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0 Introduction

This thesis is concerned with characteristic polynomials of isometries of even unimodular lattices
and dynamical degrees of automorphisms of K3 surfaces. In recent years, significant progress
has been made in these areas by works of E. Bayer-Fluckiger and L. Taelman [3], and of Bayer-
Fluckiger [5, 6, 7]. This thesis consists of a detailed and refined version of the author’s article [45]
and a description of subsequent developments thereafter, which were inspired by their works. In
order to make the main theory self-contained, it also includes a survey of prior research as well
as preliminaries from algebraic number theory.

In 1999, S. Cantat [12] showed that if a compact complex surface Σ admits an automorphism
with positive entropy then Σ is a torus, a K3 surface, an Enriques surface, or a rational surface.
Since around that time, the question of which number can be realized as the entropy of an
automorphism of a compact complex surface has been considered. This thesis deals with the
case of K3 surfaces.

A K3 surface is a compact complex surface Σ such that its canonical bundle is trivial and
dimC(H

0,1(Σ)) = 0. For any K3 surface Σ, the second cohomology group H2(Σ,Z) is a free
Z-module of rank 22, and the intersection form makes H2(Σ,Z) an even unimodular lattice of
signature (3, 19). We refer to an even unimodular lattice of signature (3, 19) as a K3 lattice. It
is known that such a lattice is unique up to isomorphism. Let φ be an automorphism of a K3
surface Σ. Then, the induced homomorphism φ∗ : H2(Σ,Z) → H2(Σ,Z) is an isometry of the
lattice H2(Σ,Z). Let d(φ) denote the spectral radius of φ∗ : H2(Σ,C) → H2(Σ,C):

d(φ) := max{|µ| | µ ∈ C is an eigenvalue of φ∗ : H2(X,C) → H2(X,C)}.

We refer to this value d(φ) as the dynamical degree of φ. It is known that the entropy of φ is
given by log d(φ). In this thesis, we handle dynamical degrees rather than entropy, although
they are essentially the same thing (in our situation). It is also known that the dynamical degree
of a K3 surface automorphism is 1 or a Salem number, that is, a real algebraic number β > 1
such that it is conjugate to β−1 and all of its conjugates other than β and β−1 have absolute
value 1. Our concern is to know which Salem number can be realized as the dynamical degree
of an automorphism of a K3 surface.

In connection with the study of automorphisms of K3 surfaces, B.H. Gross and C.T. Mc-
Mullen [18] raised the following purely lattice-theoretic question.

Question 0.1. Which polynomial can be realized as the characteristic polynomial of an isometry
of an even unimodular lattice with a prescribed signature?

We deal with the case where the isometry in Question 0.1 is imposed to be semisimple (as a
linear transformation). There are two main reasons to do so. One is to avoid complexity of the
description. The other concerns its application: the induced homomorphism φ∗ : H2(Σ,Z) →
H2(Σ,Z) of any automorphism φ of a K3 surface Σ is semisimple if d(φ) > 1.

Let r and s be non-negative integers. It is known that r ≡ s mod 8 if (r, s) is the signature
of an even unimodular lattice. Let F (X) ∈ Z[X] be a monic polynomial with F (0) 6= 0. We
define a monic polynomial F ∗(X) ∈ Q[X] by F ∗(X) := F (0)−1XdegFF (X−1), and say that
F is ∗-symmetric if F ∗ = F . In this case, the constant term F (0) is 1 or −1, so we say
that F is +1-symmetric or −1-symmetric according to the value F (0). Suppose that F is the
characteristic polynomial of a semisimple isometry of an even unimodular lattice of signature
(r, s). Then F is a ∗-symmetric polynomial of even degree. Moreover

r, s ≥ m(F ) and if F (1)F (−1) 6= 0 then r ≡ s ≡ m(F ) mod 2, (Sign)

5



where m(F ) is the number of roots of F whose absolute values are greater than 1 counted with
multiplicity; and

|F (1)|, |F (−1)| and (−1)(degF )/2F (1)F (−1) are all squares. (Square)

Gross and McMullen speculated that these necessary conditions for F to be realized as a
characteristic polynomial are also sufficient when F is irreducible, and they showed that if
F is irreducible and the assumption (Square) is replaced by the more stronger assumption
(−1)(degF )/2F (1)F (−1) = 1, then these are sufficient. Afterwards, Bayer-Fluckiger and Tael-
man [3] proved that the speculation is correct by using a local-global theory.

Bayer-Fluckiger [5, 6, 7] proceeded to the case where the polynomial F is reducible and
+1-symmetric. In this case, the conditions (Sign) and (Square) are not sufficient as pointed out
in [18]. She showed that the condition (Square) is necessary and sufficient for the existence of
an even unimodular lattice over Zp having a semisimple isometry with characteristic polynomial
F for every prime p, where Zp is the ring of p-adic integers. On the other hand, the condition
(Sign) is obtained by considering over R. Hence, we can say that these two conditions are local.
For a +1-symmetric polynomial F with (Sign) and (Square), Bayer-Fluckiger gave a necessary
and sufficient condition for F to be realized as the characteristic polynomial of a semisimple
isometry of an even unimodular lattice over Z of signature (r, s), by describing the local-global
obstruction. These results are reformulated and extended to the case where F is ∗-symmetric,
which covers the −1-symmetric case, in the author’s article [45]. We explain the local-global
obstruction in the following.

We begin by defining an invariant of an isometry of an inner product space over R, called
the index. Let t be an isometry of an inner product space V over R of signature (r, s), and
let F ∈ R[X] be its characteristic polynomial. Then V decomposes as V =

∑
f V (f ; t), where

V (f ; t) := {v ∈ V | f(t)N .v = 0 for some N ∈ Z≥0} and f ranges over the irreducible factors of
F in R[X]. Let I(F ;R) denote the set of ∗-symmetric irreducible factors of F . The index idxt
of t is the map from I(F ;R) to Z defined by idxt(f) = rf − sf , where (rf , sf ) is the signature
of V (f ; t).

For a ∗-symmetric polynomial F and non-negative integers r, s with r+s = deg(F ), we write
Idx(r, s;F ) for the set of maps I(F ;R) → Z expressed as idxt for some semisimple isometry t
of an inner product space V of signature (r, s), with characteristic polynomial F . Each map in
Idx(r, s;F ) is referred to as an index map (see Definition 7.27 and Theorem 7.28). Furthermore,
we refer to an isometry with characteristic polynomial F and with index i ∈ Idx(r, s;F ) as an
(F, i)-isometry for short. As a detailed version of Question 0.1, we will investigate when the
following condition holds for a given index map i ∈ Idx(r, s;F ).

There exists an even unimodular lattice over Z of signature (r, s) having a semisimple
(F, i)-isometry.

(♠)

Let Γ be an infinite cyclic group, and let Q[Γ] denote the group algebra of Γ over Q. We next
define a Q[Γ]-module for a polynomial. Let F ∈ Z[X] be a ∗-symmetric polynomial. For a factor
f of F , we write mf for the multiplicity of f in F . Let I(F ;Q) denote the set of ∗-symmetric
irreducible factors of F , and I2(F ;Q) the set of non-∗-symmetric irreducible factors of F in
Q[X]. Furthermore, we put I1(F ;Q) = I(F ;Q) \ {X − 1, X +1} (see Definitions 7.6 and 7.8 for
the meaning of subscripts). Then F can be expressed as

F (X) =
∏

f∈I(F ;Q)

f(X)mf ×
∏

{g,g∗}⊂I2(F ;Q)

(g(X)g∗(X))mg

or
F (X) = (X − 1)m+(X + 1)m− ×

∏
f∈I1(F ;Q)

f(X)mf ×
∏

{g,g∗}⊂I2(F ;Q)

(g(X)g∗(X))mg ,
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where m± := mX∓1. For a factor f which is in I(F ;Q) or of the form gg∗ for some g ∈ I2(F ;Q),
we define Mf := (Q[X]/(f))mf , and

M :=M+ ×M− ×
∏

f∈I1(F ;Q)

Mf ×
∏

{g,g∗}⊂I2(F ;Q)

Mgg∗ ,

whereM± :=MX∓1. Let α :M →M be the linear transformation defined by the multiplication
by X. Then, it is a semisimple transformation with characteristic polynomial F . Furthermore
the Q-algebra M can be seen as a Q[Γ]-module by the action determined by τ 7→ α, where
τ is a generator of Γ. In this case, we refer to M as the associated Q[Γ]-module of F with
transformation α.

A key idea in tackling Question 0.1 is to consider when there exists an inner product b :
M ×M → Q on the Q-vector space M such that α becomes an isometry having a prescribed
index i and the inner product space (M, b) contains an α-stable even unimodular lattice. By
reinterpreting Question 0.1 as an existence problem for inner products in this way, a local-global
argument works well.

Let V denote the set of all places of Q. In the following, we fix the following data: non-
negative integers r and s with r ≡ s mod 8; a ∗-symmetric polynomial F ∈ Z[X] with the
conditions (Sign) and (Square); and an index map i ∈ Idx(r, s;F ). We write I = I(F ;Q), I1 =
I1(F ;Q), and I2 = I2(F ;Q) for short. LetM be the associated Q[Γ]-module with transformation

α. For each place v ∈ V , we define Mv :=M ⊗Qv. Similarly Mf
v :=Mf ⊗Qv for f which is in

I or of the form gg∗ for some g ∈ I2. Then

Mv =M+
v ⊕M−

v ⊕
⊕
f∈I1

Mf
v ⊕

⊕
{g,g∗}⊂I2

Mgg∗
v

as Qv[Γ]-modules, where α : M → M is extended to a Qv-linear transformation on Mv in a
unique way. For each v ∈ V , we consider the following three properties (P1)–(P3) of an inner
product bv :Mv ×Mv → Qv on Mv. The first property is that

α :Mv →Mv is an isometry with respect to bv. (P1)

Assume that bv has the property (P1). The second property is that

if v 6= ∞ then there exists an α-stable even unimodular lattice over Zv on (Mv, bv), and

if v = ∞ then the isometry α of (M∞, b∞) has index i.
(P2)

Let bv|M±
v
denote the inner product on M±

v obtained by restricting bv to M
±
v ×M±

v ⊂Mv×Mv.
The last property is that

det(bv|M±
v
) =

{
(−1)(m±−i(X∓1))/2 |F1(±1)F2(±1)| if m+ is even

(−1)(m±−i(X∓1))/2 2|F1(±1)F2(±1)| if m+ is odd
in Q×

v /Q×2
v , (P3)

where det is the determinant (that is, the square class of the determinant of a Gram matrix,
see Definition 4.5), and Fi(X) =

∏
f∈Ii f(X)mf for i = 1, 2. We write Bi for the set of families

{bv}v∈V of inner products on Mv such that each bv has the properties (P1)–(P3) and #{v ∈ V |
hwv(bv|Mf

v
) 6= 0} is finite for all f ∈ I, where hwv is the Hasse-Witt invariant (taking values in

Z/2Z), see Definitions 4.30 and 4.58. The conditions (Sign) and (Square) guarantee that Bi is
not empty.

If b is an inner product on M such that α : M → M becomes an isometry having index i
and (M, b) contains an α-stable even unimodular lattice over Z, then the family {b⊗Qv}v∈V of
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inner products b⊗Qv :Mv×Mv → Qv obtained by localizations belongs to Bi. The local-global
principle for the existence of such an inner product on M is described as the equivalence of the
following two conditions (Theorem 9.7):

There exists an inner product b on M such that α : M → M becomes an isometry
having index i and (M, b) contains an α-stable even unimodular lattice over Z. (♣)

There exists a family {bv}v∈V ∈ Bi such that
∑

v∈V hwv(bv|Mf
v
) = 0 for any f ∈ I. (♦)

We remark that the former condition (♣) is equivalent to (♠). Let us rephrase the latter
condition (♦) further. Let C(I) denote the Z/2Z-module consisting of all maps from I to Z/2Z,
that is, C(I) := {γ : I → Z/2Z} = (Z/2Z)⊕I . Moreover, we define a map η : Bi → C(I) by

η({bv}v)(f) =
∑
v∈V

hwv(bv|Mf
v
) ∈ Z/2Z ({bv}v ∈ Bi, f ∈ I).

Under this notation, the condition (♦) can be rephrased as the one that there exists a family
{bv}v ∈ Bi such that η({bv}v) = 0, where 0 ∈ C(I) is the zero map. For a prime p and a monic
polynomial f ∈ Z[X], we define

I(f ;Qp) :=

h̄ ∈ Fp[X]

∣∣∣∣∣∣
h̄ is irreducible, and there exists a ∗-symmetric
irreducible factor of f in Zp[X] whose reduction
modulo p is divisible by h̄ in Fp[X]

 .

Moreover, for two monic polynomials f and g ∈ Z[X], we define a set Π(f, g) of primes by

Π(f, g) := {p : prime | I(f ;Qp) ∩ I(g;Qp) 6= ∅}.

For simplicity of explanation, we assume that each of the multiplicities m+ and m− of X−1 and
X +1 is 0 or at least 3. Let ∼ be the equivalence relation on I generated by the binary relation
{(f, g) ∈ I × I | Π(f, g) 6= ∅}, and let Ω be the submodule {c ∈ C(I) | c(f) = c(g) if f ∼ g } of
C(I). It will be shown that the homomorphism

Ω → Z/2Z, c 7→
∑

f∈I η({bv}v)(f) · c(f)

is defined independently of the choice of the family {bv}v ∈ Bi. This homomorphism is called
the obstruction map for (F, i) and denoted by obi : Ω → Z/2Z. The submodule Ω ⊂ C(I) is
called the obstruction group for (F, i) (it does not depend on i under the current assumption on
m+ and m−). It is obvious that if there exists a family {bv}v ∈ Bi such that η({bv}v) = 0 then

the obstruction map obi : Ω → Z/2Z is the zero map. (♥)

Our first main theorem is as follows.

Theorem A. Let r, s be non-negative integers with r ≡ s mod 8, F ∈ Z[X] a ∗-symmetric
polynomial of degree r+ s with the conditions (Sign) and (Square), and i ∈ Idx(r, s;F ) an index
map. Assume that each of m+ and m− is 0 or at least 3. The conditions (♠), (♣), (♦), and
(♥) are all equivalent.

We prove this theorem without the assumption on m+ and m−, see Theorem 9.25. In this
case, the definition of the set Π(f, g) (and hence that of the equivalence relation ∼ on I) needs
to be modified. The equivalence (♠) ⇔ (♥) was first proved by Bayer-Fluckiger in [6], under
the assumption that F is +1-symmetric. However, the first proof did not take account of subtle
conditions for obstruction. On the framework established by her, the author [45] modified
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the definition of obstruction, and moreover, extended the theorem to the case where F is ∗-
symmetric, which covers the −1-symmetric case, mainly by careful analysis at the prime 2, see
also Remark 9.26. This thesis also gives a systematic way to compute obstruction.

Let us revisit the problem of dynamical degrees of K3 surface automorphisms. As mentioned
earlier, for an automorphism φ of a K3 surface Σ, the induced homomorphism φ∗ is an isometry
of the K3 lattice H2(Σ,Z). Conversely, as a consequence of two fundamental theorems for K3
surfaces, the Torelli theorem and surjectivity of the period mapping, an isometry of a K3 lattice
with some additional conditions is realized as the induced homomorphism of an automorphism
of a K3 surface. We recall that if an automorphism φ of a K3 surface Σ has dynamical degree
greater than 1 then it is a Salem number. More strongly, in this case, the induced homomorphism
φ∗ : H2(Σ,C) → H2(Σ,C) is semisimple, and its characteristic polynomial is of the form F =
SC, where S is the minimal polynomial of a Salem number and C is a product of cyclotomic
polynomials. So, we approach the problem of dynamical degrees by describing when a K3 lattice
admits a semisimple isometry having such a polynomial as the characteristic polynomial through
Theorem A and computations of obstruction.

We say that a Salem number β is projectively (resp. nonprojectively) realizable if there exists
an automorphism of a projective (resp. nonprojective) K3 surface with dynamical degree β.
Note that the degree of any Salem number (that is, the degree of its minimal polynomial over
Q) is even. If a Salem number β is projectively realizable then 2 ≤ deg(β) ≤ 20; and if β is
nonprojectively realizable then 4 ≤ deg(β) ≤ 22. The nonprojective case is more tractable than
the projective case (see Proposition 13.16), and our second main theorem is as follows.

Theorem B (Theorem 13.14). Let β be a Salem number of degree d with 4 ≤ d ≤ 22, and S its
minimal polynomial. Let C10 and C18 be the sets consisting of integers defined by

C10 := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 21, 22, 24, 28, 30, 36, 42},
C18 := {1, 2, 3, 4, 6, 12}.

(i) Suppose that d = 22. Then β is nonprojectively realizable if and only if |S(1)| and |S(−1)|
are squares.

(ii) Suppose that d = 4, 6, 8, 12, 14, 16, or 20. Then β is nonprojectively realizable.

(iii) Suppose that d = 10 or 18. Then β is nonprojectively realizable if and only if there exists
l ∈ Cd such that Π(S,Φl) 6= ∅. Here Φl is the l-th cyclotomic polynomial.

The proof of (i) was given by Bayer-Fluckiger and Taelman in [3] for the first time. The
assertion (ii) was proved by Bayer-Fluckiger [6, 7] for d = 4, 6, 8, 12, 14, 16, and by the author
[45] for d = 20, see also Remark 13.15. Although a close result can be found in [7], the assertion
(iii) appears for the first time in this thesis. This thesis gives the proofs of all assertions (i)–(iii),
in a consistent manner. We also give a brief survey of the problem of which number can be
realized as the dynamical degree of an automorphism of a compact complex surface, not only of
a K3 surface, in §13.4.

The organization of this thesis is as follows. We review basic facts on algebraic number theory
in Chapter I. Chapter II summarizes the classical theory of inner products. Inner products over
a field are treated in §4, and over a Dedekind domain in §5. Chapters I and II are prepared so
that the main theory in Chapter III is self-contained. These two chapters would be helpful for
some experts in dynamical systems who are not familiar with algebraic number theory.

Chapter III is the main part of this thesis. In §6, we introduce equivariant Witt groups for
inner product spaces. By using that terminology, we can describe when an inner product space
over a discrete valuation field contains a unimodular lattice, in a manner compatible with a group
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action. In §7, we study isometries of inner product spaces over an arbitrary field, and over R.
We deal with the localized version of Question 0.1 in §8, and give the proof of a general version
of Theorem A in §9. Sections 10 and 11 present a systematic way to compute obstruction.

Chapter IV discusses the application of results established in Chapter III to dynamical
degrees of K3 surface automorphisms. After making a minimal explanation of K3 surfaces in
§12, we prove Theorem B in §13.
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Conventions on terminology The symbol Z denotes the ring of integers. We write Z≥0 =
{n ∈ Z | n ≥ 0} and Z>0 = {n ∈ Z | n > 0}. The symbols Q,R, and C denote the field of
rational numbers, real numbers, and complex numbers respectively. The characteristic of a field
K is denoted by charK. The term almost all means ‘all but a finite number of’. Let R be a
ring. The multiplicative group consisting of all invertible elements of R is denoted by R×. We
write R×2 = {r2 | r ∈ R×} ⊂ R×. For R-algebras A and A′, the set of all homomorphisms
A → A′ of R-algebras is denoted by Homal

R(A,A
′). For R-modules M and M ′, the set of all

homomorphisms M →M ′ of R-modules is denoted by HomR(M,M ′).

10



Chapter I

Preliminaries from algebraic number theory

1 Dedekind domains and valuations of fields

This section gives a quick review of Dedekind domains and valuations of fields, which are fun-
damental concepts of number theory. We refer to [16], [41], and [32] for field theory, Dedekind
domains, and valuations respectively.

1.1 Field extension

The (extension) degree of a field extension L/K, denoted [L : K], is the dimension of L over K
as a vector space. A finite extension means a field extension of finite degree. A field extension
L/K is said to be an algebraic extension if any element x of L is algebraic over K, that is, x is
a root of a nonzero polynomial with coefficients in K. A field K is algebraically closed if any
non-constant polynomial with coefficients in K has a root in K. A field L is an algebraically
closure of a field K if L/K is an algebraic extension and L is algebraically closed.

Theorem 1.1. Let K be a field.

(i) There exists an algebraic closure of K.

(ii) Let τ : K → K ′ be an isomorphism of fields, and let Ω and Ω′ be algebraic closures of K
and K ′ respectively. Then τ extends to an isomorphism from Ω to Ω′.

(iii) An algebraic closure of K is unique up to isomorphism.

Proof. See [16, Theorems 2.18, 2.19 and 2.20]. Note that the assertion (iii) is a consequence of
(ii). □

As for homomorphisms between fields, the following result is useful.

Theorem 1.2 (Dedekind). Let K and K ′ be fields, and let σ1, . . . , σm be m distinct homomor-
phisms from K to K ′. Suppose that m elements β1, . . . , βm of K ′ satisfy the equation

β1σ1(α) + · · ·+ βmσm(α) = 0

for all α ∈ K. Then β1, . . . , βm are all 0. In other words σ1, . . . , σm are linearly independent in
the K ′-vector space consisting of all homomorphisms K → K ′.

Proof. See [16, Corollary of Theorem 2.39]. □

Corollary 1.3. Let L/K be a field extension of finite degree n, and K an algebraic closure of K.
The number of homomorphisms L→ K of K-algebras is at most n, i.e., #Homal

K(L,K) ≤ n.

11



Proof. Suppose to the contrary that m := #Homal
K(L,K) > n, and σ1, . . . , σm ∈ Homal

K(L,K)
are distinct homomorphisms. Let y1, . . . , yn ∈ L be a basis of L over K. Then the equation
system σ1(y1) · · · σm(y1)

...
...

σ1(yn) · · · σm(yn)


X1

...
Xm

 = 0

has a nontrivial solution (β1, . . . , βm) ∈ K
m

since m > n. However, this would imply that
β1σ1(α) + · · ·+ βmσm(α) = 0 for all α ∈ L, which contradicts Theorem 1.2. Therefore m must
be at most n. □

Let L/K be an algebraic extension. For any α ∈ L, there exists a unique monic polynomial
m(X) ∈ K[X] of lowest degree with coefficients in K such that m(α) = 0, where a monic
polynomial means a nonzero polynomial with the leading coefficient equal to 1. Such a unique
polynomial is called the minimal polynomial of α over K. We say that L/K is separable if the
minimal polynomial of every element of L is separable over K, that is, it has no multiple root
in an algebraic closure of K. It is known that any field of characteristic 0 or of finite cardinality
is perfect, that is, every algebraic extension of it is separable ([16, Theorems 2.44 and 2.45]). If
L is generated by finitely many elements whose minimal polynomials are separable over K then
L is separable ([16, Theorem 2.46]). For example, if f(X) ∈ K[X] is an irreducible separable
polynomial over K then the field K[X]/(f) is separable. Moreover, every finite separable ex-
tension is a simple extension. Namely, if L/K is a finite separable extension then there exists
α ∈ L such that L = K(α) ([16, Corollary 1 of Theorem 2.57]). We say that L/K is normal
if the minimal polynomial of every element of L over K decomposes over L into a product of
linear factors.

Example 1.4. Every quadratic extension is normal. Moreover if charK 6= 2 then it is separable.
To show this, let L be a quadratic extension of K and take α ∈ L arbitrarily. If α ∈ K then
its minimal polynomial over K is the linear polynomial X − α, which is separable clearly. If
α ∈ L \ K then its minimal polynomial is a quadratic polynomial, say X2 − aX + b ∈ K[X].
This polynomial decomposes as X2 − aX + b = (X − α)(X − (a − α)) over L. Hence L/K is
normal. Moreover if charK 6= 2 then X2−aX+ b is separable because otherwise we would have
α = a/2, which contradicts α ∈ L \K. Therefore L/K is separable.

A Galois extension is an algebraic extension which is separable and normal. For a Galois
extension L/K, the automorphism group AutK(L) is called the Galois group of L/K and denoted
by Gal(L/K). A Galois extension is said to be a cyclic extension if its Galois group is a cyclic
group. Let L/K be a finite extension. We have #(AutK(L)) ≤ [L : K] by Corollary 1.3, and
L/K is a Galois extension if and only if the equality #(AutK(L)) = [L : K] holds ([16, Theorem
3.3]). Suppose that L/K is a finite separable extension, and let K be an algebraic closure
containing L. Then there exists a unique finite Galois extension E/K such that L ⊂ E ⊂ K
and E ⊂ N for any Galois extension N/K with L ⊂ N ⊂ K. This field E is called the Galois
closure of L/K. By writing L as L = K(α) for some α ∈ L, the Galois closure is given by
K(α1, . . . , αd) where α1, . . . , αd ∈ K are all conjugates of α over K, that is, all roots of the
minimal polynomial of α over K.

Let L/K be a Galois extension. For an intermediate field M of L/K, that is, a field between
K and L, the extension L/M is a Galois extension. Its Galois group Gal(L/M) is naturally a sub-
group of Gal(L/K) by regarding each automorphism L→ L over M as one over K. Conversely,
for a subgroup H of Gal(L/K), the fixed subfield LH := {x ∈ L | σ(x) = x for all σ ∈ H} is an
intermediate field of L/K.

12



Theorem 1.5 (Fundamental theorem of Galois theory). Let L/K be a finite Galois extension.
The mapping from the set of all intermediate fields of L/K to the set of all subgroups of Gal(L/K)
sending an intermediate field M to its Galois group Gal(L/M) ⊂ Gal(L/K) is a bijection. Its
inverse is given by H 7→ LH .

Proof. See [16, Theorem 3.12]. □

Let K be a field, and E a commutative K-algebra whose K-dimension is finite. The trace
TrE/K(α) and norm NE/K(α) of an element α ∈ E are respectively the trace and determinant
of the K-linear transformation E → E, x 7→ αx. Then the trace map TrE/K : E → K is a
K-linear map, and the norm map NE/K : E× → K× is a group homomorphism, where E×

and K× are the multiplicative groups of E and K respectively. For commutative K-algebras
E1, . . . , Em whose K-dimensions are finite, we have

Tr(
∏m

i=1 Ei)/K(α1, . . . , αm) =
m∑
i=1

TrEi/K(αi), N(
∏m

i=1 Ei)/K(α1, . . . , αm) =
m∏
i=1

NEi/K(αi)

for any (α1, . . . , αm) ∈
∏m
i=1Ei. If L is an extension field of K contained in E, then E can be

seen as an L-algebra. In this case, we have

TrE/K(α) = TrL/K(TrE/L(α)), NE/K(α) = NL/K(NE/L(α))

for any α ∈ E. This property is referred to as the transitivity.

