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CHAPTER 1. INTRODUCTION 

 

1.1 Research Background  

1.1.1 The situation and challenges of agriculture 

 

On November 15, 2022, the United Nations announced that the global population 

had reached a significant milestone of 8 billion, a figure that has been a source of 

concern since the 1960s due to the potential for a population explosion. Data from the 

United Nations Department of Economic and Social Affairs (UN DESA), Population 

Division (2022), indicates that the current world population is more than triple what 

it was in the mid-20th century. Specifically, the population, which stood at 2.5 billion 

in 1950, doubled over approximately 37 years, surpassing 5 billion in 1987. 

Projections suggest that it will take over 70 years for the population to double again, 

reaching beyond 10 billion by 2059. This rapid growth exerts considerable pressure 

on the global food supply chain, necessitating a substantial increase in global 

agricultural production. The challenge of overpopulation leads to heightened demand 

for resources, resulting in overconsumption and an accelerated depletion of resources. 

This trend not only strains agricultural resources but also limits the availability of 

industrial resources, thereby undermining the potential for improved per capita output 

and sustainable development. According to the Food and Agriculture Organization of 

the United Nations, a more than 60% increase in agricultural production is required 

to sustain this burgeoning population. 



 

Chapter 1. Introduction                                                                                                        2 
 

 

 
Vehicle Robotics Laboratory, Graduate school of Agriculture, Hokkaido University 

 

 

 

As the world's population increases as shown in Figure 1.1.-1, the demand for food 

resources intensifies, yet the number of individuals engaged in agriculture continues 

to decline. The Ministry of Agriculture, Forestry, and Fisheries (MAFF) of Japan 

regularly conducts censuses of the country's agriculture and forestry sectors (2021). 

From 1976 to 2020, the census data show a consistent year-on-year decrease in the 

number of agricultural workers, falling from 4.9 million households in 1976 to 1.7 

million households in 2020. The 2020 census further revealed that the number of 

agricultural management entities decreased by 408,000 (18.9%) compared to 2015 as 

shown in Table 1. Despite the ongoing reduction in the number of agricultural workers, 

the rate of decline has not decelerated. This trend is attributed to a concurrent decrease 

in new entrants to agriculture. Specifically, the number of new agricultural workers 

dropped from 65,030 in 2015 to 55,870 in 2020, marking the lowest figure in recent 

years. The decline in new agricultural workers can be linked to the perception of 

farming as a career with unstable income, particularly for newcomers. Such instability 

may discourage young people from pursuing careers in agriculture. Moreover, 

Figure 1.1-1 Global population size and annual growth rate. 
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constraints on the size of operational farmland limit the overall efficiency of 

agricultural production and management. As farmers' consumer needs grow, the 

increase in agricultural income fails to match the rise in household expenses. 

Consequently, most farm households engage in non-agricultural activities, with their 

non-agricultural income often surpassing their earnings from agriculture. However, 

with the saturation of traditional industries, the availability of nearby part-time income 

opportunities for rural laborers decreases, thereby exacerbating the talent drain as 

individuals migrate to large cities in search of employment.  

Table 1 Number of Japan’s farm households. 

Source: The 96th Statistical Yearbook of Ministry of Ministry of Agriculture, Forestry, 

and Fisheries, 2021 

 

In addition, the percentage of aged 65 or older among core persons engaged in 

farming of individual management entities is 69.6%, rising by 4.7 points from 5 years 

ago as shown in Figure 1.1-2. The aging of the agricultural population can lead to a 

decline in the quality of agricultural labor and an increase in the rate of accidents in 

agricultural production, both of which are detrimental to the sustainable development 

of agriculture. 

Year and 

prefecture 
Total 

Commercial farm 

households 

Non-commercial farm 

households 

Feb. 1, 2015 2,155,082 1,329,591 825,491 

Feb. 1, 2020 1,747,079 1,027,892 719,187 
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Source: The 96th Statistical Yearbook of Ministry of Ministry of Agriculture, Forestry, 

and Fisheries, 2021 

 

1.1.2 Agricultural robot tractor 

 

To address the various challenges faced by traditional agriculture, the development 

of smart agriculture is seen as a necessary condition for sustainable agricultural 

growth. Robot tractors, capable of replacing humans in agricultural production, are an 

integral part of smart agriculture. Firstly, to attract more new agricultural workers, it 

is essential to ensure that professional farmers achieve an income commensurate with 

the level of economic development, necessitating an expansion of their operational 

farmland scale. If the pace of expanding the scale of farmland lags significantly, and 

the income level from agricultural activities remains consistently lower than non-

agricultural ones, the expectations for farming income among the young and middle-

Figure 1.1-2 Age Structure of Japan's Agricultural Population 
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aged labor force will not improve, inevitably leading to a substantial loss of this 

workforce. From 2015 to 2020, the average farmland area managed by Japanese farm 

households increased from 2.5 hectares to 3.1 hectares (MAFF, 2021), which is 

beneficial for increasing the agricultural income of these households. However, this 

also increases the production burden on the farmers, making it crucial to enhance the 

production efficiency per household. According to a 2019 operational report on the 

use of robot tractors in Iwamizawa City as shown in Table 2, autonomous driving led 

to a 77% reduction in operational time and a 57.8% decrease in labor costs.  

 

Table 2 Changes in Labor Time for Wheat Cultivation Brought About by the 

Introduction of Robot Tractors. 

Source: Demonstration of Smart Agriculture Model Utilizing Local 5G Technology, 

2020 

 

This undoubtedly contributes to the improvement of production efficiency and 

income per household. Additionally, modern lifestyles and urbanization trends have 

led younger generations to seek job and life opportunities in cities. With the rapid 

development of social media and other platforms, contemporary youth are 

increasingly aspiring to the improved quality of life offered by urban living, as 

compared to their predecessors. Agricultural labor, which often requires intensive 

physical work and long hours, is becoming less appealing to the younger generation. 

Total time for Wheat Cultivation (h/ha) 1.51 

Robot Tractors available Time in Total Time (h/ha) 0.46 

Time reduced due to the introduction of robot tractors (h/ha) 0.35 

Reduction Rate of Operation Time in Total Operation Time (%) 23.18 
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Agricultural robots can assist farmers in completing tedious tasks such as seeding, 

weeding, and harvesting. These innovations can free young people from the burdens 

of heavy agricultural activities, allowing them to focus more on their quality of life. 

Finally, traditional agriculture often relies on the "intuition" and "experience" of the 

farmers, which is not conducive to the participation of young people who are willing 

but lack experience and methodology in agriculture. In contrast, smart agriculture is 

"data-based agriculture." It excels in transforming abstract phenomena into 

describable, computable data, which is more conducive to learning and research by 

those without experience. This can also contribute to the growth of the agricultural 

population. 

Robot agricultural machinery typically performs operations such as seeding, 

spraying, weeding, and transporting. They complete these tasks following pre-defined 

route maps, without the need for human drivers. However, they must accurately 

determine their location during operations, as well as their kinematic and dynamic 

states, and whether their environment poses any danger. Therefore, sensors are crucial 

for robotic tractors, serving a role analogous to the eyes, nose, and ears for humans, 

enabling the robot to understand its own state and its surroundings. There are various 

sensors available for use in robotic tractors. For instance, visual sensors capture 

images to assist the robot in recognition and decision-making. Laser sensors (LiDAR) 

use lasers for precise object distance measuring, usually available in 2D and 3D forms. 

Ultrasonic sensors measure the travel time of sound waves for distance gauging. 

Inertial Measurement Units (IMUs) measure the robot's motion, tilt, and acceleration. 

Global Navigation Satellite Systems (GNSS) provide location information using 

satellites. Geomagnetic Direction Sensors (GDS) determine the robot's orientation 

using geomagnetic field data. Contact sensors prevent collisions by detecting physical 



 

Chapter 1. Introduction                                                                                                        7 
 

 

 
Vehicle Robotics Laboratory, Graduate school of Agriculture, Hokkaido University 

 

 

contact. These sensors collectively enable robotic tractors to operate autonomously 

and efficiently in various agricultural tasks. For example, researchers at Japan's 

Hokkaido University developed a robot tractor that can do farm work within a 5 cm 

error (Noguchi et al., 1997). The detection of obstacles by an agriculture robot is an 

aspect of safe operation, and it was shown that lasers are an economical and practical 

device for this purpose (Kise et al., 2005). However, a two-dimensional (2D) laser 

cannot detect an obstacle whose height is lower than the laser's scanning plane. Guo 

et al., (2002) developed a safety alert system that uses two ultrasonic sensors, and this 

system can detect the position of a moving object in the vicinity of agricultural 

machinery and generate a warning signal to ensure the operator's safety. The sensors 

have good stability, but they cannot recognize visual information and thus cannot 

perform more complex tasks, such as identifying obstacle types. Chateau et al., (2000) 

proposed a method for guiding agricultural vehicles using lasers. Firkat et al., (2023) 

proposed a 3D-LiDAR based algorithm for Field-ground segmentation (FGseg) that 

is more effective in handling sloped environments compared to traditional methods. 

Gai et al., (2021) developed a system that utilizes a depth camera for the navigation 

of agricultural vehicles. It is particularly useful for robots operating under canopies of 

tall plants such as corns and sorghums, where GPS signal is not always receivable. 

Shen et al., (2019) developed a navigation method based on multiple cameras and 

ultrasonic sensors integration technology for orchard mobile robot. The robot can 

move stably and precisely along the road of the semi-structured orange orchard. Each of the 

above-described systems has its advantages and disadvantages, and it was suggested 

that the use of fusion sensors as an alternative can better cope with the problems 

caused by the systems' disadvantages (Castanedo 2013). The fusion method of spatial 

information from LiDAR and machine vision was described by Sun et al., (2021). The 
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proposed method is able to achieve a balance between detection accuracy and 

detection speed. 

 In summary, if robot agricultural machinery can be used efficiently and on a large 

scale, it could help solve and alleviate the issues of insufficient labor and inefficiency 

in traditional agriculture. 

 

1.1.3 Deep Neural Networks in Agriculture 

 

The mathematical technique of backpropagation, published by Rumelhart et al., 

(1986) laid the foundation for the rapid development of deep learning by enabling the 

effective training and optimization of neural networks. This technique has become a 

core component of modern deep learning algorithms, exerting a profound impact on 

the entire field of artificial intelligence (Plaut, 1986). Particularly after 2010, with the 

significant enhancement in computing power, deep neural networks began to be 

practically applied across various domains. The ImageNet project (Deng et al., 2009), 

initiated by Professor Fei-Fei Li of Stanford University, assembled a database of over 

14 million labeled images, providing crucial data support for the application of deep 

learning in fields such as image recognition. Convolutional neural networks (CNNs) 

have been widely used in many fields (Alzubaidi 2021). In the field of autonomous 

driving, CNNs have been applied to object detection, lane detection, and pedestrian 

recognition, enabling vehicles to perceive their environment and make decisions 

based on real-time data (Bojarski et al., 2016; Arnold et al., 2019). Similarly, the 

application of Deep Neural Networks (DNNs) in agriculture signifies a revolutionary 

shift, providing numerous novel solutions to enduring challenges. Utilizing DNNs in 
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areas such as agricultural image detection, yield prediction, and automation enables 

the processing and analysis of vast data sets from varied sources, including satellite 

imagery, sensor data, and weather forecasts. This integration enhances the precision 

and efficiency of agricultural practices, making DNNs a pivotal tool in the pursuit of 

sustainable agricultural development. For instance, Ma et al., (2023) employed 

Unmanned Aerial Vehicles (UAVs) and multispectral imagery in conjunction with 

CNNs to predict the yield of winter wheat. Ferreira et al., (2022) utilized deep neural 

networks combined with 3D imaging for the identification of dairy cattle. Bhat et al., 

(2023) developed a crop selection system using Gradient Boosted Regression Trees 

(GBRT-based) deep learning surrogate models. This system assists farmers in 

selecting the most suitable crops according to different soil types. Overall, these 

studies offer valuable insights into the application of advanced machine learning 

techniques for the development of smart agriculture. To develop a system capable of 

efficiently monitoring the safety of remote-operation robot tractors, we can also 

leverage these deep learning technologies. 

1.1.4 Remote safety system 

 

According to the Safety Assurance Guidelines for Agricultural Machinery 

Autonomous Navigation issued by the MAFF of Japan (2017). Human monitoring is 

necessary during the work of agricultural robots. Robot agricultural machinery is 

categorized into three levels: level 1, level 2, and level 3 as shown in Figure 1.1.3. 

Level 1 is defined as robot tractor or combine relies on GNSS and automatic steering, 

allowing humans to operate hands-free; Level 2 is defined as robot agricultural 

machinery that, although it does not require riding, needs human visual monitoring 

from nearby；Level 3 is defined as not requiring on-site visual monitoring, instead 
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needing supervision of multiple robot agricultural machines from a distant monitoring 

center, and includes the ability to move between fields. The objective of this research 

is to develop a remote safety system to ensure the safety of Level 3 robot monitoring 

operations. 

