +NM2 +N3 +N2Q)).

6.4 Experiments

Table 6.1: Characteristics of the PML experimental datasets.

Dataset #Examples #Features #Labels #Cardinality Domain

emotions 593 72 6 1.86 music

arts 5,000 462 26 1.64 text

scene 2,407 294 6 1.07 image

birds 645 260 19 1.014 audio

yeast 2,417 103 14 4.23 biology

music emotion 6,833 98 11 2.42 music

mirflickr 10,433 100 7 1.77 image

6.4.1 Experimental setup

In this section, we conduct experiments on seven representative datasets [99]. These

were sourced from diverse real-life applications: scene and mirflickr for annotating

images, emotions for categorizing music, arts for text categorization, birds for audio

recognition, and yeast for biology classification. The properties of these datasets are

summarized in Table 6.1, where # stands for the number of and cardinality represents

the average number of labels per instance. For each synthetic data set, we construct

partial multi-label assignment by randomly adding the irrelevant noisy labels of each
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sample xi with θ% number of ground-truth labels and θ% is also randomly assigned by

one of 100%, 150%, 200%, and we directly conduct feature selection for the real-world

partial multi-label data sets, “Music emotion” and “Mirflickr”, without any processing.

We select the top p% of features, the select rate varies from 0% to 50% and the value

of p is obtained by dividing 50 into 20 equal parts. To evaluate the robustness of our

experiments, we add random feature noise which is defined as the ratio between the

number of noisy features with the number of clean features of each dataset. Following

[94], we use ML-KNN (k = 10) as the classifier to evaluate the performance of the

selected feature subset. Finally, we adopt five-fold cross-validation to train the model

and record average results and standard deviations. The evaluation metrics we take are

average precision (AP), coverage, hamming loss (HL), ranking loss (RL), and coverage

(CV) [84]. For the first metric, the value is larger with better performance, and the

following three metrics are the opposite.

Let D = {(xi,yi) |1 ≤ i ≤ n} be a testing set, and f (xi) be a multi-label classifier’s

predicted label set for unseen instance xi.

• Hamming loss:

Hamming loss = 1
t

t∑
i=1

|f(xi)⊕yi|
q , (6.19)

where ⊕ denotes the symmetric difference between two sets (XOR operation).

This metric evaluates the average error rate over all the binary labels.

• Ranking loss:

Ranking loss =
1

t

t∑
i=1

|{(lj , lk) |fj (xi) ≤ fk (xi) , (lj , lk) ∈ yi × ȳi}|
|yi| |ȳi|

, (6.20)

where fj (xi) denotes the jth entry of f (xi), and ȳi denotes the complementary

set of yi in the label set L. This metric evaluates the fraction of reversely ordered

label pairs.

• Average precision:

Average precision =
1

t

t∑
i=1

1

|yi|
∑

lj ,lk∈yi

|Li = {lj |rank(xi, lj) ≤ rank(xi, lk)}|
rank(xi, lk)

,

(6.21)

This metric evaluates the average fraction of relevant labels ranked higher than

a particular label lk ∈ yi.
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• Coverage:

Coverage =
1

q

(
1

t

t∑
i=1

max
lk∈yi

rank(xi, lk)− 1

)
(6.22)

This metric evaluates how many steps are needed, on average, to go down the

label ranking list so as to cover all the ground-truth labels of the instance. Assume

that rank(xi, lk) =
∑q

j=1 [[fj (xi) ≥ fk (xi)]] returns the rank of lk when all labels

in L are sorted in L descending order based on f .

6.4.2 Competing Algorithms

ADGD couples with multi-label feature selection methods and partial multi-label learn-

ing methods for evaluation. We implemented one partial-label learning method, four

state-of-the-art partial multi-label learning methods, and three multi-label feature se-

lection methods, whose detailed definitions are as follows:

• PARTICLE [97] proposes a two-stage PML approach by firstly eliciting label-

ing confidence through a label propagation procedure and secondly inducing two

multi-label predictors named PAR-VLS and PAR-MAP. The parameters are set

as k = 10, α = 0.95, thr = 0.9.

• PMLNI [88] jointly learns a noisy label identifier, which identifies feature-induced

noisy labels, as well as a multi-label classifier for prediction. The parameters are

set as λ = 10, β = 0.5, γ = 0.5.

