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Chapter 1.  General Introduction 

1.1. Functional Perovskite Oxide Films 

Perovskite oxides with the general formula ABO3—where A is an alkaline earth or rare 

earth metal and B is a transition metal.  The basic perovskite structure can be defined as 

a cubic unit cell where the B-site cation is located at the center of the cube, the A-site 

cation is at the corners, and the O anions are the middle of the plane faces (1, 2). This 

leads to the B site ion are octahedrally coordinated to O atoms, and the BO6 octahedra 

share corner across to the 3 dimensions of the lattice. Through the selection of the A- and 

B-site cations, various distinct properties can be realized, such as a giant dielectric 

permittivity (3-5), ferroelectricity (6, 7), piezoelectricity (8, 9), pyroelectricity (10, 11), 

ferromagnetism (12, 13), multiferroicity (14, 15), high catalytic activity (16, 17), 

superconductivity (18, 19), high electron mobility (20, 21), and high transparent electric 

conductivity (22, 23). Because of the excellent properites, perovskite oxides have hold 

extensive applications in the field of electronic devices, including sensors (24), capacitors 

(25), piezoelectric devices (26), memory devices (27), high-temperature superconductor 

and more (28). The functionalities of perovskite oxides are decided from the interaction 

between the charge, orbital, spin, and lattice properties.  

These functional perovskite oxides have also been extensively utilized in a form of thin 

films, which is essential for the application of miniaturized electronics devices. However, 
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these fruitful properties of perovskite oxide thin films are strongly related to their growth 

orientation and crystallinity, thus, highly-oriented films are necessary. Single-crystal 

substrates are usually used to epitaxial grow those highly-oriented thin films. And the 

selection of the single-crystal substrates is also important because unmatched lattice 

symmetry between the substrate and film can cause deterioration in the properties. 

Therefore, a well-regulated epitaxial growth over the material heterointerface between 

perovskite oxide thin films and substrates is essential. Currently, duo to the strict growing 

conditions mentioned above, fabrication of perovskite oxide thin films on large-scale 

substrates such as Si wafer, glass, polymer, metal, and flexible substrate is still 

challenging. Thus, the solutions to obtain high single-crystallized perovskite oxide thin 

films on these substrates are urgently demanded.  
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1.2. Functionality of Freestanding Perovskite Oxide Sheet 

Recently, the peeled-off and transfer method has emerged as a promising technique for 

synthesizing freestanding perovskite oxide sheets (29). In this method, the objective 

perovskite oxide film is first fabricated in the single-crystal form on a sacrificial layer 

buffered single-crystal substrates, after which the film is peeled off from the substrate by 

etching the sacrificial layer (29), and transferred onto designed substrates. Through this 

method, ultra-thin single crystal oxide can be prepared, resulting in unveiling many 

hidden physical properties and outstanding performance. For example, D. Ji et al. reported 

a synthesis of monolayer of freestanding crystalline oxide perovskites, and found the 

unexpected giant tetragonality and polarization in 3 units cell thick of BiFeO3 sheet with 

large c/a value of 1.22 (30). In addition, G. Dong et al. reported super-elastic property in 

ultra-thin freestanding BaTiO3 (BTO) sheet which can be bent over 180° and recover, 

which is in contrast to previously common sense of oxides which should be rigid and 

brittle under deformation (31). Extreme tensile strain exceeding 8% uniaxially and 5% 

biaxially was also achieved in a freestanding La0.7Ca0.3MnO3 sheet, resulting in a large 

reduction of the ferromagnetic interaction (32). Similarly, the freestanding SrTiO3 (STO) 

sheet exhibited room-temperature ferroelectricity by applying 2% uniaxial tensile strain 

(33). R. Guo et al. revealed the flexoelectricity in the freestanding BiFeO3 sheet through 

bending on flexible substrate (34). A giant piezoelectricity was also confirmed in the 

freestanding BTO freestanding sheet, and more interestingly, the sheet can roll under 
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irradiation of electron beam (35). In the aspect of outstanding performance, a high-k STO 

freestanding sheet was successfully integrated as insulation layer for two-dimensional 

transistors (36). The ultrathin piezoelectric resonators based on freestanding BTO sheet 

are also reported to show outstanding high resonance frequency over 233 GHz (37). In 

addition, beside above studies, many functional freestanding perovskite oxide sheets have 

been reported thus far, such as ferromagnetic perovskite manganates (38), or SrRuO3 (39), 

Pb(Zr, Ti)O3 (40), YBa2Cu3 O7-x (41), and transparent conductive La:BaSnO3
 (LBSO) (42, 

43), La:SrSnO3 (LSSO) have been obtained (44). These findings demonstrate the lifted-

off and transfer method high penitential to achieve next generation high performance 

devices, by overcoming the difficulty of highly crystalline perovskite oxide films to 

integrate on particularly Si substrate without applying high synthesis temperature and 

limitation of lattice mismatch between the film and substrate. 
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1.3. Synthesis of Freestanding Perovskite Oxide Sheets 

1.3.1 Wet Etching of Sacrificial Layers  

To obtain the freestanding perovskite oxide sheet, there are three main transfer methods: 

wet etching of sacrificial layer, mechanical exfoliation, and self-formed freestanding 

films through spalling, respectively. Among them, wet etching of sacrificial layer is 

promising to obtain large-area and high-quality single-crystal freestanding perovskite 

oxide sheets. In this method, the target perovskite film is firstly grown on top of a 

sacrificial layer buffered substrate which is able to be dissolved by etching.  

Recently, a new emerging sacrificial layer Sr3Al2O6 (SAO) has attracted attention 

owing to its water-solubility and crystal structure. SAO has a cubic structure (space group 

Pa3) with lattice constant equal with (a/4 = 0.3961 nm) (45-47), which is compatibility 

well with other perovskite oxides such as SrTiO3 with a cubic structure with a = 0.3905 

nm. Therefore, SAO is widely used as a water-soluble sacrificial layer to fabricate 

freestanding perovskite oxide sheet; indeed, many researches shown above have used the 

SAO sacrificial layer. This method allows transfer of ultrathin single crystal sheets even 

down to few unit cells, or thicker film up to several hundred nanometers (30, 44). In 

addition, one other advantage of SAO is that by controlling the ratio between Ca, Sr, and 

Ba, respectively can modify the lattice parameter of sacrificial layer to find perfectly 

matched composite of the sacrificial layer, which can largely improve the quality of the 

transferred perovskite sheets (32, 33, 43). However, the dissolving capacity in pure water 
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have a relationship with doping ratio that decrease with increasing Ca ratio, and increase 

with increasing Ba ratio. For example, 20 nm SAO sacrificial layer can be completely 

dissolved in pure water around 2 h (44), while a Ba3Al2O6 sacrificial layer only takes few 

minutes (43). To the contrary, Ca3Al2O6 sacrificial layer spends several days to be 

completely dissolved (29). In the fabrication possess, the pulsed layer deposition (PLD) 

and molecular beam epitaxy (MBE) are usually used to prepare a high crystalline 

perovskite oxide film on SAO buffered single-crystal substrate (46, 48). 

Perovskite oxides have also been used as wet etching sacrificial layer such as LaxSr1-

xMnO3 (LSMO) (49-51), SRO (52), SrVO3 (53), and SrCoO2.5 (40, 54).  Different with 

SAO, these materials have the same perovskite structure with target perovskite film, 

which improves crystal quality of the films due to the lattice matching. However, etching 

of these material needs complex solvent. For example, LSMO cannot dissolve in pure 

water but an aqueous solution of KI + HCl + H2O in following chemical equation (55): 

𝑀𝑀𝑀𝑀𝑀𝑀2 + 4𝐻𝐻3𝑂𝑂+ + 2𝐶𝐶𝐶𝐶− → 𝑀𝑀𝑀𝑀2+ + 6𝐻𝐻2𝑂𝑂 + 𝐶𝐶𝐶𝐶2 

And there is residual problem of MnO2, which influence the transferred sheet further 

integration with devices. Beside perovskite oxides sacrificial layer, metal oxide such as 

BaO (56), MgO (57), ZnO (58), and VO2 (59) have also been studied as wet etching 

sacrificial layer, also not comparable with SAO in the term of dissolving time. Thus, many 

researchers focus on using SAO as sacrificial layer to fabricate freestanding perovskite 

oxide sheets. 
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1.3.2 Transfer Methods of Freestanding Perovskite Oxide Sheets 

Transfer methods is also important to obtain high quality freestanding perovskite oxide 

sheets. Currently, main transfer method to obtain freestanding sheet is combined the 

water-soluble sacrificial layer to release the sheet and polymer supporter layer to transfer 

sheet on other substrate, which follow suit from well-known wet transfer process of 2D 

vdW materials (60, 61). This kind of transfer methods can be divided in four main steps: 

stick the polymer supporter layer on an as-grown film, peered-off the sheet from the 

substrate, transferring the sheet onto a designed substrate, and removing the supporter 

layer.  

As for the first step, polymer supporter layer such as polymethyl-methacrylate 

(PMMA), polydimethylsiloxane (PDMS), Polyimide (PI) tape, or adhesive-coated 

polyethylene terephthalate (PET) are used to cover the as-grown film as shown in Figure 

1-1(a, b). The polymer supporter layers can prevent the sheets from dispersing, crinkling, 

and folding during the etching of the sacrificial layer. After placing the as-grown film into 

pure water, and completely remove the sacrificial layer, the sheet can be transferred with 

the polymer supporter layer. If the PMMA or PDMS are used, the sheet can be further 

stamp and transferred onto designed substrate after post-treatment (Figure 1-1(a)). The 

permanent supporter polymer cannot be removed after peering off (Figure 1-1(b)).  