Theorem 1.6. Let L be a finite separable extension. For any α ∈ L we have

TrL/K(α) =
∑

σ∈Homal
K(L,K)

σ(α), NL/K(α) =
∏

σ∈Homal
K(L,K)

σ(α).

Proof. See [16, Theorem 2.64]. □

Corollary 1.7. Let L/K be a finite separable extension. The trace map TrL/K : L → K is
surjective.

Proof. There exists β ∈ L such that its trace TrL/K(β), which is equal to
∑

σ∈Homal
K(L,K) σ(β)

by Theorem 1.6, is not zero, because otherwise it would contradict Theorem 1.2. Then, for any
α ∈ K we have TrL/K(TrL/K(β)−1αβ) = TrL/K(β)−1αTrL/K(β) = α. This means that the
trace map is surjective. □

As for the norm, the group K×/NE/K(E×) of norm classes is nontrivial in general, and
it requires some effort to figure out. In this thesis, the group of norm classes for quadratic
extension is of particular importance.

Definition 1.8. Let E be a commutative K-algebra. A K-algebra automorphism σ : E → E is
said to be an (K-algebra) involution if σ2 = idE . If E is equipped with a K-algebra involution
then E is referred to as a (commutative) K-algebra with involution. In this case, we write Eσ

for the fixed subalgebra {x ∈ E | σ(x) = x}. Two K-algebras (E, σ), (E′, σ′) with involution are
isomorphic if there exists an isomorphism φ : E → E′ ofK-algebras such that φ(σ(x)) = σ′(φ(x))
for all x ∈ E.

There are two types of K-algebras with involution treated mainly in this thesis: E is a field;
or E is of type (sp) defined below.
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Definition 1.9. Let E0 be a field, and put E = E0 ×E0. We define an involution σ of E to be
the transposition of the first and second components:

σ((x, y)) = (y, x) (x, y ∈ E0).

A K-algebra with involution isomorphic to (E, σ) is said to be of type (sp). In this case, the
fixed subalgebra Eσ is the diagonal, which is a field isomorphic to E0.

Definition 1.10. Let E be a commutative algebra over a field K, and let σ : E → E be a
non-trivial E-algebra involution. Suppose that Eσ is a field. Then, the quotient group

Tw(E, σ) := (Eσ)×/{xσ(x) | x ∈ E×}

is referred to as the twisting group.

If E/Eσ is a separable extension of fields then Tw(E, σ) = (Eσ)×/NE/Eσ(E×) by Theorem
1.6. This is also true clearly in the case where E is of type (sp).

Proposition 1.11. Let E is a K-algebra with involution σ of type (sp). Then Tw(E, σ) = {1}.

Proof. We may assume that E = E0×E0, where E0 is a field isomorphic to Eσ. For any z ∈ E×
0 ,

we have (1, z)σ((1, z)) = (z, z). This means that {(x, y)σ((x, y)) | (x, y) ∈ E} = (Eσ)×, and we
are done. □

1.2 Discrete valuation rings and Dedekind domains

This subsection gives a brief review of discrete valuation rings and Dedekind domains. We refer
to [41, Chapter I] for more detail.

Integral elements Let R be a ring, and A a subring of R. An element b of R is integral over
A if b is a root of a monic polynomial with coefficients in A. Integrality can be rephrased as
follows.

Proposition 1.12. Finitely many elements b1, . . . , bn ∈ R are all integral over A if and only if
A[b1, . . . , bn] ⊂ R is finitely generated as an A-module.

Proof. See [32, Chapter I, Proposition 2.2]. □

This proposition implies that if b1, b2 ∈ R are two elements integral over A then b1 + b2 and
b1b2 are also integral over A because A[b1, b2, b1 + b2, b1b2] = A[b1, b2]. Hence, the subset of R
consisting of all elements integral over A forms a ring. This subring of R is called the integral
closure of A in R. If the integral closure of A in R is A itself, then A is said to be integrally
closed in R. We say that an integral domain is integrally closed if it is integrally closed in its
field of fractions.

Let A be an integrally closed domain, and K its field of fractions. Let L/K be a finite
separable extension. In this case, the trace map and the norm map send any integral element
into A. More precisely, for any element b ∈ L integral over A, we have

TrL/K(b) ∈ A and NL/K(b) ∈ A. (1)

Indeed, if b is integral over A then so are its conjugates, and thus Theorem 1.6 implies that
TrL/K(b) and NL/K(b) are also integral over A. Hence, we get (1) since A is integrally closed.
The following proposition is also an important property of an integrally closed domain.
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Proposition 1.13. Let A be an integrally closed domain, and K its field of fractions. For monic
polynomials f(X), g(X) ∈ K[X], if f(X)g(X) ∈ A[X] then f(X) ∈ A[X] and g(X) ∈ A[X].

Proof. Let f, g ∈ K[X] be monic polynomials with f(X)g(X) ∈ A[X], and let K be an algebraic
closure of K. Then f and g factor into linear polynomials over K, say

f(X) =
m∏
i=1

(X − αi), g(X) =
n∏
j=1

(X − βj) (αi, βj ∈ K).

Since αi and βj (i = 1, . . . ,m, j = 1, . . . , n) are roots of the monic polynomial fg with coefficients
in A, they are integral over A. Hence, the coefficients of f and g are also integral over A. On
the other hand, any element of K integral over A belongs to A since A is integrally closed.
Therefore, the coefficients of f and g belong to A. □

Discrete valuation rings A discrete valuation ring is a principal ideal domain with exactly
one nonzero prime ideal. Let A be a discrete valuation ring, and let p denote the nonzero prime
ideal of A. Because p is a maximal ideal, the quotient A/p is a field. This field is called the
residue field of A. There exists an element π ∈ A which generates the ideal p since A is a
principal ideal domain. Such an element is called a uniformizer of A. If we fix a uniformizer π
of A then any nonzero element x ∈ A can be uniquely written as x = uπn where u is a unit of
A and n is a non-negative integer.

Let K be the field of fractions of A. Any nonzero element x ∈ K can be uniquely written as
x = uπn where u is a unit of A and n is an integer (n can be negative). In this case, the integer
n is called the valuation of x. The valuation of 0 ∈ K is defined to be ∞. If we write v(x) for
the valuation of x, it is clear that

(i) the map v : K× → Z is a surjective homomorphism;

(ii) v(x+ y) ≥ min{v(x), v(y)} for x, y ∈ K.

The ring A and the prime ideal p can be expressed in K as A = {x ∈ K | v(x) ≥ 0} and
p = {x ∈ K | v(x) > 0} respectively.

In general, for an arbitrary field K, a function v : K → Z∪{∞} with v(0) = ∞ and with the
properties (i) and (ii) is called a (normalized) discrete valuation. General theory of valuations
will be discussed in §1.4.

Proposition 1.14. Let K be a field with a discrete valuation v : K → Z ∪ {∞}. Then A :=
{x ∈ K | v(x) ≥ 0} is a discrete valuation ring having v as its associated valuation.

Proof. See [41, Chapter I, Proposition 1]. □

It is known that a Noetherian domain is a discrete valuation ring if and only if it is integrally
closed and has a unique nonzero prime ideal, see [41, Chapter I, Proposition 3].

Dedekind domains Let A be a Noetherian domain, and K its field of fractions. A fractional
ideal of A is a finitely generated A-submodule of K. Of course, any ideal of A is a fractional
ideal. An ideal of A is called an integral ideal if we emphasize that it is contained in A. For two
fractional ideals a and b, the product

ab :=

{∑
i

aibi ∈ K (finite sum)

∣∣∣∣∣ ai ∈ a, bi ∈ b

}
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is also a fractional ideal. With this product, the set of all nonzero fractional ideals of A forms
a commutative monoid with the identity element A. Moreover, for any nonzero fractional ideal
a, it can be checked that

a−1 := {x ∈ K | xa ⊂ A}

is also a nonzero fractional ideal. For a positive integer n ∈ Z>0, we write a−n = (a−1)n.
Let p be a prime ideal of A. Then the set S := A \ p is a multiplicative set. The ring S−1A

is called the localization of A at p and denoted by Ap. Similarly, for a fractional ideal a of A,
the localization ap of a at p is defined by ap := S−1a = aAp. This is a fractional ideal of Ap.

Proposition 1.15. Let A be a Noetherian domain. The following are equivalent.

(i) For every nonzero prime ideal p, the localization Ap is a discrete valuation ring.

(ii) A is integrally closed and any nonzero prime ideal is a maximal ideal.

Proof. See [41, Chapter I, Proposition 4]. □

Definition 1.16. A Dedekind domain is a Noetherian domain which has the two equivalent
properties of Proposition 1.15.

For example, every principal ideal domain (in particular, every discrete valuation ring) is
a Dedekind domain. Another example is the ring of integers of an algebraic number field, see
Example 1.20.

Let A be a Dedekind domain and K its field of fractions. Let p be a nonzero prime ideal
of A. Then K is also the field of fractions of the localization Ap. Hence, the discrete valuation
ring Ap defines a discrete valuation on K. This discrete valuation is referred to as the valuation
associated with p and denoted by vp. If a is a nonzero fractional ideal of A then there exists a
unique integer vp(a) such that ap = (pAp)

vp(a) since ap is a fractional ideal of Ap. This integer is
called the valuation of a with respect to p. Because we have vp(xA) = vp(x) for any x ∈ K, the
valuation of a fractional ideal can be seen as a generalization of that of an element.

The following theorems are crucial properties of a Dedekind domain, see [41, Chapter I,
Propositions 5 and 7] for their proofs.

Theorem 1.17 (Unique prime factorization). Let A be a Dedekind domain, and a a nonzero
fractional ideal of A. Then vp(a) = 0 for almost all nonzero prime ideals p, and a can be written
as a product of finitely many prime ideals in a unique way: a =

∏
p p

vp(a). □

Theorem 1.18. Let A be a Dedekind domain. For any nonzero fractional ideal a of A, we have
aa−1 = A. □

As a consequence of Theorem 1.18, for a Dedekind domain, the monoid consisting of all
nonzero fractional ideals is a group.

1.3 Extension of Dedekind domains

Let A be a Noetherian domain, and K its field of fractions. Let L/K be a finite extension, and
B the integral closure of A in L. In this situation, the field of fractions of B is L. We consider
the following condition:

B is finitely generated over A as an A-module. (F)

For example, if L/K is separable then the condition (F) holds, see [41, Chapter I, Proposition
8].
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Proposition 1.19. Under the assumption (F), if A is a Dedekind domain then so is B.

Proof. See [41, Chapter I, Proposition 9]. □

Example 1.20. A finite extension field of Q is called an algebraic number field. For an algebraic
number field L, the integral closure of Z in L is called the ring of integers of L. Since Q is
perfect and Z is a Dedekind domain, Proposition 1.19 implies that the ring of integers of any
algebraic number field is a Dedekind domain.

In the following, we assume that (F) holds and A is a Dedekind domain. Let p be a nonzero
prime ideal of A and P a nonzero prime ideal of B. We say that P divides p or is above p if
p = P ∩A, and write P | p. The prime ideal P divides p if and only if P contains the ideal pB
generated by p. Hence pB factors as pB =

∏
P|pP

vP(pB). Note that the residue field B/P is
naturally an extension field of A/p, and the degree of this extension is finite by the assumption
(F).

Definition 1.21. Suppose that P divides p. The valuation vP(pB) is called the ramification
index of P over p and denoted by e(P/p). The degree of the field extension (B/P)/(A/p) is
called the inertia degree or residue degree of P over p and denoted by f(P/p).

Proposition 1.22 (Fundamental identity). Let p be a nonzero prime ideal of A, and let
P1, . . . ,Pl be all distinct prime ideals above p. Then we have

[L : K] =

l∑
j=1

e(Pj/p)f(Pj/p).

Proof. The Chinese remainder theorem gives the isomorphism B/pB ∼=
∏l
j=1B/P

e(Pj/p). We
can get the desired identity by comparing the dimensions of both sides over A/p. See [32,
Chapter I, Proposition 8.2] for detail. □

Definition 1.23. Let p be a nonzero prime ideal of A. The prime ideal p is said to be (totally)
split in L if the number of distinct prime ideals of B above p is [L : K], that is, l = [L : K] in the
setting of Proposition 1.22. A prime ideal P of B above p is unramified over K if the extension
(B/P)/(A/p) is separable and e(P/p) = 1. If not, P is said to be ramified over K. The prime
ideal p is unramified in L if all prime ideals of B above p are unramified over K, and otherwise
ramified in L.

1.4 Valuations

We review valuations of fields in this and the next subsection. We refer to [32, §§3 and 4 of
Chapter II]. Let K be a field.

Definition 1.24. A (multiplicative) valuation of K is a function | · | : K → R≥0 having the
following conditions: For x, y ∈ K,

(i) |x| = 0 if and only if x = 0;

(ii) |xy| = |x||y|;

(iii) |x+ y| ≤ |x|+ |y|.
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We exclude the trivial valuation, that is, |x| = 1 for all x 6= 0. Any valuation | · | of K defines
naturally the distance function

K ×K → R≥0, (x, y) 7→ |x− y|.

Two valuations | · |1 and | · |2 are equivalent if distance functions defined by them induce the
same topology on K.

For example, the usual absolute value of Q is a valuation. There is a useful criterion for the
equivalence of valuations.

Proposition 1.25. Two valuations | · |1 and | · |2 of K are equivalent if and only if there exists
a real positive number s such that |x|1 = |x|s2 for all x ∈ K.

Proof. See [32, Chapter II, Proposition 3.3]. □

Valuations of a field play the role of prime ideals of a (commutative) ring in some sense. The
following theorem can be seen as an analog of the Chinese remainder theorem.

Theorem 1.26 (Approximation theorem). Let | · |1, . . . , | · |m be inequivalent valuations of K,
and let x1, . . . , xm be elements of K. For any ε > 0 there exists an element x ∈ K such that
|x− xi|i < ε for each i = 1, . . . ,m.

Proof. See [32, Chapter II, Theorem 3.4]. □

Definition 1.27. A valuation | · | of K is said to be non-archimedean if it satisfies the strong
triangle inequality :

|x+ y| ≤ max{|x|, |y|} for any x, y ∈ K.

Otherwise it is said to be archimedean.

For any non-archimedean valuation | · | and elements x, y ∈ K, if |x| 6= |y| then |x + y| =
max{|x|, |y|}. We will see that non-archimedean valuations correspond to exponential valuations,
which are defined as follows.

Definition 1.28. A (exponential) valuation of K is a function v : K → R ∪ {∞} having the
following conditions: For x, y ∈ K,

(i) v(x) = ∞ if and only if x = 0;

(ii) v(xy) = v(x) + v(y);

(iii) v(x+ y) ≥ min{v(x), v(y)}.

We exclude the trivial valuation, that is, v(x) = 0 for all x 6= 0. Two exponential valuations v1
and v2 are equivalent if there exists a real positive number s such that v1 = sv2.

Any exponential valuation v defines a multiplicative valuation | · |v by

|x|v = q−v(x) (x ∈ K)

where q > 1 is a fixed real number. It is obvious that this multiplicative valuation is non-
archimedean. By Proposition 1.25, the topology defined by | · |v does not depend on the choice
of q. Moreover, two exponential valuations v1 and v2 are equivalent if and only if their associated
multiplicative valuations | · |v1 and | · |v2 define the same topology.
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Proposition 1.29. Sending an exponential valuation v of K to the associated valuation | · |v
gives rise to one-to-one corresponding between the equivalent classes of exponential valuations
of K and the equivalent classes of non-archimedean valuations of K.

Proof. Straightforward. □

Definition 1.30. An exponential valuation v of K is called a discrete valuation if v(K×) = sZ
for some positive real number s. A discrete valuation is normalized if v(K×) = Z. Note that
for every discrete valuation there exists a unique normalized one equivalent to it.

Let v be an exponential valuation of K. The subset

O := {x ∈ K | v(x) ≥ 0} = {x ∈ K | |x|v ≤ 1}

is referred to as the valuation ring of K with respect to v. This is a local ring with maximal
ideal p := {x ∈ K | v(x) > 0}, and its unit group is given by O× = {x ∈ K | v(x) = 0}. The
maximal ideal and residue field of O will be referred to as the maximal ideal and residue field of
K with respect to v respectively. When there is no danger of confusion, the clause ‘with respect
to v’ is omitted. If v is a discrete valuation then O is a discrete valuation ring as mentioned in
Proposition 1.14.

1.5 Complete fields

A complete field is a field equipped with a valuation that is complete with respect to the distance
induced by the valuation. When considering valuations of a field in parallel with prime ideals
of a ring, the counterpart to the localization at a prime ideal is the completion with respect to
a valuation. So, it is important to study complete fields.

We remark that for any field K and its valuation | · |, there exists a completion of K with
respect to |·|, that is a complete field K̂ with valuation |·|

K̂
such that it contains K as a subfield,

the valuation | · |
K̂

coincides with | · | on K, and K is dense in K̂. Furthermore, a completion of

K is unique in the following sense: if K̂ ′ is another completion of K with valuation | · |
K̂′ then

the mapping from K̂ to K̂ ′ defined by

| · |
K̂
- lim
n→∞

an 7→ | · |
K̂′- lim

n→∞
an ((an)n is a Cauchy sequence in K)

is an isomorphism of K-algebras preserving valuations, see [32, Chapter II-§4]. The valuation
of the completion will often be denoted by the same symbol as that of the original field.

Let K be a field and v an exponential valuation of K. We write O and p for the valuation
ring and maximal ideal of K. Furthermore K̂ denotes the completion of K with respect to v,
and let Ô and p̂ be the valuation ring and maximal ideal of K̂. Then, the inclusion O → Ô
gives rise to an isomorphism O/p → Ô/p̂ between residue fields. Moreover, if v is a discrete
valuation then it also induces an isomorphism O/pn → Ô/p̂n for any n ∈ Z>0, see [32, Chapter
II, Proposition 4.3].

A complete field is referred to as a complete archimedean (resp. non-archimedean) field if the
equipped valuation is archimedean (resp. non-archimedean). The fields R and C are complete
archimedean fields (with respect to the usual absolute value). It is known that there is no
complete archimedean field other than R and C. More precisely, the following theorem holds.

Theorem 1.31 (Ostrowski). Let K be a complete archimedean field with valuation | · |. There
exists an isomorphism σ from K to R or C such that |σ(·)| is equivalent to the usual absolute
value of R or C.
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Proof. See [32, Chapter II, Proposition 4.2]. □

We proceed to the non-archimedean case. For a complete non-archimedean field, Hensel’s
lemma is fundamental. Let K be a complete non-archimedean field with valuation | · |, and let
OK , p, and κ denote its valuation ring, maximal ideal, and residue field respectively.

Definition 1.32. Let f(X) = adX
d + · · · a1X + a0 ∈ K[X] be a polynomial. We define

|f | := max{|a0|, |a1|, . . . , |ad|}. Suppose that all coefficients a0, a1, . . . , ad are in OK . The
reduction modulo p, denoted f mod p, is the polynomial adX

d + · · · a1X + a0 in κ[X], where
a = a + p ∈ κ for a ∈ A. We say that f is primitive if its reduction f(X) mod p ∈ κ[X] is not
zero, or equivalently, |f | = 1.

Theorem 1.33 (Hensel’s lemma). Let f ∈ OK [X] be a primitive polynomial. Suppose that f
admits modulo p a factorization

f(X) ≡ ḡ(X)h̄(X) mod p

into coprime polynomials ḡ, h̄ ∈ κ[X]. Then f admits a factorization

f(X) ≡ g(X)h(X)

into polynomials f, g ∈ OK [X] such that deg(g) = deg(ḡ), g mod p = ḡ and h mod p = h̄.

Proof. See [32, Chapter II, Theorem 4.6]. □

Corollary 1.34. Let f(X) = adX
d + · · · + a1X + a0 ∈ K[X] be a polynomial with ad 6= 0. If

|ad| < |f | and |f | = |ar| for some r > 0 then f is reducible. Hence, if f is irreducible then
|f | = max{|a0|, |ad|}. In particular, an element α of a finite extension field L of K is integral if
and only if |NL/K(α)| ≤ 1.

Proof. Suppose that |ad| < |f | and |f | = |ar| for some r > 0. Let r > 0 be the smallest index
satisfying |f | = |ar|, and put

g(X) = a−1
r f(X) = b0 + b1X + · · ·+ bdX

d (bi := ai/ar).

Then |g| = 1 and
g(X) ≡ Xr(1 + br+1X + · · ·+ bdX

d−r) mod p.

Thus g has a factor of degree r > 0 corresponding to Xr by Hensel’s lemma (Theorem 1.33).
Note that r < d since |ad| < |f |. Hence g is reducible over K, and so is f . Therefore, if f
is irreducible then |f | = max{|a0|, |ad|}. The last assertion is obtained by applying it to the
minimal polynomial of an element α. □

For any algebraic extension L/K, the valuation of K extends uniquely to a valuation on L.
More precisely, the following theorem holds.

Theorem 1.35 (Unique extension of valuation). Let K be a complete valuation field with valua-
tion |·|K (it can be archimedean), and let L/K be an algebraic extension. Then the valuation |·|K
is extended in a unique way to a valuation of L, and it is archimedean (resp. non-archimedean)
if | · |K is archimedean (resp. non-archimedean). If L/K is a finite extension then the unique
extension | · |L is given by

|x|L = [L:K]

√
|NL/K(x)|K (x ∈ L),

and L is complete with respect to this valuation. Moreover, if L/K is a finite extension and | · |K
is non-archimedean then the valuation ring of L coincides with the integral closure of that of K
in L, and the maximal ideal of L is an only prime ideal above that of K.
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Proof. See [32, Chapter II, Theorem 4.8]. □

Corollary 1.36. Let K be a complete valuation field with normalized discrete valuation vK , and
let L/K be a finite extension of degree n. Then vK is extended in a unique way to a discrete
valuation ṽL of L. Moreover, the normalized discrete valuation vL equivalent to ṽL is given by

vL(x) =
e(P/p)

n
vK(NL/K(x)) (x ∈ L),

where p and P are the maximal ideals with respect to vK and ṽL respectively. In particular, we
have vL(x) = e(P/p)vK(x) for x ∈ K.

Proof. By Theorem 1.35, the valuation vK is extended in a unique way to an exponential valu-
ation ṽL of L, and it is given by

ṽL(x) =
1

n
vK(NL/K(x)) for x ∈ L.

This equation shows that ṽL is a discrete valuation since so is vK . Let s be a positive real
number such that vL = sṽL. Note that vL is the valuation associated with P by its uniqueness.
Then we have vK(p) = 1 and vL(P) = 1. On the other hand, we have

vK(p) = ṽL(p) = ṽL(P
e(P/p)) = e(P/p)ṽL(P) =

e(P/p)

s
vL(P).

Thus s = e(P/p), which completes the proof. □

We will need a variant of Hensel’s lemma which is specialized for quadratic forms. Let K be
a complete non-archimedean field with valuation | · |, and let OK , p, and κ denote its valuation
ring, maximal ideal, and residue field respectively. We say a point (x1, . . . , xd) ∈ (OK)d is
primitive if (x1, . . . , xd) 6= 0 in κd, or equivalently, |xi| = 1 for some i.

Proposition 1.37. Assume that charκ 6= 2. Let (aij)ij is a symmetric matrix of size d with
entries in OK such that | det((aij))| = 1. We define a quadratic form q by q(X1, . . . , Xd) :=∑

i,j aijXiXj. Let a ∈ OK be any element, and let (y1, . . . , yd) ∈ (OK)d be a primitive point with

q(y1, . . . , yd) ≡ a mod p. Then, there exists (x1, . . . , xd) ∈ (OK)d such that q(x1, . . . , xd) = a
and xi ≡ yi mod p for all i = 1, . . . , d.

Proof. For k = 1, . . . , d, we define a quadratic polynomial fk ∈ OK [X] by

fk(X) := q(y1, . . . , yk−1, X, yk+1 . . . , yd)− a

= akkX
2
k + 2

∑
i 6=k

akiyi

Xk +
∑
i,j 6=k

aijyiyj − a,

and write Dk ∈ OK for the discriminant of fk. Then

Dk/4 =

∑
i 6=k

akiyi

2

− akk

∑
i,j 6=k

aijyiyj − a


≡

∑
i 6=k

akiyi

2

+ akk

akky2k + 2

∑
i 6=k

akiyi

 yk


=

(
d∑
i=1

akiyi

)2

mod p,
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where the congruence is by fk(yk) ≡ 0 mod p. This implies that Dk ≡ 0 mod p if and only if∑d
i=1 akiyi ≡ 0 mod p, or equivalently

∑d
i=1 aki yi = 0 in κ. Hence, there exists k0 such that

Dk0 6≡ 0 mod p since (y1, . . . , yd) 6= 0 and (aij)ij is invertible over κ. This means that the
reduction fk0 mod p factors as fk0(X) ≡ (X − yk0)(X − yk0

′) mod p for some yk0
′ ∈ κ \ {yk0},

since charκ 6= 2. Thus, by Hensel’s lemma (Theorem 1.33), there exists xk0 ∈ OK such that
(X − xk0) | fk0(X) and xk0 = yk0 . Then

q(y1, . . . , yk0−1, xk0 , yk0+1, . . . , yd)− a = fk0(xk0) = 0,

and (y1, . . . , yk0−1, xk0 , yk0+1, . . . , yd) is the desired point. □

1.6 Different

Let A be a Dedekind domain, and K its field of fractions. Let L/K be a finite separable
extension, and B the integral closure of A in L. As mentioned in §1.3, the integral closure B
is also a Dedekind domain. We will define the different ideal DB/A for the extension B/A of
Dedekind domains, and explain that it has information on ramification of prime ideals.

The field L admits the nondegenerate symmetric K-bilinear form T : L×L→ K defined by

T (x, y) = TrL/K(xy) (x, y ∈ L).