 Level 1 is currently widely used by many agricultural practitioners, and Level 2 

was also commercialized in 2018 and is being sold by various companies. Level 2 

brings benefits such as significant improvement in labor shortage, improved work 

accuracy and efficiency, and the ability for agricultural practitioners to allocate 

time to other tasks. However, Level 3 is expected to bring further efficiency and 

labor-saving improvements. 

Source: What is remote-monitoring robot agriculture machinery? 2023 

 

The utilization of robot tractors can contribute to the sustainable development of 

agricultural societies, with the assurance of safety being a prerequisite for their 

deployment. With the increasing labor shortage in various regions, the demand for 

large-scale uses of agricultural robots is also increasing. A multi-robot tractor system 

Figure 1.1-3 Three levels of robot agriculture machinery defined by MAFF. 
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for conducting agriculture field work was developed by Zhang et al., (2017) Their 

system can improve work efficiency by having multiple robots working together. A 

key point in the development of the multiple-robot system is that when multiple robots 

work together in one field, a single human is sufficient to monitor all of the robots. 

This method has saved labor but is not as efficient as having multiple robots working 

in different fields. If multiple robots work separately in different fields, there is no 

risk of collision between the robots, but more human monitors are needed to monitor 

the operations of the robots based on the current conditions (Noguchi 2000). For 

agricultural robots working in different fields, the deployment of a human monitor for 

each field is not as efficient as desired. Developing a remote-control system to monitor 

all of the robots active in various fields from just one monitoring room would be an 

effective way to save labor costs and improve the robots' efficiency. Albiero et al., 

(2022) also suggests a roadmap for the Agricultural Robotics Research Community 

(ARRC) to optimize agricultural operations by using multiple robot tractors with 

lower power instead of a single large machine, thus aiming to enhance logistics, 

operational geometry, and energy efficiency through robotics. 

 

1.2 Research objectives 

 

To enable the stable, cost-effective, and efficient monitoring of multiple tractors in 

operation, we have developed a remote safety system for level 3 robot monitoring. 

The system uses a monocular camera installed on each tractor to collect visual data 

from the front of the robot tractor. The visual data are transmitted to 'the cloud' via 

internet for analysis, and instructions from the system are sent back to the robot 
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tractors for execution. Moorehead et al., (2012) developed a system can also control 

autonomous tractor in remote end for orchard maintenance. Compared to this system, 

our newly developed remote safety system has several advantages.  

(1) Compared to communication through a local area network, communication over 

the Internet enables remote monitoring of autonomous tractor robots located at greater 

physical distances. A single human operator can monitor multiple robot tractors 

working simultaneously at vastly different locations, thus increasing efficiency and 

providing labor-savings.  

(2) Differentiated from Geometric Detector, Appearance Classifier or other 

traditional machine learning method, deep-learning obstacle-detection methods are 

closer to human thinking and logic and have better credibility.  

(3) Our primary data processing and computations are conducted remotely. The 

majority of the human operator's work is carried out in a remote-control monitoring 

room in a controlled environment, relying solely on signals to control the robot. This 

improves the system's stability and makes it easier to maintain and update.  

(4) Compared to depth cameras and 3D-LiDAR, monocular cameras and 2D-

LiDAR have the advantages of low cost and easy maintenance. Furthermore, the 

method of remote data processing eliminates the need to install high-performance 

computers on each individual working tractor. All these advantages will help ordinary 

farmers make use of these new technologies (Noguchi and Barawid 2011). 

 (5) The network environment is relatively poor in most rural farming areas, the 

remote safety system developed in this paper can operate normally with a minimum 

upload speed of 30kbps at the tractor end, and it also utilizes local safety sensors. If 
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network delays or interruptions occur due to unforeseen circumstances, safety issues 

will not arise. 

1.3 Organization of thesis 

Chapter 1 introduces the current state of world population growth, the status and 

challenges of agriculture in Japan, the benefits and necessity of using robotic tractors, 

the development and application of deep neural networks, and the main purpose of 

this thesis is to develop a remote safety system for robot tractor’s stable, cost-effective, 

and efficient monitoring in operation for level 3 robot agriculture machinery 

monitoring. 

Chapter 2 introduces Research Platform and Materials of the system. 

The objective of chapter 3 is to train a deep learning model for use in a remote 

safety system. The aim is to detect humans or other tractors that appear in the field. 

First, the methods for data preparation are introduced, including data collection, label 

assignment, and data augmentation. Then, the process and parameters of model 

training are discussed, along with how to perform optimization. 

The objective of this chapter 4 is to utilize the YOLOv5s detector developed in the 

previous chapter, based on deep learning models, to accomplish the localization of 

obstacles appearing in front of the robot tractor. 

The objective of this chapter 5 is to refine the positioning results of the detector 

developed in Chapter 2 and the positioning method proposed in Chapter 3. Given the 

relative accuracy disadvantage of monocular vision compared to other high-precision 

sensors, it is important to correct the results. This study employs statistical methods 

to analyze the detection results and has adjusted accordingly. 
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 Chapter 6 presents some farm experiments conducted using the remote safety 

system, exploring the operation of the system on various platforms, its performance 

in different environments, and the remote capabilities of the system. 

Chapter 6 is the summary of the research. 
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CHAPTER 2. RESEARCH PLATFORM AND MATERIALS 

 

2.1 Introduction 

This chapter introduces the information about the tractor platforms and sensors used 

in this study. As shown in Figure 2.1-2, this model, which depicts the future of 

agriculture showcased in Iwamizawa City, includes the remote safety system 

developed in this paper (primarily the red part). The hardware of the system shown in 

Figure 2.1-1 consists of two main parts: one for the robot tractor (edge part) and one 

for the remote control of the robot tractor (remote-control part). In this study, the edge 

part includes the robot, encompassing the robot vehicle, robot control computer, data 

relay computer (NUC), and various sensors (monocular camera, 2D-LiDAR, IMU, 

GNSS). The remote-control part is situated in a robot monitoring room, a certain 

distance from the robot itself, and comprises a remote-control computer, monitor, and 

an alarm. The edge part and the remote-control part engage in data exchange via a 

Figure 2.1-1 Overview of the remote safety system. 
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wireless network through internet. The Vehicle Robotics laboratory of Hokkaido 

University developed the robot vehicle used in this study.  

Source: Iwamizawa City, 2023 

 

Through remote monitoring from the monitoring center, various operations of 

multiple agricultural machines can be controlled, and information around the 

agricultural machines is transmitted from the robot machines. The robot agricultural 

machines determine their positions using location information from GNSS satellites 

and navigate through fields as shown in the diagram. GIS, which stands for 

"Geographic Information System," reflects geographic information on maps. 

Figure 2.1-2 Future agricultural image in Japan. 
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The new system's remote safety system workflow as shown in Figure 2.1-3 can be 

described as follows. (1) If the camera captures a picture, the camera will transmit the 

raw image data to the NUC in the tractor via a universal serial bus (USB) cable. The 

NUC sends the image data to the workstation in the remote monitoring room through 

the internet by connected wireless Wi-Fi. The transmission control protocol (TCP) is 

used for data transmission and Web Real-Time Communication (RTC) is used for 

Video stream transmission. 

  

Figure 2.1-3 Flow chart of the remote safety system. 
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After the image data are received, the workstation will input the received raw image 

data into the CNN-based image analysis program, and the program will analyze the 

raw image by a YOLOv5s neural network as shown in Figure 2.1-4. If an object (e.g., 

a human or a tractor) is detected, the program will assign a serial number to the 

detected object and mark it in the image in the form of a bounding box. Next, the 

coordinates of the object in the image are transformed to the world coordinate system, 

and the distance between the object and the tractor is calculated to generate a safety 

index. Table 3 summarizes the safety index details. When more than one object is 

detected simultaneously, the sizes of all safety indexes in each frame are compared, 

and the largest safety index is output. Each safety index is transmitted back to the 

robot tractor NUC via the internet. 

 

Table 3 Definition of the safety index. 

 

Safety index 0 1 𝟐 𝟑 

Safety condition Safe Safe Attention Stop 

Tractor 

Condition 
Normal Normal 

Slow down 

and beep 

Stop and 

beep 

Obstacle position 
No 

detection 
> (𝐿1 + 𝐿2) & > 𝑅 

> 𝐿1 &
< (𝐿1 + 𝐿2) 

<  𝐿1 𝑜𝑟
< 𝑅 

Alarm Standby Standby Beep Beep 
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Figure 2.1-4 Flow chart of the detection part. 
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Finally, the robot tractor's NUC transmits the received safety index via USB cable to 

the robot tractor's control computer, which is directly connected to the LiDAR sensor 

and accepts the safety index from both the LiDAR sensor and the NUC. The control 

computer prioritizes the execution of the tractor's action corresponding to the safety 

index with the larger number, and it sends the command results to the tractor via a 

controller area network (CANBUS) according to the safety conditions described in 

Table 3 The ranges of L1, L2, 𝑅, and 𝑊 are shown in Figure 2.1-5. Where L1 is the 

visual stopping zone range, L2 is the visual deceleration zone range, 𝑅 is the LiDAR 

stopping zone range, and 𝑊 is the visual zone width. 

In this study, we used 8 m for L1, 4 m for L2, 5.5 m for 𝑅, and 3.2 m for 𝑊, where 

L1 is the visual stopping zone range, L2 is the visual deceleration zone range, R is 

the LiDAR stopping zone range, and W is the visual zone width. 

  

Figure 2.1-5 Segmentation of the system's detection area. 
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2.2 Edge part devices 

 

The edge part devices include a robot control computer, a NUC, a monocular 

camera mounted on top of the tractor, and a 2D Lidar mounted on the front of the 

tractor. The camera (PixPro 4KVR360, Kodak) is connected to a 'next unit of 

computing' (NUC) and is used as an input device for capturing images with a 

resolution of 1280 × 720 pixels. The NUC is a data relay station between the remote-

end computer and the robot tractor controller. A compact, lightweight 2D-LiDAR 

sensor (UTM-30LX, Hokuyo, Osaka, Japan) directly connected to the TECU 

(Tractor's Electronic Control Unit) is used to detect obstacles other than people and 

tractors, and its use can also prevent accidents due to a network delay or missed 

detection. GNSS is used for the positioning and navigation of the tractor robot, while 

IMU is utilized to measure the acceleration and angular velocity of the tractor robot, 

providing information about the robot's orientation and motion. All these devices are 

installed on a robot tractor developed by the Vehicle Robotics Laboratory at Hokkaido 

University. 

2.2.1 Research platform 

 

The tractors used in this study include two half-crawler tractors and two wheel-type 

tractors, specifically the Kubota MR1000A crawler-type as shown in Figure 2.2-1, 

Kubota MR1000A wheel-type, Yanmar EG105 crawler-type, and Yanmar EG83 
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wheel-type. The main development and testing were conducted on the Kubota 

MR1000A crawler-type. 

 

Additionally, an Electric Vehicle (EV) robot (Yamasaki and Noguchi, 2023) was 

employed as the experimental platform. The vehicle platform is a golf cart modified 

by TOYOTA TSUSHO CORPORATION for agricultural use. Its powertrain 

comprises a battery and electric motor sourced from a hybrid vehicle. The base vehicle 

boasts a loading capacity of 600 kg. 

All the vehicles have been robotically modified to enable direct communication 

between the PC and the vehicle's CAN. The robot tractors comply with the ISO11783 

standard, which aims to standardize communication between vehicles and connected 

electronic devices. Utilizing this feature, we can also more conveniently develop a 

safety monitoring system that is compatible with various platforms produced by 

Figure 2.2-1 Kubota MR1000A crawler-type. 
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different companies. Moreover, leveraging the "implement control-centric" feature of 

the ISO BUS, we can send control commands to the TECU mounted on the tractor via 

a connected PC to execute stop, decelerate, and accelerate operations, as well as 

receive work data from the tractor (speed, gear, PTO, hitch, etc.). Kubota MR1000A 

crawler-type specifications as shown in Table 4. 

Table 4 Kubota MR1000A crawler-type Specifications 

  

Overall Length: 4,505 mm 

Overall Width: 2,860 mm/1980 (retract sensors) 

Overall Height: 2,725 mm 

Weight: 3,950 kg 

Volume: 3.769 L 

Max Output: 73.5 kw 

Max Rotation 2,600 rpm 

Fuel Type: Diesel 

Fuel Tank Volume: 120 L 

Overall Length: 1,310 mm 

Overall Width (Each): 450 mm 

Travelling Speed: -31.8 km/h ~ 31.9km/h 
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2.2.2 Navigation sensors 

 

A global navigation satellite system (GNSS) and inertial measurement unit (IMU) 

sensors are used to obtain information about the robot's location and attitude. The 

GNSS provides centimeter-level augmentation service (CLAS) to enhance the 

positioning accuracy.  