PMMA is the most commonly used in this transfer method as a supporter layer, owing 

to its high harness which can protect sheet during the peeled-off and transfer process and 
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its easy fabrication condition. However, although the PMMA can be cleared away by 

acetone after the transfer, PMMA cannot be completely washed away causing polymer 

residues remain on the surface, resulting in a difficulty in further integrating device on 

the sheets. Thermal release polymer PDMS is much easier to be removed from the sheet 

through post annealing up to 70°C, but cracks and winkles often generates inevitably due 

to its softness. PI tape and adhesive-coated polyethylene terephthalate (PET) are also used 

as both polymer supporter layer and flexible substrate. However, unlike PMMA and 

PDMS, they cannot be removed after the transfer (29).  

Consequently, conventional transfer method using polymer supporter layer cannot 

fundamentally solve the crack problem during the transfer of freestanding oxide sheet. 

Thus, developing new transfer method is still highly demanded.  
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1.3.3 Crack Problem in Sheet and Amorphous Oxide Protection Layers 

As I mentioned above, a crucial problem in the peeled-off and transfer method of 

perovskite oxide sheet is the difficulty of suppressing cracks during the synthesis. To 

solve of this problem, it is important to fundamentally understand the reason why cracks 

occur during the dissolving of the SAO sacrificial layer. LSSO (a = 0.4036 nm) and LBSO 

(a = 0.4116 nm) have much larger lattice constant than SAO (a/4 = 0.3961 nm). When 

these films epitaxially grown on SAO buffer substrates, larger compressive strain will be 

applied to the perovskite layers. Therefore, during the dissolution of the sacrificial layer, 

the substrate-induced strain is released, which applies a retained force to the sheet. This 

force makes the freestanding sheet into many pieces as shown in Figure 2-1. Thus, as 

pointed out by Chiabrera et al., developing a technique for transferring single-crystal 

oxide sheets with large size, as-grown uniformity, and high quality is a key challenge (29). 

To suppress crack generation, it is useful to change the lattice constant of the SAO 

sacrificial layer by chemical substitution; for example, a millimeter-sized BaSnO3 sheet 

was obtained using a Ba3Al2O6 sacrificial layer (43). However, for practical applications, 

a simpler and more effective method is required. In addition, in tetragonal ferroelectric 

materials such as BST and BTO, there exist a-axis domains that receive a large strain 

between c-axis domains even if the lattice constant is controlled. Thus, after the restraint 

from the substrate is removed, a force is applied to the sheet to restore the a-axis domains 

that are largely distorted, resulting in the generation of cracks (47). 
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Basing on this crack mechanism, I come up with an idea that preparation of a hard 

protection amorphous oxide layer on the perovskite oxide sheet is useful to suppress the 

crack generation (Figure 1-1(c)). One candidate of the protection layer is amorphous 

Al2O3 because Al2O3 is very hard material in the world, possessing Mohs hardness of 9 

in single-crystal form (Alias: Sapphire). Even in the amorphous state, Al2O3 exhibits high 

Young’s modulus (62). In addition, there are reports that Al2O3-SiO2 glass shows high 

crack resistance (63).  
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1.4. Purpose of this thesis 

The aim of this doctoral thesis is to investigate the transfer of high-quality, high-

performance, and large-area flexible single-crystal epitaxial sheets by using an easily 

preparable amorphous oxide protective layer, building upon existing lift-off and transfer 

techniques. In my thesis, I studied LSSO, LBSO, and BST sheets as as typical perovskite 

oxides and further explored their applications. Through this new transfer method using 

amorphous oxide protection layer, I successfully transferred the targeted the three 

materials, all of them exhibiting large crack-free area, and excellent performance. 

This doctoral thesis comprises five chapters. Firstly, I would like to provide a brief 

overview of the core contents in each chapter. The chapter 1 contains the research 

background and objectives of this study. In chapter 2, I detail the effects of three different 

amorphous oxide protective layers (a-Al2O3, a-ITO, and a-TiO2, respectively) in transfer 

of LSSO sheets, and found the effectiveness of a-Al2O3 protection layers is most effective 

for suppressing cracks generation. Freestanding LSSO sheets with a-Al2O3 protection 

layer can stand, also repeatedly bend, demonstrating remarkable elasticity and flexibility. 

In chapter 3, I successfully transferred large-area (5 × 5 mm2) and crack-free LBSO 

sheets using a-Al2O3 protection layers, despite significant lattice mismatch between 

LBSO (a = 0.4116 nm) and the sacrificial layer SAO (a/4 = 0.3961 nm), proving the high 

effectiveness of the a-Al2O3 protection layer in suppressing cracks from lattice strain. In 

chapters 4, I successfully transferred large-area (5 × 5 mm2) and crack-free BST sheets 
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using a-Al2O3 protection layers, indicating a-Al2O3 protection layers are effective to solve 

cracking problem in ferroelectric oxide sheets. However, the scanning electron 

microscope (SEM) observations revealed that, in place of cracks, wrinkles were formed 

between up/down domains along the polarization direction to release lattice distortion. 

Compared to conventional transfer methods, utilizing a-Al2O3 protection layer enables 

the fabrication of freestanding ferroelectric sheets which exhibit excellent properties 

comparable to bulk single crystal. Finally, in the chapter 5, overall results of this thesis 

are summarized. My thesis contributes a new transfer method to obtain large-size, and 

high-quality freestanding sheets, based on which there may have high chance to further 

find the significant physical properties hidden in perovskite freestanding sheets. 
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Figure 1-1. Transfer method of freestanding perovskite oxide sheets. Protection layer using 

(a) soluble polymer or thermal tape, (b) insoluble polymer, and (c) amorphous oxide layer. 
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Chapter 2.  Significantly Suppression of Crack in La:SrSnO3 

Freestanding Sheet Using an Amorphous Oxide Protection 

Layer 

2.1. Purpose of this chapter 

La:SrSnO3 (LSSO) is a newly emerging perovskite material in the last decade, and 

attracted widespread attention owing to its wide bandgap (Eg > 4.6 eV) as well as high 

conductivity (> 1000 S/cm) (1), making it tremendous potential applications in the fields 

of optoelectronics and thin film transistor (2-4). The chemical composition of LSSO is 

relatively cheap and gentle to human body. The crystal structure of LSSO belongs to 

pseudo-double cubic perovskite (a/2 = 0.4034 nm) and the lattice is orthorhombic (5). 

The La3+ cation replaces some of the positions of Sr2+ cation significantly improved the 

electrical of the material (6). Although, there are many other dopants reported, such as Ta 

(7), Nb (8), Sb (9), and Nd (9) doped SrSnO3, among them, La doped one shows higher 

electric property. The conduction mechanism is attribute to that the valence band 

maximum and conduction band minimum of SrSnO3 is composed of O 2p and Sn 5s, 

respectively (5).  

Energy-saving technology is essential for achieving a sustainable society. One example 

is light-emitting-diode (LED), which has been greatly used due to its low-cost, energy-

efficient and eco-friendly since the invention of bright blue LED (10, 11). As vital 
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component of LED, transparent conductive oxides (TCOs) are widely used (12-15). 

Currently, the most used TCO is amorphous indium tin oxide (a-ITO) due to its high 

conductivity (>103 S/cm), high transparency in the visible range and easy synthesis (16, 

17). Besides visible light, deep ultraviolet light (DUV, 200−300 nm in wavelength) is also 

important for sterilization and cleaning, leading to an increasing requirments of 

developing DUV-LED instead of traditional mercury lamp (18, 19). However, the 

bandgap of ITO (3.5 eV) is insufficient compared to the requirements of electrodes for 

such DUV-related devices (>4.1 eV). Hence, the demand for TCOs with high DUV 

transmission remains high (20). One promising candidate is LSSO due to the coexistence 

of wide bandgap and high electric conductivity. However, the film deposition temperature 

of LSSO, 750 °C, is too high for devices to tolerate, restricting the applications (3, 6). 

In this chapter, I study on the significant crack suppression in the as-produced sheet via 

the deposition of capping oxide layers onto the objective perovskite oxide film prior to 

lift-off (Figure 2-1(a)). I systematically investigated the effects of the capping layer 

thickness (tcap), perovskite oxide film thickness (tfilm), and capping layer type. The results 

revealed that an amorphous (a-)Al2O3 capping layer was effective, owing to the high crack 

resistance and/or high Young’s modulus of Al2O3 glass (21). Through this simple method, 

a 5 × 5 mm2 LSSO sheet were obtained without any cracks. In addition, the LSSO sheet 

exhibited a wide bandgap (4.4 eV) and high electrical conductivity (>103 S/cm).  
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2.2. Experimental 

Synthesis of freestanding La:SrSnO3 sheet: As-grown films comprising a capping 

oxide/LSSO/SAO tri-layers were prepared on STO (001) single-crystal substrates using 

pulsed laser deposition (PLD). Three types of materials were used as capping layers, 

namely, an a-Al2O3, a-ITO, and a-TiO2. During film growth, the substrate temperature 

(TS) and oxygen pressure (PO2) were maintained at 850 °C and 1 × 10–3 Pa, 750 °C and 

20 Pa, and for the SAO, LSSO, and BST layers, respectively. Capping oxide layers of a-

Al2O3, a-ITO, and a-TiO2 were fabricated at room temperature with PO2 values of 1 × 10–

3, 5, and 3 Pa, respectively. The thicknesses of the capping oxide (tcap), LSSO (tfilm), and 

SAO layers were set to 0–1000, 30–300, and 20 nm, respectively. The as-grown films 

were first attached to adhesive-coated PET substrates (Figure 2-1(b)). The adhesive-

coated PET substrates were purchased from Kimoto Co., Ltd. (Prosave™ UV). The 

thickness and adhesive force of the PET substrates are 100 μm and 14.8 N/25 mm, 

respectively. The PET/as-grown films were then placed in deionized water for 24 h to 

completely dissolve the SAO sacrificial layer. Although we waited for 24 h after 

immersing the PET/as-grown film in deionized water, 2 h might be sufficient. 