This form is called the trace form. The B-module B∨ := {y ∈ L | T (y, x) ∈ B for all x ∈ B} is
called the codifferent ideal of B/A. It follows from lattice theory that the codifferent ideal B∨ is
finitely generated over A (see Theorem 5.2 and Lemma 5.10), and in particular it is a fractional
ideal of B.

Definition 1.38. The inverse (B∨)−1 of the fractional ideal B∨ is called the different ideal of
B/A, and denoted by DB/A. We sometimes write DL/K for DB/A when the ring A is obvious,
for example, when K is an algebraic number field or when a valuation of K is fixed.

We have B ⊂ B∨ since TrL/K(B) ⊂ A, see §1.2. This shows that DB/A = (B∨)−1 ⊂ B−1 =
B, and hence the different ideal DB/A is an integral ideal.

Proposition 1.39. Different ideals have the following properties.

(i) If E/L is a finite separable extension and C denotes the integral closure of B in E, we
have DC/A = DC/BDB/A.

(ii) If S is a multiplicative set in A then S−1DB/A = DS−1B/S−1A.

(iii) Let p be a nonzero prime ideal of A and P a prime ideal of B above p. If Âp and B̂P

denote the completions of A and B at p and P respectively, then DB/AB̂P = D
B̂P/Âp

.

Proof. See [32, Chapter III, Proposition 2.2] or [41, Chapter III-§4]. □

A nonzero prime ideal P of B, above a nonzero prime ideal p of A, is said to be tamely
ramified over K if the extension (B/P)/(A/p) of residue fields is separable and the ramification
index e(P/p) and char(A/p) are coprime. By definition, if P is unramified over K then it is
tamely ramified over K.

Theorem 1.40. Let P be a nonzero prime ideal of B. Then P is ramified over K if and only
if P divides DB/A. More precisely, putting p = P ∩ A, we have vP(DB/A) ≥ e(P/p) − 1, and
the equality holds if and only if P is tamely ramified over K.
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Proof. See [32, Chapter III, Theorem 2.6] or [41, Chapter III, Theorem 1 and Proposition 13].
An important step of the proof is to reduce to the case where A and B are complete discrete
valuation rings by using Proposition 1.39. □

Corollary 1.41. There are only finitely many prime ideals of A which are ramified in L.

Proof. Let P1, . . . ,Pl be all prime ideals of B which appear in the prime factorization of DB/A.
Theorem 1.40 implies that there is no prime ideal of A which is ramified in L other than
P1 ∩ A, . . . ,Pl ∩ A. This completes the proof. See [32, Chapter I, Proposition 8.4] for another
proof. □

1.7 Extension and valuations

Let K be a field, and let v be a valuation of K. In this subsection, v can be an archimedean
valuation although we have used the letter v for an exponential valuation so far. Let Kv denote
the completion with respect to v of K, and Kv the algebraic closure of Kv. Then, there exists
a unique extension v̄ of v to Kv by Theorem 1.35.

Let L/K be an algebraic extension. Each embedding τ ∈ Homal
K(L,Kv) defines a valuation

w of L extending v by the composition w := v̄ ◦τ . In this case, the topological closure of τ(L) in
Kv is a completion of L with respect to w. We say that two embeddings τ and τ ′ ∈ Homal

K(L,Kv)
are conjugate if there exists an automorphism σ ∈ AutKv(Kv) such that τ ′ = σ ◦ τ . Conjugate
embeddings τ and τ ′ define the same valuation of L because v̄ = v̄ ◦ σ by Theorem 1.35.
The following theorem states that all valuations of L extending v are obtained in the manner
described above, and they correspond to the conjugate classes of embeddings.

Theorem 1.42. Let L/K be an algebraic extension.

(i) For any valuation w of L extending v, there exists an embedding τ ∈ Homal
K(L,Kv) such

that w = v̄ ◦ τ .

(ii) Two extensions v̄ ◦ τ and v̄ ◦ τ ′, where τ, τ ′ ∈ Homal
K(L,Kv), coincide if and only if τ and

τ ′ are conjugate.

Proof. See [32, Chapter II, Theorem 8.1]. □

Let EL be the set of all conjugate classes of embeddings τ ∈ Homal
K(L,Kv). For a valuation

w of L, we write w | v if w is an extension of v. Let us check that there exists an isomorphism
L⊗Kv

∼=
∏
w|v Lw if L/K is a finite separable extension, where Lw is the completion of L with

respect to w.

Lemma 1.43. Let f(X) ∈ K[X] be an irreducible polynomial. We define a field L to be
K[X]/(f), and an element α ∈ L to be X + (f) ∈ L. We write the decomposition of f over Kv

into irreducible factors as

f(X) = f1(X)m1 · · · fr(X)mr (fi(X) ∈ Kv[X],mi ∈ Z>0).

Sending an embedding τ ∈ Homal
K(L,Kv) to the factor fi such that fi(τ(α)) = 0 gives rise to a

bijection from EL to {f1, . . . , fr}.

Proof. See [32, Chapter II, Proposition 8.2]. □

In the situation of Lemma 1.43, there is also a canonical bijection between EL and the
set of all valuations of L extending v by Theorem 1.42. Hence, there is a canonical one-to-
one corresponding between the irreducible factors f1, . . . , fr ∈ Kv[X] and the valuations of L
extending v. The irreducible factor of f over Kv corresponding to a valuation w | v of L will be
denoted by fw.
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Theorem 1.44. Let K be a field, v a valuation of K, and L/K a finite separable extension. For
each valuation w of L extending v, take an embedding τw ∈ Homal

K(L,Kv) such that w = v̄ ◦ τw.
Then, the map

L⊗K Kv →
∏
w|v

Lw, x⊗ y 7→ (τw(x)y)w (2)

is an isomorphism of Kv-algebras, where Lw is identified with the topological closure of τw(L)
in Kv.

Proof. Let α ∈ L be an element such that L = K(α), and let f ∈ K[X] be the minimal
polynomial of α over K. For a valuation w of L extending v, we write fw ∈ Kv[X] for the
irreducible factor of f over Kv corresponding to w. Since L/K is separable, the multiplicity of
every fw is one. Thus f factors as f =

∏
w|v fw over Kv.

Let w be a valuation of L extending v. We now claim that the topological closure τw(L)
cl of

τw(L) coincides with Kv(τw(α)) in Kv. It is clear that Kv(τw(α)) ⊂ τw(L)
cl since τw(L) contains

K and τw(α). On the other hand, the subfield Kv(τw(α)) is complete by Theorem 1.35 since the
extension degree of Kv(τw(α))/Kv, which is equal to deg fw, is finite. Furthermore Kv(τw(α))
contains τ(L) = τ(K(α)), which leads to τ(K(α))cl ⊂ Kv(τw(α))

cl = Kv(τw(α)). Hence we
obtain Kv(τw(α)) = τw(L)

cl.
Let us consider the following three natural isomorphisms:

Kv[X]/(
∏
w|v fw)

∼= (K[X]/(f))⊗K Kv → L⊗K Kv induced by X 7→ α⊗ 1,

Kv[X]/(
∏
w|v fw) →

∏
w|v (Kv[X]/(fw)) induced by X 7→ (X + (fw))w,

Kv[X]/(fw) → Kw(τw(α)) = τw(L)
cl induced by X 7→ τw(α).

These isomorphisms make the diagram

L⊗K Kv
(2) //

∏
w|v τw(L)

cl

Kv(X)/(
∏
w|v fw)

OO

//
∏
w|v (Kv[X]/(fw))

OO

commutative. Therefore, the map (2) is an isomorphism. □

2 Fields of number theory

This section gives an explanation of finite fields, local fields, and algebraic number fields. The
relationship among these fields is as follows: a local field is obtained by the completion of an
algebraic number field with respect to a valuation; and a finite field appears as the residue field
of a (non-archimedean) local field. We refer to [40, Chapter I] for finite fields; [32, Chapter II],
[35, §63], [41, Chapter III-§5] for local fields; and [32, Chapter III-§1] for algebraic number fields.

2.1 Finite fields

A finite field is a field whose cardinality is finite. Let p be a prime. The quotient ring Fp := Z/pZ
is an example of a finite field of characteristic p. Any finite field of characteristic p is of order
pd for some d ∈ Z>0, because it has an Fp-vector space structure. Let Ωp be an algebraically
closed field of characteristic p. Then the map τ0 : Ωp → Ωp, x 7→ xp is an automorphism. Let
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d be a positive integer and put q = pd. We remark that the polynomial Xq −X has q distinct
roots in Ωp since it is coprime to its derivative −1. Hence, the subfield

Ω
τd0
p = {x ∈ Ωp | τd0 (x) = x} = {x ∈ Ωp | xq = x}

fixed by the d-th iterate τd0 of τ0 is a finite field of order q. This shows that there exists a finite
field of order pd for every d ∈ Z>0. Moreover, it can be seen that any finite field of order pd is

isomorphic to Ω
τd0
p (see [40, Chapter I, Theorem 1]).

Let κ be a finite field of order q = pd where d ∈ Z>0. The symbol κ× denotes the multiplica-
tive group κ, and κ×2 denotes the subgroup consisting of all nonzero squares: κ× = κ\{0}, κ×2 =
{x2 | x ∈ κ×}. We will use the following facts, see [40, Chapter I, Theorems 2 and 4] for their
proofs.

Proposition 2.1. The multiplicative group κ× is a cyclic group of order q − 1. □

Proposition 2.2. The following assertions hold.

(i) If charκ = 2 then any element of κ is a square.

(ii) If charκ 6= 2 then the homomorphism κ→ {1,−1} ⊂ κ defined by x 7→ x(q−1)/2 gives rise
to the following exact sequence:

1 → κ×2 → κ× → {1,−1} → 1

where κ×2 → κ× is the inclusion. In particular, the quotient κ×/κ×2 is of order 2. □

Corollary 2.3. Suppose that charκ 6= 2. Then −1 is a square if q ≡ 1 mod 4 and not a square
if q ≡ 3 mod 4.

Proof. This follows from Proposition 2.2 (ii) because (−1)(q−1)/2 = 1 if q ≡ 1 mod 4 and
(−1)(q−1)/2 = −1 if q ≡ 3 mod 4. □

We now show that any finite extension of a finite field is a cyclic extension.

Proposition 2.4. Let λ be a finite extension field of κ. Then λ/κ is a cyclic extension, and
the Galois group Gal(λ/κ) is generated by the automorphism τ : x 7→ xq.

Proof. Put m = [λ : κ]. If m = 1 then the assertion is obvious. Suppose that m > 1. We claim
that τ has order m in the automorphism group Autκ(λ). Since τ

m(x) = xq
m
= x for any x ∈ λ,

the order of τ is at most m. Let x ∈ λ× be an element of (multiplicative) order qm − 1. Such
an element exists by Proposition 2.1. Then

τ j(x) = xq
j 6= x for any 1 ≤ j ≤ m− 1,

which implies that the order of τ is at least m. Therefore τ has order m.
Let G ⊂ Autκ(λ) denote the subgroup generated by τ . Then

m = |G| ≤ |Autκ(λ)| ≤ [λ : κ] = m,

which shows that |Autκ(λ)| = [λ : κ] and G = Autκ(λ). Hence λ/κ is a Galois extension and
Gal(λ/κ) = G. This completes the proof. □

Corollary 2.5. Let λ be an extension field of κ. Then the norm map Nλ/κ : λ× → κ× is
surjective.
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Proof. Since κ× is a cyclic group of order q − 1 (Proposition 2.1), it suffices to show that there
exists an element x ∈ λ× such that the order of its norm Nλ/κ(x) ∈ κ× is equal to q − 1. Note
that Gal(λ/κ) = {id, τ, τ2, . . . , τm−1} by Proposition 2.4, where m := [λ : κ] and τ is as in
Proposition 2.4. Let x ∈ λ× be an element of order qm − 1. Then

Nλ/κ(x) =
∏

σ∈Gal(λ/κ)

σ(x) =

m−1∏
i=0

xq
i
= x

qm−1
q−1 .

Thus, for any 1 ≤ j ≤ q − 2, we get

(Nλ/κ(x))
j = (x

qm−1
q−1 )j = x

(qm−1)· j
q−1 6= x

since the order of x is qm − 1. This shows that Nλ/κ(x) is of order q − 1 as required. The proof
is complete. □

2.2 Local fields

Definition 2.6. An archimedean local field is the field R or C. A non-archimedean local field
is a complete field with discrete valuation such that its residue field is a finite field. A non-
archimedean local field is said to be dyadic if the characteristic of its residue field equals 2, and
non-dyadic otherwise.

Definition 2.7. Let p ∈ Z be a prime number. We write vp for the valuation of Q associated
with the prime ideal pZ. The completion of Q with respect to vp is called the field of p-adic
numbers and denoted by Qp. The valuation ring of Qp is called the ring of p-adic integers and
denoted by Zp.

The field Qp is an example of a non-archimedean local field because the residue field Zp/pZp
is naturally isomorphic to Z/pZ = Fp. Another example is Fp((t)), the field of formal Laurent
series over Fp. It is known that any non-archimedean local field is a finite extension of Qp or
Fp((t)), see [32, Chapter II, Proposition 5.2].

In the following, we study square numbers of a non-archimedean local field. First, let K be
an arbitrary field with exponential valuation v. Let O, p, and κ be the valuation ring, maximal
ideal, and residue field with respect to v. Then

1 + p = {1 + z ∈ O× | z ∈ p} = {x ∈ O× | v(x− 1) > 0} ⊂ O×

is a subgroup of O×. Indeed, for x1, x2 ∈ 1 + p we have

v(x1x
−1
2 − 1) = v(x1 − x2) = v((x1 − 1)− (x2 − 1)) ≥ min{v(x1 − 1), v(x2 − 1)} > 0.

In the case where v is a discrete valuation, assuming v to be normalized, for any i ∈ Z>0 the
subset

1 + pi = {1 + z ∈ O× | z ∈ pi} = {x ∈ O× | v(x− 1) ≥ i}

is a subgroup of O×. If we fix a uniformizer π of O, any element of 1 + pi can be uniquely
written as 1 + xπi, where x ∈ O.

Now, we assume that K is a non-archimedean local field. Namely, v is a discrete valuation,
K is complete with respect to the topology defined by v, and κ is a finite field. We also assume
that v is normalized. Let π be a uniformizer of O, and let q denote the cardinality of κ.

Lemma 2.8. Let i, j ∈ Z be integers with 1 ≤ i ≤ j. The order of the quotient group (1 +
pi)/(1 + pj) is qj−i.
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Proof. Let r be an positive integer. Then, the kernel of the surjection

1 + pr → κ, 1 + xπr 7→ x+ p (x ∈ O)

is 1+pr+1. Thus, it induces an isomorphism (1+pr)/(1+pr+1) → κ, and #((1+pr)/(1+pr+1)) =
q. Now, let i, j ∈ Z be integers with 1 ≤ i ≤ j. From the chain

1 + pj ⊂ 1 + pj−1 ⊂ · · · ⊂ 1 + pi+1 ⊂ 1 + pi,

we obtain

#((1 + pi)/(1 + pj)) = #((1 + pi)/(1 + pi+1)) · · ·#((1 + pj−1)/(1 + pj)) = qj−i

as required. □

Lemma 2.9. Suppose that the characteristic of K is not 2. For any positive integer r ∈ Z, we
have (1 + 2pr)2 = 1 + 4pr. In particular, if K is non-dyadic then (1 + p)2 = 1 + p.

Proof. Let r be a positive integer. We have (1 + 2pr)2 ⊂ 1+ 4pr +4p2r ⊂ 1+ 4pr. We show the
reverse inclusion. Take an element 1+4πrα of 1+4pr where α ∈ O, and consider the quadratic
polynomial f(X) := X2+π−rX−π−rα ∈ K[X]. This polynomial is reducible by Corollary 1.34.
Let β, β′ ∈ K be the roots of f . Since β+β′ = −π−r we have −r = v(β+β′) ≥ min{v(β), v(β′)},
and thus v(β) ≤ −r or v(β′) ≤ −r. We assume that v(β′) ≤ −r without loss of generality.
Furthermore, since ββ′ = −πrα we get −r + v(α) = v(β) + v(β′) ≤ v(β) − r, and hence
v(β) ≥ v(α) ≥ 0. This means that β ∈ O. Since β is a root of f , we have 1+4πrα = (1+2πrβ)2.
This completes the proof. □

Let r be a positive integer, and let ς : O× → O× denote the homomorphism x 7→ x2. We
consider the commutative diagram

1 // 1 + 2pr //

ς|1+2pr

��

O× //

ς

��

(O/2pr)× //

ς̄
��

1

1 // 1 + 2pr // O× // (O/2pr)× // 1

(3)

where ς̄ is the homomorphism induced by ς, and horizontal arrows are natural homomorphisms.
Two horizontal sequences are exact.

Theorem 2.10. Let K be a non-archimedean local field of characteristic not 2, and let v,O, q
be as above.

(i) If K is non-dyadic then the natural surjection O× → κ× gives rise to an isomorphism
O×/O×2 → κ×/κ×2. Furthermore, we have #(K×/K×2) = 4.

(ii) If K is dyadic then #(K×/K×2) = 4qv(2).

Proof. We first remark that K× = O× × {πn | n ∈ Z} since any nonzero element of K can be
uniquely written as uπn, where u is a unit of O and n is an integer. This leads to K×/K×2 =
O×/O×2 × {1, π}.

(i). Suppose that K is non-dyadic. Substituting r = 1 in the diagram (3), we have

1 // 1 + p //

ς|1+p

��

O× //

ς

��

κ× //

ς̄
��

1

1 // 1 + p // O× // κ× // 1,
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which induces the exact sequence

(1 + p)/(1 + p)2 → O×/O×2 → κ×/κ×2 → 1.

On the other hand, Lemma 2.9 shows that (1 + p)/(1 + p)2 = 1. Hence, the natural homo-
morphism O×/O×2 → κ×/κ×2 is an isomorphism. Furthermore, since κ×/κ×2 has order 2 by
Proposition 2.2 (ii), we obtain

#(K×/K×2) = #(O×/O×2) ·#{1, π} = #(κ×/κ×2) · 2 = 4.

(ii). Suppose that K is dyadic, and let r be a positive integer. In the diagram (3), we have
ker(ς|1+2pr) = {1} because −1 ∈ (1 + 2O) \ (1 + 2p). We also have #ker(ς̄) = #coker(ς̄) < ∞
since (O/2pr)× is of finite order. Moreover, the image of ς|1+2pr is 1 + 4pr by Lemma 2.9. Now
we apply the snake lemma to the diagram (3) and get the exact sequence

1 → {1,−1} → ker(ς̄) → (1 + 2pr)/(1 + 4pr) → O×/O×2 → coker(ς̄) → 1.

Then, the order of O×/O×2 is finite since those of the others are finite, and

#ker(ς̄) ·#(O×/O×2)

#{1,−1} ·#((1 + 2pr)/(1 + 4pr)) ·#coker(ς̄)
= 1.

Since #((1 + 2pr)/(1 + 4pr)) = #((1 + pv(2)+r)/(1 + p2v(2)+r)) = qv(2) by Lemma 2.8, we obtain
#(O×/O×2) = #{1,−1} ·#((1 + 2pr)/(1 + 4pr)) = 2qv(2), and #(K×/K×2) = 4qv(2). □

Let K be a non-archimedean local field of characteristic not 2. By Theorem 2.10, if K
is non-dyadic then there exists a non-square unit ε ∈ O×, and the group K×/K×2 of square
classes can be written as K×/K×2 = {1, ε, π, επ}. In the case K = Q2, we can get a natural
isomorphism Z×

2 /Z
×2
2

∼= (Z/8Z)× as follows.

Example 2.11. We have (Z2/8Z2)
× ∼= (Z/8Z)× = {1,−1, 3,−3}, and (Z2/8Z2)

×2 = {1}. Thus,
by applying the snake lemma to the diagram (3) under r = 2, we get the exact sequence

1 → {1,−1} → (Z2/8Z2)
× → (1 + 8Z2)/(1 + 16Z2)

ι→ Z×
2 /Z

×2
2 → (Z2/8Z2)

× → 1.

In this case, ι is the trivial map, i.e., im ι = {1}, since #((Z2/8Z2)
×) = 4 = #{1,−1} ·#((1 +

8Z2)/(1 + 16Z2)). Thus, the natural homomorphism Z×
2 /Z

×2
2 → (Z2/8Z2)

× ∼= (Z/8Z)× is an
isomorphism. As a result, we can write Q×

2 /Q
×2
2 = {1,−1, 3,−3, 2,−2, 6,−6}.

The following proposition is another consequence of Lemma 2.9.

Proposition 2.12. Let K be a non-archimedean local field of characteristic not 2. The set K×2

of nonzero squares is an open subset of K. Furthermore, any subgroup H of K× with index 2 is
an open subset of K.

Proof. Let β ∈ K×2 be a nonzero square, and put and N = v(β) + v(4π). Let α ∈ K be any
element with v(α−β) > N . Then v(β) < v(α−β) and thus v(α) = min{v(β), v(α−β)} = v(β).
Hence, we can write α = πnα′ and β = πnβ′, where n := v(β) and α′, β′ ∈ O× are units. Note
that n is even and β′ ∈ O×2 since β is a nonzero square. We have α′ ≡ β′ mod 4π because

v(α′ − β′) = v(π−n(α− β)) > −n+N = v(4π).

This implies that
β′−1α′ ∈ 1 + 4p = (1 + 2p)2 ⊂ O×2,

where the equality 1+4p = (1+2p)2 is by Lemma 2.9. Thus α′ ∈ β′O×2 = O×2, and the element
α = πnα′ is also a nonzero square. This shows that K×2 an open subset of K. As a result, for
any subgroup H of K× with index 2 is open because H ⊃ K×2. The proof is complete. □
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Note that two points which are sufficiently close belong to the same square class by this
proposition.

Remark 2.13. For a non-archimedean local field K of characteristic 0, one can show that {xn |
x ∈ K×} is an open set in K for any n ∈ Z>0, and hence any subgroup of K× with finite index
is also open, see [32, Chapter II-§4, Exercise 4].

2.3 Unramified extension

Let K be a non-archimedean local field, and let OK , p, and κ denote its valuation ring, maximal
ideal, and residue field respectively. For any finite extension L/K, we write OL for the valuation
ring of L, which is also the integral closure of OK in L, see Theorem 1.35.

Definition 2.14. Let L be a finite separable extension field of K. The extension L/K is said to
be unramified if the maximal ideal of L is unramified over K, or equivalently, [λ : κ] = [L : K]
where λ is the residue field of L.

For any n ∈ Z>0, there exists an unramified extension L/K of degree n. (see [41, Chapter
III-§5, Theorem 2]). Moreover, such an extension is unique. We verify the uniqueness by using
the following theorem.

Theorem 2.15. Let L/K be a finite unramified extension, and L′/K an arbitrary finite ex-
tension. Let P and P′ be the maximal ideals, and λ and λ′ be the residue fields of L and L′

respectively. For a homomorphism σ : L→ L′ of K-algebras, we write σ̄ for the homomorphism
λ→ λ′ of κ-algebras defined by

σ̄(x+P) = σ(x) +P′ for x ∈ OL. (4)

Then the map σ 7→ σ̄ gives a bijection between Homal
K(L,L′) and Homal

κ (λ, λ
′).

Proof. See [41, Chapter III-§5, Theorem 3]. □

Corollary 2.16. Let K be an algebraic closure of K. For any positive integer n ∈ Z>0, there
exists one and only one unramified extension field Kn of degree n over K contained in K.

Proof. If N/K is an unramified extension of degree n then it is algebraic, and thus, there exists
an extension field Kn ⊂ K isomorphic to N . We then show uniqueness. Let Kn,K

′
n ⊂ K be

unramified extension fields of degree n over K. We write L for the composite field KnK
′
n ⊂ K

and λ for its residue field. Then, residue fields of Kn and K ′
n have the same cardinality (#κ)n,

and they coincide as a subfield of λ, say κn. By Theorem 2.15, the trivial commutative diagram

κn
id //

incl   A
AA

AA
AA

κn

incl~~}}
}}
}}
}

λ

leads to the commutative diagram

Kn
îd //

incl   @
@@

@@
@@

@ K ′
n

incl~~~~
~~
~~
~~

L

where incl denotes the inclusion and îd : Kn → K ′
n denotes the homomorphism which induces

id : κn → κn. This diagram shows that îd(x) = x for any x ∈ Kn, and hence Kn = K ′
n. This

completes the proof. □
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Theorem 2.15 also implies that any finite unramified extension is a cyclic extension.

Corollary 2.17. Let L/K be a finite unramified extension, and λ the residue field of L. Then
the map AutK(L) → Autκ(λ), σ 7→ σ̄ is a group automorphism. In particular L/K is a cyclic
extension.

Proof. It is easy to check that the map σ 7→ σ̄ is a group homomorphism. Thus, it is an
automorphism by Theorem 2.15. Moreover, since the group Autκ(λ) = Gal(λ/κ) is a cyclic
group of order [λ : κ] = [L : K] by Proposition 2.4, so is AutK(L). This completes the proof. □

This corollary leads to an important concept, that is, the Frobenius automorphism.

Definition 2.18. Let L/K be a finite unramified extension, and λ the residue field of L. If q
denotes the cardinality of κ, the automorphism λ→ λ, x 7→ xq generates Gal(λ/κ) (see Propo-
sition 2.4). Hence, by Corollary 2.17, the automorphism of L corresponding to this generator of
Gal(λ/κ) is also a generator of Gal(L/K). This generator of Gal(L/K) is called the Frobenius
automorphism of L/K. If we write τ ∈ Gal(L/K) for the Frobenius automorphism then it is
characterized by the property

τ(x) ≡ xq mod P for any x ∈ OL,

where P is the maximal ideal of L.

Corollary 2.17 also leads to the following proposition.

Proposition 2.19. Let L/K be a finite unramified extension, and let P and λ be the maximal
ideal and residue field of L. Then TrL/K(x) + p = Trλ/κ(x+P) in κ for any x ∈ OL.

Proof. Let x ∈ OL. we have

TrL/K(x) + p =
∑

σ∈Gal(L/K)

σ(x) + p =
∑

σ∈Gal(L/K)

σ̄(x+P).

Moreover, it follows from Corollary 2.17 that∑
σ∈Gal(L/K)

σ̄(x+P) =
∑

τ∈Gal(λ/κ)

τ(x+P) = Trλ/κ(x+P).