The Global Navigation Satellite System (GNSS) is a satellite-based technology that 

provides accurate location, speed, and time information, widely applied in maritime, 

aviation, geological exploration, and daily life. GNSS technology relies on a group of 

satellites broadcasting signals captured by ground receivers to determine their position 

and time. Its main advantage is the ability to provide precise positioning under almost 

any weather conditions. Main GNSS systems include the United States' GPS, Russia's 

GLONASS, the European Union's Galileo, and China's BeiDou. This study's robot 

tractors initially used GPS as the primary navigation system. However, with the 

launch of Japan's Quasi-Zenith Satellite System (QZSS) in 2018 as shown in Figure 

2.2-2, the tractor robots developed in our laboratory began utilizing QZSS as the main 

navigation system (Wang and Noguchi, 2019). The Centimeter Level Augmentation 

Service (CLAS) is a high-precision positioning service from Japan, forming a part of 

the Quasi-Zenith Satellite System (QZSS) (Cabinet Office, 2017). CLAS provides 

centimeter-level positioning accuracy enhancement as shown in Table 5 by 

broadcasting satellite signals. It is primarily used in applications requiring high 

precision, such as precision agriculture, land surveying, and construction engineering. 

Utilizing CLAS services, users in Japan and its surrounding regions can obtain more 

accurate positioning information.  
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 Table 5 Comparison of Lateral Error. 

Source: Listening to Professor Noguchi of Hokkaido University: Challenges and Future 

Prospects of Smart Agriculture in Mountainous Areas ,2023 

QZSS (Michibiki) has been in operation since November 2018 to develop a satellite 

positioning service that can be used stably in all locations at all times. This system is 

compatible with GPS satellites and can be utilized with them in an integrated 

fashion. In this way, the satellite positioning service environment was advanced 

dramatically. 

Source: What is the Quasi-Zenith Satellite System (QZSS)? 2017 

 

 CLAS RTK-GNSS 

Maximum Error (m) 0.13 0.14 

Standard Deviation (m) 0.05 0.04 

Figure 2.2-2 Coverage of QZSS and its trajectory. 



 

Chapter 2. Research platform and materials                                                                  26 
 
 

 

 
Vehicle Robotics Laboratory, Graduate school of Agriculture, Hokkaido University 

 

 

The L6D signal, which transmits centimeter-level augmentation information, is not 

relayed via GPS, thus requiring a specialized receiver. The Alloy (Trimble) receiver 

as shown in Figure 2.2-3 used in this study can receive the L6D signal provided by 

QZSS. 

 Alloy can receive GPS L1 C/A, L2E (L2P), L2C, L5 and QZSS L1 C/A, L1C, L1 

SAIF, L1S3, L2C, L5, LEX/L6D signal. 

Source: Trimble Alloy Data sheet, 2023 

 

An Inertial Measurement Unit (IMU) is a device that determines the orientation and 

motion state of an object by measuring its acceleration and angular velocity. It 

typically consists of an accelerometer and a gyroscope, which measure the object's 

acceleration and rotational speed to infer its position and orientation. By continuously 

integrating these measurements, it is possible to calculate the object's position, 

Figure 2.2-3 Alloy (Trimble) GNSS receiver. 
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velocity, and orientation information. IMUs are commonly used in applications such 

as navigation, attitude control, and motion analysis. An IMU contains 3-axis (pitch, 

roll, and yaw) gyros and 3-axis accelerometers. A VN-100 IMU as shown in Figure 

2.2-4 was used in this study and its specification is shown in Table 6. 

In this study, the position error caused by the vehicle’s roll and pitch angle are 

called error by inclination. This error can be corrected by compensating the vehicle’s 

position. 

 

Table 6 VN-100 IMU Specifications 

 

 

 

Roll angle: ±180° 

Pitch angle: ±90° 

Yaw angle: ±180° 

Angular Resolution: < 0.05° 

Input Voltage: 3.2 V ~5.5 V 

Figure 2.2-4 VN-100 IMU. 
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2.2.3 Safety sensors 

This study utilizes a monocular camera (PixPro 4KVR360, Kodak) as shown in 

Figure 2.2-5 and a 2D Lidar (UTM-30LX, Hokuyo, Osaka, Japan) as shown in Figure 

2.2-6 as safety devices. While depth cameras and 3D Lidar sensors can provide more 

accurate and comprehensive data, they are relatively expensive. Using cost-effective 

sensors is advantageous to encourage farmers to adopt these new technologies. 

Therefore, an import focus of this research is to establish a reliable safety system using 

these basic sensors that meets the criteria for safety and stability and its specification 

is shown in Table 7, Table 8. 

 

Figure 2.2-5 PixPro 4KVR360, Kodak 
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Table 7 PixPro 4KVR360 Specifications 

 Image Sensor A Image Sensor B 

Effective Image Sensor Pixels: 20.68 Megapixels 20.68 Megapixels 

Total Image Sensor Pixels 
21.14 Megapixels [1/2.3” BSI 

CMOS] 

21.14 Megapixels [1/2.3” BSI 

CMOS] 

Focal Length 1.633 mm 1.257 mm 

F number F2.4 F2.4 

Focus Fix Focus Fix Focus 

Field of View 

Max. 197 Degree [For Front 

Mode (16:9)]  

Max. 155 Degree [For VR Mode 

(2:1)] 

Max. 235 Degree 

Focusing Range 30 cm~ 30 cm~ 

Jacks 
USB 2.0 (Micro 5 pin USB), HDMI (Type D) Stereo Microphone Input 

(Diameter of 2.5mm) 

Power Li-ion battery (LB-080), 3.6V 1250 mAh, in-Camera Charging 
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Table 8 Hokuyo UTM-30LX 2D laser rangefinder Specifications 

 

Voltage: Voltage: 12 VDC ±10% 

Current: Max: 1 A, Normal: 0.7 A 

Light source: 
Semiconductor laser diode (λ = 905 nm) 

Laser safety Class 1 (FDA) 

Detection Range: 0.1 m ~ 30 m (White Square Kent Sheet 500 nm or more) 

Input Voltage: 3.2 V ~5.5 V 

Scan angle 270° 

Accuracy 0.1 m ~ 10 m: ±30 mm, 10 m ~ 30 m: ±50 mm 

Angular resolution 0.25° (360°/1,440 steps) 

Scan time 25 ms/scan (40 Hz) 

Connection USB: 2 m cable with type-A connector 

Figure 2.2-6 2D Lidar (UTM-30LX) 
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2.3 Remote-control Part Devices 

The remote-control unit is a high-performance computer or server used to process 

image data sent from the tractor's end and provide control commands in return. A 

workstation (ThinkPad P71, Lenovo) equipped with an Intel Xeon E3-1535M V6 

processor with 16 GB of RAM and an NVIDIA Quadro P4000 graphic card and a 16-

GB RAM PC is used to process the images to determine whether or not there is an 

obstacle and to calculate the positions of obstacles. An alarm (handmade; Arduino) 

alerts the operator when an obstacle is detected. The surveillance of robots is 

conducted in remote monitoring centers, which are typically equipped with multiple 

screens. The central screen displays GIS, enabling real-time monitoring of the robot 

tractor's location, GNSS accuracy, speed, PTO status, and more. Surrounding this are 

four screens, each dedicated to displaying images from a specific tractor. These 

images are processed to detect and mark obstacles (such as people or other tractors) 

in real time, calculating the distance between the target and the tractor, and assessing 

the robot's safety status. If a safety risk is identified, the system automatically triggers 

an alarm and sends commands to the robot to slow down or stop. To date, four remote 

monitoring centers have been established at the Iwamizawa City Data Center, the 

Faculty of Agriculture at Hokkaido University, the Hokkaido University Smart 

Agriculture Education Center as shown in Figure 2.3-1, and the Tsurunuma Town 

Improvement Center. The remote-control computers are mobile, and a movable alarm 

light system is also in place, enabling the surveillance of robot tractors from various 
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locations. The monitor during an alarm as shown in Figure 2.3-2. The remote-control 

computer located behind the screen wall.  

The Figure shows the monitoring center located at the Smart Agriculture Education 

Center of Hokkaido University. A monitor is supervising robot tractors. The central 

large screen displays GIS, while the four screens on the left and right display the 

frontal image information of four different robots, with an alarm next to each 

screen. The remote-control computer is located behind the wall. 

Figure 2.3-1 The configuration of the monitoring center. 



 

Chapter 2. Research platform and materials                                                                  33 
 
 

 

 

 
Vehicle Robotics Laboratory, Graduate school of Agriculture, Hokkaido University 

 

 

 

The Figure depicts the monitoring center located at the Iwamizawa City Information 

Center. The front camera of the robot triggers an alarm and stops the robot upon 

detecting a human intruding directly ahead. 

2.3.1 Remote control unit 

The remote-control unit, consisting of a computer or server, primarily functions to 

process and analyze image data transmitted from tractors in real time using neural 

networks and to send back instructions accordingly. Therefore, it is essential to equip 

it with a high-performance graphics processing unit (GPU). Additionally, to ensure 

rapid data transmission, a stable network connection is vital. In this study, the remote-

control unit utilized is a workstation (ThinkPad P71, Lenovo), the specifications of 

which are detailed in the Table 9. 

 

 

Figure 2.3-2 The Robot Monitor during an alarm. 
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Table 9 ThinkPad P71, Lenovo Specifications 

2.3.2 Display and alarm unit 

 

The remote-control unit is connected to monitors and alarm lights as shown in Figure 

2.3-3 for observing the surroundings of the tractor and for drawing the attention of the 

surveillance personnel. An alarm (handmade; Arduino-based) alerts the operator when 

an obstacle is detected. The alarm lights are of two types: a fixed version for use in the 

monitoring room and a portable version for use when outdoors, both controlled by the 

remote-control PC via an Arduino development board as shown in Table 10, when the 

Processor: 
Intel® Xeon® E3-v6 Processors for Mobile Workstations 

7th Generation Intel® Core™ Processors 

Graphics: NVIDIA Quadro P4000,8GB memory 

Memory DDR4 64 GB 

Power Supply: 170 W 

Battery: 8 Cell (96 WHr) 
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remote-control PC assesses a danger level based on the image information transmitted 

by the robot, the alarm light will flash red and the buzzer will sound. 

 

Table 10 Arduino Uno R3 Specifications 

Processor: 8-bit AVR® RISC-based microcontroller 

Memory: 
AVR CPU at up to 16 MHz/ 32KB Flash 

2KB SRAM/ 1KB EEPROM 

Power 2.7-5.5 volts 

Figure 2.3-3 The configuration of the Display and Alarm Unit 
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CHAPTER 3. TRAINING OF THE YOLO-BASED 

DETECTION MODULE FOR FIELD OBSTACLES 

 

3.1 Introduction 

The objective of this chapter is to train a deep learning model for use in a remote safety 

system. The aim is to detect humans or other tractors that appear in the field. First, the 

methods for data preparation are introduced, including data collection, label assignment, 

and data augmentation. Then, the process and parameters of model training are discussed, 

along with how to perform optimization. Additionally, to evaluate the performance of the 

model, other models are trained for comparison. 

Regarding traditional approaches applied to human detection, from the classifiers point 

of view there are several classification algorithms used to perform pedestrian detection, 

most of which are applied in a supervised approach, e.g., support vector machine (SVM), 

artificial neural network (ANN), or boosting algorithms (Brunetti et al., 2018). As deep-

learning approaches there are some mainstream object detection architectures, including 

'you only look once' (YOLO) (Redmon et al., 2016), R-FCN (Dai et al., 2016), R-CNN 

(Girshick et al., 2014), Faster R-CNN (Ren et al., 2015), Mask R-CNN (He et al., 2017), 

and SSD (Liu et al., 2016), which are all CNN-based. Generally, there is no specific 

guideline on which model researchers or practitioners should use. The choice of model 

varies depending on factors such as memory requirements, accuracy, and time cost, and 

the choice should be determined based on the specific detection task. 
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The YOLO (You Only Look Once) series of architectures is typically used for real-time 

object detection tasks. Its core idea is to treat object detection as a single regression 

problem, directly mapping from image pixels to bounding box coordinates and class 

probabilities. Its main workflow is as shown in figure 3.1-1: YOLO first divides the input 

image into an SxS grid. Each grid cell is responsible for predicting the objects centered in 

its area. Then, each grid cell predicts a fixed number of bounding boxes. For each bounding 

box, the model predicts the center's x, y coordinates, width, and height, as well as a 

confidence score for the presence of an object. Each grid cell also predicts the class 

probabilities of each object in the cell (in this study, tractors and humans), ultimately 

leading to the detection results. 

YOLO first divides the input image into an F grid. Then, both a confidence score class 

probability map and a confidence score is computed per each estimated bounding box. 

Finally, we can get the detection results by confidence score.  

Figure 3.1-1 The workflow of YOLO-based architectures. 
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3.2 Dataset Preparation 

 

Compared to autonomous vehicles operating in cities, robotic tractors generally have 

fewer detection targets, and we thus chose the two most frequent obstacles in farmland as 

detection targets: humans and tractors. Other possible obstacles are detected using a 

LiDAR sensor. Human detection is a challenge that robot tractors must overcome before 

being applied to real-world scenarios because human safety is most important issue. In 

general, the following challenges are encountered in creating datasets for humans and 

tractors: 

(1) To ensure the generalizability of the model as shown in Figure 3.2-1, it is essential 

to cover various types of humans and tractors, environmental backgrounds, and lighting 

conditions. 

(2) The self-labeled dataset differs significantly in shooting conditions from the COCO 

dataset. The COCO dataset provides uniformly high-resolution, wide-angle images with 

multiple objects, whereas the self-labeled dataset varies in quality due to diverse image 

sources as shown in Table 11. The impact of mixing these two types of data needs to be 

explored. 