Subsequently, the LSSO/capping oxide/PET and BST/capping oxide/PET sheets were 

obtained by removing the single-crystal STO substrate (Figure 2-1(c)). The sheets were 

also prepared on glass substrates. The LSSO film grown on the STO substrate was first 

placed in deionized water for 2 h. After dissolving the SAO sacrificial layer, the sheet on 
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the STO substrate was removed from the water and then re-dropped in the deionized water. 

The STO substrate sank, whereas the sheet floated on the water. Finally, the floating 

LSSO sheet was picked up, together with the water, by the glass substrate.  

Crystallographic analyses: The crystal structures of the as-grown films and sheets 

were analyzed using high-resolution XRD (ATX-G, Rigaku Corp.), while the thicknesses 

of the layers were evaluated through X-ray reflectivity measurements.  

Morphology observations: The surface morphology was observed using AFM; 

Nanocute, Hitachi High-Tech Science Corp.) and SEM; SU8230, Hitachi High-Tech 

Science Corp.).  

Electrical conductivity measurement: The conductivity of the sheet was determined 

using the conventional four-probe DC method with a van der Pauw electrode 

configuration. Ga-In alloys were connected to the device with coaxial probe tips and used 

as the electrodes.  

Optical transmittance & reflectivity measurements: Optical transmission and 

reflection spectra of the LSSO sheet were measured using an ultraviolet−visible−near-

infrared spectrometer (UV−vis−NIR, SolidSpec-3700, Shimadzu Co.) at RT. 
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2.3. Result and discussion 

As-grown films comprising an a-Al2O3 protection oxide/La0.03Sr0.97SnO3 (LSSO)/SAO 

tri-layer were prepared on STO (001) single-crystal substrates. The a-Al2O3 layer has a 

flat surface and high DUV transparency (Figure 2-2). The thicknesses of the capping 

oxide (tcap), LSSO (tfilm), and SAO layers were 0–300, 30–300, and 20nm, respectively. 

The as-grown films were first attached to adhesive-coated PET substrates (Figure 2-1(b)). 

The PET/as-grown films were then placed in deionized water for 24 h to completely 

dissolve the SAO sacrificial layer. Subsequently, the LSSO/protection oxide/PET sheets 

were obtained by removing the single-crystal STO substrate (Figure 2-1(c)).  

Figure 2-1(d) displays the photographs of the LSSO sheets prepared without and with 

the a-Al2O3 capping layer at a constant tfilm value of 300 nm. Without the capping layer 

(tcap = 0 nm), numerous cracks were generated in the sheet, resulting in a frosted glass-

like appearance. By contrast, the density of cracks in the sheet significantly decreased 

when a capping layer was used. At tcap = 10 and 30 nm, a maximum crack-free sheet area 

of 0.5 mm2 was achieved, while at tcap = 300 nm, no cracks were observed in the as-

produced 5 × 5 mm2 sheet. Figure 2-1(e-f) shows the magnified SEM images of the 

sheets with tcap values of 0 and 300 nm. Unlike the sheet without a capping layer, there 

were no cracks in the sheet with the 300 nm a-Al2O3 capping layer, even though some 

pinhole structures could still be observed in the sheet (Figure 2-1(h)). We speculate that 

the pinholes are derived from a formation of droplets of SAO during the fabrication of 
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the as-grown film via pulsed laser deposition (PLD). In the PLD process, the PLD target 

(source of raw materials) is irradiated with a pulsed laser, and the raw materials are turned 

into plasma and supplied to the substrate. However, the raw materials reach the substrate 

as large particles and become droplets, even though the density is low. When the as-grown 

film with SAO droplets is immersed in pure water, the droplets dissolve, resulting in the 

formation of pinholes. These results demonstrate the usability of the capping layer for 

suppressing cracks in oxide sheets.  

Figure 2-3(a) illustrates the out-of-plane XRD patterns of the as-grown film and LSSO 

(tfilm = 300 nm) sheets using the a-Al2O3 protection layer as a function of tcap. All the films 

and sheets show only intense 00l (l = 1 and 2) diffraction peaks of LSSO, indicating that 

the crystallographic orientation was maintained through the lift-off and transfer processes. 

Compared to those of the as-grown film, the XRD peaks of the sheets shifted toward the 

higher-angle region, indicating that the out-of-plane lattice constants (c) shrank after 

transfer. The c-axis length of the as-grown film was 4.036 Å, which was slightly larger 

than that of bulk SrSnO3 (abulk = 4.034 Å), owing to the compressive strain from the SAO 

(a/4 = 3.961 Å) layer. Upon removing the SAO layer, c decreased to 4.034 Å, which was 

the same as abulk, owing to the release of compression strain from SAO (Figure 2-4).  

Figure 2-3(b) shows the RSM of the as-grown film (tfilm = 300 nm) with an a-Al2O3 

capping layer (tcap = 300 nm). The 4012 SAO and 103 LSSO diffraction spots appeared 

near the 103 STO diffraction spot. The in-plane lattice constant of the SAO layer 

(0.392 nm) was slightly lower than the out-of-plane lattice constant (0.397 nm) because 
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of the compressive strain from the STO substrate (a = 0.3905 nm). Moreover, the 103 

LSSO diffraction intense spots comprised strong and weak streaks corresponding to the 

unstrained and strained lattices, respectively, which may be due to the strain relaxation 

when the film thickness exceeded the critical thickness. The unstrained lattice had near-

identical in-plane and out-of-plane lattice constants. By contrast, the in-plane lattice 

constant of the strained lattice differed from the out-of-plane one, which were 0.397 and 

0.410 nm, respectively, in the as-grown film. The volume fraction of the strained lattices 

was determined from the peak intensity ratio to be 5.5%. After dissolving the SAO layer 

(Figure 2-3(c)), the peak from the strained lattices became weaker, owing to the release 

of compressive strain from the SAO layer. However, a peak from the strained lattices was 

still observed, even though the volume fraction of the strained lattices was only 0.3%. 

These results suggest that although the compressive strain became significantly weaker, 

it was still present because of the strain from the capping a-Al2O3 layer. The full width at 

half maximum of the rocking curve for the 002 peak of the sheet was 0.7°, which is 

slightly larger than that of the as-grown film (0.5°; Figure 2-3(d)). The sheet displayed a 

flat surface with a root mean square value of roughness of 0.2 nm (Figure 2-3(e)).  

Next, we elucidated the effect of tfilm on crack generation in the sheets. Figure 2-5(a, 

b) displays photographs of the sheets comprising a-Al2O3 capping layers (tcap = 300 nm) 

with tfilm values of 30 and 100 nm. In contrast to the sheet with a tfilm value of 300 nm 

(Figure 2-1(d)), sheets with tfilm values of 30 and 100 nm presented some wrinkles; 

however, no marked cracks were observed in the sheets. Figure 2-5(c, d) illustrates the 
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a- and c-axis lengths of the as-grown films and sheets, respectively, as a function of tfilm. 

For the as-grown films, the lattice constants approached those of the bulk with increasing 

tfilm. Such behavior is also observed in the La-doped BaSnO3 film because the in-plane 

lattice constant of the film relaxes with increasing distance from the substrate owing to 

the presence of dislocations in the film (22). After removing the SAO layer, the c- and a-

axis lengths approached the abulk value, owing to the release of the compressive strain 

from the SAO layer. The observed changes in the c-axis lengths before and after the 

transfer were –0.54%, –0.62%, and –0.15% for tfilm values of 30, 100, and 300 nm, 

respectively. Thus, we concluded that the wrinkles in the sheets with smaller tfilm values 

are derived from the large change in the lattice constants before and after the transfer.  

In the aforementioned experiment, an adhesive-coated PET substrate was used for the 

transfer, as illustrated in Figure 2-1. We next investigated the effect of solely placing the 

as-grown film in deionized water (Figure 2-6(a, b)). Figure 2-6(e) displays a photograph 

of the as-grown film (tfilm = 300 nm and tcap = 300 nm) immediately after it was placed 

without the PET substrate in deionized water. After 10 mins, the SAO layer dissolved 

slightly from the edges and some of the center points of the film, suggesting that pinholes 

in the film allowed water to infiltrate it. Clearly, the SEM images (Figure 2-1(h)) show 

the presence of pinholes in the LSSO sheet. The SAO layer was completely dissolved 

after 60 mins, and no cracks were observed in the sheet. Notably, the LSSO sheet rolled 

spontaneously. This was attributed to the larger in-plane length of the LSSO sheet 

compared to that of the as-grown film, owing to the compressive strain release following 
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the removal of the SAO layer, while that of the a-Al2O3 capping layer remained 

unchanged. The rolled sheet was placed onto the STO substrate through van der Waals 

forces (Figure 2-6(b)). After re-dipping the STO substrate in deionized water, the rolled 

sheet floated on the water and was picked and transferred onto a glass substrate (Figure 

2-6(c)). Figure 2-6(f) presents a photograph of the sheet after the transfer. The sheet on 

the glass substrate could be rolled and unrolled repeatedly through mechanical forces, 

such as airflow generated by a washing ear ball and/or manual vibration (Figure 2-6(d, 

g)), demonstrating the excellent flexibility and elasticity of the sheet. Notably, when the 

sheet was transferred onto other substrates, we could select whether the LSSO layer in 

the sheet was the upper or lower layer by changing the transfer method (Figure 2-7). Such 

large LSSO sheets could not be obtained without a capping oxide layer. 