Therefore TrL/K(x) + p = Trλ/κ(x+P) as required. □

Corollary 2.20. Let L/K be a finite unramified extension. Then TrL/K(OL) = OK .

Proof. The inclusion TrL/K(OL) ⊂ OK holds in general, see §1.2. Let x ∈ OK . Since Trλ/κ :
λ → κ is surjective by Corollary 1.7, there exists y0 ∈ OL such that Trλ/κ(y0 + P) = x + p.
Then, Proposition 2.19 shows that x − TrL/K(y0) ∈ p. Let π be a uniformizer of OK . Then
π−1(x−TrL/K(y0)) ∈ OK , and as above, we can take y1 ∈ OL such that π−1(x−TrL/K(y0))−
TrL/K(y1) ∈ p, or equivalently x− TrL/K(y0)− πTrL/K(y1) ∈ p2. By repeating this procedure,
we get a sequence (yn)n≥0 in OL such that

x− TrL/K(y0)− πTrL/K(y1)− · · · − πnTrL/K(yn) ∈ pn+1

for any n. Let (zn)≥0 be the Cauchy sequence in OL defined by zn =
∑n

j=0 π
jyj . Then

x− TrL/K(zn) = x−
∑n

j=0 π
j TrL/K(yj) ∈ pn+1. Noting that TrL/K : L → K is continuous, we

obtain TrL/K(limn→∞ zn) = x. This shows that OK ⊂ TrL/K(OL), and the proof is complete.
□
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Let L/K be a finite unramified extension. We close this subsection by verifying that the
group K×/NL/K(L×) of norm classes is isomorphic to Z/[L : K]Z. Let P and λ be the maximal
ideal and residue field of L. We remark that pOL = P by the fundamental identity (Proposition
1.22). This means that any uniformizer of OK is also a uniformizer of OL.

Lemma 2.21. We have NL/K(1 +P) = 1 + p.

Proof. See [41, Chapter V, Proposition 3]. □

Theorem 2.22. Let L/K be an unramified extension of degree n. The kernel of the surjection

vK : K× → Z/nZ, α 7→ vK(α) + nZ

is equal to NL/K(L×), where vK is the normalized valuation of K. In particular, it gives rise to
an isomorphism K×/NL/K(L×) → Z/nZ.

Proof. Let π be a unimodular of OK . Then π is also a uniformizer of OL, and any element of
L can be expressed as uπm, where u is a unit of OL and m is an integer. Thus, the inclusion
NL/K(L×) ⊂ ker(vK) follows from NL/K(π) = πn. We prove the reverse inclusion. Consider the
following commutative diagram

1 / / 1 +P //

NL/K

��

O×
L

//

NL/K

��

λ× //

Nλ/κ

��

1

1 // 1 + p // O×
K

// κ× // 1

where rows are exact with natural homomorphisms. Since NL/K : 1 + P → 1 + p and Nλ/κ :

λ× → κ× are surjective by Lemma 2.21 and Corollary 2.5, so is NL/K : O×
L → O×

K . Now, let

α ∈ K× belong to ker(vK), i.e., vK(α) ≡ 0 mod n. By surjectivity of NL/K : O×
L → O×

K , there

exists β ∈ O×
L such that NL/K(β) = π−vK(α)α. Then α = πvK(α)NL/K(β) = NL/K(π−vK(α)/nβ),

which shows that ker(vK) ⊂ NL/K(L×). The proof is complete. □

Remark 2.23. It will turn out that there exists an isomorphism K×/NL/K(L×) ∼= Z/nZ for a
cyclic extension L/K of degree n even if L/K is not unramified, see Corollary 3.28.

2.4 Algebraic number fields

An algebraic number field is a finite extension field of Q. Algebraic number fields have many
analogies with function fields of algebraic curves over a finite field, and they are together called
global fields. However, we treat only algebraic number fields in this thesis.

Let L be an algebraic number field. The integral closure of Z in L is called the ring of
integers of L, and denoted by OL. This is a Dedekind domain as seen in Example 1.20.

Definition 2.24. A place of L is an equivalence class of valuations of L. A place is called a
finite place if it is represented by a non-archimedean valuation, and a infinite place otherwise.

When there is no danger of confusion, we will use the same symbol for a place and a valuation
representing it. The following proposition means that finite places correspond naturally to
nonzero prime ideals of OL.

Proposition 2.25. Any non-archimedean valuation of L is equivalent to the valuation associated
with a nonzero prime ideal of OL.
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Proof (Sketch). Let w be a non-archimedean valuation of L. Then w|Q is a non-archimedean
valuation of Q. It is known that a valuation of Q is equivariant to the one associated with a
prime ideal of Z or the usual absolute value, see [32, Chapter II, Proposition 3.7]. Thus, we may
assume that w|Q = vp for some prime p, where vp is the valuation associated with pZ.

Let B ⊂ L be the valuation ring with respect to w. We have Z ⊂ B since w(Z) = vp(Z) ≥ 0.
On the other hand, one can show that any valuation ring of a field with exponential valuation
is integrally closed. Thus B contains the integral closure OL of Z in L. Let Q be the maximal
ideal of B. Then P := Q ∩ OL is a prime ideal of OL. Put S = OL \P. We have

OL ⊂ S−1OL ⊂ S−1B = B

in L. Then S−1OL must be equal to B because it can be shown that any discrete valuation ring
is a maximal subring of its field of fractions. This implies that w is equivalent to the valuation
defined by P. The proof is complete. □

For any place w of L, the completion of L with respect to w is referred to as the completion
or localization of L at w, and denoted by Lw.

Proposition 2.26. Let w be a place of L. The completion Lw is a local field.

Proof. If w is archimedean then Lw ∼= R or C by Ostrowski’s theorem 1.31, and we are done.
Suppose that w is non-archimedean. Then, it is represented by the valuation associated with a
nonzero prime ideal P of OL by Proposition 2.25. In particular, it is a discrete valuation. Let
p be a prime such that P ∩ Z = pZ. Then, the residue field of Lw with respect to w is a finite
extension of Zp/pZp ∼= Fp since the valuation ring of Lw, which is equal to the integral closure of
Zp in Lw, is finitely generated as a Zp-module (see §1.3), Thus, it is a finite field. This completes
the proof. □

Definition 2.27. Let L/K be a finite extension of algebraic number fields, and let v be a place
of K. A place w of L is above v, or v is below w, if w is an extension of v as valuations up to
equivalence. In this case, we write w | v. We say that v is (totally) split in L if the number of
places of L above v is [L : K]. For finite places, we use the terms ramified and unramified when
the corresponding prime ideals do so.

We will need the following proposition concerning decompositions of prime ideals.

Proposition 2.28. Let L/K be a finite extension of algebraic number fields with [L : K] > 1.
There exist infinitely many prime ideals of OK that are not totally split in L.

Proof (Sketch). For any algebraic number field K, it is known that the Dedekind zeta function

ζK(s) :=
∑
a

N(a)−s (s ∈ C),

where a ranges over all nonzero integral ideal of OK and N(a) := |OK/a|, is a meromorphic
function having a simple pole at s = 1 (see [32, Chapter VII-§5]). Note that it can be written as

ζK(s) =
∏
p∈V ′

1

1−N(p)−s

by the uniqueness of prime factorization (Theorem 1.17), where V ′ is the set of all nonzero prime
ideals of OK .
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Let L/K be a finite extension of algebraic number fields with [L : K] > 1, and suppose that
there were only finitely many prime ideals of OK that are not totally split in L, say p1, . . . , pr.
Then

ζL(s) =
∏
p∈V ′

∏
P|p

1

1−N(P)−s

=
∏

p∈V ′\{p1,...,pr}

(
1

1−N(p)−s

)[L:K]

×
r∏
i=1

∏
P|pi

1

1−N(P)−s

= ζK(s)[L:K] ×
r∏
i=1

( 1

1−N(pi)−s

)−[L:K] ∏
P|pi

1

1−N(P)−s

 .

By comparing the order at the pole s = 1, we would have [L : K] = 1. This contradicts the
assumption [L : K] > 1, and the proof is complete. □

3 Brauer groups

The Brauer group is a group obtained as a quotient of the monoid consisting of isomorphism
classes of central simple algebras over a field. Brauer groups are useful to describe relationship
between local and global fields, although its definition does not tell it at a glace. We refer to
[14] and [39, Chapter 8] for general theory of central simple algebras and Brauer groups. In this
section, the letter K stands for a field. For a K-algebra A, we write [A : K] for the dimension
of A over K.

3.1 Definitions

For a K-algebra A and its subset S, the subalgebra ZS(A) := {a ∈ A | as = sa for all s ∈ S} is
called the centralizer of S in A. The center of A is the centralizer ZA(A) of itself.

Definition 3.1. Let A be a K-algebra.

(i) A is simple if A contains no two-sided ideal other then 0 and A itself.

(ii) A is central (over K) if its center is K.

We write Mn(A) for the algebra of all n×n matrices with entries in a K-algebra A. If A is a
division algebra with center K then the full matrix algebra Mn(A) is simple and central over K
(see [39, Chapter 8, Theorem 1.4]). Conversely, Wedderburn’s theorem claims that any simple
algebra is isomorphic to the full matrix algebra over a division algebra.

Theorem 3.2 (Wedderburn). Let A be a simple K-algebra whose K-dimension is finite. Then
there exists a division K-algebra and a positive integer n such that A ∼= Mn(D). Furthermore,
D is unique up to isomorphism and n is also unique.

Proof. See Corollary 1.6 and Theorem 1.9 of [39, Chapter 8]. □

Whenever we say a central simple K-algebra A, we assume that A is finite dimensional over
K. The Brauer group Br(K) of K is defined as follows. First, let AK denote the set of all
isomorphism classes of central simple K-algebras. The tensor product of two central simple
K-algebras is again a central simple K-algebra (see [39, Chapter 8, Theorem 3.2]). Hence the
set AK becomes a commutative monoid with the operation ⊗K . Note that the identity element
of this monoid is the K-algebra K.
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Next, we introduce an equivalence relation on AK . Let A,A′ be central simple K-algebras.
Then, by Wedderburn’s theorem 3.2, there exist division K-algebrasD,D′ such that A ∼=Mn(D)
and A′ ∼=Mn′(D′) for some n, n′ ∈ Z>0, and D,D

′ are uniquely determined by A,A′ respectively.
We say that A and A′ are Brauer equivalent, denoted A ∼ A′, if D ∼= D′. Then it can be easily
seen that the Brauer equivalence defines an equivalence relation on AK . Each equivalence
class is called a Brauer class, and we write [A]K for the Brauer class represented by A. The
quotient AK/ ∼ is denoted by Br(K). Wedderburn’s theorem 3.2 shows that each Brauer class
is represented by exactly one division K-algebra.

Finally, we check that the set Br(K) is in fact a group with the operation induced by ⊗K .
The following lemma gives a characterization of the Brauer equivalence.

Lemma 3.3. Let A,A′ be central simple K-algebras. Then A ∼ A′ if and only if there exist
integers r, r′ ∈ Z>0 such that Mr(A) ∼=Mr′(A

′).

Proof. Let D and D′ denote division K-algebras such that A ∼= Mn(D) and A′ ∼= Mn′(D′)
where n, n′ ∈ Z>0. Suppose that A ∼ A′. Then D ∼= D′, and we have Mn′(A) ∼=Mn′(Mn(D)) ∼=
Mnn′(D) and Mn(A

′) ∼= Mn(Mn′(D)) ∼= Mnn′(D). Hence Mn′(A) ∼= Mn(A
′). Conversely,

suppose that there exist r, r′ ∈ Z>0 such that Mr(A) ∼=Mr′(A
′). Since Mr(A) ∼=Mr(Mn(D)) ∼=

Mrn(D) and Mr′(A
′) ∼= Mr′(Mn′(A′)) ∼= Mr′n′(D′), we obtain Mrn(D) ∼= Mr′n′(D′). Thus

D ∼= D′ by the uniqueness part of Wedderburn’s theorem 3.2. This means that A ∼ A′, and the
proof is complete. □

Proposition 3.4. Let A,A′, B,B′ be central simple K-algebras.

(i) If A ∼ A′ and B ∼ B′ then A⊗K B ∼ A′ ⊗K B′.

(ii) The opposite Aop of A is also a central simple K-algebra. Here the opposite Aop of A is the
K-algebra which is the same as A as a K-vector space, with the multiplication performed
in the reverse order.

(iii) A⊗K Aop ∼=M[A:K](K).

Proof. Suppose that A ∼ A′ and B ∼ B′. By Lemma 3.3, there are integers r, r′, s, s′ such that
Mr(A) ∼=Mr′(A

′) and Ms(B) ∼=Ms′(B
′). Then

Mrs(A⊗K B) ∼=Mrs(K)⊗K (A⊗K B) ∼= (Mr(K)⊗K A)⊗K (Ms(K)⊗K B)
∼=Mr(A)⊗K Ms(B) ∼=Mr′(A

′)⊗K Ms′(B
′) ∼=Mr′s′(A

′ ⊗K B′).

Again by Lemma 3.3, we obtain A⊗KB ∼ A′⊗KB
′. This shows the assertion (i). The assertion

(ii) is clear because any two-sided ideal of Aop is also a two-sided ideal of A. For (iii), see [39,
Chapter 8, Theorem 3.4]. □

Proposition 3.4 (i) shows that the tensor product induces an operation on the quotient
Br(K) = AK/ ∼, and it becomes a monoid again. We write + for this induced operation
additively:

[A]K + [B]K := [A⊗K B]K (A,B ∈ AK).

Moreover, for any A ∈ AK , it follows from Proposition 3.4 (ii) and (iii) that Aop ∈ AK and

[A]K + [Aop]K = [A⊗K Aop]K = [M[A:K](K)]K = [K]K = 0.

This means that the inverse of [A]K is given by [Aop]K . Therefore, the monoid Br(K) is in fact
a group.
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Definition 3.5. The group Br(K) is called the Brauer group of K.

Remark 3.6. The Brauer group can be written in terms of Galois cohomology: if Ksep denotes
a separable closure of K then there is a natural isomorphism between the second cohomology
group H2(Gal(Ksep/K), (Ksep)×) and the Brauer group Br(K). We refer to [14, §12] and [41,
Chapter X-§§4 and 5].

3.2 Restriction and corestriction

Here, we explain two homomorphisms between Brauer groups called the restriction map and
corestriction map. Let L be an extension field of K (extension degree can be infinite). For a
central simple K-algebra A, the tensor product A ⊗K L is a central simple L-algebra. In fact,
we have:

Proposition 3.7. Let A be a K-algebra. Then A is a central simple K-algebra if and only if
A⊗K L is a central simple L-algebra.

Proof. See [14, §7 Corollary 6]. □

Definition 3.8. The restriction map is the natural map defined by

resL/K : Br(K) → Br(L), [A]K 7→ [A⊗K L]L (A ∈ AK).

The restriction map is a group homomorphism because (A ⊗K A′) ⊗K L ∼= (A ⊗K L) ⊗L

(A′ ⊗K L) for A,A′ ∈ AK . Furthermore, restriction maps have transitivity: if E/L is a field
extension then

resE/K = resE/L ◦ resL/K ,

because (A⊗K L)⊗L E = A⊗K E for A ∈ AK .

Definition 3.9. Let L/K be a field extension. A central simple K-algebra A (or its Brauer
class) is split by L if A ⊗K L ∼= Mn(L) for some n ∈ Z≥0, i.e., resL/K([A]K) = 0. We define
Br(L/K) := ker(resL/K). This is the subgroup of Br(K) consisting of all Brauer classes split by
L.

Transitivity of restriction maps implies that if a central simple K-algebra A is split by an
extension field L of K then A is split also by any extension field of L.

The corestriction map is a homomorphism in the reverse direction defined when L/K is a
finite separable extension. We give a brief sketch of its definition and properties. We begin by
defining a K-algebra called the corestriction for an L-algebra. Let L/K be a finite separable
extension, and N the Galois closure of L/K. Put G = Gal(N/K) and H = Gal(N/L). For an
N -algebra C and an automorphism σ ∈ G, we define σC to be the ring C equipped with the
N -algebra structure iC ◦ σ−1 : N → C, where iC : N → C is the N -algebra structure of C.

Let B be a L-algebra, and let R be a system of representatives for the left cosets of H in
G, that is, G =

⋃
ρ∈R ρH. Then, the N -algebra B(G:H) :=

⊗
ρ∈R

ρ(B ⊗L N) does not depend
on the choice of R up to isomorphism ([14, §8, Lemma 3]). Moreover, the Galois group G
acts on B(G:H) from the left in a little complicated but standard way, and the fixed subalgebra
(B(G:H))G is a K-algebra such that (B(G:H))G⊗KN ∼= B(G:H) (Lemma 3 and Corollary 1 of [14,
§8]). This K-algebra (B(G:H))G is called the corestriction of B with respect to the extension
L/K, and denoted by corL/K(B). Corestrictions have following properties.

Proposition 3.10. Let L/K be a finite separable extension.

(i) For a K-algebra A, we have corL/K(A⊗K L) ∼= A⊗[L:K].
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(ii) For L-algebras B and B′, we have corL/K(B ⊗L B
′) ∼= corL/K(B)⊗K corL/K(B′).

(iii) Let E/L be a finite separable extension. For an E-algebra C, we have corE/K(C) ∼=
corL/K(corE/L(C)).

Proof. See [14, §8, Lemmas 9, 10, and 11]. □

Let L/K be a finite separable extension, and N,G,H,R as above. Let B is a central simple
K-algebra. Then B ⊗K N is a central simple N -algebra by Proposition 3.7. It is clear that
σ(B⊗K N) is also a central simple N -algebra for any σ ∈ G, and hence so is the tensor product
B(G:H) =

⊗
ρ∈R

ρ(B ⊗L N). By the isomorphism (B(G:H))G ⊗K N ∼= B(G:H) and Proposition

3.7, it follows that the corestriction corL/K(B) = (B(G:H))G is a central simple K-algebra.

Definition 3.11. Let L/K is a finite separable extension. The corestriction map is the map
defined by

corL/K : Br(L) → Br(K), [B]L 7→ [corL/K(B)]K (B ∈ AL).

Proposition 3.10 (ii) and (iii) shows that the corestriction maps are group homomorphisms
and have transitivity. Moreover, Proposition 3.10 (i) implies that

corL/K ◦ resL/K([A]K) = [L : K] · [A]K (5)

for any A ∈ AK .

3.3 General results for central simple algebras

Here we review some general results in the theory of central simple algebras. The Skolem-Noether
theorem, described below, is fundamental.

Theorem 3.12 (Skolem-Noether). Let A,B be simple K-algebras, and suppose that [A : K] <∞
and B is central over K. For any homomorphisms φ, ψ : A → B of K-algebras, there exists
y ∈ B× such that ψ(x) = yφ(x)y−1 for all x ∈ A. In other words, there exists an inner
automorphism τ of B such that ψ = τ ◦ φ.

Proof. See [14, §7, Skolem-Noether Theorem]. □

Its proof is omitted here, but one can obtain the following theorem by using the Skolem-
Noether theorem.

Theorem 3.13 (Centralizer theorem). Let A be a central simple K-algebra and B its subalgebra.
Then ZA(B)⊗K M[B:K](K) ∼= A⊗K Bop.

Proof. See [14, §7, Centralizer Theorem]. □

By using the centralizer theorem, we show some propositions about a central simple K-
algebra and field extension L/K.

Proposition 3.14. Let A be a central simple K-algebra, and let L be an extension field of K
contained in A. If [A : K] = [L : K]2 then ZA(L) = L, and A is split by L.

Proof. It is obvious that L ⊂ ZA(L). So it suffices to show that [ZA(L) : K] = [L : K] in order
to get ZA(L) = L. By the centralizer theorem 3.13, it follows that

ZA(L)⊗K M[L:K](K) ∼= A⊗K Lop = A⊗K L. (6)
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By considering their dimensions, we get [ZA(L) : K][L : K]2 = [A : K][L : K]. We now suppose
that [A : K] = [L : K]2. Then [ZA(L) : K][L : K]2 = [L : K]3, and [ZA(L) : K] = [L : K] as
required. This implies that ZA(L) = L. Therefore, by the isomorphism (6) again, we obtain

A⊗K L ∼= ZA(L)⊗K M[L:K](K) = L⊗K M[L:K](K) ∼=M[L:K](L).

This means that A is split by L. The proof is complete. □

The converse of this proposition holds in the sense of the following proposition.

Proposition 3.15. Let A be a central simple K-algebra, and let L be an extension field of K
with finite degree. If A is split by L then there exists a central simple K-algebra B such that
[B]K = [A]K , L ⊂ B, and [B : K] = [L : K]2.

Proof. Suppose that A is split by L, and let m denote the integer such that A⊗K L ∼=Mm(L).
We have

Aop ⊗K L = (A⊗K Lop)op ∼=Mm(L)
op ∼=Mm(L), (7)

where the last isomorphism is given by the homomorphism sending a matrix to its transpose.
On the other hand, the field L can be embedded in the algebra EndK(L) of endomorphisms by
left multiplication. Furthermore EndK(L) can be embedded in Mn(K), where n := [L : K], by
fixing a basis of L over K. Hence, we can consider L to be contained in Mn(K). Combining
this with the isomorphism (7), we regard Aop ⊗K L as a subalgebra of Mmn(K):

Aop ⊗K L
∼→Mm(L) ↪→Mm(Mn(K)) =Mmn(K).

We now define B := ZMmn(K)(A
op) ⊂Mmn(K). Then it is clear that L ⊂ B, and the centralizer

theorem 3.13 implies that

B ⊗K M[Aop:K](K) ∼=Mmn(K)⊗K (Aop)op =Mmn(K)⊗K A. (8)

Hence [B]K = [A]K . It remains to prove [B : K] = n2. Note that [A : K] = m2 since
A ⊗K L ∼= Mm(L). We have [B ⊗K M[Aop:K](K) : K] = [B : K][A : K]2 = [B : K]m4 and
[Mmn(K)⊗K A : K] = [Mmn(K) : K][A : K] = m4n2. Therefore, by the isomorphism (8) again,
we obtain [B : K]m4 = m4n2, and [B : K] = n2. This completes the proof. □

Another consequence of the centralizer theorem is:

Proposition 3.16. Every central simple K-algebra is split by a finite Galois extension of K.
Namely Br(K) =

⋃
L Br(L/K), where L ranges over all finite Galois extension of K.

Proof. Let A be a central simple K-algebra, and D a division K-algebra with [D]K = [A]K . It
is sufficient to show that D is split by a finite separable extension of K, because A is split by
the Galois closure of the field in that case. Let L be a maximal commutative subalgebra of D.
Of course it is a field. Moreover, Köthe’s theorem ([14, p. 64]) states that L can be chosen
so that L/K is separable. So we assume that L/K is separable. By maximality of L, we have
ZD(L) = L. Then the centralizer theorem 3.13 gives the isomorphism D ⊗K L ∼= M[L:K](L) as
in the proof of Proposition 3.14. This means that D is split by the finite separable extension L.
□
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3.4 Cyclic algebras

Here, we introduce central simple algebras called cyclic algebras, which will play a crucial role
in calculating the Brauer group of a local field. In fact, every Brauer class is represented by
a cyclic algebra when the considering field is a local field. Some important results on cyclic
algebras will be aggregated into one exact sequence (Theorem 3.20). The letter K continues to
be an arbitrary field.

Definition 3.17. Let L/K be a cyclic extension of degree n, and fix a generator σ ∈ Gal(L/K)
of the Galois group. For α ∈ K×, the symbol (σ, α)K denotes the n2-dimensional K-algebra
defined by the following data:

• (σ, α)K contains L and has an L-basis of the form 1, e, e2, . . . , en−1:

(σ, α)K = L · 1⊕ L · e⊕ L · e2 ⊕ · · · ⊕ L · en−1.

• The multiplication is determined by

en = α and e · y = σ(y) · e for any y ∈ L.

Such a K-algebra is called a cyclic algebra over K. When emphasizing the cyclic extension L/K,
we also write (σ, L/K,α)K for (σ, α)K .

In the following, we fix a cyclic extension L/K of degree n and a generator σ ∈ Gal(L/K) of
the Galois group. Any cyclic algebra (σ, α)K (α ∈ K×) is a central simple K-algebra (see [39,
Chapter 8, Theorem 12.1]), and it is split by L by Proposition 3.14. The Brauer class of the
cyclic algebra (σ, α)K is denoted by [σ, α]K . We consider the map

K× → Br(K), α 7→ [σ, α]K . (9)

Lemma 3.18. For any α, β ∈ K×, we have (σ, α)K ⊗K (σ, β)K ∼= Mn((σ, αβ)K). As a result,
the map (9) is a group homomorphism.

Proof (Sketch). Put A = (σ, α)K , B = (σ, β)K , C = (σ, αβ)K , and write

E = L · 1⊕ L · eE ⊕ L · e2E ⊕ · · · ⊕ L · en−1
E (E = A,B, or C)

as in Definition 3.17. Let Idm denote the identity matrix of sizem. AK-algebra homomorphisms
φ : A→Mn(C) is defined by

φ(eA) =


0
... Idn−1

0

α 0 · · · 0

 ∈Mn(C),

φ(y) = diag(y, σ(y), . . . , σn−1(y)) ∈Mn(C) for any y ∈ L.

Also, a K-algebra homomorphisms ψ : B →Mn(C) is defined by

ψ(eB) = eC φ(eA)
−1, ψ(y) = y Idn for any y ∈ L.

Then, a homomorphism A⊗K B →Mn(C) is induced by

A×B →Mn(C), (a, b) 7→ φ(a)ψ(b).

The induced homomorphism is injective since A ⊗K B is simple, and then surjective since
[A⊗K B : K] = n4 = [Mn(C) : K]. Therefore A⊗K B ∼= Mn(C). By taking Brauer classes, we
obtain [σ, α]K + [σ, β]K = [σ, αβ]K . This means that the map (9) is a group homomorphism.
See [14, §10, Lemma 4] for more detail. □
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Note that this lemma implies that [σ, 1]K = 0 in Br(K) and hence (σ, 1)K ∼= Mn(K). The
following theorem means that the homomorphism (9) induces an injection K×/NL/K(L×) →
Br(K).

Proposition 3.19. Let α ∈ K×. The quaternion algebra (σ, α)K is isomorphic to (σ, 1)K if
and only if α ∈ NL/K(L×).