(3) Given the disparity in the number of provided human and tractor samples, it is 

necessary to balance the sample sizes of both to prevent model bias towards a particular 

type and avoid overfitting the model to the dominant class. 
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(4) Tractors generally vary significantly in appearance and come with various types of 

implements. Detailed annotation rules need to be established, which may affect the 

model's ability to recognize them accurately. 

 

  

Figure 3.2-1 The generalizability of the model. 
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3.2.1 Data collection 

 

The training data set can be divided into two categories: Human data from the MS 

COCO (Microsoft Common Objects in Context) dataset (Lin et al., 2014), and tractor and 

human data from the internet and video recordings of robot tractors as shown in Figure 

3.2-2. We selected 4366 human datasets from the open-source MS COCO dataset. The 

self-labeled datasets were obtained from the video recordings of robot tractors owned by 

the VeBots Laboratory of Hokkaido University and online tractor images, which 

consisted of 1430 items labeled with tractors and humans. Due to the fact that a single 

category in the COCO dataset often contains many instances per image, whereas in our 

self-labeled data, a category typically includes fewer instances, we strive to maintain 

consistency between the two datasets by selecting images from the COCO dataset that 

contain fewer instances. Although the COCO dataset does not include a specific category 

for tractors, it does have a category for trucks. Considering the similarity in appearance 

between trucks and tractors, and in an effort to enhance the generalizability of our model, 

we selected a subset of the COCO dataset that contains both trucks and humans. The 
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annotation data for the truck category is utilized as a proxy for the tractor category in our 

study. 

The self-labeled datasets were obtained from the video recordings of robot tractors 

owned by the VeBots Laboratory of Hokkaido University and online tractor images, 

which consisted of 1430 items labeled with tractors and humans. 

 

Table 11 Comparison of three Data. 

Dataset Data Size Resolution Background  Instances per picture 

SL-Data  

(Self-captured) 
432 higher Uniform Less 

SL-Data  

(Web-scraped) 
600 uneven Diverse Less 

COCO Data 4366 highest Diverse More 

 

  

Figure 3.2-2 The SL and coco datasets. 
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3.2.2 Annotation 

 

In the early stages of this study, LabelImg (Tzutalin,2015) was used for dataset 

annotation. LabelImg is an open-source image annotation tool that allows users to 

manually draw bounding boxes on images and label these boxes with categories, thereby 

creating datasets for object detection model training. In the later stages, some annotated 

data were supplemented using Roboflow (Roboflow, Inc, 2022) as shown in Figure 3.2-

3. In the label of datasets, the bounding box has five parameters: (cls, x, y, w, h). The cls 

is the class of the Bounding box, including tractor class and person class. The x and y are 

the ratios of the horizontal and vertical coordinates of the center pixel of the Bounding 

box to the width and height of the image. 

 

The data annotation as shown in Figure 3.2-4 followed these rules: 

Figure 3.2-3 The interface of Robflow annotation tool 
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(1) Ensure that tractors and humans are annotated as two separate categories. If 

different tractors and humans are present in the same scene, they should be annotated 

individually. 

(2) Annotate the object if it occupies at least 10% of the total image area. 

(3) If an object is obscured, but its edges are visible, it should be annotated, with the 

entire object encompassed by the bounding box. 

(4) If the width of the implement mounted on the tractor is less than 2 times the length 

or width of the tractor itself, then the implement should also be annotated as part of the 

tractor. 

(5) The bounding box annotations must closely follow the contours of the objects being 

marked. 

(6) Perform two annotations for each image and compare their consistency. If the 

annotations are similar, choose either as the final annotation. If there is a significant 

Figure 3.2-4 The labeled human dataset. 
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difference, re-annotate based on the accuracy of the bounding box, the coverage of the 

object, and the detail of the segmentation. 

 

3.3 Data augmentation 

Due to the significantly lower quantity of self-labeled data compared to the data 

selected from the COCO dataset, data augmentation was employed to ensure a balance 

between the number of tractors and humans, thereby preventing model bias towards any 

one category. Data augmentation is a common technique used to expand the training 

dataset by generating new training samples from existing data. This is achieved through 

a series of transformations applied to the original data. The purpose of data augmentation 

is to increase the diversity of the dataset, thereby helping to reduce model overfitting and 

enhance its generalization ability to new data (Shorten and Khoshgoftaar, 2019). We 

enlarged the self-labeled dataset by rotating, inverting, and scaling, etc. As shown in 

Figure 3.3-1. In addition to these traditional data augmentation methods, we used the 

newer method of mosaic data augmentation (Bochkovskiy et al., 2020), which reduces 

the reliance on a large batch size by stitching four random images into one image as 

shown in Figure 3.3-1 e; the enhanced image includes the information of all four images. 

The detection of small targets is usually poorer than the detection of large targets, and 

stitching four images into one image expands the number of small targets in the dataset, 

thereby improving the detection performance of the model for small targets. We 

supplemented the number of self-labeled datasets to 5,400 by using the data augmentation 

method. In addition to selecting images from the COCO dataset, 234 background images 

were also incorporated. Background images are those without any annotations, and their 
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inclusion helps to reduce False Positives (FP). In total, the dataset comprises 10,000 

images, which are divided into training, validation, and test sets in a ratio of 7:2:1. 
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Mosaic Data Augmentation works by combining four different training images into a 

single composite image. The position, size, and scale of each image on the new canvas 

can be random. This method provides the model with an image that contains richer 

background and contextual information, which helps the model learn to recognize 

objects in various environments. By training the model to process these composite 

images, it learns to identify partially obscured objects and to recognize objects in 

complex, cluttered backgrounds, thereby improving its generalization ability and 

robustness. 

 Table 12 The Data augmentation parameter 

 

 

 

 

Data Augmentation type Parameter 

Rotation -15° ~ +15° 

Flip Vertical, Horizontal 

Invert Color invert 

Saturation -25% ~ +25% 

Mosaic 4 Pictures 

Figure 3.3-1 The data augmentation. 
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3.4 Training and Optimization 

 

The training environment used for the detector in this study was the Windows 10 

operating system, with an Nvidia Geforce RTX 3070 (8G) GPU, a Darknet framework 

for YOLOv3, a Pytorch framework for YOLOv5 series and variant models, and Faster R-

CNN (ResNet) (He et al., 2016). 

To address the issues mentioned in section 3.2, we conducted an ablation experiment 

on data combination. Considering the significant differences between the self-labeled 

data and the data selected from the COCO dataset, to explore the impact of combining 

these two data types, models were trained using different quantity combinations and 

starting from pretrained weights or with randomly initialized parameters as a test. The 

weights of the randomly initialized models were set to random values before training 

commenced. This means the model begins learning from scratch, without any prior 

knowledge. The training parameters were set as follows: the momentum of the learning 

rate at 0.937, weight decay at 0.001, size (pixels) at 640, batch size at 32, and epochs at 

30. The results are as shown in Table 13 and the Precision-Recall Curve of 50/50 

combination is as shown in Figure 3.4-1: 
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Table 13 Results of object detection on the test set. 

Data combination 𝑚𝐴𝑃 (%) Training method 

COCO Data (25) + SL Data (75) 60.0 Pretrained weights 

COCO Data (50) + SL Data (50) 60.3 Pretrained weights 

COCO Data (75) + SL Data (25) 59.8 Pretrained weights 

COCO Data (25) + SL Data (75) 1.3 Randomly initialized yaml 

COCO Data (50) + SL Data (50) 1.3 Randomly initialized yaml 

COCO Data (75) + SL Data (25) 1.1 Randomly initialized yaml 

It can be observed that due to insufficient training time and a small number of epochs, 

models with randomly initialized parameters did not converge. But the results of the three 

different data combinations did not show significant differences, leading us to conclude 

that the disparities between the two datasets do not have a noticeable impact on the 

detection results. 

  

Figure 3.4-1 The Precision-Recall Curve of COCO Data (50) + SL Data (50) combination. 
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For the detector, we trained three models in order to compare their performance and 

select the best model. The system initially used YOLOv3 in the Darknet framework as the 

detection model (Redmon and Farhadi 2018) and trained a Faster R-CNN as a comparison, 

and it was then updated to YOLOv5s (Jocher et al., 2022) in the PyTorch framework as 

the detection model. It is worth noting that there are different types of object detection 

algorithms, such as one-stage algorithms like YOLO and two-stage algorithms like Faster 

R-CNN. The Faster R-CNN algorithm first generates a set of object proposals and then 

classifies them, whereas YOLO directly divides the image into grids and predicts the 

category for each grid, thereby significantly improving the speed of detection. This feature 

makes YOLO very suitable to be used in practical projects. 

The latest version of YOLOv5 features models of five different scales. For our 

comparison, we chose the three intermediate scales: YOLOv5s, YOLOv5m, and 

YOLOv5l. These models are based on the same underlying architecture, with the main 

difference being their density. YOLOv5s has the least density, while YOLOv5l has the 

greatest. Comparing different versions of the same underlying architecture needs to be 

directly related to achievable accuracy. That is to say, if a sufficient amount of data is 

provided for training, denser networks typically yield better results in terms of evaluation 

metrics, but at the cost of increased inference time.  

We also used different backbones to compare the impact of various network layers and 

configurations on achieved results. In this experiment, the processing speed of images is a 

crucial metric. Therefore, two popular lightweight backbones were chosen to replace the 

CSP backbone of the YOLOv5 model for testing. These are MobileNetV3 (Howard et al., 

2017) and ShuffleNetV2 (Zhang et al., 2018). 
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3.5 Results and Discussion 

3.5.1 Performance Evaluation of Detectors 

Since the primary goal of the remote safety system is to detect obstacles approaching 

the tractor, we focused on the detection performance of the model for large and medium-

sized targets, as well as the accuracy and detection speed of the model. We used the current 

mainstream mean average precision (mAP) as the evaluation metric of the detection model 

in this study. The mAP metric is the average value of the AP (average precision) for all 

categories (person and tractor).  

These metrics are calculated as follows: 

𝑚𝐴𝑃 =
1

𝑐
∑ 𝐴𝑃𝑖
𝑐
𝑖=0                                 (3-1) 

𝐴𝑃 = ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑅𝑒𝑐𝑎𝑙𝑙) 𝑑𝑅
1

0
                                (3-2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (3-3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (3-4) 

 

where 𝑇𝑃  represent the number of correctly detected objects (true positives), 𝐹𝑃 

represent the number of falsely detected objects (false positives), and 𝐹𝑁 represent the 

number of missed objects (false negatives). 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑅𝑒𝑐𝑎𝑙𝑙)  means the precision-

recall curve. 𝑐 is the number of classes, which is two in this study. 

The training parameters were set as follows: the momentum of the learning rate at 0.937, 

weight decay at 0.0005, size (pixels) at 640, batch size at 32, and epochs at 300. Results 

of different modules are as shown in Table 14. 
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Table 14 Results of object detection on the 3 different model. 

Detector Backbone 𝑚𝐴𝑃 (%) 𝐴𝑃𝑝 (%) 𝐴𝑃𝑡  (%) FPS 

YOLOv3 Darknet53 87.4 85.4 89.3 18 

YOLOv5s CSPDarknet 87.3 84.7 89.9 32 

Faster R-CNN Resnet50 89.7 88.3 91.0 8 

 [footnote] 𝐴𝑃𝑝: average accuracy of person class. 𝐴𝑃𝑡: average accuracy of tractor class. 

We can observe that Faster R-CNN exhibits the best performance with a mAP of 89.7%, 

while YOLOv5s and YOLOv3 show similar results, scoring 87.3% and 87.4% 

respectively. However, in comparison to the other two models, YOLOv5s has a significant 

advantage in terms of running speed, achieving 32 FPS. YOLOv3 is slower at 18 FPS, and 

Faster R-CNN only reaches 8 FPS, which does not meet the requirements for real-time 

operation. The detection results as shown in Figure 3.5-1, Precision-Recall Curve of 

YOLOv5s model as shown in Figure 3.5-2. 

 

Figure 3.5-1 The remote safty system detection results. 
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The test results of YOLO models at different scales as shown in Table 15: 

Table 15 Results of object detection on the different YOLOv5 scale. 

Detector Backbone 𝑚𝐴𝑃 (%) 𝐴𝑃𝑝 (%) 𝐴𝑃𝑡  (%) FPS 

YOLOv5s CSPDarknet 87.3 84.7 89.9 32 

YOLOv5m CSPDarknet 87.5 84.7 90.2 20 

YOLOv5l CSPDarknet 88.2 85.3 91.1 12 

[footnote] 𝐴𝑃𝑝: average accuracy of person class. 𝐴𝑃𝑡: average accuracy of tractor class. 

 

We can know that YOLOv5s has the fastest running speed but relatively lower accuracy, 

while YOLOv5l is the slowest but has the highest accuracy. This aligns with our 

expectations: models with greater density achieve better detection results, but 

correspondingly, the increased density also leads to a decrease in processing speed.  

Figure 3.5-2 The Precision-Recall Curve of YOLOv5s model 
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The backbone network of YOLOv5s uses several combined modules of Conv, C3, and 

SPP for feature extraction; Because its network structure is more complex, and the number 

of parameters is large, redundant information inevitably wastes computational resources. 