We also tested other capping oxide layers, namely, a-TiO2 and a-ITO. Figure 2-8 

displays a photograph of the LSSO (tfilm = 300 nm) sheets fabricated using these capping 

layers. When an a-TiO2 capping layer was used, numerous cracks were generated in the 

sheet. By contrast, crack generation was suppressed when the a-ITO capping layer was 

used. However, the a-Al2O3 capping layer was more effective in suppressing crack 

generation. Al2O3 has both high hardness and toughness (23). Because of this, for example, 

in SiO2-Al2O3 glass, high crack resistance is achieved by increasing the Al2O3 content 

(21). We speculate that the superior results of the a-Al2O3 capping layer are derived from 

the high crack resistance of Al2O3 glass. Another possibility is that the high Young’s 

modulus of Al2O3 plays an important role in preventing the formation of cracks in the 
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sheet. The Young's modulus of Al2O3 (~340 GPa) is much higher than those of ITO (~190 

GPa) and TiO2 (~65-150 GPa) (24-26). 

The inset in Figure 2-9(a) illustrates the optical transmission (T) and reflection (R) 

spectra of the LSSO sheet transferred onto the glass substrate. The T value was 65% at 

4.1 eV, even for a thick sheet (LSSO layer, 300 nm), indicating great potential for DUV 

transparent applications. The optical bandgap was evaluated using a Tauc plot from the 

(αhν)2–hν curve (Figure 2-9(a)), where α denotes the absorption coefficient and hν is the 

photon energy, assuming direct transition. The optical bandgap was 4.4 eV, which is 

slightly smaller than that observed for Ta-doped SrSnO3, Nb-doped SrSnO3, and LSSO 

films on MgO substrates (~4.6 eV) (7, 8). Figure 2-9(b) shows the electrical conductivity 

(σ) of the LSSO sheet as a function of temperature. The value of σ increases with 

decreasing T, indicating that the LSSO sheet is a degenerate semiconductor, similar to 

LSSO films (3). The σ of the sheet was 1.6 × 103 S/cm at room temperature, which is 

slightly lower than that of the LSSO film on the STO substrate (3 × 103 S/cm), but similar 

to that of a-ITO (2 × 103 S/cm) (27). 

Figure 2-9(c) shows room-temperature σ against the optical bandgap for various oxides 

that can be prepared at room temperature on amorphous substrates. The circular marks 

represent oxides fabricated directly on the substrates, such as a-ITO (27), amorphous 

indium gallium zinc oxide (a-IGZO) (28), and Al-doped ZnO (29), while the triangular 

marks correspond to oxides obtained through lift-off and transfer techniques, including 

La-doped BaSnO3 and as-produced LSSO sheets (30). Notably, the optical bandgap of 
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the LSSO sheet (4.4 eV) was within the DUV region and significantly wider than those 

of conventional transparent conductive oxides (<3.5 eV at σ > 10 S/cm). In addition, the 

σ value of the LSSO sheet (1.6 × 103 S/cm) was higher than those of the other oxides. 

These results demonstrate the significant potential of the LSSO sheet as a DUV 

transparent electrode. 
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2.4. Conclusion 

We demonstrated that the generation of cracks can be significantly suppressed in 

freestanding sheets using a capping oxide layer. LSSO were obtained with crack-free 

areas as large as 5 × 5 mm2, using a simple method. When the sheets were transferred 

onto other substrates, we could select the objective layer in the sheets to be the upper or 

lower layer. The LSSO sheet exhibited a much wider optical bandgap of 4.4 eV than other 

transparent conductive oxides and a high σ value of 1.6 × 103 S/cm at room temperature. 

Additionally, the high-cost SrTiO3 single-crystal substrates are reusable. In conclusion, 

our findings provide a simple transfer method for obtaining large-size, high-quality 

single-crystalline sheets on arbitrary substrate.  
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Figure 2-1. Synthesis and transfer of LSSO sheet. Schematics of the (a) as-grown film, 
(b) PET/as-grown film, and (c) LSSO/capping oxide/PET sheet. The thickness of the 
capping oxide and LSSO layers are labeled tcap and tfilm, respectively. (d) Photograph of 
the obtained LSSO (tfilm = 300 nm) sheets using a-Al2O3 capping layers as a function of 
tcap. Scanning electron microscopy (SEM) images of LSSO sheets (e) without the capping 
oxide layer and (f, g, h) with the 300 nm a-Al2O3 capping layer. 
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Figure 2-2. Optical property of a-Al2O3 protection layer. Transmitta0nce and 
reflectivity of 100 nm-thick a-Al2O3 film on SiO2 glass substrate.  
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Figure 2-3. Charactrization of LSSO sheet. (a) Out-of-plane X-ray diffraction (XRD) 
patterns for the as-grown and LSSO sheets as a function of tcap. (b) Reciprocal space 
mapping (RSM) of the as-grown film and (c) RSM, (d) rocking curves, and (e) atomic 
force microscopy (AFM) image of the sheet with a tcap value of 300 nm. The sheets (tfilm 
= 300 nm) were prepared using a-Al2O3 capping layers. Asterisks correspond to the STO 
or PET substrates. 
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Figure 2-4. XRD patten for the as-grown LSSO film. Asterisks correspond to the 
STO substrates. 
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Figure 2-5. Film thickness dependence of LSSO sheet. Photographs of the LSSO sheets 
for tfilm = (a) 30 and (b) 100 nm using a-Al2O3 capping layers (tcap = 300 nm) and (c) c- 
and (d) a-axis lengths of the as-grown films and sheets (tcap = 300 nm) as a function of 
tfilm. The green dotted line indicates the a-axis length of bulk cubic SrSnO3. 
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Figure 2-6. Transfer of freestanding LSSO sheet. Schematics of the (a) as-grown film, 
(b) rolled film on STO, (c) rolled film on glass, and (d) spread film on glass. (e) Time-
lapse photographs of the as-grown film directly immersed into deionized water. 
Photograph of (f) rolled film and (g) spread film on glass. 
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Figure 2-7. XRD pattern of LSSO sheet on glass. Out-of-plane XRD patterns of the 
LSSO sheets on glass (orange) and PET (red) substrates.  
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Figure 2-8. Photograph of using a-ITO and a-TiO2 protection layer. Photographs of 
the LSSO sheets by comprising a-ITO capping layers with tcap of (a) 10 and (b) 100 nm 
and a-TiO2 capping layers with tcap of (c) 10 and (d) 100 nm. tfilm = 300 nm. 
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Figure 2-9. Optical and conductivity of LSSO sheet. (a) Photon energy dependence of 
(αhν)2 and (b) temperature dependence of the electrical conductivity for the LSSO sheet 
transferred onto the SiO2 glass substrate; inset in (a) shows the transmittance and 
reflectance. (c) Room-temperature electrical conductivity against the optical bandgap for 
various oxides that can be prepared at room temperature on amorphous substrates.  
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Chapter 3.  Transfer of Large-area Crack-free La:BaSnO3 

Epitaxial Flexible Sheet Using Amorphous Al2O3 Protection 

Layer 

3.1. Purpose of this chapter 

La:BaSnO3 (LBSO) is also newly emerging perovskite material in the last decade, and 

attracted widespread attention owing to its wide bandgap (Eg > 3.1 eV) and high 

significantly high electron mobility conductivity (320 cm2 V-1 s-1) in single-crystal form 

(1), making it high potential applications in fabrication of high photovoltaic conversion 

efficiency solar cell (2-4), transparent thin film with high conductivity (5), and high 

electron mobility transistor (6). The crystal structure of BaSnO3 belongs to cubic 

perovskite (a = 0.4116 nm) (7). The La doping contributes to the high carrier 

concentration (8). In addition, the conduction mechanism of LBSO is also similar with 

LSSO that the valence band maximum and conduction band minimum of BaSnO3 is 

composed of O 2p and Sn 5s, respectively.  

The development of flexible materials with high transparency and conductivity is 

crucial for next-generation optoelectronic applications such as wearable devices. 

Conventional flexible transparent conductive materials are mainly limited to ultra-thin 

metals (9), nanocarbons (carbon nanotubes and graphene) (10-12), conductive polymers 

(13), and amorphous oxide semiconductors (14-16). However, the investigation of 
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crystallized oxides with high orientation is also important to utilize their unique 

functionalities such as high Hall mobility. I focused on crystallized LBSO, owing to its 

outstanding transparent conductivity. Additionally, because LBSO does not contain rare 

elements such as indium and it is stable against high temperatures and humidity. Although 

flexible amorphous LBSO films do not exhibit high electrical conductivity, I expected 

that the epitaxial LBSO sheet, which is peeled off and transferred on a flexible substrate, 

would simultaneously exhibit high electrical conductivity and flexibility.  