Proof (Sketch). Put A = (σ, α)K , B = (σ, 1)K , and let eA ∈ A, eB ∈ B be as in Definition 3.17.
Suppose that α ∈ NL/K(L×), and write α = NL/K(z) where z ∈ L×. Then, the K-algebra
homomorphism φ : A→ B defined by

φ(eA) = zeB, φ(y) = y for all y ∈ L

is an automorphism. Suppose conversely that A ∼= B. We fix an isomorphism φ : A → B. By
the Skolem-Noether theorem 3.12, there exists an inner automorphism τ : B → B such that the
diagram

L
incl //

σ

��

A
ϕ // B

τ

��
L

incl // B

is commutative. Put y = e−1
B τ(φ(eA)) ∈ B. A computation shows that y ∈ ZB(L) = L, where

the equality ZB(L) = L follows from Proposition 3.14. Then

α = τ(φ(eA))
n = (eB y)

n = (
∏n
i=1 σ(y)) e

n
B = NL/K(y),

which means that α ∈ NL/K(L×). This completes the proof. □

As a result, the order of the Brauer class of any cyclic algebra is at most n. Indeed, we have

n · [σ, α]K = [σ, αn]K = [σ,NL/K(α)]K = 0

for any α ∈ K×. The main theorem of this subsection is as follows.

Theorem 3.20. The sequence

1 → K×/NL/K(L×)
[σ, · ]K−→ Br(K)

resL/K−→ Br(L)

is exact. In particular K×/NL/K(L×) ∼= Br(L/K).

Proof. Injectivity of the homomorphism [σ, · ]K : K×/NL/K(L×) → Br(K) is by Proposition
3.19. So we prove that im([σ, · ]K) = ker(resL/K). We already have the inclusion im([σ, · ]K) ⊂
ker(resL/K) because Proposition 3.14 shows that the cyclic algebra (σ, α)K is split by L for any
α ∈ K×. Suppose that a central simple K-algebra A is split by L. Then, by Proposition 3.15,
there exists a central simple K-algebra B such that [B]K = [A]K , L ⊂ B, and [B : K] = n2.
Note that ZB(L) = L by Proposition 3.14. We show that B ∼= (σ, β)K for some β ∈ K×. By
the Skolem-Noether theorem 3.12, there exists eB ∈ B× such that σ(y) = eB y e

−1
B for all y ∈ L.

Put β = enB. Then β is in ZB(L) = L because for any y ∈ L we have

βyβ−1 = enB y e
−n
B = σn(y) = idL(y) = y.

Moreover, we have σ(β) = eB enB e−1
B = β, which implies that β belongs toK by the fundamental

theorem of Galois theory. Therefore, a K-algebra homomorphism (σ, β)K → B is defined by

n−1∑
i=0

yi e
i 7→

n−1∑
i=0

yi e
i
B (y0, . . . , yn−1 ∈ L)
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where e ∈ (σ, β)K is as in Definition 3.17. This is injective since (σ, β)K is simple, and then
surjective since [(σ, β)K : K] = n2 = [B : K]. Hence B ∼= (σ, β)K , and [A]K = [B]K = [σ, β]K .
This means that ker(resL/K) ⊂ im([σ, · ]K), and the proof is complete. □

The following proposition is another important result.

Proposition 3.21. Let M be an intermediate field of L/K, and put m = [M : K].

(i) σm is a generator of Gal(L/M), and (σ,L/K,α)K ⊗K M ∼ (σm, L/M,α)M .

(ii) σ|M is a generator of Gal(M/K), and (σ, L/K,αn/m)K ∼ (σ|M ,M/K,α)K .

Proof. See [14, §10 Lemmas 6 and 8]. □

3.5 Brauer groups of local fields

Here we compute Brauer groups of local fields.

Archimedean case We recall that an archimedean local field is R or C.

Theorem 3.22. The Brauer group Br(R) is of order 2, and Br(C) is a trivial group.

Proof. The finite Galois extensions of R are R itself and C. Thus Br(R) = Br(C/R) by Propo-
sition 3.16. On the other hand, the extension C/R is a cyclic extension having the complex
conjugate ·̄ as a generator of Gal(C/R). Hence Br(C/R) ∼= R×/{zz̄ | z ∈ C} ∼= {1,−1} by
Theorem 3.20. This shows the first assertion. Similarly, we get Br(C) = 0 since there is no finite
Galois extension of C other than C itself. □

This theorem means there is a unique non-commutative division algebra over R, that is, the
algebra of Hamilton quaternions.

Remark 3.23. In a similar way to the proof of Theorem 3.22, one can show that the Brauer
group of any finite field is trivial, since the norm map of any finite extension of a finite field is
surjective (Corollary 2.5). As a result, every finite division algebra is a field. This fact is known
as Wedderburn’s little theorem.

Definition 3.24. By Theorem 3.22, there exists a unique nontrivial homomorphism Br(R) →
Q/Z (assign 1/2 + Z to the nonzero class in Br(R)). This homomorphism is referred to as the
invariant map and denoted by invR. Similarly, the zero map Br(C) → Q/Z is also referred to
as the invariant map and denoted by invC.

Non-archimedean case Suppose that K is a non-archimedean local field. In this case, there
exists a canonical isomorphism invK : Br(K) → Q/Z. We explain it here by accepting the
following fact.

Theorem 3.25. Any central simple K-algebra is split by a finite unramified extension of K.

Proof. See [41, Chapter XII, Theorem 1]. □

Let K denote the algebraic closure of K, and Kn ⊂ K the unramified extension of degree n
over K for each n ∈ Z>0, see Corollary 2.16. Theorem 3.25 means that for any [A]K ∈ Br(K)
there exists positive integer n such that [A]K ∈ Br(Kn/K). In other words, we have

Br(K) =
⋃
n≥1

Br(Kn/K).
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On the other hand, for the group Q/Z we have

Q/Z =
⋃
n≥1

(
1

n
Z
)
/Z.

To get an isomorphism Br(K) → Q/Z, we first define the isomorphism invKn/K : Br(Kn/K) →(
1
nZ
)
/Z as follows. We recall that the extension Kn/K is a cyclic extension (Corollary 2.17), and

there is a generator of Gal(Kn/K) called the Frobenius automorphism. Let σn ∈ Gal(Kn/K)
denote the Frobenius automorphism ofKn/K. Then the homomorphism [σn, · ]K : K×

n → Br(K)
gives rise to an isomorphism K×/NKn/K(K×

n ) → Br(Kn/K) by Theorem 3.20. This induced
isomorphism is denoted by φn. On the other hand, the map

ψn : K×/NL/K(K×
n ) →

(
1

n
Z
)
/Z, α 7→ 1

n
vK(α) mod Z

is also an isomorphism by Theorem 2.22. The isomorphism invKn/K : Br(Kn/K) →
(
1
nZ
)
/Z

is defined to be the composition ψn ◦ φ−1
n . For positive integers m,n ∈ Z>0 with m | n, the

diagram

Br(Km/K)

incl

��

K×/NKm/K(K×
m)

ϕmoo ψm //

α 7→αn/m

��

(
1
mZ
)
/Z

incl
��

Br(Kn/K) K×/NKn/K(K×
n )

ϕnoo ψn //
(
1
nZ
)
/Z

(10)

is commutative. Indeed, commutativity of the right square is clear, and that of the left square
follows from Proposition 3.21 (ii).

Definition 3.26. By the commutative diagram (10), the mapping Br(K) → Q/Z sending
[A]K ∈ Br(K) to invKn/K([A]K), where n is an integer such that [A]K ∈ Br(Kn/K), is a
well-defined automorphism. This automorphism is called the invariant map and denoted by
invK : Br(K) → Q/Z.

The invariant map has the following property.

Proposition 3.27. Let L/K be a finite separable extension. Then invL ◦ resL/K ◦ inv−1
K : Q/Z →

Q/Z is multiplication by [L : K], and invL ◦ corL/K ◦ inv−1
K : Q/Z → Q/Z is the identity map.

Namely, following diagrams are commutative:

Br(K)
resL/K//

invK
��

Br(L)

invL
��

Q/Z
[L:K] // Q/Z,

Br(L)
corL/K//

invL
��

Br(K)

invK
��

Q/Z id // Q/Z.

Proof (Sketch). We may assume that L ⊂ K, and let f be the inertia degree of L/K. Let
[A]K ∈ Br(K), and let n ∈ Z>0 be an integer with f | n such that [A]K is split by Kn. Then

[A]K can be written as [A]K = [σn,Kn/K,α]K for some α ∈ K×. Note that vL(α) =
[L:K]
f vK(α)

by Corollary 1.36 and the fundamental identity (Proposition 1.22). Then

[L : K] · invK([A]K) = [L : K]
1

n
vK(α) = [L : K]

1

n

f

[L : K]
vL(α) =

1

m
vL(α), (∗)

where m := n/f . On the other hand, we have

(σn,Kn/K,α)K ⊗K L = (σn,Kn/K,α)K ⊗K Kf ⊗Kf
L ∼ (σfn,Kn/Kf , α)Kf

⊗Kf
L
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by Proposition 3.21 (i). We also have L ∩Kn = Kf , and L ⊗Kf
Kn

∼= LKn = Lm, where Lm
is the unramified extension of degree m over L. Under this isomorphism, the automorphism
idL ⊗ σfn of L⊗Kf

Kn corresponds to the Frobenius automorphism τm of Lm/L. So one obtain

an isomorphism (σfn,Kn/Kf , α)Kf
⊗Kf

L ∼= (τm, Lm/L, α)L. Hence

invL ◦ resL/K([A]K) = invL([τm, Lm/L, α]L) =
1

m
vL(α).

This equation with (∗) shows commutativity of the diagram for the restriction map. Combining
it with (5), we also get commutativity of the diagram for the corestriction map. □

Corollary 3.28. For any cyclic extension L/K of degree n, we have K×/NL/K(L×) ∼= Z/nZ.

Proof. Let L/K be an cyclic extension L/K of degree n. Consider the diagram

0 // K×/NL/K(L×)
[σ,·]K // Br(K)

resL/K//

invK
��

Br(L)

invL
��

0 // Z/nZ
×1/n // Q/Z n // Q/Z,

where the first row is exact by Theorem 3.20, and the second rows is also exact clearly. This
diagram is commutative by Proposition 3.27. Therefore, the automorphism K×/NL/K(L×) ∼=
Z/nZ is induced. □

3.6 The Brauer-Hasse-Noether theorem

The Brauer group of an algebraic number field is described as follows.

Theorem 3.29 (Brauer-Hasse-Noether). Let K be an algebraic number field, and V the set of
all places of K. For each θ ∈ Br(K), we have resKv/K(θ) = 0 for almost all v ∈ V, where Kv is
the completion of K at v. Moreover, the sequence

0 → Br(K)
(resKv/K)v

−→
⊕
v∈V

Br(Kv)

∑
v invKv−→ Q/Z → 0

is exact.

Proof. See [19, Theorem 14.11]. This is true also for a function field over a finite field. □

It will be seen in §4 that this theorem plays a central role when discussing the local-global
principle for inner products over an algebraic number field.

We close this section by extracting an exact sequence of twisting groups (see Definition 1.10)
from the Brauer-Hasse-Noether theorem. Let E be an algebraic number field with a nontrivial
involution σ, and let W be the set of all places of the fixed subfield Eσ.

Notation 3.30. Let w ∈ W be a place of Eσ. The completion (Eσ)w of Eσ at w is abbreviated
to Eσw. We define Ew := E ⊗Eσ Eσw. Note that the involution σ extends to the involution
σ ⊗ idEσ

w
of Ew, and we write σ for it again. Then, the fixed subalgebra (Ew)

σ is canonically
identified with Eσw = (Eσ)w. Moreover, the embedding E× → E×

w induces an homomorphism
Tw(E, σ) → Tw(Ew, σ) between twisting groups. If w is not split in E then there exists a unique
place u above w, and Ew is (isomorphic to) the completion Eu. In this case, we write

ιw : Tw(Ew, σ) = (Eσw)
×/NEw/Eσ

w
(E×

w ) → Z/2Z

42



for the isomorphism mentioned in Corollary 3.28. If w is split in E then there exist exactly two
places u1, u2 of E above w, and Ew ∼= Eu1 × Eu2 = Eσw × Eσw, by Theorem 1.44. In this case,
we have Tw(Ew, σ) = {1} by Proposition 1.11, and ιw : Tw(Ew, σ) → Z/2Z denotes the trivial
homomorphism.

Proposition 3.31. Let E be an algebraic number field with a nontrivial involution σ, and W
the set of all places of Eσ. For each µ ∈ (Eσ)×, we have µ = 1 in Tw(Ew, σ) for almost all
w ∈ W, and the sequence

0 → Tw(E, σ) −→
⊕
w∈W

Tw(Ew, σ)

∑
w ιw−→ Z/2Z → 0

is exact. Moreover Tw(E, σ) has infinite order.

Proof. For a place w ∈ W split in E, we define [σ, · ]Eσ
w
: Tw(Ew, σ) → Br(Eσw) to be the trivial

homomorphism. Let Ŵ be the set of places of E, and consider the diagram

0

��

0

��

0

��
Tw(E, σ) //

[σ, · ]Eσ

��

⊕
w∈W

Tw(Ew, σ)

∑
w ιw//

⊕
w[σ, · ]Eσ

w
��

Z/2Z

×1/2

��
0 // Br(Eσ) //

resE/Eσ

��

⊕
w∈W

Br(Eσw) //

��

Q/Z //

×2

��

0

0 // Br(E) //
⊕
u∈Ŵ

Br(Eu) // Q/Z // 0,

where the second and third rows are exact sequences of the Brauer-Hasse-Noether theorem, and⊕
w∈W Eσw →

⊕
u∈Ŵ Br(Eu) is given by

(θw)w 7→ ((resEu/Ew
(θw))u|w)w (θw ∈ Br(Eσw)).

Then, the diagram is commutative, and all columns are exact (it is clear for the right one, and
follows from Theorem 3.20 for the rest). Hence, we obtain exactness of the sequence

0 → Tw(E, σ) −→
⊕
w∈W

Tw(Ew, σ)

∑
w ιw−→ Z/2Z. (∗)

Furthermore, Proposition 2.28 shows that there exist infinitely many places of Eσ that are non-
split in E. Thus

∑
w ιw :

⊕
w∈W Tw(Ew, σ) → Z/2Z is surjective since ιw is an isomorphism for

a place w ∈ W non-split in E. Moreover
⊕

w∈W Tw(Ew, σ) has infinite order. Hence Tw(E, σ)
also has infinite order by exactness of the sequence (∗). The proof is complete. □
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Chapter II

Inner products

4 Inner products and hermitian products over fields

We here discuss inner products and hermitian products over fields. In particular, (classical
known) classification results over fields of number theory will be given. This section is written
with primary reference to books [35], [39], and [40]. However, differently from these books,
local-global arguments are made by using the Brauer-Hasse-Noether theorem.

4.1 Inner products over arbitrary fields

Let K be a field.

Definition 4.1. Let V be a finite dimensional K-vector space. For a symmetric bilinear form
b : V × V → K, we write b∗ for the linear map V → V ∗ := Hom(V,K) defined by

b∗(v) = (u 7→ b(u, v)) (v, u ∈ V ).

A symmetric bilinear form b : V ×V → K is nondegenerate if the linear map b∗ is injective. We
refer to a nondegenerate symmetric bilinear form as an inner product. If b is an inner product
on V then the pair (V, b) is called an inner product space. An inner product space (V, b) is
sometimes denoted only by V or b.

Remark 4.2. Let V be a finite dimensional K-vector space. For any inner product b on V , the
injection b∗ : V → V ∗ is in fact an isomorphism since V and V ∗ have the same dimension.
However, when considering a symmetric bilinear form over a ring, for example Z, there is a gap
between b∗ being an injection and b∗ being an isomorphism.

Definition 4.3. Let V, V ′ be finite dimensional K-vector spaces, and b, b′ symmetric bilinear
forms on V, V ′ respectively. An isometry from (V, b) to (V ′, b′) is a K-linear map t : V → V ′

satisfying b′(t(u), t(v)) = b(u, v) for any u, v ∈ V . We say that (V, b) and (V ′, b′) are isomorphic
if there exists an isomorphism V → V ′ of K-vector spaces which is also an isometry. Note that
if b is nondegenerate then any isometry (V, b) → (V ′, b′) is injective. In the case where b is
nondegenerate, an isometry from (V, b) to (V, b) itself is referred to as a isometry of (V, b), and
the group of all isometries of (V, b) is denoted by O(V, b) or just by O(V ).

Let V be a finite dimensional K-vector space, and b : V × V → K a symmetric bilinear
form. Let U be a subspace of V . The symmetric bilinear form on U obtained by restricting b
to U ×U is denoted by b|U . We say that U is nondegenerate if b|U is nondegenerate. We define
U⊥ := {v ∈ V | b(u, v) = 0 for any u ∈ U}. Two subspaces U and U ′ of V are orthogonal if
U ′ ⊂ U⊥, or equivalently (U ′)⊥ ⊂ U . The following proposition is fundamental.
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Proposition 4.4. Suppose that b is nondegenerate (i.e., (V, b) is an inner product space). Let
U be a subspace of V . Then the sequence

0 → U⊥ → V
b∗(·)|U−→ U∗ → 0 (11)

is exact, where U⊥ → V is the inclusion. Moreover, we have:

(i) dimV = dimU⊥ + dimU .

(ii) (U⊥)⊥ = U .

(iii) If U is nondegenerate then so is U⊥, and V = U ⊕ U⊥.

Proof. It is clear by definition that ker(b∗(·)|U : V → U∗) = U⊥. We prove that b∗(·)|U is
surjective. Let ξ ∈ U∗, and fix a complement U c of U in V . Then the map ξ̃ : V → K defined
by

ξ̃(u+ u′) = ξ(u) (u ∈ U, u′ ∈ U c)

belongs to V ∗. Since b is nondegenerate, there exists a vector v ∈ V such that b∗(v) = ξ̃. Then
we have b∗(v)|U = ξ. This shows that b∗(·)|U is surjective.

(i). It follows from the exact sequence (11) that

dimV = dimU⊥ + dimU∗ = dimU⊥ + dimU.

(ii). It is clear that U ⊂ (U⊥)⊥. Hence, it suffices to prove that dim(U⊥)⊥ = dimU . By
applying (i) to U⊥ we get

dimV = dim(U⊥)⊥ + dim(U⊥)∗ = dim(U⊥)⊥ + dimU⊥.

This equation and the assertion (i) imply that dim(U⊥)⊥ = dimU , and therefore (U⊥)⊥ = U .
(iii). Suppose that U is nondegenerate. Then U ∩ U⊥ = 0. Thus the assertion (i) implies

that V = U ⊕ U⊥. Furthermore U⊥ must be nondegenerate because otherwise V = U ⊕ U⊥

would be degenerate. □

The symbols V and b continue to be a finite dimensional K-vector space and a symmetric
bilinear form on V respectively. Let d ∈ Z≥0 denote the dimension of V . For a basis e1, . . . , ed
of V , the d× d matrix (b(ei, ej))ij is called the Gram matrix of (V, b) with respect to the basis
e1, . . . , ed. If e

′
1, . . . , e

′
d is another basis and T is the change-of-basis matrix, then

G′ = tTGT (12)

where G and G′ are the Gram matrices with respect to e1, . . . , ed and e′1, . . . , e
′
d respectively. If

we say ‘a’ Gram matrix then it means the Gram matrix with respect to some basis. Any Gram
matrix is clearly a symmetric matrix. The bilinear form b is nondegenerate if and only if a Gram
matrix is nondegenerate, that is, its determinant is not zero (this property does not depend on
the choice of a Gram matrix by (12)).

Definition 4.5. Let G be a Gram matrix of (V, b). If b is nondegenerate then equation (12)
shows that the class of detG in K×/K×2 is independent of the choice of a basis. This class is
referred to as the determinant of (V, b), and denoted by det(V, b) or det b. If b is degenerate then
the determinant of (V, b) is defined to be 0.

It is useful to express an inner product by using a matrix.
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Notation 4.6. For a d× d nondegenerate symmetric matrix G = (gij)ij , the symbol

〈G〉K or

〈g11 · · · g1d
...

. . .
...

gd1 · · · gdd

〉
K

denote the inner product space such that its underlying space is Kd and G is the Gram matrix
with respect to the standard basis of Kd. If G is a diagonal matrix, say diag(a1, . . . , ad), then
we write 〈a1, . . . , ad〉K instead of 〈diag(a1, . . . , ad)〉K for short. An inner product space (V, b) is
isomorphic to 〈G〉K if and only if G is the Gram matrix of (V, b) with respect to some basis.

Definition 4.7. Let (V, b) be an inner product space over K.

(i) A basis of V is called an orthogonal basis if the corresponding Gram matrix is diagonal.

(ii) A nonzero vector v ∈ V is isotropic if b(v, v) = 0, and anisotropic otherwise. The space
V (or the bilinear form b) is isotropic if V has an isotropic vector, and totally isotropic if
b(v, v) = 0 for all v ∈ V .

(iii) We say that b represents α ∈ K if there exists a nonzero vector v such that b(v, v) = α.

We now show that any inner product space can be decomposed into a subspace which has an
orthogonal basis and a totally isotropic subspace. As a result, it will be seen that there exists
an orthogonal basis if charK 6= 2.

Lemma 4.8. Let (V, b) be an inner product space over K.

(i) If b represents a nonzero element α ∈ K× then b ∼= 〈α〉K ⊕ b′ for a suitable inner product
b′.

Suppose that charK 6= 2.

(ii) If b is isotropic then b represents any element of K.

(iii) For any α ∈ K×, the direct sum 〈α〉K ⊕ b is isotropic if and only if b represents −α.

Proof. (i). Suppose that b represents α ∈ K×, and take v ∈ V such that b(v, v) = α. Put
b′ = b|(Kv)⊥ . Since the one-dimensional subspace (Kv, b|Kv) is nondegenerate, Proposition 4.4

shows that b′ is nondegenerate and (V, b) = (Kv, b|Kv)⊕ ((Kv)⊥, b′) ∼= 〈α〉K ⊕ ((Kv)⊥, b′).
(ii). Suppose that charK 6= 2 and b is isotropic. Let α ∈ K× be a nonzero element, and take

a nonzero vector v ∈ V such that b(v, v) = 0. Since b is nondegenerate, there exists a vector u
such that b(u, v) = 1. We define β := b(u, u) and u′ := u+ α−β

2 v. Then

b(u′, u′) = b(u, u) + (α− β)b(u, v) +
(α− β)2

4
b(v, v) = β + (α− β) = α.

This means that b represents α, and we are done.
(iii). Let α ∈ K× be a nonzero element, and let (U, bU ) be a one-dimensional inner product

space with a basis u such that bU (u, u) = α. Of course (U, bU ) ∼= 〈α〉K . Suppose that b represents
−α, and take a vector v ∈ V satisfying b(v, v) = −α. Then u+ v ∈ U ⊕V is an isotropic vector,
and the space U ⊕ V ∼= 〈α〉K ⊕ V is isotropic.

Suppose conversely that (U ⊕ V, bU ⊕ b) has an isotropic vector, say γu+ v ∈ U ⊕ V where
γ ∈ K and v ∈ V . Then γ2α + b(v, v) = 0. If γ 6= 0 then b(γ−1v, γ−1v) = −α, which means
that b represents −α. If γ = 0 then b is isotropic, and hence it represents −α by the assertion
(ii). This completes the proof. □
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Proposition 4.9. Let (V, b) be an inner product space over K.

(i) We have (V, b) ∼= 〈α1, . . . , αm〉K⊕ (N, bN ), where α1, . . . , αm ∈ K× are invertible elements
and (N, bN ) is a totally isotropic space.

(ii) If charK 6= 2 then (V, b) has an orthogonal basis.

Proof. (i). If V is totally isotropic then there is nothing to prove. Suppose that V contains an
anisotropic vector v1, and put α1 = b(v1, v1) ∈ K×. Then (V, b) ∼= 〈α1〉K ⊕ (V1, b1) for a suitable
inner product space (V1, b1) by Lemma 4.8 (i). If V1 is totally isotropic then we are done. If
V1 contains an anisotropic vector then the same discussion yields (V1, b1) ∼= 〈α2〉K ⊕ (V2, b2) for
some α2 ∈ K× and some inner product space (V2, b2). Hence V ∼= 〈α1, α2〉K ⊕ (V2, b2). By
repeating this discussion, we arrive at the assertion.

(ii). Suppose that charK 6= 2. By assertion (i), it suffices to show that there is no non-
degenerate totally isotropic space other than the zero-dimensional space. Let (N, bN ) be a
nondegenerate totally isotropic space, and suppose that N were not zero. Then N contains an
isotropic vector, but this implies that N would have an anisotropic vector by Lemma 4.8 (ii).
This contradicts the fact that (N, bN ) is totally isotropic. Therefore N is zero as required. This
completes the proof. □

Remark 4.10. Proposition 4.9 (i) still holds even if b is degenerate, see e.g. [MH73, Chapter I,
§3].

An example of an inner product space which has no orthogonal basis is given by a metabolic
space, defined below.

Definition 4.11. The symbol HK denotes the 2-dimensional inner product space〈
0 1
1 0

〉
K .

A hyperbolic plane is an inner product space isomorphic to HK . A basis of a hyperbolic plane

is called a hyperbolic basis if the corresponding Gram matrix equals

(
0 1
1 0

)
. An inner product

space is said to be metabolic if it is isomorphic to H⊕n
K for some n ∈ Z≥0, or equivalently,

isomorphic to 〈
0 Idn
Idn 0

〉
K ,

where Idn is the identity matrix of size n.

Example 4.12. Let (V, b) be a metabolic space over a field K with charK = 2. Then V is
totally isotropic because V has a basis consisting of isotropic vectors. This implies that V has
no orthogonal basis.

The idea of representing elements comes from the view of quadratic forms. We close this
subsection with a mention of quadratic forms.

Definition 4.13. Let V be a finite dimensional K-vector space. A quadratic form on V is a
function q : V → K such that q(αv) = α2v for any α ∈ K and v ∈ V , and such that the map

V × V → K, (u, v) 7→ q(u+ v)− q(u)− q(v) (13)

is bilinear over K. A quadratic form q is nondegenerate if so is the symmetric bilinear form (13).