Due to the significant heating of computers caused by running deep learning models for 

extended periods, it is very important to use lightweight models to ensure safety. We 

attempted to replace the backbone network of YOLOv5s with two popular lightweight 

networks mobilenetV3 and ShuffleNetV2 observed the results, as shown in the Table 16.  

Table 16 Results of object detection on the different backbone. 

Detector Backbone 𝑚𝐴𝑃 (%) 𝐴𝑃𝑝 (%) 𝐴𝑃𝑡  (%) FPS 

YOLOv5s CSPDarknet 87.3 84.7 89.9 32 

MobileNet-YOLO MobileNetV3Small 83.3 81.5 85.1 60 

ShuffleNet-YOLO ShuffleNetV2 82.9 81.9 83.9 72 

[footnote] 𝐴𝑃𝑝: average accuracy of person class. 𝐴𝑃𝑡: average accuracy of tractor class. 

From the data in the table, we can see that MobileNetV3 and ShuffleNetV2 have certain 

advantages in terms of computing power, memory consumption, and latency, but 

compared to the original network, there is a significant decrease in detection accuracy. It 

is still necessary to explore the effect of the decrease in accuracy on actual detection tasks. 

3.5.2 Discussion 

 

From the data combination ablation study, we found that the different quantity 

combinations of the two types do not have a significant impact on the results. One possible 

reason is that the YOLOv5 model itself may have strong robustness and generalization 

capabilities, allowing it to maintain stable performance across a variety of data 

combinations. Another possible reason is that both datasets contain sufficient information 

to solve the task, so different data combinations might not result in significant performance 
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differences. In summary, we believe that mixing these two types of data for model training 

is feasible. 

In the comparison of the three models, Faster R-CNN performed the best in terms of 

accuracy, but its low inference speed makes it unsuitable for real-time processing. The 

performance gap between YOLOv3 and YOLOv5s is relatively small, but YOLOv5s is 

much faster in terms of inference speed. One reason is that YOLOv5s is a lightweight 

version of YOLO, having a smaller density compared to the standard YOLOv3. Another 

reason is that YOLOv3, an earlier version we used, is deployed on the Darknet framework, 

whereas YOLOv5s utilizes the PyTorch framework with many optimized integrated 

libraries, making it faster in matrix operations. Compared to the YOLOv3 model, 

YOLOv5 uses the Cross Stage Partial Network (CSPNet) as its backbone network, which 

enhances the feature extraction capabilities based on the original model. YOLOv5 also 

optimizes the bounding box loss, classification loss, and object confidence loss, 

contributing to the improved model performance. 

 In the comparison of the three scales of YOLOv5, the primary difference between the 

various versions of YOLOv5 lies in the size and complexity of the model. Larger models, 

such as YOLOv5l, typically have more convolutional layers, which means the network 

can learn more complex features, but this also increases the computational burden. These 

models of different scales offer a trade-off between speed and accuracy. Generally, smaller 

models like YOLOv5s run faster, but their accuracy might be lower. Larger models, such 

as YOLOv5l, perform better in terms of accuracy, but are slower. Models of different 

scales are suitable for different application scenarios. YOLOv5s is the fastest but least 

accurate version among the YOLOv5 models. In the present study, we aimed to maximize 
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the model's runtime speed while satisfying minimum accuracy requirements, and we thus 

chose YOLOv5s as our primary test model.  

In the comparison of the three different backbone YOLOv5, we found that YOLOv5 

models with two types of lightweight backbones have faster inference speeds compared to 

the original YOLO v5, but there is a significant decrease in accuracy. This indicates that 

the effectiveness of the network is influenced not only by the dataset but also by certain 

types of layers. Whether these two lightweight backbones meet the requirements of 

practical detection needs further discussion. 

We selected 500 images for testing, which included target tractors or humans, all within 

the tractor's stopping or deceleration zone. Using the YOLOv5s model, we achieved a 

detection rate of 0.98. With the MobileNet-YOLO model, the detection rate was 0.90, and 

the same was true for the ShuffleNet-YOLO model. We believe that the two lightweight 

models lead to a relatively high drop in accuracy, which does not meet the objectives for 

safe use and still requires improvement. In practice, the speed of the analysis is an 

important indicator, and small-scale targets generally cause missed detection. Although a 

mAP value of 87.3% may not be an exceptionally high number, we observe from the 

results in Chapter 6 that this model achieved a 100% accuracy rate in multiple field 

experiments. This is because the test dataset contains many small-scale targets, and this 

model demonstrates a very high detection rate for targets of varying sizes within the robot's 

forward region of interest (ROI) during real-world usage.  
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In conclusion, a comparison of the three models revealed that even though the Faster 

RCNN model has higher accuracy, its lower frame rate may cause issues in practical 

applications. The accuracy of YOLOv5s and YOLOv3 is slightly lower, but while meeting 

the real-world usage requirements YOLOv5s has a faster speed, making it perform better 

in real-world scenarios. A comparison of three scales that YOLOv5s has a higher inference 

speed than other scales and an accuracy that meets requirements. The significant decrease 

in accuracy of the two lightweight backbones compared to the original model could pose 

problems in practical use, which is unacceptable in safety-first projects.  Therefore, when 

considering factors such as detection performance, accuracy, and speed, we believe that 

the YOLOv5s model holds an advantage over the others and is capable of serving as the 

detection head for robots in real-world applications as shown in Figure 3.5-3OBSTACLE 

POSITIONING METHOD OF THE REMOTE SAFTY SYSTEM  

  

Figure 3.5-3 Comparison of performance and speed among several different models. 
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CHAPTER 4. OBSTACLE POSITIONING METHOD OF THE 

REMOTE SAFTY SYSTEM 

4.1 Introduction 

The objective of this chapter is to utilize the YOLOv5s detector developed in the 

previous chapter, based on deep learning models, to accomplish the localization of 

obstacles appearing in front of the robot tractor. The primary reason for using a monocular 

vision system in this study is its cost-effectiveness. A monocular vision system typically 

requires only one camera, significantly reducing hardware costs. This is beneficial for 

large-scale deployment and for farmers adopting these new technologies. Compared to 

multi-camera or stereoscopic vision systems, a monocular system has a simpler structure. 

This not only means that installation and configuration are easier, but also that 

maintenance and troubleshooting are more straightforward. 

Additionally, a monocular vision system usually processes less data than multi-camera 

systems, hence requiring fewer computational resources. The approach adopted in this 

study involves sending image data to a remote server for processing and then returning 

control commands. In the typically poor network environments of farmlands, minimizing 

the volume of data transmission to ensure smooth operation is also crucial. 

Finally, the adaptability of monocular vision is quite strong. It can adjust to a variety of 

lighting and environmental conditions, which is particularly important for outdoor 

applications or environments that are subject to frequent changes. 
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Monocular positioning faces several major challenges: 

(1) In a monocular vision system, due to the lack of depth information, it is difficult to 

determine the actual size and distance of an object. The size of an object in an image may 

vary depending on its distance. 

(2) Although monocular systems are generally simpler and less expensive than multi-

camera systems, extracting three-dimensional information from a single image may 

require complex algorithms and substantial computational resources. 

(3) During a long-distance positioning, a monocular system may accumulate errors, 

leading to inaccuracies in positioning. 

(4) In dynamic and constantly changing environments, such as outdoors or in crowds, 

maintaining stable and accurate positioning is a challenge. 

How to solve these problems and enhance the positioning accuracy of a monocular 

camera is the focus of our research. 

4.2 System setup and Camera calibration 

We used a monocular camera to collect images, as shown in Figure 4.2-1. The camera 

was mounted on the pan-tilt unit at the top of the robot tractor at 2.6 m above the ground, 

with a 30° angle. The images captured by the camera in real-time, with a resolution of 

1280 × 720 pixels, are transmitted to the NUC inside the tractor. Subsequently, the images 

will be transmitted over the internet to a remote high-performance processor for further 

processing.  
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The camera was mounted on the pan-tilt unit at the top of the robot tractor at 2.6 m 

above the ground, with a 30° angle. 

 

In this study, a monocular camera is used to measure the distance to obstacles in front 

of the robot tractor. To establish a camera imaging geometry model and correct lens 

distortion, it is necessary to calibrate the camera. 

The perspective projection model for cameras can be expressed as follows: 

𝑍𝐶 [
𝑥
𝑦
1
] = 𝐾[𝑅|𝑇] [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

]                            (4-1) 

 

where 𝑃𝑖  = [𝑋𝑤  𝑌𝑤  𝑍𝑤  1]T is the homogenous world point, 𝑝𝑖  = [𝑥  𝑦  1 ]T is the 

corresponding homogeneous image point, 𝐾  is the matrix of the intrinsic camera 

Figure 4.2-1 Camera position and angle. 
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parameters, 𝑍𝐶  is a scale factor for the image point, and [𝑅|𝑇] is the matrix of the extrinsic 

parameters. The matrix of intrinsic and extrinsic camera parameters is: 

𝐾 = [

𝑓𝑥 𝑐𝑥
𝑓𝑦 𝑐𝑦

1

]                                (4-2) 

 

where 𝑓𝑥 and 𝑓𝑦 represent the focal length in terms of pixels, and 𝑐𝑥 and 𝑐𝑦 represent 

the principal point of the camera. 

[𝑅|𝑇] = [

𝑅11 𝑅12 𝑅13 𝑇1
𝑅21 𝑅22 𝑅23 𝑇2
𝑅31 𝑅32 𝑅33 𝑇3
0 0 0 1

]                         (4-3) 

 

where 𝑅 is the rotation matrix and 𝑇 is the translation matrix. 

According to Zhang's method (Zhang 2000), we can calibrate the camera by using a 

checkerboard to obtain the intrinsic 𝐾 , extrinsic [𝑅|𝑇], and distortion coefficients. A 

chessboard, composed of alternating black and white squares, is used as a calibration tool 

for camera calibration (mapping objects from the real world to 2D images). Since a two-

dimensional object lacks some information compared to a three-dimensional object, we 

capture images by changing the orientation of the chessboard multiple times to obtain 

coordinate information. As shown in the Figure 4.2-2 and Figure 4.2-3, this is the same 

chessboard photographed by the camera from different angles. 
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Figure 4.2-2 Multiple shots of a chessboard grid at different positions for camera calibration. 

 

Figure 4.2-3 The chessboard grid's position relative to the camera in space. 
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4.3 Camera Positioning 

 

The conversion equation for the pixel coordinates to the tractor's world coordinates is: 

𝑍𝐶 (
𝑥
𝑦
1
) = (

𝑓𝑥 0 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0

0 0 1 0
0 0 0 1

) [𝑅|𝑇](

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

)                       (4-4) 

 

Equation (4-4) can be extended as: 

{
 
 

 
 
𝑍𝐶 ∗ 𝑥 = 𝑋𝑤 ∗ (𝑓𝑥 ∗ 𝑅11 + 𝑐𝑥 ∗ 𝑅31) + 𝑋𝑤 ∗ (𝑓𝑥 ∗ 𝑅12 +
𝑐𝑥 ∗ 𝑅32) + 𝑍𝑤 ∗ (𝑓𝑥 ∗ 𝑅13 + 𝑐𝑥 ∗ 𝑅33) + 𝑓𝑥 ∗ 𝑇1 + 𝑐𝑥 ∗ 𝑇3
𝑍𝐶 ∗ 𝑦 = 𝑋𝑤 ∗ (𝑓𝑦 ∗ 𝑅21 + 𝑐𝑦 ∗ 𝑅31) + 𝑌𝑤 ∗ (𝑓𝑦 ∗ 𝑅22 +

𝑐𝑦 ∗ 𝑅32) + 𝑍𝑤 ∗ (𝑓𝑦 ∗ 𝑅23 + 𝑐𝑦 ∗ 𝑅33) + 𝑓𝑦 ∗ 𝑇2 + 𝑐𝑦 ∗ 𝑇3
𝑍𝐶 = 𝑋𝑤 ∗ 𝑅31 + 𝑌𝑤 ∗ 𝑅32 + 𝑍𝑤 ∗ 𝑅33 + 𝑇3

   (4-5) 

 

According to the perspective-n-point (PNP) method (Fischler and Bolles 1981), we only 

need to know the world coordinates and the pixel coordinates of a feature point, the 

intrinsic camera parameters, and the camera distortion coefficients to find the world 

coordinates of the camera. We set four control points (C1, C2, C3, and C4) on the ground 

as shown in Figure 4.3-1. The control points' coordinates and the distance between the 

camera and each control points are obtained from the real-time kinematics (RTK) global 

positioning system (GPS). The pixel coordinates are obtained by imaging the control point 

in the tractor camera, and the world coordinates of the camera relative to the plane XY can 

be restored. 
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The center point of the camera projecting to XY, where these four control points are 

located, is the origin of the world coordinate system; the tractor's forward direction is 

the X-axis positive direction, the Z-axis directs to the center of the camera lens, and the 

Y-axis can be derived by the right-hand rule. 