In this chapter, I demonstrate the fabrication of crack-free large-size LBSO sheets with 

high crystallinity and high orientation through the lift-off and transfer method using SAO 

and a-Al2O3 as sacrificial and protection layers, respectively. Two types of LBSO sheets, 

rolled and flat, were obtained. The rolled sheet had a tubular shape with a height of 5 mm 

and a diameter of 1 mm, whereas the lateral size of the flat sheet was 5 mm × 5 mm. A 

significantly large crack-free area was achieved owing to the use of an a-Al2O3 protection 

layer. The difference in curvature between the rolled and flat sheets was as large as 2 mm–

1, indicating a high potential for flexible applications of LBSO sheets. LBSO sheets 

exhibit a wide optical bandgap (3.5 eV) and a higher Hall mobility (80 cm2 V–1 s–1) than 

other transparent conducting oxide (TCO) films grown on glass, such as indium tin oxide 

(ITO) (15), Al-doped ZnO (16), and F-doped SnO2 (14).  
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3.2. Experimental 

Synthesis of freestanding La:BaSnO3 sheet: The as-grown films consisting of a-

Al2O3/LBSO/SAO trilayers were first deposited on SrTiO3(001) single-crystal substrates 

through pulsed laser deposition (PLD). As the PLD target of the LBSO layer, a 

La0.02Ba0.98SnO3–δ ceramic target was synthesized by pre-sintering a mixture of La2O3, 

BaCO3, and SnO2 powders at 1350 ℃ and sintering the pellet at 1400 ℃. The SAO 

ceramic target was synthesized by pre-sintering a mixture of SrCO3 and Al2O3 powders 

at 1350 ℃ and sintering the pallet at 1350 ℃. During film deposition, the substrate 

temperature, oxygen pressure, laser fluence, and laser frequency were precisely 

controlled at 850 ℃, 10–3 Pa, 0.5 J cm-2 pulse–1, and 2 Hz for the SAO layer; 750 ℃, 20 

Pa, 2 Jcm–2pulse–1, and 10 Hz for the LBSO layer; and room temperature, 10–3 Pa, 2 Jcm–

2pulse–1, and 10 Hz for the a-Al2O3 layer, respectively. The thicknesses of the a-Al2O3, 

LBSO, and SAO layers were 300, 300, and 20 nm, respectively. The a-Al2O3/LBSO 

layers were peeled from the STO substrate by dissolving the SAO layer in pure water. 

The as-grown films were placed in pure water for 24 h using two different methods, as 

illustrated in Figure 3-1. In the first method, the as-grown film was immersed in pure 

water with the substrate side facing down. In the second method, the surface of the as-

grown film was attached to an adhesive-coated polyethylene terephthalate (PET) 

substrate before being immersed in pure water. Thereafter, the as-grown PET-attached 

film was immersed in pure water. Adhesive-coated PET substrates were purchased from 
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Kimoto Co., Ltd. (Prosave UV). The thickness and adhesive force of the PET substrates 

were 100 μm and 14.8 N/25 mm, respectively.  

Crystallographic analyses: The crystal structures of the as-grown films and obtained 

sheets were evaluated using X-ray diffraction (XRD) measurements (ATX-G, Rigaku 

Co.), while the thicknesses of the layers were evaluated through X-ray reflectivity 

measurements. 

Morphology observations: The surface morphology of the sheets was determined 

through atomic force microscopy (AFM) measurements (Nanocute, Hitachi High-Tech 

Science Corp.).  

Electrical conductivity & Hall mobility measurements: The conductivity and Hall 

mobility of the sheets were determined using the conventional four-probe DC method 

with a van der Pauw electrode configuration.  

Optical transmittance & reflectivity measurement: Optical transmission and 

reflection spectra of the LSSO sheet were measured using an ultraviolet−visible−near-

infrared spectrometer (UV−vis−NIR, SolidSpec-3700, Shimadzu Co.) at RT. 
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3.3. Result and discussion 

The as-grown film of the a-Al2O3/LBSO/SAO tri-layer was immersed in pure water 

with the substrate side facing down for 24 h (Figure 3-1(b)). The SAO layer started to 

dissolve in pure water from the edge and completely dissolved after approximately 2 h. 

Thereafter, the a-Al2O3/LBSO bi-layer was peeled off from the substrate and rolled 

spontaneously in pure water (Figure 3-1(c)). Hereafter, the bi-layer sheet is referred to as 

a LBSO sheet. The rolled LBSO sheet was still attached to the STO substrate owing to 

van der Waals forces. When the substrate was picked from pure water using tweezers 

without turning it upside down, the rolled LBSO sheet could also be picked up together 

with the substrate (Figure 3-1(d)). The rolled LBSO sheet can be transferred to other 

substrates such as glass using a sharp needle and tweezers as follows (Figure 3-1(e)): (1) 

stick the needle into the hole of the rolled LBSO sheet, (2) lift it up, (3) move it on another 

substrate, and (4) pull the needle out of the hole of the rolled sheet. Figure 3-2(a) shows 

the top and lateral views of the rolled LBSO sheet transferred onto glass. The rolled LBSO 

sheet had a tubular shape with a height of 5 mm and a diameter of 1 mm. The curvature 

of the rolled LBSO sheet was as large as 2 mm–1, which is significantly larger than that 

previously reported for LBSO (17). The surface of the tube is an LBSO layer. The tubular 

shape of the rolled LBSO sheet indicates that the in-plane lattice constant of the LBSO 

layer increased upon the removal of the SAO layer. 

A flat LBSO sheet was also prepared. Figures 3-1(f–g) illustrate the synthesis of the 
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flat sheet. The surface of the as-grown film was first attached to an adhesive-coated PET 

substrate (Figure 3-1(f)). Thereafter, the PET-attached as-grown film was immersed in 

pure water for 24 h. After the SAO sacrificial layer was dissolved in pure water, the STO 

substrate was peeled from the surface of the sheet. The LBSO sheet remained flat on the 

PET substrate (Figure 3-1(g)) because the adhesive force of the PET substrate was 

significantly stronger than the van der Waals force between the sheet and STO substrate. 

Figure 3-2(b) shows a photograph of the flat LBSO sheet on the PET substrate. No cracks 

were observed on the sheet. A. Gustavo et al reported high crack resistance properties of 

Al2O3-containing glasses (18). They fabricated xAl2O3(1–x)SiO2 glasses (x = 0.3–0.6) and 

found that the glass cracking resistance increased with increasing x; especially, the x = 

0.6 glass exhibited the highest indentation cracking resistance, elastic moduli, and 

hardness in the binary system (18). The authors proposed that the local structure around 

aluminum atoms play a key role in the increased cracking resistance through shear 

deformation processes (18). In this study, we further increased the aluminum content and 

used a-Al2O3 as protection layer, resulting in crack-free LBSO sheet. The lateral size of 

the sheet was 5 mm × 5 mm, which was larger than that of a previously reported LBSO 

sheet (2 mm × 5 mm) (17).   

Figure 3-3(a) shows the out-of-plane XRD pattern of the as-grown films. The 001 and 

002 diffraction peaks of LBSO were clearly observed along with the 008 diffraction peak 

of SAO (inset of Figure 3-3(a)). The full width half maximum of the rocking curve for 

the SAO 008 diffraction peak is 2.8° (Figure 3-4). The SAO 008 diffraction peak was 
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observed at qz/2π = 5.06 nm-1 in the out-of-plane XRD pattern (Figure 3-3(a)). Figure 3-

4(a) shows rocking curves at qz/2π = 5.06 nm-1 for the as-grown film grown on STO 

substrate and only STO substrate. In both samples, sharp STO 002 diffraction peaks were 

observed. Compared to the only STO substrate, the as-grown film shows a wide shoulder 

in the rocking curve. Figure 3-4(b) shows the result of fitting a rocking curve of the as-

grown film contains two peaks. The sharp peak is derived from STO 002 diffraction peak, 

while the narrow peak originates from the SAO 008 diffraction peak. The full width half 

maximum of the rocking curve for the SAO 008 diffraction peak is 2.8°. 

Figure 3-5 shows the reciprocal space map (RSM) around the STO 103 diffraction 

peak of the as-grown film. Figure 3-5(b) shows the result of fitting a rocking curve of the 

as-grown film contains two peaks. The sharp peak is derived from STO 002 diffraction 

peak, while the narrow peak originates from the SAO 008 diffraction peak. The full width 

half maximum of the rocking curve for the SAO 008 diffraction peak is 2.8°. A spot-like 

103 diffraction peak was also observed for LBSO. These results indicate that the LBSO 

layer was hetero-epitaxially grown on the SAO layer. This is because the crystal structure 

of SAO, particularly the arrangement of Sr ions, is similar to that of the perovskite 

structure, as illustrated in Figure 3-1. The in-plane and out-of-plane lattice constants (a 

and c, respectively) of the LBSO layer in the as-grown film were determined as 4.11 and 

4.135 Å, respectively. In comparison with bulk BaSnO3 (a = 4.116 Å) (5), the LBSO layer 

in the as-grown film has a shorter a but longer c, indicating that the LBSO layer is under 

compressive strain from the SAO layer. This is reasonable because a/4 of bulk SAO (a/4 
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= 3.961 Å) is shorter than the a of bulk BaSnO3. As shown in Figure 3-2(a), the tubular 

shape of the rolled LBSO sheet indicates that the in-plane lattice constant of the LBSO 

layer increased upon the removal of the SAO layer. The increase in the in-plane lattice 

constant is due to the release of the compressive strain in the LBSO layer by peeling off 

from the SAO/STO substrate.  

Figure 3-3(b) shows the out-of-plane XRD pattern of the flat LBSO sheet on PET. The 

001 and 002 diffraction peaks of LBSO were still observed, indicating that the 

crystallographic orientation was maintained throughout the sheet synthesis process. 