47



For example, if b is a bilinear form on K-vector space V then the map v 7→ b(v, v) is a
quadratic form. This quadratic form is called the quadratic form associated with b and denoted
by qb. An isotropic vector of an inner product space (V, b) is nothing but a nontrivial zero of
the quadratic form qb.

Definition 4.14. Let q be a quadratic form on a finite dimensional K-vector space. Suppose
that charK 6= 2. The symmetric bilinear form bq on V defined by

bq(u, v) =
1

2
(q(u+ v)− q(u)− q(v)) (u, v ∈ V )

is called the the symmetric bilinear form associated with q. Note that this is 1/2 times the
bilinear form (13).

Under the assumption charK 6= 2, we have b = bqb for any symmetric bilinear form b, and
q = qbq for any quadratic form q over K. Hence, by correspondences b 7→ qb and q 7→ bq, the
theory of symmetric bilinear forms and that of quadratic form are essentially the same in this
case.

Let G = (gij) ∈Md(K) be a symmetric matrix of size d. The homogeneous polynomial

q(X1, . . . , Xd) =
∑
i,j

gijXiXj

of degree 2 in d variables can be seen as a quadratic form on the K-vector space Kd. Let
e1, . . . , ed be the standard basis of Kd. If charK 6= 2 then bq(ei, ej) = gij , that is, bq = 〈G〉K . In
particular, the quadratic form a1X

2
1 + · · ·+adX2

d corresponds to the inner product 〈a1, . . . , ad〉K .

4.2 Witt’s theorem

Let K be a field, and we assume that charK 6= 2 in this subsection. We give an important
theorem on extension of an isometry, called Witt’s theorem. It leads to the cancellation property
of the monoid consisting of all isomorphic classes of inner product spaces.

Lemma 4.15. Let (V, b), (V ′, b′) be two inner product spaces over K. Let U be a degenerate
subspace of V , and s : U → V ′ an injective isometry. Then, we can extend s to an isometry
Û → V ′ where Û is a nondegenerate subspace of V containing U .

Proof. Let u ∈ U be a vector such that b(u, U) = 0. Since b is nondegenerate, there exists v ∈ V
such that b(u, v) = 1. Put U1 := U ⊕Kv ⊂ V and U ′ = s(U) ⊂ V ′. Since b′∗(·)|U ′ : V ′ → U ′∗

is surjective by Proposition 4.4, there exists v′ ∈ V ′ such that b′∗(v′)|U ′ = b∗(v)|U ◦ s−1, or
equivalently b′(x′, v′) = b(s−1(x′), v) for all x′ ∈ U ′. Moreover, we may assume that b′(v′, v′) =
b(v, v) by replacing v′ with v′ + 1

2(b(v, v) − b(v′, v′))s(u). Let s1 : U1 → V ′ be the map defined
by

s1(x+ αv) = s(x) + αv′ (x ∈ U,α ∈ K).

A computation shows that s1 is an injective isometry extending s. If U1 is nondegenerate then
we are done. If not, by repeating the same procedure, we obtain an injective isometry from a
nondegenerate subspace such that it is an extension of s. □

Definition 4.16. Let (V, b) be an inner product space over K, and let z ∈ V be an anisotropic
vector. Then the map σz : V → V defined by

σz(v) = v − 2
b(v, z)

b(z, z)
z (v ∈ V )

is an isometry of V . This isometry is called the reflection orthogonal to z. It is clear that
σz(z) = −z and σz(u) = u for any u ∈ (Kz)⊥.
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Lemma 4.17. Let (V, b) be an inner product space over K, and let u, v ∈ V be anisotropic
vectors with b(u, u) = b(v, v). Then there exists an isometry t ∈ O(V ) which can be expressed
as a product of at most two reflections such that t(u) = v.

Proof. Put z+ = u+v and z− = u−v. Then z+ or z− is not isotropic; since otherwise we would
have

0 = b(z+, z+) + b(z−, z−) = 2b(u, u) + 2b(v, v) = 4b(u, u),

which contradicts the assumption that u is anisotropic. Note that b(z+, z−) = 0. If z− is
anisotropic then

σz−(u) = σz−

(
1

2
(z+ + z−)

)
=

1

2
(z+ − z−) = v,

and hence the σz− ∈ O(V ) is the required isometry. Suppose that z+ is anisotropic. Then

σz+ ◦ σu(u) = σz+(−u) = σz+

(
−1

2
(z+ + z−)

)
=

1

2
(z+ − z−) = v,

and therefore σz+ ◦ σu ∈ O(V ) is the required isometry. □

Theorem 4.18 (Witt’s theorem). Let (V, b) and (V ′, b′) be two isomorphic inner product spaces
over K, and let U be a subspace of V . Any injective isometry U → V ′ extends to an isometry
from V to V ′.

Proof. We can assume that U is nondegenerate by Lemma 4.15. Furthermore, we assume that
(V, b) = (V ′, b′) by fixing an isomorphism. Let s : U → V be an isometry. We argue by
induction on dimU . If dimU = 1 then U = Ku for some anisotropic vector u ∈ V , and Lemma
4.17 shows that there exists t ∈ O(V ) such that t(u) = s(u). This isometry t is an extension
of s. Suppose that dimU ≥ 2. There exists an anisotropic vector u ∈ U since charK 6= 2.
Put U1 = Ku,U2 = {v ∈ U | b(v, u) = 0}, and W = U⊥

1 = {v ∈ V | b(v, u) = 0}. By
the case dimU = 1, there exists an extension t ∈ O(V ) of s|U1 . We have (t−1 ◦ s)(U2) ⊂ W
because (t−1 ◦ s)(u) = u. By induction hypothesis, there there exists t′ ∈ O(W ) extending
t−1 ◦ s : U2 → W . Then t ◦ (id|U1 ⊕ t′) ∈ O(V ) is an extension of s : U → V . The proof is
complete. □

Theorem 4.19 (Witt’s cancellation). Let (V, b), (V ′, b′), (V1, b1), (V2, b2) be inner product spaces
over K. If (V, b) ∼= (V ′, b′) and (V, b) ⊕ (V1, b1) ∼= (V ′, b′) ⊕ (V2, b2) then (V1, b1) ∼= (V2, b2). In
other words, the monoid consisting of all isomorphism classes of inner product spaces over K
has the cancellation property.

Proof. Suppose that (V, b) ∼= (V ′, b′) and (V, b)⊕(V1, b1) ∼= (V ′, b′)⊕(V2, b2). Let t be an isometry
from V to V ′, and let ι : V ′ → V ′ ⊕ V2 denote the inclusion. Then there exists an extension
t̂ : V ⊕ V1 → V ′ ⊕ V2 of ι ◦ t : V → V ′ ⊕ V2 by Theorem 4.18. Because t̂(V1) ⊂ (V ′)⊥ = V2 in
V ′ ⊕ V2, the restriction t̂ |V1 gives an isomorphism between (V1, b1) and (V2, b2). □

We remark that Witt’s cancellation does not hold when the characteristic of K is 2, see [30,
Chapter I-§4].

4.3 Quaternion algebras

Let K be a field of characteristic not 2 as in the previous subsection. In the next subsection, we
will introduce an invariant of an inner product called the Hasse-Witt invariant. It takes values
in the Brauer group Br(K) and defined by using central simple K-algebras called quaternion
algebras. To this end, this subsection gives a summary of quaternion algebras.
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Definition 4.20. For α, β ∈ K×, the symbol (α, β)K denotes the 4-dimensional K-algebra with
basis 1, i, j, ij, and with the multiplication determined by

i2 = α, j2 = β, ij = −ji. (14)

Such an algebra is called a quaternion algebra over K. A K-basis 1, i, j, ij with relation (14)
is called a standard basis of (α, β)K . Note that the relation ij = −ji means that a quaternion
algebra is not commutative since charK 6= 2.

Let A = (α, β)K be a quaternion algebra where α, β ∈ K×. For elements x = α0 + α1i +
α2j+ α3ij and y = β0 + β1i+ β2j+ β3ij of A, where αi, βj ∈ K, a direct calculation gives

xy =α0β0 + αα1β1 + βα2β2 − αβα3β3

+ (α0β1 + α1β0 − βα2β3 + βα3β2)i

+ (α0β2 + αα1β3 + α2β0 − αα3β1)j

+ (α0β3 + α1β2 − α2β1 + α3β0)ij.

In particular, we have

x2 = (α2
0 + αα2

1 + βα2
2 − αβα2

3) + 2α0α1i+ 2α0α2j+ 2α0α3ij.

Hence, the 3-dimensional K-subspace A0 := Ki+Kj+Kij can be expressed as

A0 = {x ∈ A | x2 ∈ K and x /∈ K×}.

This shows that the subspace A0 depends only on the K-algebra structure of A and does not
depend on the standard basis 1, i, j, ij. For an element x = α0 + α1i + α2j + α3ij, we define
x̄ := α0 − α1i − α2j − α3ij. Then, a computation shows that the map ·̄ : A → A, x 7→ x̄ is an
anti-involution, that is, a K-linear involution with xy = ȳx̄ for any x, y ∈ A. Note that this
operator is defined only by the K-algebra structure of A since so is A0.

Definition 4.21. Let A = (α, β)K be a quaternion algebra where α, β ∈ K×. For an element
x = α0 + α1i+ α2j+ α3ij, the value

Nrd(x) := xx̄ = α2
0 − αα2

1 − βα2
2 + αβα2

3 ∈ K (15)

is called the reduced norm of x. The function x 7→ Nrd(x) can be seen as a quadratic form on
A over K. The symmetric bilinear form

A×A→ K, (x, y) 7→ 1

2
(Nrd(x+ y)−Nrd(x)−Nrd(y))

associated with the quadratic form x 7→ Nrd(x) is referred to as the characteristic form of A. We
remark that the reduced norm and characteristic form depend only on the K-algebra structure
of A since so does the anti-involution ·̄.

By equation (15), the characteristic form of A is isomorphic to the 4-dimensional inner
product 〈1,−α,−β, αβ〉K . Hence, the characteristic form of any quaternion algebra represents
1 and has determinant 1. Conversely, it follows from Lemma 4.8 that any 4-dimensional inner
product which represents 1 and has determinant 1 is isomorphic to 〈1,−α,−β, αβ〉K for some
α, β ∈ K×, and to the characteristic form of the quaternion algebra (α, β)K . The following
proposition states that a quaternion algebra is characterized by its characteristic form.
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Proposition 4.22. Let α, β, α′, β′ ∈ K× be nonzero elements of K. Two quaternion algebras
(α, β)K and (α′, β′)K are isomorphic if and only if their characteristic forms are isomorphic,
i.e., 〈1,−α,−β, αβ〉K ∼= 〈1,−α′,−β′, α′β′〉K .

Proof. See [39, Chapter 2, Theorem 11.9]. □

The characteristic form of a quaternion algebra A determines the K-algebra structure of A
as follows.

Theorem 4.23. Let A be a quaternion algebra over K. If the characteristic form is anisotropic
then A is a division algebra. If the characteristic form is isotropic then A ∼= M2(K). In
particular, in either case, A is a central simple K-algebra.

Proof. If the characteristic form of A is anisotropic, or equivalently Nrd(x) 6= 0 for any nonzero
x ∈ A, then any nonzero element x of A has the inverse Nrd(x)−1x̄. Hence A is a division
algebra.

Suppose that the characteristic form is isotropic. Then it is isomorphic to 〈1,−1,−γ, γ〉K
for some γ ∈ K× by Lemma 4.8. Thus, Proposition 4.22 shows that A ∼= (1, γ)K . On the other
hand, the quaternion algebra (1, γ)K is isomorphic to M2(K) by the homomorphism defined by

1 7→
(
1 0
0 1

)
, i 7→

(
1 0
0 −1

)
, j 7→

(
0 1
γ 0

)
, ij 7→

(
0 1
−γ 0

)
where 1, i, j, ij is a standard basis of (1, γ)K . Therefore A ∼=M2(K). □

Corollary 4.24. Let A be a quaternion algebra over K. The Brauer class [A]K is trivial if and
only if the characteristic form is isotropic. □

As seen above, any quaternion algebra is central simple algebra. In fact, it can be expressed
as a cyclic algebra.

Proposition 4.25. Let α, β ∈ K× be nonzero elements, and suppose that α is not a square.
Then L := K(

√
α) is a quadratic cyclic extension field of K with the unique generator σ of

Gal(L/K) determined by σ(
√
α) = −

√
α. The quaternion algebra (α, β)K is isomorphic to the

cyclic algebra (σ, β)K .

Proof. Let 1, i, j, ij be a standard basis of (α, β)K , and e ∈ (σ, β)K be as in Definition 3.17. The
cyclic algebra (σ, β)K can be written as (σ, β)K = L ·1+L ·e = K ·1+K ·

√
α+K ·e+K ·

√
α e

as a K-vector space, and 1,
√
α, e,

√
α e form a K-basis of (σ, β)K . Thus the K-linear map

(α, β)K → (σ, β)K determined by

1 7→ 1, i 7→
√
α, j 7→ e, ij 7→

√
α e

is isomorphic. It can be easily checked that this K-linear isomorphism is a K-algebra homomor-
phism. Therefore (α, β)K ∼= (σ, β)K as K-algebras. □

As a result, the order of the Brauer class of any quaternion algebra is at most 2 (this fact
can also be checked by using Theorem 4.26 below). Let Br2(K) denote the subgroup of Br(K)
consisting of all Brauer classes of order at most 2. For α, β ∈ K×, the Brauer class of the
quaternion algebra (α, β)K is denoted by [α, β]K . Brauer classes of quaternion algebras have
the following calculation rules. They will be used perhaps without referring.

Theorem 4.26. Let α, β, γ ∈ K× be nonzero elements.

(i) [1, β]K = 0.
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(ii) [αγ2, β]K = [α, β]K .

(iii) [β, α]K = [α, β]K .

(iv) [α, β]K + [α, γ]K = [α, βγ]K .

These properties can be summarized as follows: the symbol [·, ·]K is a symmetric bilinear form
K×/K×2 ×K×/K×2 → Br2(K). In addition, we have

(v) [α,−α]K = 0.

Proof. We have [1, β]K ∼=M2(K) by Theorem 4.23 (or its proof). This leads to the assertion (i).
One can construct isomorphisms (αγ2, β)K ∼= (α, β)K and (β, α)K ∼= (α, β)K in an obvious way,
and thus, the assertions (ii) and (iii) hold. Furthermore, the characteristic form of (α,−α)K is
isomorphic to 〈1,−α, α,−1〉K and hence isotropic. This leads to the assertion (v) by Theorem
4.23.

It remains to prove the assertion (iv). This is clear if α is a square. Suppose that α is
not a square, and let σ ∈ Gal(K(

√
α)/K) denote the generator of Gal(K(

√
α)/K). Then

[α, β]K = [σ, β]K and [α, γ]K = [σ, γ]K by Proposition 4.25. Hence, by Lemma 3.18, we have

[α, β]K + [α, γ]K = [σ, β]K + [σ, γ]K = [σ, βγ]K ,

and the right-hand side equals [α, βγ]K by Proposition 4.25 again. This completes the proof. □

When K is an algebraic number field or a local field, the symmetric bilinear form [·, ·]K :
K×/K×2 ×K×/K×2 → Br2(K) is nondegenerate in the sense of the following theorem.

Theorem 4.27. Suppose that K is an algebraic number field or a local field. For a non-square
element α ∈ K× \K×2, there exists β ∈ K× such that [α, β]K 6= 0.

Proof. Let α ∈ K× be a non-square element, and put L = K(
√
α). Let σ ∈ Gal(L/K) denote

the generator of Gal(L/K). We remark that the twisting group Tw(L, σ) = K×/NL/K(L×) is
not the trivial group, by Corollary 3.28 when K is a local field and by Proposition 3.31 when
K is an algebraic number field. Let β ∈ K× be an element such that β 6= 1 in Tw(L, σ). Then,
the Brauer class [α, β]K , which is equal to [σ, β]K ∈ Br(K) by Proposition 4.25, is not zero since
Tw(L, σ) → Br(K), γ 7→ [σ, γ]K is injective by Theorem 3.20. This completes the proof. □

4.4 Hasse-Witt invariants

We continue to assume that charK 6= 2. We introduce an invariant for an inner product called
the Hasse-Witt invariant. This invariant is important in particular when K is a local field.
For example, the isomorphism class of any inner product over a non-archimedean local field
(of characteristic not 2) is uniquely determined by its dimension, determinant, and Hasse-Witt
invariant (Theorem 4.45). Moreover, it also has the role of describing the relationship between
inner products of local and global fields (see §4.7).

Let (V, b) be a d-dimensional inner product space over K. Since charK 6= 2, the space has
an orthogonal basis B = {x1, . . . , xd} (see Proposition 4.9). We write αi = b(xi, xi) ∈ K× and
define the Brauer class HWK(b;B) ∈ Br2(K) by

HWK(b;B) :=
∑
i<j

[αi, αj ]K .

Here, if d = 0 or 1 then HWK(b;B) is defined to be 0. For any permutation σ of {1, . . . , d}, we
have ∑

i<j

[ασ(i), ασ(j)]K =
∑
i<j

[αi, αj ]K = HWK(b;B)
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since [α, β]K = [β, α]K for any α, β ∈ K×. This means that HWK(b;B) does not depend on
the ordering of B. In fact, the Brauer class HWK(b;B) is independent of the choice of the
orthogonal basis B. To show this, we use the following fact.

Lemma 4.28. Let B′ be another orthogonal basis of (V, b). If d ≥ 3 then there exists a sequence
B0 = B,B1, . . . ,Bl−1,Bl = B′ of orthogonal bases such that Bi−1 and Bi contain a common
vector for each i = 1, . . . , l.

Proof. See [40, Chapter IV, Theorem 2]. □

Proposition 4.29. The Brauer class HWK(b;B) ∈ Br(K) is independent of the choice of the
orthogonal basis B.

Proof. Let B′ = {x′1 . . . , x′d} be another orthogonal basis, and write α′
i = b(x′i, x

′
i) for i =

1, . . . , d. We argue by induction on the dimension d. If d = 0 or 1 then the assertion is obvious.
If d = 2 then

〈1,−α1,−α2, α1α2〉K ∼= 〈1,−α′
1,−α′

2, α
′
1α

′
2〉K

because 〈−α1,−α2〉K ∼= −b ∼= 〈−α′
1,−α′

2〉K and α1α2 = det(b) = α′
1α

′
2 in K×/K×2. Hence

HWK(b;B) = [α1, α2]K = [α′
1, α

′
2]K = HWK(b;B′) by Proposition 4.22. Suppose that d ≥ 3.

By Lemma 4.28, it is sufficient to show the assertion whenB andB′ have a common vector. Since
HWK(b;B) and HWK(b;B′) do not depend the orderings of B and B′ as seen above, we assume
that x1 = x′1 without loss of generality. Put b0 = b|(Kx1)⊥ . Note that B\{x1} and B′ \{x1} are

orthogonal bases of (Kx1)
⊥. Since dim(b0) < d we have HWK(b0;B\{x1}) = HWK(b0;B

′\{x1})
by induction hypothesis. Thus

HWK(b;B′) =
d∑
j=2

[α1, α
′
j ]K +

∑
2≤i<j

[α′
i, α

′
j ]K

= [α1,
∏d
j=2 α

′
j ]K +HWK(b0;B

′ \ {x1})
= [α1, det(b0)]K +HWK(b0;B \ {x1})
= HWK(b;B).

This completes the proof. □

Definition 4.30. Let (V, b) be an inner product space over K, and let B be an orthogonal basis
of (V, b). We write HWK(b) for HWK(b;B) ∈ Br2(K) since it is independent of the choice of
B (Proposition 4.29). The Brauer class HWK(b) is called the Hasse-Witt invariant of b. The
Hasse-Witt invariant of any zero or one dimensional inner product is defined to be 0.

Lemma 4.31. Hasse-Witt invariants have the following properties.

(i) Let b be a d-dimensional inner product over K and γ ∈ K× a nonzero element. Then

HWK(γb) =
d(d− 1)

2
[γ, γ]K + [γ, det(b)d−1]K +HWK(b).

(ii) Let b, b′ be two inner products over K. Then

HWK(b⊕ b′) = HWK(b) + HWK(b′) + [det(b), det(b′)]K .

(iii) Let bj and b′j be inner products over K with det(bj) = det(b′j) for j = 1, . . . , l. Then

HWK

 l⊕
j=1

bj

−
l∑

j=1

HWK(bj) = HWK

 l⊕
j=1

b′j

−
l∑

j=1

HWK(b′j).
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Proof. (i). Write b ∼= 〈α1, . . . , αd〉K where α1, . . . , αd ∈ K×. Then

HWK(γb) =
∑
i<j

[γαi, γαj ]K

=
∑
i<j

([γ, γ]K + [γ, αj ]K + [αi, γ]K + [αi, αj ]K)

=
∑
i<j

[γ, γ]K +
∑
i<j

[γ, αiαj ]K +
∑
i<j

[αi, αj ]K

=
d(d− 1)

2
[γ, γ]K +

∑
i<j

[γ, αiαj ]K +HWK(b).

Moreover ∑
i<j [γ, αiαj ]K = [γ,

∏
i<j αiαj ]K = [γ, (α1 · · ·αd)d−1]K = [γ, det(b)d−1]K .

Hence we get the desired equality.
(ii). Write b ∼= 〈α1, . . . , αd〉K and b′ ∼= 〈α′

1, . . . , α
′
d′〉K . Then

HWK(b⊕ b′) = HWK(〈α1, . . . , αd, α
′
1, . . . , α

′
d′〉K)

= HWK(〈α1, . . . , αd〉K) + HWK(〈α′
1, . . . , α

′
d′〉K) +

∑d
i=1

∑d′

j=1[αi, α
′
j ]K

= HWK(b) + HWK(b′) + [
∏d
i=1 αi,

∏d′

j=1 α
′
j ]K

= HWK(b) + HWK(b′) + [det(b), det(b′)]K

as required.
(iii). We use induction on l, the case l = 1 being obvious. Let l > 1. Then

HWK

(⊕l
j=1 bj

)
−
∑l

j=1HWK(bj)

= HWK(b1) + HWK

(⊕l
j=2 bj

)
+
[
det(b1), det

(⊕l
j=2 bj

)]
K
−
∑l

j=1HWK(bj)

= HWK

(⊕l
j=2 bj

)
−
∑l

j=2HWK(bj) +
[
det(b1),

∏l
j=2 det (bj)

]
K

= HWK

(⊕l
j=2 b

′
j

)
−
∑l

j=2HWK(b′j) +
[
det(b′1),

∏l
j=2 det

(
b′j

)]
K

= HWK

(⊕l
j=1 b

′
j

)
−
∑l

j=1HWK(b′j),

where the third equality is by induction hypothesis. The proof is complete. □

The following theorem states that the isomorphism class of any inner product of dimension
at most 3 is uniquely determined by its dimension, determinant, and Hasse-Witt invariant.

Theorem 4.32. Let d ∈ Z≥0 be a non-negative integer at most 3. Let b and b′ be two inner
products over K with dim(b) = dim(b′) = d. If det(b) = det(b′) and HWK(b) = HWK(b′) then
b ∼= b′.

Proof. If d = 0 or 1 then the assertion is clear. Suppose that d = 2, and write b ∼= 〈α1, α2〉K ,
b ∼= 〈α′

1, α
′
2〉K where α1, α2, α

′
1, α

′
2 ∈ K×. Then, the quaternion algebras (α1, α2)K and (α′

1, α
′
2)K

are isomorphic since HWK(b) = HWK(b′). Thus, their characteristic forms 〈1,−α1,−α2, α1α2〉K
and 〈1,−α′

1,−α′
2, α

′
1α

′
2〉K are also isomorphic (as inner products). Since α1α2 = det(b) =

det(b′) = α′
1α

′
2 inK

×/K×2, it follows fromWitt’s cancellation theorem 4.19 that 〈−α1,−α2〉K ∼=
〈−α′

1,−α′
2〉K , and hence b ∼= 〈α1, α2〉K ∼= 〈α′

1, α
′
2〉K ∼= b′ as required. Finally, suppose that d = 3.
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Case I: det(b) = det(b′) = −1. In this case, we can write b ∼= 〈α1, α2,−α1α2〉K and b′ ∼=
〈α′

1, α
′
2,−α′

1α
′
2〉K . Then

HWK(b) = [α1, α2]K + [α1,−α1α2]K + [α2,−α1α2]K

= [α1, α2]K + [α1, α2]K + [α2, α1]K

= [α1, α2]K ,

and the same calculation yields HWK(b′) = [α′
1, α

′
2]K . Since HWK(b) = HWK(b′), the quater-

nion algebras (α1, α2)K and (α′
1, α

′
2)K are isomorphic. By cancelling out 〈1〉K of their charac-

teristic forms, we get 〈−α1,−α2, α1α2〉K ∼= 〈−α′
1,−α′

2, α
′
1α

′
2〉K , and hence b ∼= b′.

Case II: General case. Put δ := det(b) = det(b′). Then det(−δb) = det(−δb′) = −1. Moreover
HWK(−δb) = HWK(−δb′) by Lemma 4.31 (i). Hence −δb ∼= −δb′ by Case I, and therefore
b ∼= b′. This completes the proof. □

For 4-dimensional inner products, its isomorphism class is not determined by its determinant
and Hasse-witt invariant in general, but isotropy can be described in terms of these invariants.
We will formulate it together with lower dimensional cases.

Notation 4.33. Let L/K be an extension of fields, and let (V, b) be an inner product space over
K. Then V ⊗KL is an L-vector space, and b extends to an inner product (V ⊗KL)×(V ⊗KL) → L
in a unique way. This extension of b on V ⊗K L is denoted by b⊗K L or just by b⊗ L.

Lemma 4.34. Let (V, b) be a 4-dimensional inner product space over K of determinant δ, and
put L = K(

√
δ). The inner product b is isotropic if and only if b⊗ L is isotropic.