 

Since the points that we want to measure must be located on the plane of contact with 

the ground, we can assume that 𝑍𝑤 = 0 and substitute it into Eq. (4-5), which can be 

simplified to: 

{
 
 

 
 
𝑍𝐶 ∗ 𝑥 = 𝑋𝑤 ∗ (𝑓𝑥 ∗ 𝑅11 + 𝑐𝑥 ∗ 𝑅31) + 𝑋𝑤 ∗ (𝑓𝑥 ∗ 𝑅12 +

𝑐𝑥 ∗ 𝑅32) + 𝑓𝑥 ∗ 𝑇1 + 𝑐𝑥 ∗ 𝑇3
𝑍𝐶 ∗ 𝑦 = 𝑋𝑤 ∗ (𝑓𝑦 ∗ 𝑅21 + 𝑐𝑦 ∗ 𝑅31) + 𝑌𝑤 ∗ (𝑓𝑦 ∗ 𝑅22 +

𝑐𝑦 ∗ 𝑅32) + +𝑓𝑦 ∗ 𝑇2 + 𝑐𝑦 ∗ 𝑇3
𝑍𝐶 = 𝑋𝑤 ∗ 𝑅31 + 𝑌𝑤 ∗ 𝑅32 + 𝑇3

     (4-6) 

 

Figure 4.3-1 The perspective-n-point (PNP) method. 
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The ternary equation with the three unknowns 𝑋𝑤, 𝑌𝑤, and 𝑍𝐶  is obtained and can be 

solved. The obtained solution is the world coordinates 𝑃𝑖 = [𝑋𝑖 𝑌𝑖 0 1] T of the pixel point 

pi and the distance 𝑍𝑐𝑖 between the camera and 𝑝𝑖. According to the world coordinates and 

the pre-measured distance between the control point for the tractor, we can calculate the 

distance 𝐷𝑖 of 𝑃𝑖 for the tractor. It should be noted that in this study we used the component 

𝐷𝑥𝑖 of 𝐷𝑖 in the X-axis direction as the actual distance. Through this method, we can map 

all points on the image onto a plane as shown in Figure 4.3-2, thereby calculating their 

distances. 

 

4.4 2D-LiDAR positioning 

In addition to visual positioning, our system also utilizes 2D-LiDAR positioning as a 

local safety device. Compared to cameras, LiDAR can perform more accurate distance 

measurements, is less susceptible to factors like vibration and lighting conditions, and 

does not rely on data learning. It can detect the distance to any obstacle that reflects laser 

beams. LiDAR employs the time of flight (TOF) measurement method. A laser is emitted 

Figure 4.3-2 Homograph of the monocular image. 
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from the transmitter of the rangefinder, which illuminates the target and reflects to the 

receiver. The distance to the target 𝑑 is calculated by measuring the time 𝑡 that it takes 

for the laser to travel to the target and back, using the speed of light 𝑐.  

The calculation formula is as follows: 

𝑑 =  𝑐 ∗
𝑡

2
                            (4-7) 

 

The Hokuyo UTM-30LX LiDAR that we used has a maximum scanning range of 270°, 

a maximum distance of 30 m, and a scanning time of 25 ms. 

 

4.5 Determination of Safety Zones 

In this study, the base tractor we used is the Kubota MR1000A crawler-type tractor 

with a total length of 4,505 mm, a width of 1,980 mm, and a total height of 2,725 mm. 

The commonly used operating width for rotary operations is 2,600 mm or 2,800 mm. For 

safety purposes, when operated remotely, the maximum specified speed can be set to 10 

km/h, and when a specified rotation count of 2,600 mm is selected, the actual maximum 

vehicle speed is 8.8 km/h. In the deceleration zone, if a target is detected and the speed 

exceeds 3.6 km/h, the robot will decelerate to 3.6 km/h. This section requires confirmation 

of the ranges for the visual stopping zone, the visual deceleration zone, and the LiDAR 

stopping zone. 

Referring to the performance evaluation criteria for reducing pedestrian collision 

injuries set by Japan's Ministry of Land, Infrastructure, Transport and Tourism (MLIT), 

it is necessary to avoid collisions with pedestrians crossing in front when they are moving 

at a speed of 5 km/h. The following four points were therefore considered when 
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specifying the range for each zone in this study:  

(1) A visual stopping zone serves as the first layer of the safety zone, and when the 

robot is traveling at its maximum speed (8.8 km/h), braking based solely on visual 

detection should ensure the avoidance of collisions with obstacles within the visual 

stopping zone. 

(2) A LiDAR stopping zone serves as the second layer of the safety zone, and when 

the robot is traveling at its maximum speed (8.8 km/h), braking based solely on LiDAR 

detection should ensure the avoidance of collisions with pedestrians crossing at a speed 

of 5 km/h in the vicinity of the robot. 

(3) To ensure the operational efficiency of the robot tractor, braking based solely on 

visual detection should minimize the impact of objects that are not on the operational path. 

(4) The robot tractor can decelerate to 3.6 km/h after passing over a deceleration zone 

at its maximum speed (8.8 km/h). 
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 We assumed an 8-m zone in front of the tractor as the visual stopping safety zone, and 

beyond 8 m was the safe zone. A test operator stood at the boundary of the 8-m zone 

judged by the system and recorded the tractor's stopping position 𝑆2 relative to the 

operator's position. Subsequently, the robot tractor was remotely controlled to travel 

from a distant point towards the operator at its maximum speed of 8.8 km/h. After 

automatic stopping based on visual positioning, the position 𝑆1 where the tractor came 

to a halt was recorded.  

 

The breaking distance 𝑆𝑑 is defined as: 

𝑆𝑑 = 𝑆1 − 𝑆2                               (4-8) 

 

The braking time, defined as time td from the vehicle's horn blast (automatically 

activated when an obstacle is detected in the stopping zone) to the time at which the 

vehicle comes to a complete stop was measured in each experimental group three times, 

and the results are shown in Table 17.  

  

Figure 4.5-1 Experiment for measuring the braking time and braking distance. 
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Table 17 The braking time and distance for each braking method at maximum speed. 

[footnote] 𝑡𝑑̅: the average braking time; 𝑆𝑑̅̅ ̅: the average braking distance. 

 

According to principle (1) outlined above, the visual stopping zone should be greater 

than the braking distance at maximum speed, i.e., 𝐿1 > 7.4 m. We thus used 8 m as the 

value of 𝐿1. According to principle (3), visual detection should minimize the impact of 

objects that are not on the operational path. The commonly used operating width for rotary 

operations is 2.6 m or 2.8 m (i.e., 2.8 m for 𝑊). We set the value of 𝑊 as 3.2 m. The 

visual stopping zone was thus an 8 m × 3.2 m rectangular area in front of the tractor as 

shown in Figure 2.1-5. According to principle (4), after setting the stopping safety zone 

as an 8 m × 3.2 m rectangular area, we determined that at 8 m in front of the robot tractor, 

a deceleration distance of 3.6 m is required to reduce the speed from 8.8 km/h to 3.6 km/h. 

We thus set the 𝐿2 value as 4 m. 

According to principle (2), as the final safety zone, braking based solely on LiDAR 

detection should ensure the avoidance of collisions with pedestrians crossing at a speed 

of 5 km/h in the vicinity of the robot. Considering (i) the robot tractor as a rectangular 

rigid body with a total length of 4,505 mm and a width of 1,980 mm and (ii) the LiDAR 

scanning range as a sector (adjustable-angle) specified as a semi-circle of 180° in front of 

the robot with a scanning radius 𝑅, Figure 4.5-2 depicts the position relationship between 

the tractor and pedestrians crossing at 5 km/h. 

Breaking type 𝑡𝑑̅ (s) 𝑆𝑑̅̅ ̅ (m) 

Visual breaking 3.5 7.4 

LiDAR breaking 2.1 3.7 
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Assuming that the initial position of the tractor is the origin of the coordinate system 

with the LiDAR position. At the coordinates of point 𝐻(−
𝑤𝑡

2
 , 𝑑𝑙̅), a pedestrian who is 

crossing at 5 km/h (𝑉𝑃) would collide with the tractor. 

Based on the Pythagorean theorem, the LiDAR scanning radius 𝑅 is thus calculated as: 

𝑅 > √(−
𝑤𝑡

2
− 𝑉𝑃 ∗ 𝑡𝑙̅)2 + (𝑑𝑙̅)2

2
                                (4-9) 

 

where 𝑑𝑙̅ is the average LiDAR detection braking distance, 𝑡𝑙̅ is the average LiDAR 

detection braking time, 𝑤𝑡 is the tractor width. We calculated that 𝑅 > 5.47 m and set the 

value of 𝑅 as 5.5 m as shown in Figure 2.1-5. 

  

Figure 4.5-2 The position relationship between the tractor and pedestrians crossing at 5 km/h. 
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4.6 Results and Discussion 

By using the PnP (Perspective-n-Point) method in conjunction with bounding box and 

considering that the bottom line of a bounding box surrounding a person is always at the 

person's feet, we can assume that the points on this line are on a plane determined by four 

control points on the ground. Therefore, by assuming 𝑍𝑤 = 0, compensate for the missing 

Z-axis information in monocular vision, enabling us to position the target. The error 

between the predicted values and the actual values for measurements taken at every 0.5 

meters within a range of 15 meters, the result as shown in Figure 4.6-1. 

 

Each group of experiments was conducted five times, and we used the average of the 

results. 

 

The average relative error of the 5.6 % at 15 m; the maximum error occurs at the 

farthest point of 15 m, which is 2.84 m. The maximum relative error remains at around 

19 % which is too large to be useable. This is due to the inherent errors of the monocular 

Figure 4.6-1 Measurement error in the X-direction at the row data. 
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camera itself, as well as a pixel error associated with the use of the bounding box method. 

We will discuss the methods to correct this error in the next section. 

In this chapter, we also established a method for determining the safety zone for 

different vehicles in remote safety systems. Through these two methods, we can calculate 

the distance between monitored vehicles and detected obstacle targets and assess the 

vehicle's safety status based on the safety zone, thereby ensuring the safe operation of 

robot vehicles.
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CHAPTER 5. POSITIONING RESULTS CORRECTION 

 

5.1 Introduction 

The objective of this chapter is to refine the positioning results of the detector 

developed in Chapter 3 and the positioning method proposed in Chapter 4. From the 

results of the previous chapter, we obtained a positioning error with an average 

relative error of 5.6% at 15 meters. The maximum error occurs at the farthest point of 

15 meters, which is 2.84 meters. The maximum relative error remains at around 19%. 

This is not only due to the accuracy disadvantage of monocular vision compared to 

other high-precision sensors, but also because when using a bounding box to mark a 

person, the bottom line of the bounding box does not precisely land at the person's 

feet. Instead, it experiences a pixel offset that varies with the person's position. This 

results in a minor positioning error when the subject is close to the camera. However, 

as the distance between the person and the camera increases, this error becomes 

significant due to the imaging characteristics of the monocular camera. In this chapter, 

we propose a method to analyze and correct this pixel offset using statistical 

techniques, thereby improving positioning accuracy Positioning pixel error by using 

monocular camera. 

The bounding box of the object in an image is detected using YOLOv5s. If an object 

is detected, we can obtain the pixel coordinates of each bounding box. For the location 

estimation, we used a single pixel 𝑝𝑖(𝑥𝑖, 𝑦𝑖) which was located at the center of that 

bounding box's bottom edge to represent each detection. The actual pixel position 

where the target is located will have deviation 𝜀𝑝  from the pixel position of 𝑝𝑖  as 

shown in Figure 5.1-1. Due to the imaging principle of a monocular camera, this 
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deviation may cause more significant positioning errors at greater distances. The 

deviation of the object in the same position may be different in different frames. This 

phenomenon exists in many detection algorithms that use the bounding box to mark 

objects. 

 

 (a) Deviation in the close range. (b) Deviation in the long range. The purple box is 

the predicted box of the YOLO network, and the red line is the ground truth of the 

position where the obstacle is standing. We selected the point at the center of the 

line connecting both feet as the location on the human body to draw the red line. 

  

Figure 5.1-1 Deviation of the bounding box and ground truth.  
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5.2 Positioning result correction methods for human targets 

5.2.1 Q-Q plot 

 

If the ground truth has a pixel coordinate in the Y-direction of 𝑦𝑔, we define 𝜀𝑝 as 

follows: 

 𝜀𝑝 = 𝑦𝑖 − 𝑦𝑔                            (5-1) 

 

To investigate the probability distribution of this deviation in the YOLOv5s 

algorithm, we counted the deviation of the detected YOLOv5s predicting the 

bounding box of the target from the actual value in 1-m increments within a range of 

15 m as shown in Figure 5.2-1. All of the actual values were marked manually in a 

subjective manner. Since the markers beyond the range of 15 m will produce 

significant errors due to small-pixel-value floating, and the objects that are far away 

from the tractor are not part of this study object of interest, only the distribution within 

the 15-m range was thus considered. A total of 158 ground truths were labeled, and to 

compare the differences in 𝜀𝑝 between each distance range, we performed a t-test 

(Daniel et al., 2018) for each adjacent distance range. The t-test requires that the data 

obey a normal distribution, and we made a Q-Q plot (quantile-quantile plot) 

(Chambers et al., 2018) for each interval as shown in Figure 5.2-2. 
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Figure 5.2-1 Experiment for counted the deviation of the detected YOLOv5s 

predicting the bounding box 
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The points will fall on the 45° reference line if the data in each range are normally 

distributed. 