• MLKNN [98] is a nearest neighbor-based multi-label classification method. ML-

kNN is a very popular baseline method in multi-label learning literature owing

to its simplicity. The parameters are set as num = 10, smooth = 1.

• MDFS [93] proposes an embedded feature selection method via manifold regular-

ization to select discriminative features for multi-label learning. The parameters

are set as β = 10, γ=0.1.

• 2SML [56] proposes a shared weight matrix with low-rank and sparse regular-

ization for multi-label learning. It utilizes both the feature manifold and label

manifold to guide the shared weight learning process. The parameters are set as

λ1 = 10−3, λ2 = 10−3, λ3 = 10−4, α = 0.6, β = 1− α.
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• PL AGGD [72] proposes to utilize adaptive graph construction to guide label

disambiguation and predictive model learning for partial label learning. The

parameters are set as k = 10, T = 20, λ = 1, µ = 1 and γ = 0.05.

• PMLFS [76] proposes a partial multi-label feature selection method by combining

the L2,1-norm regularization and noisy label distinguished strategy. The param-

eters are set as λ1 = 26, λ2 = 2−8, λ3 = 2−2, and λ4 = 2−2.

(a) Hamming loss (b) Average precision

(c) Coverage (d) Ranking loss

Figure 6.1: Comparison of ADGD against comparing methods with the Nemenyi test.

Methods not connected with ADGD in the CD diagram are considered to have a signifi-

cantly different performance from ADGD (CD = 3.29 at 0.05 significance level)

We use the Friedman test [14] to analyze the significance performance between our

proposed method and the other comparative algorithms. Table 6.2 shows the Friedman

statistics FF and each evaluation metric corresponding critical value, which demon-

strates the null hypothesis that all the comparing algorithms have an equal perfor-

mance is rejected at the significant level α = 0.05. In other words, there are significant

differences between comparison approaches. Further, we employ the Nemenyi test to

test whether our method ADGD achieves a competitive performance against the other

comparing methods, where ADGD is the control approach.
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For Nemenyi test, qα = 2.81, CD =3.29 (K = 9, N = 11) at significant level

α = 0.05. The difference between the average ranking of the two algorithms at least

the critical difference CD = qα
√

K(K + 1)/6N manifests the performance between the

two algorithms is significantly different. The CD diagrams of four evaluation metrics

are shown in Figure 6.1, in each sub-figure, any algorithm not connected with ADGD

implies its performance is significantly different from our proposed method in that

metric. Otherwise, if an algorithm is connected to ADGD, it means that the average

ranking difference between them is less than one CD, and they would be considered to

have no significant difference.

Table 6.2: Friedman statistics FF in terms of each evaluation metric and the critical value

at 0.05 significance level (# comparing algorithms K = 9, # datasets N = 11).

Evaluation Metric FF Critical Value

Hamming Loss 16.5858

2.0534
Ranking Loss 7.2138

Coverage 3.9069

Average Precision 5.0513

6.4.3 Experimental Results

We report detailed results of each comparing method in terms of Hamming loss, ranking

loss, average precision, and coverage in Tables 6.3-6.6. The metrics for each data set

are recorded in the form of mean and standard deviation among different percentages.

If two algorithms obtain the same performance on one dataset for a given evaluation

metric, their ranks are assigned with their average rank value. We report the average

rank of each algorithm on all datasets. We also tested the feature selection ability and

robustness on the Birds dataset and Yeast dataset separately in Figure 6.3 and Figure

6.2. In summary, we have the following observations:

• As can be seen in 6.3-6.6, ADGD is better than other comparing algorithms on

the whole. Concretely, on all datasets (11), across all the evaluation metrics (4),

ADGD ranks first in 50.0% cases and ranks second in 27.3% cases. For the two

data sets (emotions and scene), ADGD outperforms all comparing state-of-the-

art methods. And for arts, music emotion, and mirflickr datasets, it can also
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6. PARTIAL MULTI-LABEL LEARNING WITH ADAPTIVE DUAL
GRAPH DISAMBIGUATION

achieve superior performance than most comparing methods. That demonstrates

the effectiveness of the proposed ADGD method.

• ADGD consistently achieves low hamming and ranking loss while maintaining

high average precision across various datasets. This indicates the method’s ex-

ceptional ability to not only accurately identify the most relevant labels for each

instance but also to rank these labels effectively according to their relevance,

which is crucial for applications that rely on the precision of label predictions,

such as content recommendation and information retrieval systems.