However, the 008 diffraction peak of SAO disappeared because the SAO layer dissolved 

in pure water. The 001 and 002 diffraction peaks of LBSO shifted to the higher-angle side, 

whereas the c value decreased to 4.123 Å. This is derived from the release of in-plane 

compressive lattice strain from the substrate by removing the SAO layer. The intensity 

ratio of the 001 to 002 diffraction peaks of the flat LBSO sheet was 0.84%, which is 

almost equal to that of bulk BaSnO3 (1.2%) and the as-grown film (0.96%) (Figure 3-

3(a)).  

The crystallinity of the flat LBSO sheet was evaluated using rocking curve 

measurements of the 002 diffraction peaks (Figure 3-6(a)). The full width at half 

maximum of the rocking curve was 0.6°, which was wider than that of the as-grown film 

(0.2°), indicating that crystallinity decreased during the sheet synthesis process. We 

speculate that the in-plane lattice constant of the LBSO layer increases slightly owing to 

the release of the in-plane compressive lattice strain from the substrate, resulting in an in-
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plane lattice distortion. Figure 3-6(b) shows the AFM results for the flat LBSO sheet. 

The root mean square of the surface roughness is 0.9 nm, indicating that the surface of 

the sheet is not coarse. 

Next, we discuss the optical properties of the flat LBSO sheets. Figure 3-7(a) shows 

the optical transmission and reflection spectra as functions of wavelength. In the visible 

light region, at a wavelength range of 380–780 nm, the transmission value was higher 

than 73%, indicating the visible light transparency of the LBSO sheet. The optical 

bandgap of the flat LBSO sheet was estimated from the Tauc plot of the (αhν)2–hν curve, 

where α denotes the absorption coefficient and hν is the photon energy (Figure 3-7(b)). 

The optical bandgap (Eg) of the LBSO sheet was 3.5 eV, which was almost equal to that 

of bulk LBSO single crystals (3.5 eV) (1) and LBSO epitaxial films on MgO substrates 

(3.55 eV) (8).  

Figure 3-8 shows the temperature (T) dependence of the electrical conductivity (σ) of 

the flat LBSO sheet. The σ value increased with decreasing T, indicating that the flat 

LBSO sheet was a degenerated semiconductor. Similar behavior was also observed in 

LBSO films on STO and MgO substrates (8, 19). The σ value and Hall mobility (μ) of the 

flat LBSO sheet at 300 K were 1.9 × 103 S/cm and 80 cm2V–1s–1, respectively. The Hall 

mobility was slightly lower than that of the LBSO film on the STO substrate (96 cm2V–

1s–1) (20) because of the lower crystallinity of the sheet (Figure 4(a)). According to a 

previous study, LBSO films grown on mica substrates also exhibit flexibility (21). 

However, σ of the LBSO film on the mica substrate was one order of magnitude lower (σ 
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= 140 S/cm) than that of the flat LBSO sheet (21), indicating significantly lower electron 

mobility of the LBSO film on the mica substrate. In comparison to other TCOs grown on 

glass, such as ITO (Eg = 3.6 eV, μ = 54 cm2V–1s–1) (15),  Al-doped ZnO (Eg = 3.0 eV, μ 

= 46 cm2V–1s–1) (16),  and F-doped SnO2 (Eg = 4.3 eV, μ = 15 cm2V–1s–1) (14),  the 

LBSO sheet (Eg = 3.5 eV, μ = 80 cm2V–1s–1) exhibits higher electron mobility. In addition 

to TCOs, graphene (12) and carbon nanotubes (11) are also promising candidates for 

fabricating transparent electrodes. However, they tend to suffer from instability at the 

edges, restricting their potential applications (22).  Silver colloids have also garnered 

considerable attention owing to their high transparency and mobility (23), although it is 

still necessary to improve their particle size consistency and reproducibility (24). LBSO 

has several advantages, including stability against high temperature and humidity, does 

not use expensive elements such as indium, and high transparency and mobility, which 

demonstrate its high potential for optoelectronic applications. 
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3.4. Conclusion 

In this study, we successfully obtained large-size rolled and flat crack-free LBSO sheets 

through a lift-off and transfer method using a water-soluble SAO layer and a-Al2O3 

protection layer. The rolled sheet had a tubular shape with a height of 5 mm and a diameter 

of 1 mm, whereas the lateral size of the flat sheet was 5 mm × 5 mm. The significantly 

large crack-free area was achieved because of the presence of the a-Al2O3 protection layer. 

The difference in curvature between the rolled and flat sheets was as large as 2 mm–1, 

indicating the excellent flexibility of the LBSO sheets. The LBSO sheet exhibited a wide 

Eg of 3.5 eV and high Hall mobility of 80 cm2V–1s–1, demonstrating high potential for 

next-generation optoelectronic device applications. 
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Figure 3-1. Schematics of the synthesis process of the LBSO sheets. (a) As-grown film, 
(b) the film in pure water, rolled sheet on STO substrate in (c) water and (d) air, € rolled 
sheet transferred onto glass. (f) PET-attached as-grown film in pure water, and (g) flat 
sheet on PET. 
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Figure 3-2. Transfer of LBSO sheet on glass and PET substrates. (a) Top and lateral 
view photographs of the rolled LBSO sheet transferred onto glass and (b) photograph of 
the flat LBSO sheet on the PET substrate.  
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Figure 3-3. Out-of-plane XRD patterns of as-grown film and sheet. Out-of-plane 
XRD patterns of (a) the as-grown film and (b) flat LBSO sheet on the PET substrate. 
Asterisks correspond to the STO or PET substrates. 
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Figure 3-4. Rocking curve of the LBSO sheet. (a) Rocking curves at qz/2π = 5.06 nm-

1 for the SAO/STO film and only STO substrate. (b) Experiment and fitting results of 
the rocking curves at qz/2π = 5.06 nm-1 for the SAO/STO film. 
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Figure 3-5. Reciprocal space map of as-grown film and sheet. Reciprocal space map 
of the (c) as-grown film and (b) flat sheet on PET substrate. 
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Figure 3-6. Rocking curves and AFM imagine of LBSO sheet. (a) Rocking curves of 
the 002 diffraction peak of the as-grown film and flat LBSO sheet. (b) AFM image of the 
flat LBSO sheet. 
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Figure 3-7. Optical property of LBSO sheet. (a) Optical transmission and reflection 
spectra as functions of wavelength, and (b) photon energy dependence of (αhν)2 of the 
flat LBSO sheet. 
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Figure 3-8. Low temperature conductivity of LBSO sheet. Temperature dependence 
of the electrical conductivity of the flat LBSO sheet. 
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Chapter 4.  Bulk-like Ferroelectricity, Permittivity, and 

Enhanced Tunability in Millimeter-size Crack-free Ba1–

xSrxTiO3 Flexible Epitaxial Sheets  

4.1. Purpose of this chapter 

The history Ba1-xSrxTiO3 (BST) is originated from most famous perovskite ferroelectric 

material BaTiO3 (BTO), which was discovered during World War II in 1941 and 1944 in 

the United States, Russia, and Japan. After nearly 80 years of development, BTO and its 

derivative materials have become fundamental components in modern electronic devices, 

such as capacitors (1), satellite antennas (2), filters (3), and more. The crystal structure of 

BST is a typical perovskite structure, and changing from tetragonal to cubic when 

increasing x value duo to the different bond lengths in the barium-oxygen and strontium-

-oxygen bonds. Therefore, in BST compositions, for example, when x= 0.25, BST 

exhibits ferroelectric properties, and the crystal structure is a tetragonal perovskite 

structure similar to BTO. Conversely, when x= 0.5, BST exhibits paraelectric properties, 

and the crystal structure is a cubic perovskite structure similar to STO. 

The development of flexible ferroelectric materials is crucial for the advancement of 

various emerging technologies, including microelectromechanical systems (4), 

vibrational energy harvesters (5, 6), and wearable electronics (7). Among the utilized 

ferroelectric materials, perovskite BTO and BST stand out owing to their desirable 
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properties such as dielectric permittivity (εr), tunability of εr, piezoelectricity, non-toxicity, 

and stability. These materials have been widely used in electronic components such as 

multilayer ceramic capacitors and microwave devices (8, 9). However, perovskite oxides, 

including BST, are inherently rigid, necessitating thickness reduction to sub-micrometer 

levels to achieve flexibility. Moreover, in the case of flexible ferroelectric sheets, 

controlling the crystal orientation is crucial for achieving high electrical performance.  

In this chapter, I successfully obtained crack-free millimeter-sized epitaxial sheets of 

BST with composition ratios of x = 0.25 and 0.5. This was accomplished using lift-off 

and transfer techniques combined with the use of an a-Al2O3 protection layer with a 

thickness greater than 10 nm. Various bottom electrode materials were prepared, 

including a- and polycrystalline (poly-) indium tin oxide (ITO), poly-RuO2, and SrRuO3. 

Among these options, poly-ITO was found to be the most suitable electrode material. The 

BST sheet with a composition of x = 0.25 demonstrated outstanding ferroelectric 

properties similar to bulk single crystals, while the BST sheet with a composition of x = 

0.5 simultaneously exhibited high permittivity (εr ~3500 at 10 kHz) and high tunability 

(56%). This was attributed to the release of the substrate-induced strain in the free-

standing sheet. 
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4.2. Experimental 

Synthesis of freestanding Ba1–xSrxTiO3 sheet: As-grown Ba1–xSrxTiO3 (x = 0.25 and 

0.5) epitaxial films were fabricated on SAO-buffered SrTiO3 (001) (STO) substrates using 

the pulsed laser deposition (PLD) method. Typical thicknesses of the SAO and BST layers 

were 20 and 300 nm, respectively. The film deposition process involved maintaining the 

substrate temperature (Ts) and oxygen pressure (PO2) at 850 °C and 1 × 10–3 Pa for the 

SAO layer and at 850 °C and 0.5 Pa for the BST layer, respectively. The electrode and a-

Al2O3 protective layers were deposited on top of the BST layer using the PLD method. 