5.2.2 T-test 

 

Figure 5.2-2 Q-Q plot for each interval of the 15-m range. 
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From the Q-Q plot, we can find that the probability distributions of all deviations 

on the 12 intervals obey a normal distribution. For each interval with the adjacent 

intervals, we applied a two-sample t-test; 𝑥̅ and σ represent the sample mean and 

standard deviation of ε in each range, respectively. The null hypothesis is that two 

populations have an equal mean, and the alternative hypothesis is that the two means 

are not equal: 

𝐻0: 𝜇1 = 𝜇2 𝐻1: 𝜇1 ≠ 𝜇2                          (5-2) 

 

For equal variance is assumed: In this case the test statistic 𝑡: 

𝑡 =
(𝑥1−𝑥2)

𝜎𝑝√
1

𝑛1
+
1

𝑛2

                                (5-3) 

 

where 𝑥1  and 𝑥2  are sample means, 𝑛1  and 𝑛2  are sample sizes, 𝜎1
2  and 𝜎2

2  are 

sample variances and pooled variance 𝜎𝑝 is used: 

𝜎𝑝 = √
(𝑛1−1)𝜎12+(𝑛2−1)𝜎22

𝑛1+𝑛2−2
                                (5-4) 

 

Degrees of freedom (DF) 𝑣:  

𝑣 = 𝑛1 + 𝑛2 − 2                                (5-5) 

 

For equal variance is not assumed: In this case the usual two sample t-statistic no 

longer has a t-distribution and approximate test statistic, 𝑡′ is used: 

𝑡′ =
(𝑥1−𝑥2)

√
𝜎1
2

𝑛1
+
𝜎2
2

𝑛2

                                (5-6) 
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The t-distribution with 𝑣′ (DF) is used to approximate the distribution of 𝑡′ where: 

𝑣′ =
(𝜎1

2/𝑛1+𝜎2
2/𝑛2)

2

(𝜎1
2/𝑛1)

2

𝑛1−1
+
(𝜎2

2/𝑛2)
2

𝑛2−1

                (5-7) 

 

If a p-value reported from a t-test is < 0.05, we considered the result statistically 

significant, and if a p-value was > 0.05, the result was considered insignificant. As 

shown in Table 5-1, the p-values of the adjacent intervals at 13 m, 10 m, 8 m, and 6 

m are all < 0.05, and we thus consider that there were significant differences in the 

probability distributions of the regional deviation on both sides of the above ranges. 

The merged intervals as shown in Figure 5.2-3 within the 15-m range can be found in 

Table 18. 

The merging of the range intervals with similar probability distributions produced 

five intervals. 

  

Figure 5.2-3 Merged range intervals with similar probability distributions. 
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Table 18 Probability distribution for εp in each interval of the 15-m range. 

[footnote] 𝑛 : the number of detections; 𝑡′ : the t-value with reference to the next 

adjacent interval; 𝑣′:the degrees of freedom; P: the p-value with reference to the next 

adjacent interval. Only the data assuming unequal variances is listed, and the 

differences between the two hypotheses are consistent based on the calculations. 

 

  

Interval (m) 𝒏 𝒙 𝝈 𝒕′  𝒗′ P 

[15.0, 14.0) 12 1.7 1.37 0.25 6.86 0.812 

[14.0, 13.0) 7 1.3 3.90 -2.30 9.81 0.045 

[13.0, 12.0) 7 5.3 2.36 -1.18 11.17 0.264 

[12.0, 11.0) 11 6.55 1.97 0.18 22.16 0.855 

[11.0, 10.0) 14 6.36 3.10 -3.22 29.60 0.003 

[10.0, 9.0) 18 10.2 3.59 1.96 28.58 0.060 

[9.0, 8.0) 14 7.71 3.45 -3.54 15.66 0.003 

[8.0, 7.0) 10 13.9 4.70 -1.54 17.50 0.141 

[7.0, 6.0) 10 16.9 3.96 -2.82 26.66 0.009 

[6.0, 5.0) 21 25.4 12.52 -1.66 36.49 0.106 

[5.0, 4.0) 18 31.2 9.48 0.82 25.85 0.420 

[4.0, 3.5] 16 27.8 14.05 N/A N/A N/A 
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Table 19 Probability distribution for εp in the merged intervals of the 15-m range. 

[footnote] 𝑛: the number of detections; 𝑥: the mean average; σ: standard deviation. 

 

5.2.3 Positioning result correction 

After the statistical analyses, we observed that in most cases, εp is positive. This is 

because, at this camera angle, the size of the bounding box assigned by YOLO to the 

detected person is often larger than the person's actual size, and this value increases 

as the distance between the camera and the person decreases. For the points to be 

measured in the pixel ranges of these five intervals as shown in Table 19, we apply 

the pixel coordinate correction in different intervals, assuming that the pixel 

coordinates of the YOLO predicted the point of an object falling in interval 𝑖  is 

𝑝𝑖(𝑥𝑖, 𝑦𝑖). The distance is then calculated using the pixel points representing the object 

as 𝑝𝑐(𝑥𝑖 , 𝑦𝑖 − 𝜀𝑖) , where 𝜀𝑖  is obtained by calculating the regression equation of 

sample deviation and 𝑦𝑖 in distance interval 𝑖 as shown in Figure 5.2-4. 

Interval (m) 𝒏 𝒙 σ 

[15.0, 13.0) 19 1.53 2.52 

[13.0, 10.0) 32 6.19 2.57 

[10.0, 8.0) 32 9.09 3.68 

[8.0, 6.0) 20 15.4 4.50 

[6.0, 3.5) 55 28 12.13 
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Figure 5.2-4 Positioning result correction.  

Using the pixel point 𝑝𝑐 instead of 𝑝𝑖 for calculations. 

 

5.3 Positioning result correction methods for tractor targets 

5.3.1 Keypoint detection 

Regarding the positioning correction of tractor targets, due to the significantly 

larger size of tractors compared to humans, using a single pixel to represent the 

tractor's position would result in significant errors in tractor positioning.  

The method for keypoint detection adopts the approach of capturing the output 

results of tractor instances from the YOLOv5 network and re-inputting the cropped 

images into YOLO POSE framework for keypoint detection (Maji et al., 2022). The 

training images consist of a dataset of 100 tractor keypoints. For each anchor, 39 

elements associated with 15 tractor keypoints {wheel 1 ~ 4 top, wheel 1 ~4 bottom, 2 

front headlights，Front window top 2 corner, rear window top 2 corner, center bottom 

of the bumper} The target bounding box is determined by 6 elements: (𝐶𝑥, 𝐶𝑦, 𝑊, 𝐻, 

𝑏𝑜𝑥𝑐𝑜𝑛𝑓, 𝑐𝑙𝑎𝑠𝑠𝑐𝑜𝑛𝑓 ). 𝐶𝑥 and 𝐶𝑦 represent the horizontal and vertical coordinates of 

the center point of the bounding box, 𝑊 and 𝐻 represent the width and height of the 
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bounding box, respectively; 𝑏𝑜𝑥𝑐𝑜𝑛𝑓  and  𝑐𝑙𝑎𝑠𝑠𝑐𝑜𝑛𝑓  represent the bounding box 

confidence and the predicted class confidence. 

 

5.3.2 Results and discussion 

The experiment adopts the official MS COCO-provided validation standard based 

on object key point similarity, known as 𝐿oks (object keypoint similarity), to compute 

the average accuracy. 𝐿oks for the key point type i is given as 

𝐿𝑜𝑘𝑠 =

∑ [𝑒𝑥𝑝
[−

𝑑𝑖
2

2𝑠2𝑘2𝑖
]

𝛿(𝑣𝑖>0)]𝑖

∑ 𝛿(𝑣𝑖>0)𝑖
                                                           (5-8) 

where 𝑑i is the Euclidean distance between the ground truth and predicted keypoint i; 

𝐿oks is the constant for keypoint I, s is the scale of the ground truth object; 𝑠2 hence 

becomes the object’s segmented area. 𝑑2 is the squared Euclidean distance between 

the detected keypoint location and the ground truth keypoint location. k is a decay 

constant used to control the decay of keypoint category i, δ is the impulse function. 

𝑣iis the ground truth visibility flag for keypoint i 

Table 20 Results of object detection on the YOLOv5s-pose use OKS Loss. 

Detector Backbone 𝑚𝐴𝑃 (%) FPS 

YOLOv5s-pose CSPDarknet 63.3 10 

 

The output results are as shown in the table 20, with a mAP of 33.3 and only 10 fps. 

Additional post-processing is still needed to enhance performance. The low accuracy 

might be due to the insufficient size of the dataset. Another possible reason is that the 

YOLO POSE model, originally designed for human joint detection, does not perform 

well on other objects. 
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Our future work involves creating an instance segmentation dataset for tractor 

wheels using the YOLOv8-pose model (Jocher, 2023), with 100 images currently 

available as shown in Figure 5.3-1, This model has been previously used for detecting 

keypoints of various objects. However, to ensure the effectiveness of the instance 

segmentation model, a large amount of data is generally required. The goal is to create 

300 images now. 

 

5.4 Results and discussion 

This chapter explained that the reason for the large errors using the positioning 

method from the previous chapter is due to pixel offset inherent in the bounding box-

based positioning approach. It explores the distribution of this pixel offset using Q-Q 

plots and T-tests. Finally, the results were corrected using a piecewise regression 

function, and positioning experiments were conducted using this revised method. At 

the same time, this chapter also attempts to use the YOLO POSE model for keypoint 

detection on tractors to correct positioning accuracy. However, this task currently 

requires further research and discussion due to its low recognition accuracy. Future 

work involves creating an instance segmentation dataset for tractor wheels and tracks 

to achieve auxiliary positioning.  

Figure 5.3-1 Tractor instance segmentation dataset 
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Field experiments were conducted using the revised data with the correction 

method introduced in this chapter. The actual distances were measured in spaces 

between 3.5 m and 15 m by the RTK-GPS as shown in Figure 5.4-1. The difference 

between the actual and predicted distances was recorded for all points at 0.5-m 

intervals. Each group of experiments was conducted five times, and we used the 

average of the results. The error results are shown in Figure 5.4-2 Further objects tend 

to have a larger error, meaning that the error variance is more prominent. The root 

mean square (RMS) error of the measured distance was 0.403 m and had an average 

relative error of 2.6% at 15 m; the maximum error occurs at the farthest point of 15 

m, which is 0.77 m. The maximum relative error remains at around 5%, which does 

not significantly impact the safety system's judgment within the ROI; we thus consider 

it an acceptable value. We concluded that the remote safety system can correctly 

detect and accurately locate targets. 

  



Chapter 5. Positioning Result Correction                                                                  85 
 

 

 
Vehicle Robotics Laboratory, Graduate school of Agriculture, Hokkaido University 

 

 

 

Blue points are the coordinates predicted by the system. Orange points are the 

coordinate of points measured at 0.5-m intervals using RTK-GPS. 

The distance error tends to increase proportionally to the distance in our method. 

This is due to the imaging characteristics of monocular cameras and the method we 

used to calculate the target position by using the bounding box position.

 

Figure 5.4-1 Position of the range point. 

Figure 5.4-2 Measurement error in the X-direction. 
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CHAPTER 6. FIELD EXPERIMENTS FOR THE ROBOT 

AGRICULTRUE MACHINERY 

 

6.1 Introduction 

This chapter presents some farm experiments conducted using the remote safety 

system, exploring the operation of the system on various platforms, its performance 

in different environments, and the technical feasibility of the system. 

6.2 Materials and methods of field experiments 

6.2.1 Field experiments for multi-robot 

In October 2021 we set up a remote monitoring room at the Iwamizawa City Data 

Center as shown in Figure 6.2-2c and monitored two robot tractors at the Hokkaido 

University farm (37 km away) as shown in Figure 6.2-2b and another two robot 

tractors at the Iwamizawa Nishiyauchi farm (7 km away) as shown in Figure 6.2-2a 

as the multi-robot remote monitoring experiment map as shown in Figure 6.2-1. 
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Remote monitoring room at the Iwamizawa City Data Center. Two robot tractors at the 

Hokkaido University farm. Two robot tractors at Iwamizawa Nishiyauchi farm. 

 

The operation and monitoring of the four tractors are carried out by a single person 

in the middle, while the students on both sides are responsible only for observing and 

preventing any unexpected situations as shown in Figure 6.2-2c. 

(a) The Iwamizawa field running experiment. (b) The Sapporo field running 

experiment. (c) The Iwamizawa City remote monitoring room. In the remote 

monitoring room, eight screens on the left and right sides are responsible for 

displaying the image information transmitted from the front and rear cameras of the 

Figure 6.2-1 Remote monitoring experiment map in Hokkaido. 

Figure 6.2-2 The remote monitoring experiment. 
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four robot tractors. The large screen in the middle shows the positions of the four 

robot tractors on a map using geographic information system (GIS) software. 