Proof. If b is isotropic then so is b⊗L clearly. We show the converse. If δ = 1 in K×/K×2 then
the assertion is clear because L = K. Suppose that δ 6= 1 in K×/K×2. Then L is a quadratic
extension of K, and any vector of V ⊗ L can be written as x +

√
δy for some x, y ∈ V . Let

u ∈ V ⊗K L be an isotropic vector with respect to b ⊗ L, and write u = x +
√
δy for some

x, y ∈ V . Then

0 = (b⊗ L)(u, u)

= (b⊗ L)(x, x) + 2
√
δ(b⊗ L)(x, y) + δ(b⊗ L)(y, y)

= b(x, x) + δb(y, y) +
√
δ · 2b(x, y),

which implies that b(x, x) + δb(y, y) = 0 and b(x, y) = 0. If b(x, x) = 0 then we are done.
Suppose that b(x, x) 6= 0. Then b(y, y) = −δ−1b(x, x) 6= 0. Furthermore x and y are linearly
independent since b(x, y) = 0. Thus

b ∼= 〈b(x, x), b(y, y), γ, δb(x, x)b(y, y)γ〉K ∼= 〈b(x, x), b(y, y), γ,−γ〉K

for some γ ∈ K×. Hence b is isotropic since so is 〈γ,−γ〉K . This completes the proof. □

Theorem 4.35. Let b be an inner product over K, and put δ = det(b).

(i) Suppose that dim(b) = 2. Then b is isotropic if and only if det(b) = −1 in K×/K×2.

(ii) Suppose that dim(b) = 3. Then b is isotropic if and only if HWK(b) + [−1,−δ]K = 0.

(iii) Suppose that dim(b) = 4. Then b is isotropic if and only if HWL(b⊗ L) + [−1,−δ]L = 0,
where L = K(

√
δ).
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Proof. (i). If b is isotropic then b ∼= 〈α,−α〉K for some α ∈ K× by Lemma 4.8, and thus
det(b) = −1. If det(b) = −1 then b ∼= 〈α,−α〉K for some α ∈ K×, and hence b is isotropic.

(ii). If b is isotropic then b ∼= 〈α,−α,−δ〉K for some α ∈ K× by Lemma 4.8, and we get

HWK(b) + [−1,−δ]K = [α,−α]K + [α,−δ]K + [−α,−δ]K + [−1,−δ]K = 0.

Suppose conversely that HWK(b) + [−1,−δ]K = 0, or equivalently HWK(b) = [−1,−δ]K . Then
the 3-dimensional isotropic inner product 〈1,−1,−δ〉K is isomorphic to b by Theorem 4.32, be-
cause they have the same determinant and same Hasse-Witt invariant. Hence b is also isotropic.

(iii). Note that δ = 1 in L×/L×2. By Lemma 4.34, it is enough to show that

bL is isotropic ⇐⇒ HWL(bL) + [−1,−1]L = 0,

where bL := b ⊗ L. Let γ ∈ L× be a nonzero element represented by bL. Note that bL is
isotropic if and only if γbL is isotropic. Since γbL represents 1, it can be written as γbL ∼=
〈1,−α1,−α2, α1α2〉L where α1, α2 ∈ L×. In other words, γbL is isomorphic to the characteristic
form of the quaternion algebra (α1, α2)L. Hence, it follows from Corollary 4.24 that

bL is isotropic ⇐⇒ γbL is isotropic ⇐⇒ [α1, α2]L = 0. (∗)

On the other hand, HWL(bL) = HWL(γbL) by Lemma 4.31 (i), and a calculation yields
HWL(γbL) = [−1,−1]L + [α1, α2]L. Thus HWL(bL) + [−1,−1]L = [α1, α2]L. This equality
with (∗) completes the proof. □

4.5 Inner products over finite fields

In this subsection, we give standard forms of inner products over a finite field (results in §§4.2
– 4.4 are not needed here). Let κ be a finite field.

Theorem 4.36. Suppose that charκ = 2, and let (V, b) be an inner product space over κ. Then

(V, b) ∼= 〈1〉⊕mκ ⊕H⊕n
κ

for some m,n ∈ Z≥0 ( Hκ is defined in Definition 4.11).

Proof. By Proposition 4.9 (i), there exist vectors v1, . . . , vm ∈ V and a totally isotropic space
(N, bN ) such that V = κv1 ⊕ · · · ⊕ κvm ⊕N with b(vi, vi) ∈ κ× for all i = 1, . . . ,m. Since any
element of κ is a square (see Proposition 2.2 (i)), we may assume that b(vi, vi) = 1 for all i.

Let u ∈ N . Then there exists u′ ∈ N such that bN (u, u
′) = 1 since bN is nondegenerate. Since

N is totally isotropic, the subspace H := κu + κu′ ⊂ N is a hyperbolic plane with hyperbolic
basis (u, u′). Thus N = H ⊕ H⊥ by Proposition 4.4 (iii). Moreover, since H⊥ ⊂ N is again
totally isotropic, it can be seen by induction that N ∼= H⊕n

κ for some n ∈ Z≥0. Therefore we
obtain (V, b) ∼= 〈1〉⊕mκ ⊕H⊕n

κ . □

We proceed to the case char κ 6= 2. The following lemma is needed.

Lemma 4.37. Any element of κ can be expressed as α2+β2 for some α, β ∈ κ. In other words,
the 2-dimension inner product 〈1, 1〉κ represents every nonzero element (the characteristic of κ
can be 2).

Proof. If charκ = 2 then the assertion is clear since any element of κ is a square. Suppose that
charκ 6= 2, and put S := {α2 | α ∈ κ} = κ×2∪{0}. Since the cardinality #S = (#κ−1)/2+1 =
(#κ+1)/2 is not a divisor of #κ, the subset S cannot be an additive subgroup of κ. In particular,

56



there exist elements α, β ∈ S such that ε′ := α2 + β2 6∈ S. Note that κ×/κ×2 = {1, ε′} since ε′

is not a square (see Proposition 2.2 (ii)).
Now, let ε ∈ κ be any element. If ε is a square then the assertion is obvious. If ε is not a

square then it can be written as ε = c2ε′ for some c ∈ κ since κ×/κ×2 = {1, ε′}. Thus

ε = c2(α2 + β2) = (cα)2 + (cβ)2,

which completes the proof. □

Theorem 4.38. Suppose that charκ 6= 2, and fix a non-square element ε ∈ κ×. Let (V, b) be an
inner product space over κ of dimension d. Then

(V, b) ∼=

{
〈1〉⊕dκ if det b = 1

〈1〉⊕d−1
κ ⊕ 〈ε〉κ if det b = ε.

In particular, the isomorphism class of (V, b) is uniquely determined by its dimension and de-
terminant.

Proof. Since κ×/κ×2 = {1, ε}, it follows from Proposition 4.9 (ii) that b ∼= 〈1〉⊕mκ ⊕〈ε〉⊕m′
κ where

m andm′ are non-negative integers with m+m′ = d. Hence, it is sufficient to show that 〈ε, ε〉κ ∼=
〈1, 1〉κ. Lemma 4.37 shows that 〈1, 1〉κ represents ε. Thus 〈1, 1〉κ ∼= 〈ε, ε · det(〈1, 1〉κ)〉κ ∼= 〈ε, ε〉κ.
This completes the proof. □

4.6 Inner products over local fields

This subsection gives classification theorems of inner products over a local field. We begin with
the archimedean case, which is easier than the non-archimedean case.

Theorem 4.39. Any inner product over C of dimension d is isomorphic to 〈1〉⊕dC , and in
particular, its isomorphism class is uniquely determined by its dimension. For any inner product
b over R there exist unique non-negative integers r, s such that b ∼= 〈1〉⊕rR ⊕ 〈−1〉⊕sR .

Proof. If b is a d-dimensional inner product over C then Proposition 4.9 (ii) implies that b ∼= 〈1〉⊕dC
since any element of C is a square. Let b be an inner product over R. Since R×/R×2 = {1,−1},
it follows from Proposition 4.9 (ii) that there exist non-negative integers r and s such that
b ∼= 〈1〉⊕r ⊕ 〈−1〉⊕s. The uniqueness of r and s follows from Witt’s cancellation theorem 4.19.
□

The latter part of this theorem leads to the following definition.

Definition 4.40. Let (V, b) be an inner product space over R. The signature of b is the pair
(r, s) of non-negative integers such that (V, b) ∼= 〈1〉⊕rR ⊕ 〈−1〉⊕sR . If s = 0 (resp. r = 0) then
(V, b) is said to be positive (resp. negative) definite. The difference r − s is called the index of
b and denoted by idx(b).

We remark that the identities

r = (dim(b) + idx(b))/2, s = (dim(b)− idx(b))/2

hold for any inner product b over R of signature (r, s). Hence, the dimension and index deter-
mines the signature, and vice versa.

Remark 4.41. The signature of an inner product space over R can also be defined as the numbers
of positive and negative eigenvalues of a Gram matrix. It is known as Sylvester’s law of inertia
that these numbers are independent of the Gram matrix.
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We proceed to the non-archimedean case. Suppose that K is a non-archimedean local field
of characteristic not 2. We begin with the following proposition about Brauer classes of order 2.

Proposition 4.42. Let K be a non-archimedean local field of characteristic not 2.

(i) The order of Br2(K) is two. In particular, a non-trivial Brauer class in Br2(K) is unique.

(ii) For any quadratic extension L/K, we have resL/K(Br2(K)) = 0.

Proof. (i). The subgroup of Q/Z consisting of all elements of order at most 2 is
(
1
2Z
)
/Z. Hence,

the isomorphism invK : Br(K) → Q/Z maps Br2(K) onto
(
1
2Z
)
/Z, and in particular, the order

of Br2(K) is two.
(ii). Let L/K be a quadratic extension. Then L/K is a cyclic extension (see Example 1.4).

Thus, the assertion follows from Proposition 3.27. □

Lemma 4.43. Let b be a 4-dimensional inner product over K. If det(b) 6= 1 then b is isotropic.

Proof. Suppose that det(b) 6= 1. Then L := K(
√
det(b)) is a quadratic extension field of K.

Thus HWL(b ⊗ L) + [−1,− det(b)]L = resL/K(HWK(b) + [−1,− det(b)]K) = 0 by Proposition
4.42 (ii). Hence b is isotropic by Theorem 4.35 (iii). □

The following proposition is crucial to obtain the classification theorem.

Proposition 4.44. Any 4-dimensional inner product over K represents every nonzero element.

Proof. Let b be a 4-dimensional inner product over K. If det(b) 6= 1 then b is isotropic by
Lemma 4.43, and thus b represents every element by Lemma 4.8 (ii). Suppose that det(b) = 1.
By considering a scalar multiplication if necessary, we may assume that b represents 1. Then b
is (isomorphic to) the characteristic form of some quaternion algebra A.

We first prove that b represents any nonzero element which does not belong to −K×2. Let
ε ∈ K×\−K×2. Nondegeneracy of the symbol (Theorem 4.27) and Proposition 4.42 (i) show that
there exists ε′ such that [−ε, ε′]K = [A]K , which means (−ε, ε′)K ∼= A. Since the characteristic
form of (−ε, ε′)K , which is isomorphic to 〈1, ε,−ε′,−εε′〉K , represents ε, so does the characteristic
form b of A. Hence b represents any nonzero element of K× \ −K×2.

We remark that the set

Q(b) := {b(v, v)K×2 | v ∈ A} \ {0} = {Nrd(v)K×2 | v ∈ A} \ {0} ⊂ K×/K×2

is a subgroup of K×/K×2 since Nrd(vv′) = Nrd(v)Nrd(v′) for any v, v′ ∈ A. What we proved
above means that Q(b) contains all classes other than at most one exception −K×. On the
other hand, we have #(K×/K×2) ≥ 4 by Theorem 2.10. Therefore, the subgroup Q(b) must be
equal to K×/K×2 itself. This shows that b represents every nonzero element. □

We now prove the classification theorem of inner products over a non-archimedean local field
of characteristic not 2.

Theorem 4.45. Let K be a non-archimedean local field of characteristic not 2. Two inner
products over K are isomorphic if and only if they have the same dimension, same determinant,
and same Hasse-Witt invariant.

Proof. Let b1, b2 be inner products over K. If b1 ∼= b2 then it is obvious that the three invariants
of them are respectively the same. Conversely, suppose that dim(b1) = dim(b2), det(b1) =
det(b2) and HWK(b1) = HWK(b2). Put d = dim(b1). If d ≤ 3 then b1 ∼= b2 by Theorem 4.32.
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Suppose that d ≥ 4. Proposition 4.44 shows that any inner product over K of dimension at
least 4 represents 1. Thus, by using Lemma 4.8 (i) repeatedly, we have

b1 ∼= b′1 ⊕ 〈1〉⊕d−3 and b2 ∼= b′2 ⊕ 〈1〉⊕d−3

for suitable inner products b′1 and b′2 of dimension 3. Because det(b′1) = det(b1) = det(b2) =
det(b′2) and HWK(b′1) = HWK(b1) = HWK(b2) = HWK(b′2), Theorem 4.32 gives the isomor-
phism b′1

∼= b′2. Therefore b1
∼= b2. The proof is complete. □

The existence theorem is as follows.

Theorem 4.46. Let K be a non-archimedean local field of characteristic not 2. Let d ∈ Z>0,
δ ∈ K×/K×2, and θ ∈ Br2(K). There exists an inner product over K with dimension d,
determinant δ, and Hasse-Witt invariant θ if and only if one of the following conditions hold:

(i) d = 1 and θ = 0.

(ii) d = 2 and δ 6= −1; or d = 2, δ = −1, and θ = 0.

(iii) d ≥ 3.

Proof. We first show the only if part. Let b be an inner product over K with dimension d,
determinant δ, and Hasse-Witt invariant θ. If d = 1 then θ = 0 by the definition of Hasse-Witt
invariant. Suppose that d = 2. Then b ∼= 〈α, αδ〉K for some α ∈ K×, and

θ = [α, αδ]K = [α,−α]K + [α,−δ]K = [α,−δ]K .

Thus, if δ = −1 then θ = 0. This completes the proof of the only if part.
We then show the if part. If d = 1 and θ = 0 then 〈δ〉K is the desired inner product.

Suppose that d = 2. If δ 6= −1 and then Theorem 4.27 shows that there exists α ∈ K× such that
[α,−δ] = θ. Then 〈α, αδ〉K is the desired inner product. If δ = −1 and θ = 0 then 〈1,−1〉K is
the desired inner product. Suppose that d ≥ 3. If δ 6= −1 then 〈α, αδ〉K ⊕〈1〉⊕d−2 is the desired
inner product, where α ∈ K× is an element such that [α,−δ] = θ. If δ = −1 then we take
α, β ∈ K× so that [α, β] = θ. This is possible by Theorem 4.27. Then 〈α, β,−αβ〉K ⊕ 〈1〉⊕d−3

is the desired inner product. This completes the proof. □

4.7 Inner products over algebraic number fields

We proceed to the case of algebraic number fields. Let K be an algebraic number field, and V
the set of all places of K.

Definition 4.47. Let (V, b) be an inner product space over K, and v ∈ V a place of K. The
extension (V ⊗K Kv, b⊗K Kv) of scalars is referred to as the localization of (V, b) at v.

In the situation of this definition, the Hasse-Witt invariant HWKv(b⊗KKv) of the localization
is sometimes abbreviated to HWKv(b). It is clearly equal to resKv/K(HWK(b)).

Lemma 4.48. Let α ∈ K. If α is a square in Kv for every v ∈ V then α is also a square in K.

Proof. If α = 0 then there is nothing to prove. Suppose that α 6= 0, and it is a square in Kv for
every v ∈ V . Let β ∈ K× be any nonzero element of K. Then [α, β]Kv = 0 for all v ∈ V since
α ∈ K×2

v . Thus [α, β]K = 0 since the map Br(K) →
⊕

v∈V Br(Kv) is injective by the Brauer-
Hasse-Noether theorem 3.29. As β is taken arbitrarily, Theorem 4.27 shows that α ∈ K×2. This
completes the proof. □
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Remark 4.49. When K = Q, Lemma 4.48 can be easily proved by factorizing α into a product
of prime numbers. In general, it is known that α ∈ K is a square if it is a square in Kv for
almost all v ∈ V , see [35, Theorem 65:15].

The Hasse-Minkowski theorem below states that there is no obstruction between local and
global with respect to isotropy of inner products.

Theorem 4.50 (Hasse-Minkowski). Let K be an algebraic number field. An inner product space
(V, b) over K is isotropic if and only if its localization (V ⊗Kv, b ⊗Kv) is isotropic for every
v ∈ V.

Proof. Over any field, there is no isotropic inner product space of dimension 1. Hence, the one
dimensional case is clear. Let (V, b) be an inner product space over K, and assume that its
dimension d is at least 2. If b is isotropic then it is clear that its localizations are isotropic.
Conversely, suppose that b⊗Kv is isotropic for every v ∈ V .
Case d = 2. For any v ∈ V , it follows from Theorem 4.35 (i) that − det(b) is a square in K×

v

since b ⊗ Kv is isotropic. Thus − det(b) is also a square in K× by Lemma 4.48. Hence b is
isotropic by Theorem 4.35 (i) again.

Case d = 3. For any v ∈ V , we have HWKv(b ⊗Kv) + [−1,− det(b)]Kv = 0 by Theorem 4.35
(ii) since b ⊗ Kv is isotropic. This implies that HWK(b) + [−1,− det(b)]K = 0 by injectivity
of Br(K) →

⊕
v∈V Br(Kv) (this is a part of Brauer-Hasse-Noether theorem 3.29). Thus b is

isotropic by Theorem 4.35 (ii) again.

Case d = 4. The proof is essentially the same as that of Case d = 3. Put L = K(
√
det(b)) and

θ = HWL(b ⊗K L) + [−1,− det(b)]L ∈ Br(L). By Theorem 4.35 (iii), it suffices to show that
θ = 0. We write U for the set of all places of L. Let u ∈ U be any place of L, and let v be the
place of K below u. Then b⊗L Lu, which is equal to (b⊗K Kv)⊗Kv Lu, is isotropic since so is
b⊗KKv. This means that resLu/L(θ) = HWLu(b⊗K Lu)+ [−1,− det(b⊗K Lu)]Lu = 0 in Br(Lu)
by Theorem 4.35 (iii), and hence θ = 0 as required by injectivity of Br(L) →

⊕
u∈U Br(Lu).

Case d ≥ 5. We conclude the proof by induction on d. Write b ∼= 〈α1, α2, α3, . . . , αd〉K where
αi ∈ K×, and set b′ = 〈α3, . . . , αd〉K . Furthermore, we define

S := V∞ ∪ V2 ∪ {v ∈ V | v is finite and v(αi) 6= 0 for some i ∈ {1, . . . , d} }

where V∞ and V2 denote the sets of all places of V above ∞ and 2 respectively. Then S is a
finite set. Let v ∈ S. Since the inner product b⊗Kv

∼= 〈α1, α2〉Kv ⊕ (b′ ⊗Kv) is isotropic, there
exists a nonzero element γv ∈ K×

v such that both 〈α1, α2〉Kv and −b′ ⊗ Kv represent γv. Let
xv,1, xv,2 ∈ Kv be elements satisfying α1x

2
v,1 + α2x

2
v,2 = γv.

By the approximation theorem 1.26, there exist elements x1 and x2 ∈ K which are arbitrarily
close to xv,1 and xv,2 with respect to the distance defined by v for any v ∈ S, since S is a finite
set. We then define γ := α1x

2
1 + α2x

2
2 ∈ K. Note that γ 6= 0 because it can be arbitrarily close

to a nonzero element γv with respect to v ∈ S. Moreover, it follows from Proposition 2.12 that
γ = γv in K×

v /K
×2
v for each v ∈ V .

Claim: The inner product (〈γ〉K ⊕ b′)⊗Kv = 〈γ〉Kv ⊕ (b′ ⊗Kv) is isotropic for any v ∈ V. For
v ∈ S, the localization b′ ⊗Kv represents −γv by the definition of γv. Thus 〈γ〉Kv ⊕ (b′ ⊗Kv)
is isotropic since γ = γv in K×

v /K
×2
v . Suppose that v /∈ S. It suffices to show that the subspace

b′ ⊗Kv
∼= 〈α3, . . . , αd〉Kv is isotropic. Note that v is a finite place and the prime below v is not

2. Let pv and κv denote the maximal ideal and residue field of Kv respectively. We consider
the quadratic form qv over Kv defined by qv(X3, . . . , Xd) = α3X

2
3 + · · ·+αdX

2
d , and write qv for

the reduction modulo pv, that is, qv(X3, . . . , Xd) = α3X
2
3 + · · ·+ αdX

2
d where α := α+ pv ∈ κv.

Since d ≥ 5 and v(αi) = 0 for all i = 3, . . . , d, the reduction qv has at least 3 variables. Thus
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qv has a nontrivial zero over κv by Lemma 4.37 and Theorem 4.38, and hence qv also has a
nontrivial zero over Kv by Proposition 1.37. This shows that b′ is isotropic as required.

Since dim(〈γ〉K ⊕ b′) = d − 1, the claim proved now and the induction hypothesis imply
that 〈γ〉K ⊕ b′ is isotropic. Therefore, the inner product b ∼= 〈α1, α2〉K ⊕ b′, which contains the
subspace isomorphic to 〈γ〉K ⊕ b′, is also isotropic. The proof is complete. □

Corollary 4.51. An inner product b over K represents an element α ∈ K if and only if its
localization b⊗Kv represents α for every v ∈ V.

Proof. Let b be an inner product over K and α ∈ K an element of K. The case α = 0 is nothing
but the Hasse-Minkowski theorem 4.50. So we assume that α 6= 0. If α is represented by b then
it is obvious that its localization also represents α. Suppose that b⊗Kv represents α for every
v ∈ V . Then the inner product (b⊕〈−α〉K)⊗Kv = (b⊗Kv)⊕〈−α〉Kv is isotropic for all v ∈ V .
Thus b ⊕ 〈−α〉K is also isotropic by Hasse-Minkowski theorem 4.50, and hence b represents α
by Lemma 4.8 (iii). □

Corollary 4.52. Two inner product spaces (V1, b1) and (V2, b2) over K are isomorphic if and
only if their localizations (V1⊗Kv, b1⊗Kv) and (V2⊗Kv, b2⊗Kv) are isomorphic for any v ∈ V.

Proof. Let (V1, b1) and (V2, b2) be two inner product spaces over K. If b1 ∼= b2 then it is obvious
that b1 ⊗ Kv

∼= b2 ⊗ Kv for any v ∈ V . Conversely, suppose that b1 ⊗ Kv
∼= b2 ⊗ Kv for any

v ∈ V . We argue by induction on the dimension of b1. If dim(b1) = 0 then there is nothing to
prove. Suppose that dim(b1) ≥ 1. Let α ∈ K× be a nonzero element represented by b1. Then α
is represented by b1 ⊗Kv, and by b2 ⊗Kv for every v ∈ V . This means that b2 also represents
α by Corollary 4.51. Thus we can write

b1 ∼= b′1 ⊕ 〈α〉K and b2 ∼= b′2 ⊕ 〈α〉K

for suitable inner products b′1 and b′2. Then, we have

(b′1 ⊗Kv)⊕ 〈α〉Kv = b1 ⊗Kv
∼= b2 ⊗Kv = (b′2 ⊗Kv)⊕ 〈α〉Kv

for any v ∈ V . Thus, it follows from Witt’s cancellation theorem 4.19 that b′1 ⊗Kv
∼= b′2 ⊗Kv

for any v ∈ V . This implies that b′1
∼= b′2 by induction hypothesis since dim(b′1) = dim(b1) − 1.

Therefore b1 ∼= b2 as required. □

This corollary is a classification theorem for inner products over an algebraic number field.
Our next interest is the existence problem: for a given family {bv}v∈V of inner products bv over
Kv, does there exist an inner product over K such that b ⊗Kv

∼= bv for all v ∈ V? It is clear
that if b is an inner product over K then dimKv(b ⊗Kv) = dimK(b) and det(b ⊗Kv) = det(b)
in K×

v /K
×2
v for all v ∈ V . Moreover, there is a constraint also for Hasse-Witt invariants.

Proposition 4.53 (Reciprocity). Let b be an inner product over K. Then HWKv(b⊗Kv) = 0
for almost all v ∈ V and

∑
v∈V invKv ◦HWKv(b⊗Kv) = 0 in

(
1
2Z
)
/Z ⊂ Q/Z.

Proof. As a part of the Brauer-Hasse-Noether theorem 3.29, the composition

Br(K) →
⊕

v∈V Br(Kv) → Q/Z

is the zero map. Hence, we obtain the assertion by applying this map to HWK(b) ∈ Br(K). □

The converse of this proposition will be proved in Theorem 4.57. We start with the definition
of an inner product being a direct summand of another inner product, which generalizes the
definition of an element being represented by an inner product.
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Definition 4.54. Let b and b0 be inner products over any field. We say that b0 is a direct
summand of b if there exists an inner product b′ such that b ∼= b′ ⊕ b0.

Lemma 4.8 (i) means that an inner product b represents a nonzero element α if and only if
the one-dimensional inner product 〈α〉 is a direct summand of b. We have an analog of Corollary
4.51:

Lemma 4.55. Let b and b0 be inner products over K. The inner product b0 is a direct summand
of b if and only if b0 ⊗Kv is a direct summand of b⊗Kv for every v ∈ V.

Proof. The only if part is obvious. We prove the if part by induction on d := dim(b0). Suppose
that b0 ⊗Kv is a direct summand of b⊗Kv for every v ∈ V , and write b0 ∼= 〈α1 . . . , αd〉K where
α1 . . . , αd ∈ K×. If d = 1 then b0 ∼= 〈α1〉K is a direct summand of b by Corollary 4.51. Suppose
that d > 1. For every v ∈ V , the localization b⊗Kv can be written as

b⊗Kv
∼= b′v ⊕ 〈α1 . . . , αd−1〉Kv ⊕ 〈αd〉Kv

where b′v is an inner product over Kv. Thus 〈αd〉K is a direct summand of b by the one-
dimensional case. So, we can write b ∼= b′′ ⊕ 〈αd〉K where b′′ is an inner product over K. By
Witt’s cancellation theorem 4.19, it follows that b′′ ⊗Kv

∼= b′v ⊕ 〈α1 . . . , αd−1〉Kv for all v ∈ V ,
which means that 〈α1 . . . , αd−1〉K is a direct summand of b′′ at every place. Hence it also holds
over K by induction hypothesis. Namely, there exists an inner product b′ over K such that
b′′ ∼= b′ ⊕ 〈α1, . . . , αd−1〉K . Therefore we obtain

b ∼= b′′ ⊕ 〈αd〉K ∼= b′ ⊕ 〈α1, . . . , αd−1〉K ⊕ 〈αd〉K ∼= b′ ⊕ b0.