Four types of oxide electrode materials were used as the electrode layers: a-ITO, poly-

ITO, epitaxial SrRuO3, and poly-RuO2. The Ts and PO2 values were 25 °C and 5 Pa for a-

ITO, 200 °C and 5 Pa for poly-ITO, 600 °C and 30 Pa for epitaxial SrRuO3, and 200 °C 

and 10 Pa for poly-RuO2, respectively. Meanwhile, the a-Al2O3 layer was deposited at a 

Ts of 25 °C and PO2 of 1 × 10–3 Pa. The typical thicknesses of the electrode and a-Al2O3 

layers were 100 and 10–1000 nm, respectively. To peel off the a-Al2O3/electrode/BST tri-

layer from the STO substrate, the as-grown film was placed in pure water for 24 h to 

completely dissolve the SAO layers. Before the as-grown film was placed in pure water, 

its surface was attached to an adhesive-coated PET substrate (Kimoto Co., Ltd., 

Prosave™ UV). 

Crystallographic analyses: The crystal structures of the as-grown films and obtained 

sheets were determined using X-ray diffraction (XRD) measurements (Cu Kα1, ATX-G, 
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Rigaku Co.).  

Ferroelectricity & dielectric property measurements: To measure the dielectric and 

ferroelectric properties of the sheets, 100-μm-diameter Pt electrodes were deposited on 

top of the sheet, that is, the BST layer, as the top electrodes. Dielectric properties were 

evaluated using an LCR meter (E4980A; Keysight Technologies, Inc.). The ferroelectric 

properties of the sheets were measured using a ferroelectric tester (Multiferroic II, Radiant 

Technologies, Inc.).  
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4.3. Result and discussion 

The as-grown films on the SrTiO3 substrates consisted of four layers: a-Al2O3, 

electrode, Ba1−xSrxTiO3 (BST), and Sr3Al2O6 (SAO), as illustrated in Figure 4-1(a). 

Before placing the as-grown film in pure water, an adhesive-layer-coated PET substrate 

was attached to the surface. Thereafter, the as-grown PET-attached films were placed in 

pure water for 24 h. The sheet could be peeled off from the STO substrate because the 

SAO sacrificial layer completely dissolved in water. Figure 4-1(b) shows a photograph 

of the sheet obtained on the PET substrate. The sheet consists of BST with a composition 

of x = 0.5, poly-ITO, and 1-μm-thick a-Al2O3 tri-layer, where the top surface of the sheet 

was the BST layer. The lateral size of the sheet was 5 mm × 5 mm, and no significant 

cracks were observed. In addition, the sheets were flexible.  

Figures 4-1(c, d) show the out-of-plane XRD patterns of the as-grown films with 

compositions of x = 0.25 and 0.5. In both films, the 001 and 002 diffraction peaks of BST 

were clearly observed. Because poly-ITO was used as the electrode layer, the 222 

diffraction peaks of ITO also appeared at qz/2π = 3.4 nm–1. The in-plane orientation was 

evaluated using reciprocal space mapping (RSM) measurements of approximately 103 

diffraction peaks (Figure 4-2). Spot-like 103 peaks were observed in the two as-grown 

films, confirming the epitaxial growth of BST layers on the SAO layer. The epitaxial 

growth of the BST layers is derived from the fact that the arrangement of Sr ions in the 

SAO layer is similar to that of the Ba/Sr ions in the BST layers. In addition, a-axis lengths 
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of bulk BST are also similar to a/4 of bulk SAO, 3.961 Å (10); bulk BST with x = 0.25 

has a tetragonal structure with a = 3.980 and c = 3.992 Å, whereas bulk BST with x = 0.5 

has a cubic structure with a = 3.957 Å (11, 12). The lattice constants of the as-grown BST 

films were evaluated from the out-of-plane XRD and RSM results. For the x = 0.25 film, 

the out-of-plane lattice constant (3.991 Å) was greater than that of the in-plane one (3.97 

Å), indicating that the BST layer was c-axis oriented. In contrast, the in-plane and out-of-

plane lattice constants were similar for the x = 0.5 film: 3.95 and 3.957 Å, respectively.  

The as-grown BST films were peeled off from the STO substrates and transferred onto 

PET substrates. The diffraction peaks of STO disappeared, whereas those of PET 

appeared in the out-of-plane XRD patterns (Figure 4-1(c, d)). The BST sheets exhibited 

001 and 002 diffraction peaks, indicating that the crystal orientation was maintained even 

after the BST sheets were peeled off from the substrate. The lattice constants of the sheets 

were evaluated from their out-of-plane and in-plane XRD patterns (Figure 4-1(c, d), and 

Figure 4-3). The out-of-plane lattice constant of the x = 0.25 film (3.984 Å) was greater 

than that of the in-plane one (3.97 Å), indicating that the c-axis orientation was 

maintained during the sheet synthesis process. This growth orientation is preferred for the 

ferroelectric measurements because bulk BST with a composition of x = 0.25 exhibits 

spontaneous polarization along the c-axis. Meanwhile, for the x = 0.5 film, the in-plane 

and out-of-plane lattice constants were almost equal (3.95 and 3.950 Å, respectively), 

indicating that it has an almost cubic structure, which agrees with the bulk BST with a 

composition of x = 0.5.  
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Figure 4-4 shows photographs of the x = 0.5 sheets as a function of the thickness of 

the a-AlOx protective layer. When a protective layer was not used, a high density of cracks 

was generated in the sheet. However, the use of a 10-nm-thick a-AlOx layer significantly 

suppressed crack generation, resulting in a maximum crack-free area of 1.5 mm2. The 

size of the crack-free area increased with the thickness of the a-AlOx layer. When the 

thickness of the a-AlOx layer was 1 μm, no cracks appeared on the BST sheets.  

Figure 4-5(a) shows the SEM image of the BST sheet. Cracks were not observed, but 

a light-colored line extending diagonally downward from the upper left of the figure was 

observed. The enlarged view of the SEM image is shown in Figure 4-5 (b), where the 

right and left sides are the lighter- and darker-colored areas in Figure 4-5 (a), respectively. 

In the lighter-colored area, wrinkles with a width of ~10 μm appeared at intervals of a 

few μm. Additionally, in all the areas, fine wrinkles spread in a mosaic pattern. Many 

wrinkles were not observed in the SEM image of the LSSO sheet (Figure 4-1(f)). In 

contrast to LSSO, perovskite ferroelectric oxides consist of many domains and boundaries. 

For example, even in the c-axis-oriented films, the a-domain is formed between upward 

and downward polarized c-domains as illustrated in Figure 4-5 (c) (13). The domain 

boundary between a- and c-domains receives a large strain owing to the formation of 

largely bent lattices (orange lattices in Figure 4-5 (c)). Thus, when restraint from the 

substrate is removed without a capping layer, a force is applied to the sheet to relax the 

largely bent lattices, resulting in the generation of cracks (Figure 4-5 (d)). By contrast, 

by using a capping oxide layer, the layer hinders the generation of cracks because of the 
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high crack resistance and/or high Young’s modulus of the Al2O3 glass (14, 15). However, 

to slightly relax the largely bent lattices, wrinkles are generated instead of cracks in the 

sheet (Figure 4-5 (e)).  

To evaluate the ferroelectric and dielectric properties of the BST sheets, preparation of 

electrode layers between the BST and a-Al2O3 layers is necessary. Four representative 

oxide electrode materials: a-ITO, poly-ITO, epitaxial SrRuO3, and poly-RuO2 layers, 

were used as the electrode layers. Figure 4-6 shows photographs of the x = 0.5 sheets 

using these electrode layers. The thicknesses of the electrode and a-Al2O3 layers were 100 

and 1 μm, respectively. When the poly-ITO and RuO2 layers were used, no cracks were 

observed in the sheets with lateral sizes of 5 mm × 6 mm and 5 mm × 5 mm, respectively. 

Several scratches were observed on the sheet containing the a-ITO layer. In contrast, when 

the epitaxial SrRuO3 layer was used, several wrinkles appeared on the sheet. This is 

attributed to the higher deposition temperature of the SrRuO3 layer (600 °C) compared to 

the other electrode layers (25–200 °C). The difference in the thermal expansion 

coefficients of the BST and SrRuO3 layers causes a greater strain when the film is cooled 

from the growth temperature to room temperature, which provides a driving force for the 

generation of wrinkles. These results indicate that a material with a low deposition 

temperature is suitable as an electrode layer. 

Figure 4-7 shows frequency dependence of permittivity (εr) and dielectric loss (tan δ) 

values for the BST sheets at 25 °C as a function of the type of the electrode layers. A Pt 

electrode was used as the top electrode. In both the x = 0.25 and 0.5 sheets, the highest εr 
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values were observed when using the poly-ITO electrodes. This is probably due to the 

higher electrical conductivity of the poly-ITO layer compared to that of the a-ITO and 

poly-RuO2 layers. The electrical conductivities of the poly-ITO, a-ITO, and poly-RuO2 

films deposited on the glass were 3 × 103, 2 × 102, and 2 × 103 S/cm, respectively. In 

addition, it has been reported that RuO2 films grown at low temperatures, such as those 

used in this study, tend to have a higher concentration of oxygen vacancies (16), probably 

resulting in a decrease in εr of BST at the BST/RuO2 interface. Based on the obtained 

results, we concluded that poly-ITO is suitable as the bottom electrode for BST epitaxial 

sheets.  