The four robot tractors (Kubota MR1000A crawler-type, Kubota MR1000A wheel-

type, Yanmar EG105 crawler-type, Yanmar EG83 wheel-type) started from their 

respective starting points and went along the farm road, arrived at the appropriate field 

and moved within the field via two paths, and then returned to the starting point the 

same way. We let obstacles randomly invade the tractors' paths during this time. Every 

target was detected correctly in the experiment, and all robot tractors acted correctly 

according to the safety index. 

6.2.2 Field experiments for robot EV 

Field experiments were also conducted in Tsurunuma and Noto farm. We used this 

system to monitor the robot EV developed by Yamasaki and Noguchi (2023) as shown 

in Figure 6.2-3, which operates in grape vineyards. EV starts from the warehouse of 

the vineyard, moves between the rows of trees in the grape estate following a 

predetermined path, and then returns to the vineyard's warehouse after moving 

between two rows of trees as shown in Figure 6.2-4. We let obstacles randomly invade 

the EV ' paths. EV started from Every target was detected correctly in the experiment, 

and all robot tractors acted correctly according to the safety index. 
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Figure 6.2-4 Monitoring room in Tsurunuma Improve Center 

Figure 6.2-3 Robot EV 
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located 730 kilometers away from Hokkaido University. 

 

6.2.3 Results of the field experiments. 

 

Such field experiments were conducted multiple times during 2022–2023 in 

Tsurunuma valley, Iwamizawa Nishiyauchi farm, the Hokkaido University farm, and 

Noto farm on the tractor or electric vehicle (EV) developed by Yamasaki and Noguchi 

(2023). The monitoring locations during the experiment, the robot positions, the 

distances between each location, the number of robots monitored simultaneously, the 

instances of obstacle intrusion, and the successful detection of obstacles are presented 

in Table 21. All obstacles were correctly detected. 

  

Figure 6.2-5 Monitoring an EV working in the Noto vineyard.  
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Table 21 Field experiments for robot tractor. 

 

[footnote] D: the distance between monitoring room and robot location; 𝑁: number of robots; 

𝑇𝑜: times of obstacle intrusion; 𝑇𝑠: times of successful detection. 

Time 
Monitoring 

location 
Robot location D (km) 𝑁 𝑇𝑜 𝑇𝑠 

2022-05-13 Iwamizawa  Iwamizawa  7 1 8 8 

2022-05-19 Iwamizawa  Iwamizawa  7 2 8 8 

2022-06-08 Iwamizawa Sapporo/Tsurunuma  37/29 2 9 9 

2022-06-21 Iwamizawa  
Sapporo/Tsurunuma/Iwami

zawa  

37/29/

7 
3 12 12 

2022-07-06 Iwamizawa 
Sapporo/Tsurunuma/Iwami

zawa 

37/29/

7 
3 12 12 

2022-07-12 Iwamizawa 
Sapporo/Tsurunuma/Iwami

zawa 

37/29/

7 
3 12 12 

2022-08-02 Tsurunuma Tsurunuma 2.8 2 6 6 

2022-08-03 Tsurunuma Tsurunuma 2.8 2 8 8 

2022-08-08 Sapporo Sapporo 1 1 4 4 

2022-08-24 Tsurunuma Tsurunuma 2.8 2 10 10 

2022-08-26 Tsurunuma Tsurunuma 2.8 2 8 8 

2022-09-02 Sapporo Sapporo 0.3 2 8 8 

2022-09-21 Sapporo Sapporo/ Tsurunuma 1/37 3 12 12 

2022-10-02 Sapporo Sapporo 0.3 2 6 6 

2022-10-21 Sapporo Sapporo 0.3 2 4 4 

2022-11-09 Sapporo Sapporo 0.3 1 9 9 

2023-04-10 Sapporo Noto 730 1 6 6 

2023-05-22 Tsurunuma Sapporo/ Tsurunuma 56/2.8 2 6 6 

2023-05-24 Sapporo Tsurunuma 56 2 6 6 

2023-05-26 Sapporo Sapporo 1 2 6 6 

2023-06-09 Sapporo 
Sapporo/Tsurunuma/Iwami

zawa 

1/56/3

7 
4 14 14 

2023-06-15 Sapporo Sapporo 0.3 1 4 4 
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6.3 Materials and methods of feasibility experiments 

6.3.1 Technical feasibility experiments 

For the multi-target detection test. We counted the results of a 30-sec video of the 

detection of multiple people that was recorded in a field experiment on the Iwamizawa 

City farm. We compared the actual condition of all characters within 15 m of the 

tractor appearing in the video and the safety conditions predicted by the safety system, 

as shown in Figure 6.3-1. The solid line in the figure represents the real safety 

condition, and the dashed line represents the predicted safety condition. At 3–8 sec, 

12 sec, and 27–30 sec, an error in the estimation of the safety condition occurred due 

to the effective occlusion generated by the previous person, and no prediction 

bounding box or wrong bounding box position was generated for these person as 

shown in Figure 6.3-2. 

 

safety condition according to Table 3. If the same-color solid line and dashed line 

do not overlap at a certain frame, it means that there is a prediction error. The 

dashed line above the solid line indicates a false positive, while the dashed line 

Figure 6.3-1 Real or predict safety conditions for each character, 
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below the solid line indicates a false negative. 

 

For the three characters on the upper right side of the road, only two bounding 

boxes were generated. 

 

It should be noted that there were also some small targets beyond 15 m from the 

tractor that were not detected. This was due to the lower detection ability of YOLO 

for small-scale targets compared to large-scale targets, and it will cause missed 

detections due to occlusion, for which the assistance of LiDAR is necessary for 

completing the safety evaluation. From the results, it can be seen that the system is 

prone to missed detections or false alarms due to occlusions. Fortunately, since the 

occluding objects are always behind the missed or falsely detected objects, although 

the judgment results of the occluded objects may be affected, the final safety judgment 

of the robot tractor is generally not affected. 

Figure 6.3-2 Missed detection due to effective occlusion. 
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We tested the robot tractors' braking distance at different speeds. The experiment 

was conducted at the Hokkaido University farm as shown in Figure 6.3-3.  

A person stood 4 m in front of the tractor and invaded the tractor route under the 

network connection or the cable connection to the tractor control computer, 

respectively (with the LiDAR off), and we measured and recorded the braking 

distance of the tractor. Each respective test was conducted five times. 

 

The average braking distance at different speeds is shown in Table 22. The results 

indicate that remote transmission affects robot-tractor braking due to network delays. 

The increase in vehicle speed increases this effect, but it is acceptable for the robot 

tractor, which always runs at a low speed (normally 3 km/h). Additionally, the robot 

tractor will slow down before a potential obstacle enters its path, ensuring safety 

during the tractor's regular operation under remote control. When only LiDAR is used 

as a safety device, setting the LiDAR detection range too far can lead to issues where 

the tractor stops, for example, when detecting corn stalks while passing through a 

cornfield. When only a camera is used as a safety device, network delays may pose 

some security risks for remote control; thus, linkage with locally connected security 

Figure 6.3-3 Remote-control performance test experiment. 
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devices (e.g., LiDAR) is essential. 

Because visual braking relies on transmitting images captured by the robot's camera 

to a monitoring station via a mobile Wi-Fi network for remote processing and then 

sending back the image-processing results to the robot for execution, both the braking 

distance and the braking time can be influenced by the speed and stability of the 

network communication. We conducted tests using two different networks to assess 

their impact on remote monitoring. One network was a standard LTE mobile router 

available for commercial lease which had relatively unstable network connectivity, a 

minimum download speed of 20 Mbps, and an upload speed of 5 Mbps. On the day of 

testing, the network exhibited a download speed of 317 Mbps and an upload speed of 

20 Mbps. The other network was a 5G mobile router provided by NTT East Japan, 

which had more stable network connectivity. The 5G network utilizes a technology 

known as Multi-Access Edge Computing (MEC). The delay generated during signal 

transmission by the tractor comprises latency in the wireless segment and latency in 

the wired segment. MEC minimizes the latency in the wireless segment by locating 

servers closer to the end devices in terms of physical distance. In the experiments, the 

server used was situated in a building approximately 400 meters away from the tractor. 

On the day of testing, this network demonstrated a download speed of 264 Mbps and 

an upload speed of 126 Mbps. Under different network conditions, we conducted tests 

to determine the time and distance required for the robot to come to a complete stop 

at its maximum speed while solely visual braking was relied upon during remote 

control. The testing methodology was consistent with the procedures outlined above 

in Section 4.5. 

The test results are shown in Table 23. It can be observed that under the three 

different network environments, the impact on braking time is minimal. However, the 
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upload speed does have some influence on the braking distance. We believe that this 

is because an insufficient upload speed can lead to delays when transmitting the 

images captured by the tractor robot's front camera to the remote end, resulting in a 

delay in receiving commands from the remote monitoring end. Note that the command 

transmission requires very little network bandwidth, and thus the download speed has 

a minimal impact on the tractor's braking distance. The braking time, in contrast, is 

controlled primarily by the tractor robot's local program and is not significantly 

affected by the network environment. In summary, for remotely controlled tractor 

robots using this approach, the safety strategy should be determined based on the 

minimum upload speed according to the specific network environment they are in. 

Additionally, lower network latency and upload speeds contribute to the improvement 

of the robot's safety. 
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Table 22 Results of the remote-control performance test. 

 

Table 23 Results of the remote-control performance test. 

 

[footnote] 𝑡̅: the average braking time, 𝑑̅: the average braking distance. 

6.3.2 Environment feasibility experiments 

 

To explore the system's stability under different environmental conditions, we 

monitored the robot both at night as shown in Figure 6.3-1 and in snowy weather as 

shown in Figure 6.3-2. The experiments were conducted at the Iwamizawa Farm. For 

the night experiment, the test started from the entrance of the farmland, and detection 

was carried out on images captured using only the tractor headlights as a light source. 

The experimental method was the same as the one described in section 6.2, and all 

targets were correctly detected. 

Control Method Robot speed (km/h) Braking distance (m) 

Edge 

2 1.05 

3.5 1.17 

5 1.68 

remote 

2 1.17 

3.5 1.41 

5 2.09 

Network type 𝑡̅ (s) 𝑑̅ (m) 
Download 

(Mbps) 

Upload 

(Mbps) 

5G 3.5 7.4 264 126 

LTE 3.6 10.2 317 20 

LTE 3.5 11 30 10 
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Due to the inability to enter the farmland in snowy weather, the experiment was 

conducted on the farm road beside the farmland. The tractor started from the 

Nishiyauchi Farm, passed through the farm road outside the Nishiyauchi Farm, 

returned at the entrance of the farmland, and then went back to the Nishiyauchi Farm. 

The testing method was the same as the previously mentioned experiments. All targets 

were correctly detected. 

 

Figure 6.3-4 Night experiment in Iwamizawa  

Figure 6.3-5 Snowy experiment in Iwamizawa 
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6.3.3 Conclusions 

In the application of robotic agricultural machinery, ensuring safety is of utmost 

importance. Therefore, we conducted numerous field experiments during the period 

of 2022-2023. The field tests for multi-robot monitoring demonstrated that the system 

could assist a small number of operators in controlling multiple robotic farm machines, 

ensuring safety during remote monitoring. The surveillance of different platforms of 

tractors and EVs showed that the system is not limited to a single type of farm machine, 

but is versatile across various platforms. The monitoring experiment in Noto proved 

that the system is capable of supervising robots over long distances. Experiments 

conducted in snowy conditions and at night confirmed the system's usability in a 

variety of different environments. The experiments on multi-person detection 

indicated that the system could accurately assess safety levels in complex scenarios. 

At the same time, experiments on network conditions also confirmed that the system 

is subject to network environment constraints. Therefore, combining local 2-D laser 

sensors to ensure robot safety in cases of network fluctuations or failures is crucial. In 

summary, the feasibility of the remote safety system has been confirmed through 

multiple field experiments.
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CHAPTER 7. RESARCH SUMMARY 

 

To ensure the safety of level 3 remote monitoring for the robot agriculture 

machinery, we developed a remote safety system that uses a monocular camera and 

2D-LiDAR to obtain data and a YOLOv5s model as a detector with a detection mAP 

value of 87.3% for human and tractor detection. This system can perform an image 

analysis at 32 FPS on a Quadro P4000 GPU-based workstation. We used PnP method 

with the bounding box to calculate the obstacle distances to ensure safety during 

remote monitoring the robot, data is sent to the remote end for processing, and the 

detected images are corrected using methods derived from Q-Q plots and T-tests. 

After data correction, obstacle distances are predicted with an average relative error 

of 2.6%, maximum error of 0.77 m at 15 m, which is meeting the requirements for 

safe usage, and the remote control of multiple robot tractors according to the safety 

index can be performed. This novel system is not restricted by physical distance and 

is low cost, with high stability and resilience to environmental factors. The system 

achieved a 100% success rate in responding to obstacle intrusions in 2022-2023 field 

experiments. The present experimental results demonstrate that the new system can 

assist an individual operator with the remote monitoring of robot tractors, thus saving 

labor costs and improving efficiency in agricultural applications. However, this 

system also has its deficiencies, including limited precision in tractor positioning, a 

restricted range of visual localization objects (only humans and other tractors), and 

susceptibility to network environmental constraints. We plan to address these issues 

in our future research. 
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