• From the four tables, the performance of all comparing methods and ADGD

gradually drop as the levels of noisy label increase, but the downtrend of ADGD

is more gentle than other comparing methods. It well demonstrates the robustness

of the proposed ADGD method.

• In order to further analyze the performance of all comparing algorithms varying

with the number of selected features, the corresponding experimental results are

shown in Figure 6.2. With the increasing number of selected features, the per-

formance of ADGD first has a remarkable improvement and then keeps stable or

even degrades. This observation reveals that it is meaningful to conduct feature

selection for partial multi-label learning. In addition, MDFS as an effective fea-

ture selection method performs inferior to other methods since it cannot handle

the noisy labels in practice. PMLFS is better than others but its performance is

limited by the ignoring of the local and global structure of data and labels.

• In order to further analyze the performance of all comparing algorithms varying

with noisy features, the corresponding experimental results are shown in Figure

6.3. We can find that ADGD significantly outperforms these comparing methods

since most PML and MLL methods ignore the case with serious noises in feature

space. Thus, we can conclude that the proposed method benefits the performance

with feature selection and robustness of L2,1-norm loss function.

6.4.4 Sensitivity Analysis

At last, we study the influences of the four parameters, λ, λ1, λ2, and λ3 for the

proposed method on the Mirflickr dataset. Our experiment is accomplished by using the
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6.4 Experiments

Figure 6.2: Experimental results on data set Yeast with 200% noisy labels.
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Figure 6.3: Experimental results on data set Birds with 10% feature noises.
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6.4 Experiments

(a) performance curve with λ changes (b) performance curve with λ1 changes

(c) performance curve with λ2 changes (d) performance curve with λ3 changes

Figure 6.4: Results of ADGD with varying value of trade-off parameters on Mirflickr.
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grid search method which conducts the parameter analysis by varying four parameters

simultaneously. The experimental results are shown in Figure 6.4 which are measured

by the four evaluation metrics. It can be seen that how the performance of our algorithm

varies as these parameters change. Therefore we should safely set them in a wide range

in practice. From this figure, we can notice that better performances are gained when

λ = 100, λ1 = 0.1, λ2 = 0.1 and λ3 = 0.01.

6.4.5 Convergence and Complexity Analysis

Figure 6.5: convergence curve on scene and emotions datasets with 100% label noises.

In the previous section, we have proved that the proposed ADGD algorithm will

converge. In this subsection, we conduct experiments on the Scene and Emotions

datasets to demonstrate this. The convergence curves of ADGD are shown in Figure

6.5, where we see that ADGD converges within 10 iterations on the two datasets.

6.4.6 Ablation Study

In this subsection, the ablation study on several variants of the proposed method is

further conducted to analyze the contributions of its essential components. We choose

the Entertainment dataset with 10% feature noises and 200% label noises to verify the

proposed ADGD method and its variant methods.

Impact of learning label correlations. ADGD learns dual graphs to exploit

both instance and label correlations to improve the partial multi-label feature selection.

To demonstrate the effectiveness of using the single graph of label correlations, we

compare ADGD with ADGD-NoLabelCorrelations, a variant of ADGD that does not
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Figure 6.6: ADGD and its variant methods on Birds dataset with 20% feature noises and

200% label noises.
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use label correlations (i.e., λ3 is set to zero). As shown in Figure 10, we can see

that ADGD outperforms ADGD-NoLabelCorrelations, showing that exploiting label

correlations can improve our model.

Impact of learning adaptive dual graphs. To show the impact of adaptive

dual graphs estimation, we compare ADGD with ADGD-FixGraph, a variant of ADGD

that utilizes pre-defined instance graph SX and label correlations graph SY indicated

by heat-kernel function. As shown in Figure 10, ADGD outperforms ADGD-FixGraph,

showing that the dual adaptive graphs based on both instance and label space informa-

tion are better than the dual fixed similarity graphs and can help label disambiguation.

Impact of robust loss. To prove the effectiveness of L2,1-norm imposed on re-

gression loss terms, a variant of ADGD named ADGD-NoRobustNorm is proposed by

imposing Frobenius norm on both (XTW − F ) and (F − Y ) loss terms. As shown in

Figure 10, ADGD outperforms ADGD-NoSparseRegularization since L2,1-norm on loss

terms can effectively improve the robustness of noisy features.