The εr values were 1500 and 4000 at 1 kHz for the x = 0.25 and 0.5 sheets, respectively, 

when the poly-ITO electrode was used. The εr values of the bulk material are more than 

twice as large as those of epitaxial films, with values of 700 and 1400, respectively (17, 

18). Epitaxial thin films grown on substrates are known to typically exhibit a decrease in 

εr compared to their bulk counterparts, owing to the strain induced by the substrate (11, 

19). However, because the BST sheet was peeled off from the substrate, the substrate-

induced strain was not observed in the sheet. This strain relaxation from the substrate is 

probably a contributing factor to the high εr of the BST sheet. 

Figure 4-7(e, f) shows the εr and tan δ values of the x = 0.25 sheet as a function of 

bending times. In this measurement, the sheet was bent with a curvature of 35 mm in an 

upward direction, and then, the sheet was returned to a flat state for measurement. Even 

after such bending was repeated and returned 4000 times, the dielectric properties of the 
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sheet did not change significantly. 

Figure 4-8(a) shows the polarization versus electric field (P−E) curve for x = 0.25 

sheets. The measurement was conducted at a temperature of 25 °C and frequency of 10 

kHz using poly-ITO layer as a bottom electrode. A clear ferroelectric hysteresis loop was 

observed, along with P reversal current peaks, proving the room-temperature 

ferroelectricity of the sheet. The remaining P (Pr) and coercive field (Ec) values were 11 

μC/cm2 and 100 kV/cm, respectively. With an increase in the applied maximum E, Pr 

increased and reached 17 μC/cm2 (Figure 4-9), which was almost equal to that of bulk x 

= 0.25 single crystal (18 μC/cm2) (20). Figure 4-8(b) shows εr and tan δ for the x = 0.25 

sheet as a function of E at 25 °C. In the εr−E curve, a butterfly curve was observed owing 

to the ferroelectric nature of the x = 0.25 sheet. The tunability (1−ε(E)/ε(E = 0)) of the 

sheet was 63%, while the tan δ value remained below 0.05.  

Figure 4-10(a) shows P−E curve for the x = 0.5 sheet at 25 °C. The tiny hysteresis 

loop indicates that the x = 0.5 sheet is paraelectric rather than ferroelectric at 25 °C. This 

is reasonable because Curie temperatures of bulk BST with x = 0.25 and 0.5 were 52 and 

−30 °C, respectively (21). The x = 0.5 sheet also exhibited tunability in the εr−E curve 

(Figure 4-10(b)), with a tunability value of 56%.  

In bulk BST, the tunability values were approximately 19.6 and 23.7% at x = 0.5 and 

0.6, respectively, while the εr values ranged from 2500 to 11000 at a composition range 

of x = 0.5–0.6 (22, 23). To further improve the tunability, doping techniques were 

employed. For instance, MgO-doped bulk BST with a composition of x = 0.6 exhibited a 
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high tunability of 50% (24, 25), while the εr value decreased to 2000. In contrast, in thin 

films, the tunability values were significantly higher, reaching 83% at x = 0.5, while the 

εr value was significantly smaller (1800) (26). This enhanced tunability in thin films was 

attributed to the higher breakdown electric field compared to the bulk material owing to 

the epitaxial structure with reduced grain boundaries and thinner thickness. Meanwhile, 

the reduced εr was derived from the strain induced by the substrate (27). In this study, the 

x = 0.5 BST sheet exhibited a high tunability of 56%, similar to what was observed in 

thin films. In addition, in the BST sheet, the absence of strain from the substrate allowed 

for a crystalline structure similar to that of the bulk, enabling the maintenance of high εr 

(4000 at 1 kHz).  
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4.4. Conclusion 

In this study, crack-free millimetre-sized BST epitaxial sheets were successfully 

obtained using lift-off and transfer techniques employing an a- a-Al2O3 protective layer 

with a thickness greater than 10 nm. Poly-ITO is suitable as the bottom electrode of the 

sheets owing to its high electrical conductivity and low deposition temperature. The x = 

0.25 sheet exhibited excellent ferroelectric property, whereas the x = 0.5 sheet 

simultaneously exhibited high permittivity and tunability owing to the release of 

substrate-induced strain. These findings indicate that the proposed sheet fabrication 

process is suitable for obtaining high-quality, highly oriented, flexible ferroelectric, and 

high-permittivity oxide sheets. 
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Figure 4-1. Synthesis and characterization of BST sheet. (a) Schematic of the synthesis 
process of the BST sheet. (b) Photograph of the x = 0.5 flexible sheet on the PET substrate. 
Out-of-plane XRD patterns of the as-grown films and sheets for (c) x = 0.25 and (d) x = 
0.5 with poly-ITO electrodes. The asterisk marks correspond to the STO or PET 
substrates. 
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Figure 4-2. RSM of as-grown film (x = 0.25, and 0.5). Reciprocal space maps for the 
as-grown BST films with x = (a) 0.25 and (b) 0.5. 
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Figure 4-3. In-plane XRD patterns for the x = 0.25 and 0.5 sheets. 
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Figure 4-4. Photograph of a-AlOx protection layer thickness dependence of crack. 
Photograph of the x = 0.5 sheets with ITO electrodes and a-AlOx protection layers as a 
function of thickness of the a-AlOx layer (ta-AlOx). ta-AlOx is (a) 0, (b) 10 nm, (c) 100 nm, 
and (d) 1 μm. 
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Figure 4-5. Release of lattice distortion in BST sheet. (a) SEM images of the BST 
sheets with the capping oxide layer. Schematic cross-sectional images of the (c) BST film 
and BST sheets (d) without and (e) with the capping oxide layer. 
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Figure 4-6. Photograph of other protection layers dependence of crack. Photograph 
of the x = 0.5 sheets using (a) a-ITO, (b) poly-ITO, (c) poly-RuO2, and (d) epitaxial 
SrRuO3 as the electrode layers.  
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Figure 4-7. Dielectric property and electrode dependence of flexible BST sheet. 
Frequency dependence of (a) εr and (b) tan δ for the x = 0.25 and (c, d) x = 0.5 sheets as 
a function of electrode layers at 25 °C. 
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Figure 4-8. Ferroelectric and dielectric properties of BST x = 0.25 sheet. (a) P, I and 
(b) εr and tan δ values as a function of E for the x = 0.25 sheet at 25 °C. Poly-ITO electrode 
was used as the bottom electrode. 
  



Chapter 4. Bulk-like Ferroelectricity, Permittivity, and Enhanced Tunability in 
Millimeter-size Crack-free Ba1–xSrxTiO3 Flexible Epitaxial Sheets  

  90 

 
Figure 4-9. Ferroelectric property of BST x = 0.25 sheet with higher bias. The (a) P–
E curves for the x = 0.25 sheet at 25 ºC. Polycrystal ITO electrode was used as bottom 
electrode. 
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Figure 4-10. Paraelectric and dielectric property of BST x = 0.5 sheet. (a) P, I and (b) 
εr and tan δ values as a function of E for the x = 0.5 sheet at 25 °C. Poly-ITO electrode 
was used as the bottom electrode.  
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Chapter 5.  Summary 

This doctoral thesis focused on transferring of high-quality flexible freestanding 

epitaxial sheet using amorphous oxide protection layer. Through this method, I have 

obtained the world's highest-quality single-crystal freestanding sheet.  

 

In chapter 1, the background and purposes of this study are introduced. 

 

In chapter 2, I report the significantly suppression of crack in LSSO sheet using an 

amorphous oxide protection layer. The results showed an a-Al2O3 is the most effective 

for crack suppression. Large-size crack-free LSSO sheets (up to 5 × 5 mm2) was obtained 

using this lift-off and transfer method. The sheets could be transferred to various types of 

substrates, with a selection of the desired layer as the upper or lower side. The LSSO 

sheet exhibited a wide optical bandgap of 4.4 eV and a high σ value of 1600 S/cm at room 

temperature. Importantly, the expensive STO single-crystal substrates can be reused. 

 

In chapter 3, I transferred millimeter-size crack-free LBSO sheet by employing the 

optimized a-Al2O3 protection layer despite of the large lattice mismatch. Furthermore, I 

controlled the shapes of the LBSO sheets such as rolled and flat forms. The rolled sheet 

had a tubular shape with diameter of 1 mm and length of 5 mm, while the size of the flat 

sheet was 5 × 5 mm2. The presence of the a-Al2O3 protection layer allowed for a 
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significantly large crack-free area. The LBSO sheets exhibited wide optical bandgap of 

3.5 eV and high Hall mobility of 80 cm2 V-1 s-1, making it promising for next-generation 

optoelectronic devices. 

   

In chapter 4, I observed the enhancement of permittivity and tunability in freestanding 

BST sheets owing to release of substrate-induced strain, while keeping bulk-like 

ferroelectricity. Millimeter-sized BST epitaxial sheets were also obtained using an a-

Al2O3 protective layer exceeding 10 nm in thickness. I found that poly- ITO is a suitable 

bottom electrode due to its high electrical conductivity and low deposition temperature. 

The x = 0.25 sheet demonstrated excellent ferroelectric properties, while the x = 0.5 sheet 

exhibited high permittivity and tunability, attributed to the absent of substrate-induced 

strain.  

 

In short, I systematically studied on transfer of perovskite freestanding sheet. My 

research has accelerated the industrialization of single-crystal freestanding sheets and 

opened up new possibilities for exploring various intriguing properties of the perovskite 

freestanding single-crystal sheets. 
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