Impact of L2,1-norm sparse regularization. To demonstrate the impact of the

L2,1-norm sparse regularization, we compare ADGD with ADGD-NoSparseRegularization,

a variant of ADGD that does not use sparse regularization (i.e., λ1 is set to zero). As

shown in Figure 10, ADGD outperforms ADGD-NoSparseRegularization, showing the

effectiveness of L2,1-norm sparse regularization.

6.5 Conclusion

In this section, we introduce Adaptive Dual Graph Disambiguation (ADGD) by adap-

tively employing both instance-space graph regularization and label-space graph regu-

larization to preserve the geometric structure of features and labels. This innovative

framework unifies adaptive dual graph learning, candidate label disambiguation, and

predictive model induction within a single objective function. Moreover, by applying

the L2,1-norm to both regression and regularization terms, ADGD not only improves

resilience against data noise but also reduces the feature and label space dimensions.

Experiments are conducted on datasets with both feature noise and label noise, which

demonstrate the advantages of the proposed method ADGD compared with multi-label,

partial label, and partial multi-label methods.
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7

Conclusion and Future Work

7.1 Summary of the Thesis

This thesis addresses the critical need for accurate and reliable machine learning (ML)

models in application areas where errors can have severe consequences, such as health-

care, finance, and autonomous vehicles. The focus is on overcoming challenges posed

by imperfect data, which is often compromised by factors like insufficient information,

data bias, label noise, and vulnerability to attacks.

The research is structured into three distinct parts, each targeting specific imper-

fections in real-world data:

• Part I - Semi-Supervised Learning (SSL): This section tackles the challenge of

limited labeled data and data noise in SSL. The proposed Robust Embedding Re-

gression (RER) method introduces a robust graph construction that adaptively

adjusts weights for each data point, reducing the influence of noise. A low-rank

representation enhances the utilization of limited labeled data, and appropriate

norms in reconstruction and regularization terms aid in feature and sample selec-

tion. RER demonstrates a significant improvement in classification accuracy in

noisy datasets.

• Part II - Transfer Learning (TL): The focus is on addressing domain shift and its

resulting data imperfections. The Redirected Transfer Learning (RTL) approach

mitigates the impact of domain shift by reconstructing target samples using low-

rank representation from source samples. RTL employs L2,1-norm sparsity and
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7. CONCLUSION AND FUTURE WORK

a redirected label strategy for robust adaptation to diverse data distributions,

showing substantial improvements in cross-domain classification tasks.

• Part III - Learning with Label Noise: This part addresses Partial Multi-Label

Learning (PML) challenges, where incomplete labeling hinders accurate model

building. Traditional methods are limited in adaptability and effectiveness under

label uncertainty. The proposed Adaptive Dual Graph Disambiguation (ADGD)

framework learns dual adaptive graphs and a sparse projection matrix, improving

label confidence and reducing ambiguity in PML. The integration of L2,1-norm

enhances model robustness against feature noise.

The methodologies developed in this thesis contribute to the precision and general-

izability of ML models, demonstrating notable improvements over existing methods in

handling real-world data imperfections. The results of extensive experiments validate

the effectiveness of the proposed approaches, marking a significant advancement in the

field of machine learning under imperfect data conditions.

7.2 Future Work

In future work, we plan to expand the main three techniques employed in this thesis,

including robust norm selection, low-rank representation, and adaptive graph construc-

tion, to more real-world applications and design more robust and reliable models.

• Robust Norm Selection: This approach is pivotal for feature selection in deep

learning, particularly in bioinformatics and image processing. By emphasizing

joint L2,1-norm minimization, it offers robustness against outliers and noise, which

is crucial for accurate feature extraction in high-dimensional data like genomic

sequences or medical images.

• Low-Rank Representation: In deep learning models like convolutional neural net-

works, low-rank representation can be used to enhance the efficiency and inter-

pretability of the model. It reduces the complexity of the model while maintaining

performance, which is particularly useful in applications like image and video pro-

cessing, where reducing computational load without sacrificing accuracy is key.

102



7.2 Future Work

• Adaptive Graph Construction: In the context of graph neural networks, adaptive

graph construction allows for dynamic learning of graph structures, enhancing the

model’s ability to handle complex, evolving data. This is particularly relevant in

social network analysis, recommendation systems, and any other domain where

the underlying data relationships are non-static and intricate.
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