This completes the proof. □

We also need the following lemma.

Lemma 4.56. Let γ ∈ K× be a nonzero element, and let (αv)v∈V be a family consisting of
αv ∈ K×

v such that [αv, γ]Kv = 0 for almost all v ∈ V and
∑

v∈V invKv([αv, γ]Kv) = 0. Then
there exists α ∈ K× such that [α, γ]Kv = [αv, γ]Kv for all v ∈ V.

Proof. If γ ∈ K×2 then [αv, γ]Kv must be 0 for any v ∈ V , and any α ∈ K× satisfies the
equality [α, γ]Kv = 0 = [αv, γ]Kv for all v ∈ V . Suppose that γ 6∈ K×2, and put E = K(

√
γ).

Let σ ∈ Gal(E/K) be the generator of Gal(E/K). Note that Eσ = K. Then, we have the
commutative diagram

Tw(E, σ) //

[σ, · ]K
��

⊕
v∈V Tw(Ev, σ)

∑
v ιv //

⊕
v [σ, · ]Kv

��

Z/2Z

×1/2

��
Br(K) //

⊕
v∈V Br(Kv)

∑
v∈V invKv // Q/Z

(∗)

as in the proof of Proposition 3.31, where rows are exact. On the other hand, we have [σ, βv]Kv =
[βv, γ]Kv for any v and any βv ∈ K×

v . Indeed, both sides are zero if v is split in E, and otherwise
this follows from Proposition 4.25. Thus∑

v∈V invKv([σ, αv]Kv) =
∑

v∈V invKv([αv, γ]Kv) = 0.

Hence, it follows from the commutative diagram (∗) that
∑

v∈V ιv(αv) = 0 and there exists
α ∈ K× such that α = αv in Tw(Ev, σ) for all v ∈ V . Then

([α, γ]Kv)v∈V = ([σ, α]Kv)v∈V = ([σ, αv]Kv)v∈V = ([αv, γ]Kv)v∈V ,

and this completes the proof. □
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Theorem 4.57. Let d ∈ Z>0 be a positive integer and δ ∈ K× a nonzero element. Let {bv}v∈V
is a family consisting of inner products bv over Kv with dim bv = d and det b = δ. Suppose that
HWKv(bv) = 0 for almost all v ∈ V and

∑
v∈V invKv ◦HWKv(bv) = 0. Then there exists an

inner product b over K such that b⊗Kv
∼= bv for all v ∈ V.

Proof. If d = 1 then bv ∼= 〈δ〉Kv for all v ∈ V , so b := 〈δ〉K is the desired inner product. Suppose
that d = 2. In this case, we can write bv ∼= 〈αv, αvδ〉Kv for each v ∈ V where αv ∈ K×

v . Then
HWKv(bv) = [αv, αvδ]Kv = [αv,−δ]Kv . Thus, it follows from that the assumption and Lemma
4.56 that there exists α ∈ K× such that [α,−δ]Kv = [αv,−δ]Kv for all v ∈ V . We now define
b := 〈α, αδ〉K . Then, for any v ∈ V , we have det(b⊗Kv) = δ = det(bv) and

HWKv(b⊗Kv) = [α, αδ]Kv = [α,−δ]Kv = [αv,−δ]Kv = HWKv(bv),

which means b⊗Kv
∼= bv by Theorem 4.32. Hence b is the desired inner product.

Suppose that d ≥ 3 and write bv ∼= 〈αv,1, . . . , αv,d−1, αv,1 · · ·αv,d−1δ〉Kv for each v ∈ V
where αv,i ∈ K×

v . Put S = {v ∈ V | v is an infinite place or HWKv(bv) 6= 0}. Then S is
a finite set. Thus, for each i = 1, . . . , d − 1, there exists αi ∈ K× such that αi = αv,i in
K×
v /K

×2
v for all v ∈ S by the approximation theorem 1.26 and Proposition 2.12. We define

b̃ := 〈α1, . . . , αd−1, α1 · · ·αd−1δ〉K and put T = {v ∈ V | b̃⊗Kv 6∼= bv}.
Claim 1: T is a finite set consisting of finite places, and #T is even. By the definitions of b̃
and α1, . . . , αd−1, we have b̃ ⊗K Kv

∼= bv for all v ∈ S. In particular T has no infinite place.
Furthermore T can be written as

T = {v ∈ V | v is finite and HWKv (̃b⊗Kv) 6= HWKv(bv)}

by Theorem 4.45. On the other hand, it follows from Proposition 4.53 and the assumption on
{bv}v that HWKv (̃b) and HWKv(bv) are zero for almost all v. Hence T is a finite set. Moreover
it also follows that #T is even because∑

v∈V invKv(HWKv (̃b)−HWKv(bv))

=
∑

v∈V invKv(HWKv (̃b))−
∑

v∈V invKv(HWKv(bv)) = 0− 0 = 0.

Claim 2: There exist two 2-dimensional inner products b0 and b̃0 over K with same determinant
such that HWKv(b0) = HWKv (̃b0) for all v /∈ T and HWKv(b0) 6= HWKv (̃b0) for all v ∈ T . Let
γ ∈ K× be a nonzero element which is not a square in K×

v for any v ∈ T . Such an element
exists: for example, we can take γ ∈ K× arbitrarily close to a non-square element of Kv for any
v ∈ T by approximation theorem 1.26, and then γ is not a square in K×

v by Proposition 2.12.
Now, by Theorem 4.27, we can take a family (αv)v∈V (αv ∈ K×

v ) so that [αv, γ]Kv 6= 0 for v ∈ T
and [αv, γ]Kv = 0 for v /∈ T . Note that

∑
v∈V invKv([αv, γ]Kv) = 0 since #T is even. Thus,

there exists α ∈ K× such that [α, γ]Kv = [αv, γ]Kv for all v ∈ V by Lemma 4.56. We define

b0 := 〈1, αγ〉K and b̃0 := 〈α, γ〉K .

Then they have the same determinant αγ. Moreover HWKv(b0) = 0 = HWKv (̃b0) for v /∈ T and
HWKv(b0) = 0 6= HWKv (̃b0) for v ∈ T .

Claim 3: The 2-dimensional inner product b̃0 is a direct summand of b̃ ⊕ b0. By Lemma 4.55,
it is sufficient to show that the localization b̃0 ⊗ Kv is a direct summand of (b̃ ⊕ b0) ⊗ Kv =
(̃b⊗Kv)⊕ (b0 ⊗Kv) for every v ∈ V . For v 6∈ T we have b̃0 ⊗Kv

∼= b0 ⊗Kv by Theorem 4.32,
and the assertion is clear. Let v ∈ T . Then v is a finite place. Note that any inner product
over Kv of dimension at least 4 represents every nonzero element (Proposition 4.44). Thus, any
2-dimensional inner product is a direct summand of any inner product over Kv of dimension at
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least 5. In particular b̃0 ⊗Kv is a direct summand of (b̃⊗Kv)⊕ (b0 ⊗Kv). This completes the
proof of Claim 3.

By Claim 3, there exists an inner product b over K such that b̃⊕ b0 ∼= b⊕ b̃0. For any infinite
place v we have b̃0 ⊗ Kv

∼= b0 ⊗ Kv, and hence b ⊗ Kv
∼= b̃ ⊗ Kv

∼= bv by Witt’s calculation
theorem 4.19. Let v ∈ V be a finite place. We have det(b) = det(̃b) = det(bv) where the first
equality follows from det(b0) = det(̃b0). Moreover, it follows from Lemma 4.31 (ii) that

0 = HWKv (̃b⊕ b0)−HWKv(b⊕ b̃0)

= (HWKv (̃b) + HWKv(b0) + [δ, det(b0)]Kv)− (HWKv(b) + HWKv (̃b0) + [δ, (det b̃0)]Kv)

= HWKv (̃b) + HWKv(b0)−HWKv(b)−HWKv (̃b0).

Hence

HWKv(b)−HWKv(bv) = (HWKv (̃b)−HWKv(bv))− (HWKv (̃b0)−HWKv(b0)) = 0

because both HWKv (̃b)−HWKv(bv) and HWKv (̃b0)−HWKv(b0) are nonzero if v ∈ T , and both
are zero if v 6∈ T . Therefore b⊗Kv

∼= bv by Theorem 4.45. The proof is complete. □

4.8 Explicit computation of Hilbert symbols

We have now gone through the general theory of inner products over fields of number theory.
Here is an explicit computation of Hilbert symbols over local fields obtained by completions of
Q. Let v be a place of Q, that is, the infinite place ∞ or a prime number p. Note that

Br2(Qv)
invQv−→

(
1

2
Z
)
/Z ×2−→ Z/2Z = {0, 1} (16)

is a group isomorphism, see Proposition 4.42 (i).

Definition 4.58. Let α, β ∈ Q×
v be nonzero elements. The Hilbert symbol of α and β, denoted

(α, β)v, is the image of the Brauer class [α, β]Qv under the isomorphism (16). Similarly, for an
inner product bv over Qv, we write hwv(bv) for the image of the Hasse-Witt invariant HWQv(bv)
under (16), and call it the Hasse-Witt invariant again.

By Theorem 4.23, the Hilbert symbol can be written as

(α, β)v =

{
0 if 〈1,−α,−β, αβ〉Qv is isotropic

1 if 〈1,−α,−β, αβ〉Qv is anisotropic

for α, β ∈ K×.

Remark 4.59. The Hilbert symbol is often expressed multiplicatively and considered to take
values in the multiplicative group {1,−1} of order 2, though we express it additively. One can
also define the Hilbert symbol as

(α, β)v =

{
0 if 〈1,−α,−β〉Qv is isotropic

1 if 〈1,−α,−β〉Qv is anisotropic

for α, β ∈ K×, see [39, Chapter 2, Corollary 11.10]. This definition may be more familiar.
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As seen in Theorem 4.26, the Hilbert symbol (·, ·)v is a symmetric bilinear form on Q×
v /Q×2

v

which takes values in {0, 1}. We have

Q×
v /Q×2

v =


{1,−1} if v = ∞
{1, ε, p, εp} if v is an odd prime p

{1,−1, 3,−3, 2,−2, 6,−6} if v = 2,

where ε is a non-square unit of Zp (p 6= 2). This is clear if v = ∞, and seen in §2.2 if v is a
prime number.

Theorem 4.60. We have (−1,−1)∞ = 1. For an inner product b over R of signature (r, s), we
have

hw∞(b) =
s(s− 1)

2
=

{
0 if s ≡ 0, 1 mod 4

1 if s ≡ 2, 3 mod 4

in Z/2Z.

Proof. Straightforward. □

At a finite place, Hilbert symbols can be calculated as follows.

Theorem 4.61. Let p be a prime number.

(i) Suppose that p is an odd prime, and let ε be a non-square unit of Zp. Then

(ε, ε)p = 0, (ε, p)p = 1, (p, p)p =

{
0 if p ≡ 1 mod 4

1 if p ≡ 3 mod 4.

(ii) At the prime 2, we have

(−1,−1)2 = 1, (−1, 3)2 = 1, (−1, 2)2 = 0, (3, 3)2 = 1, (3, 2)2 = 1, (2, 2)2 = 0.

In particular (u,−3) = 0 for any unit u ∈ Z×
2 .

Proof. We remark that a quadratic form q over Qp has a nontrivial zero over Qp if and only if
q has a primitive zero over Zp. For α, β ∈ Zp, we define

qα,β(X1, X2, X3, X4) := X2
1 − αX2

2 − βX2
3 + αβX2

4 .

Then (α, β)p = 1 if and only if qα,β has no primitive zero over Zp.
(i). Suppose that p is an odd prime. The quadratic form qϵ,ϵ has a nontrivial zero modulo p

by Lemma 4.37. Then, the zero lifts the zero over Zp by Proposition 1.37. Thus (ε, ε)p = 0. Let
(x1, x2, x3, x4) ∈ (Zp)4 be a zero of qϵ,p. Then

x21 − εx22 = p(x23 − εx24). (17)

This shows that x21 − εx22 ≡ 0 mod p, and thus (x1, x2) ≡ (0, 0) mod p. Then, again by (17),
we get x31 − εx24 = x21/p − εx22/p ≡ 0 mod p, and (x3, x4) ≡ (0, 0) mod p. This means that qϵ,p
has no primitive zero. Hence (ε, p)p = 1. It remains to compute (p, p)p. We remark that −1 is
a square if and only if p ≡ 1 mod 4 by Corollary 2.3 and Proposition 1.37. Suppose first that
p ≡ 1 mod 4. Then 〈1,−p,−p, p2〉Q2

∼= 〈1,−p,−p,−1〉Q2 and it is isotropic. Thus (p, p)p = 0.
Suppose that p ≡ 3 mod 4. Then ε = −1 mod squares. Thus (p, εp)p = (p,−p)p = 0, and
(p, p)p = (p, εp)p + (p, ε)p = 1. This completes the proof of the assertion (i).
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(ii). Some computations show that each of quadratic forms q−1,−1, q−1,3, q3,3, and q−3,2 has no
primitive zero modulo 8. Hence (−1,−1)2, (−1, 3)2, (3, 3)2, and (−3, 2)2 are all 1. On the other
hand, we have q−1,2(1, 1, 1, 0) = 0 and q2,2(0, 1, 1, 1) = 0. This means that (−1, 2)2 = (2, 2)2 = 0.
It remains to show that (u,−3)2 = 0 for any unit u ∈ Z×

2 . (1,−3)2 = 0 and (3,−3)2 = 0 are
obvious. Moreover, we have

(−1,−3)2 = (−1, 3)2 + (−1,−1)2 = 1 + 1 = 0,

(−3,−3)2 = (−1,−1)2 + (−1, 3)2 + (3,−1)2 + (3, 3)2 = 1 + 1 + 1 + 1 = 0.

This completes the proof. □

Since the Hilbert symbol is symmetric and bilinear, we can calculate the Hilbert symbol of
every pair by Theorem 4.61. A direct computation yields the following corollary, cf. Theorem
4.46.

Corollary 4.62. Let p be an odd prime and ε a non-square unit of Zp. An inner product over
Qp with a prescribed dimension, determinant, and Hasse-Witt invariant is given as in Tables
4.1 and 4.2. □

One can get an analog of this corollary for p = 2, but it is omitted in this thesis.

Table 4.1: Inner products with prescribed invariants in the case p ≡ 1 mod 4
dim(b) = 1 dim(b) = 2 dim(b) ≥ 3

det(b) = 1, hwp(b) = 0 〈1〉Qp 〈1, 1〉Qp 〈1〉⊕dQp

det(b) = 1, hwp(b) = 1 None None 〈ε, p, εp〉Qp ⊕ 〈1〉⊕d−3
Qp

det(b) = ε, hwp(b) = 0 〈ε〉Qp 〈1, ε〉Qp 〈1, ε〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = ε, hwp(b) = 1 None 〈p, εp〉Qp 〈p, εp〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = p, hwp(b) = 0 〈p〉Qp 〈1, p〉Qp 〈1, p〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = p, hwp(b) = 1 None 〈ε, εp〉Qp 〈ε, εp〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = εp, hwp(b) = 0 〈εp〉Qp 〈1, εp〉Qp 〈1, εp〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = εp, hwp(b) = 1 None 〈ε, p〉Qp 〈ε, p〉Qp ⊕ 〈1〉⊕d−2
Qp

Table 4.2: Inner products with prescribed invariants in the case p ≡ 3 mod 4
dim(b) = 1 dim(b) = 2 dim(b) ≥ 3

det(b) = 1, hwp(b) = 0 〈1〉Qp 〈1, 1〉Qp 〈1〉⊕dQp

det(b) = 1, hwp(b) = 1 None 〈p, p〉Qp 〈p, p〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = ε, hwp(b) = 0 〈ε〉Qp 〈1, ε〉Qp 〈1, ε〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = ε, hwp(b) = 1 None None 〈ε, p, p〉Qp ⊕ 〈1〉⊕d−3
Qp

det(b) = p, hwp(b) = 0 〈p〉Qp 〈1, p〉Qp 〈1, p〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = p, hwp(b) = 1 None 〈ε, εp〉Qp 〈ε, εp〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = εp, hwp(b) = 0 〈εp〉Qp 〈1, εp〉Qp 〈1, εp〉Qp ⊕ 〈1〉⊕d−2
Qp

det(b) = εp, hwp(b) = 1 None 〈ε, p〉Qp 〈ε, p〉Qp ⊕ 〈1〉⊕d−2
Qp
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4.9 Hermitian products

Let K be a field, and let E be a commutative K-algebra with a nontrivial involution σ. For
an E-module M , we write σM∗ for the E-module that the underlying abelian group is M∗ :=
HomE(M,E) and scalar multiplication is given by

(α.ξ)(x) = σ(α)ξ(x) (α ∈ E, ξ ∈M∗, x ∈M).

Definition 4.63. Let M be a finitely generated free E-module. A map h : M ×M → E is
called a hermitian form onM if h is E-linear in the first variable and satisfies h(y, x) = σh(x, y)
for any x, y ∈M . We write h∗ for the homomorphism M → σM∗ defined by

h∗(x) = (y 7→ h(y, x)) (x, y ∈M).

A hermitian form h : M ×M → E is nondegenerate if the homomorphism h∗ is injective. A
nondegenerate hermitian form is called a hermitian product. If h is a hermitian product on M ,
then the pair (M,h) is called a hermitian product space (although E is not necessarily a field).

Note that h(x, x) belongs to the fixed subalgebra Eσ for any hermitian form h on a free
E-module M and for any x ∈ M . Similar terminology is used for hermitian forms as for
symmetric bilinear forms. LetM,M ′ be finitely generated free E-modules, and h, h′ be hermitian
forms on M,M ′ respectively. We say that (M,h) and (M ′, h′) are isomorphic if there exists an
isomorphism t :M →M ′ of E-modules such that h′(t(x), t(y)) = h(x, y) for all x, y ∈M . For a
submodule U of M , we define U⊥ := {y ∈ M | h(y, x) = 0 for any x ∈ U}. When E is a field,
an analog of Proposition 4.4 holds for hermitian product spaces (the statement is omitted).

Definition 4.64. LetM be a finitely generated free E-module, and h :M×M → E a hermitian
form on M .

(i) For an E-basis e1, . . . , em of M , the m×m matrix (h(ei, ej))ij is called the Gram matrix
of (M,h). Its determinant is not zero if and only if h is nondegenerate. When h is
nondegenerate, the class of det((h(ei, ej))ij) ∈ (Eσ)× in the twisting group Tw(E, σ) does
not depend on the chose of the E-basis. This class is referred to as the determinant of
(M,h) and denoted by det(h). If h is degenerate then its determinant is defined to be 0.

(ii) An E-basis ofM is called an orthogonal basis if the corresponding Gram matrix is diagonal.

(iii) Let G = (gij)ij ∈ Mm(E) be an m × m nondegenerate hermitian matrix (‘hermitian’
means gji = σ(gij) for all i, j). The symbol 〈G〉E denotes the hermitian product space
that its underlying space is Em and G is the Gram matrix with respect to the standard
basis of Em. If G is a diagonal matrix, say diag(a1, . . . , ad), then we write 〈a1, . . . , ad〉E =
〈diag(a1, . . . , ad)〉E for short.

Any hermitian product treated in this thesis has an orthogonal basis even if charK = 2.

Proposition 4.65. Suppose that E is a field or of type (sp) (see Definition 1.9). Then, any
hermitian product space (M,h) over E has an orthogonal basis.

Proof. One can prove it as in Proposition 4.9 when E is a field. However, in order to deal also
with the case of type (sp), we imitate the Gram-Schmidt process for an inner product space and
argue by induction on m := rkEM . The case m = 1 is obvious. Suppose that m ≥ 2, and let
e1, . . . , em be a basis of M .

Case I: There exists i ∈ {1, . . . ,m} such that h(ei, ei) 6= 0. We may assume that i = 1. Note

that Eσ is a field, and h(e1, e1) ∈ Eσ is invertible. Put e′j := ej − h(ej ,e1)
h(e1,e1)

e1 for j = 2, . . . ,m.
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Then e1, e
′
2, . . . , e

′
m is a basis of M , and h(e′j , e1) = 0 for all j = 2, . . . ,m. Thus M decomposes

as M = Ee1 ⊕M ′, where M ′ ⊂M is the free E-submodule with basis e′2, . . . , e
′
m. Then M

′ has
an orthogonal basis e′′2, . . . , e

′′
m by induction hypothesis. Because e1, e

′′
2, . . . , e

′′
m is an orthogonal

basis of M , we are done.

Case II: h(ei, ei) = 0 for all i = 1, . . . ,m. Since h is nondegenerate, there exists j such that
h(ej , e1) 6= 0. Put β = h(ej , e1) ∈ E. Suppose that β is not invertible. In this case, E is
of type (sp). We may assume that E = E0 × E0 for a field E0 isomorphic to Eσ. Since β
is not zero and not invertible, it can be written as β = (γ, 0) or (0, γ) ∈ E0 × E0 for some
γ ∈ (E0)

×. Then β + σ(β) = (γ, γ), and it is not zero. Now, we define e′j := e1 + ej . Then
e1, . . . , ej−1, e

′
j , ej+1, . . . , em is a basis ofM , and h(e′j , e

′
j) = β+σ(β) 6= 0. Hence, it is attributed

to Case I. Suppose that β is invertible. For any α ∈ E we have

h(e1 + αβ−1ej , e1 + αβ−1ej) = σ(αβ−1)h(e1, ej) + αβ−1h(ej , e1) = α+ σ(α). (∗)

We show that there exists α0 ∈ E such that h(e1+α0β
−1ej , e1+α0β

−1ej) 6= 0. When charK 6= 2,
we can take α0 = 1. Suppose that charK = 2. If h(e1 + αβ−1ej , e1 + αβ−1ej) were equal to 0
for all α ∈ E, then α+σ(α) = 0 for all α ∈ E by (∗). However, this is a contradiction since σ is
nontrivial. Therefore, in any case, there exists α0 ∈ E such that h(e1+α0β

−1ej , e1+α0β
−1ej) 6=

0. Then e1 + α0β
−1ej , e2, . . . , em is a basis of M , and it is attributed to Case I. This completes

the proof. □

Corollary 4.66. Suppose that E is of type (sp), and (M,h) be a hermitian product space over
E of rank m. Then (M,h) ∼= 〈1〉⊕mE .

Proof. This follows from Propositions 4.65 and 1.11. □

Hermitian forms over E are accompanied by symmetric bilinear forms over Eσ.

Definition 4.67. Suppose that Eσ is a field. Let M be a finitely generated free E-module, and
h :M ×M → E a hermitian form on M . A symmetric bilinear form bh :M ×M → Eσ on the
Eσ-vector space M is defined by

bh(x, y) = h(x, y) + h(y, x) = h(x, y) + σh(x, y) (x, y ∈M).

We refer to bh as the symmetric bilinear form associated with h. Note that b(x, x) = 2h(x, x)
for any x ∈M .

In the situation of this definition, the symmetric bilinear form bh can be expressed as

bh(x, y) = TrE/Eσ ◦h(x, y) (x, y ∈M)

if E is a field separable over Eσ, or if E is of type (sp). Moreover, if L is a subfield of Eσ such
that Eσ/L is separable then a symmetric bilinear form on the L-vector space M is given by
TrE/L ◦h. For such forms, we have the following propositions.

Proposition 4.68. Suppose that E is a field separable over Eσ or of type (sp). Let M be a
finitely generated free E-module, h : M ×M → E a hermitian form on M , and L a subfield
of Eσ such that Eσ/L is separable. Let b : M ×M → L denote the symmetric bilinear form
TrE/L ◦h. If h is nondegenerate then so is b.

Proof. Suppose that h is nondegenerate. Let x ∈M , and suppose that b(y, x) = 0 for all y ∈M .
It suffices to prove that x = 0. Suppose to the contrary that x 6= 0. Then, there exists z ∈ M
such that h(z, x) 6= 0 since h is nondegenerate. Put β := h(z, x). If β is not invertible then E
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is of type (sp) and γ := β + σ(β) ∈ Eσ is not zero, as in the proof of Proposition 4.65. On the
other hand, since the extension Eσ/L is separable, there exists α ∈ Eσ such that TrEσ/L(α) 6= 0
by Corollary 1.7. Then, we would have

0 = b(αγ−1z, x) = TrEσ/L(TrE/Eσ(h(αγ−1z, x)))

= TrEσ/L(αγ
−1TrE/Eσ(β)) = TrEσ/L(α) 6= 0,

but this is a contradiction. Similarly, in the case where β is invertible, the existence of an
element α ∈ E with TrE/L(α) 6= 0 yields a contradiction. Therefore x = 0, and the proof is
complete. □

Proposition 4.69. Suppose that E is a field separable over K. Let M be a finite dimensional
E-vector space, and let h, h′ be hermitian products on M .

(i) det(TrE/K ◦h) = det(TrE/K ◦h′) in K×/K×2.

(ii) HWK(TrE/K ◦h) = HWK(TrE/K ◦h′) + corEσ/K([σ, deth
deth′ ]Eσ) in Br2(K).

Proof. By Proposition 4.65, we may assume that h = 〈µ1, . . . , µm〉E , h′ = 〈µ′1, . . . , µ′m〉E where
µi, µ

′
j ∈ (Eσ)×. For µ ∈ (Eσ)×, let bµ denote the inner product E × E → K defined by

bµ(x, y) = TrE/K(µxσ(y)) (x, y ∈ E).

Then the inner products TrE/K ◦h and TrE/K ◦h′ can be expressed as

TrE/K ◦h = bµ1 ⊕ · · · ⊕ bµm and TrE/K ◦h′ = bµ′1 ⊕ · · · ⊕ bµ′m (∗)

respectively.
(i). By (∗), it is sufficient to show that det(bµ) = det(b1) for any µ ∈ (Eσ)×. Let µ ∈ (Eσ)×,

and let e1, . . . , ed be a basis of E over K. Let G and A be the Gram matrix of the inner product
b1 and representation matrix of the linear transformation E → E, x 7→ µx with respect to the
basis e1, . . . , ed. Then, the Gram matrix of bµ is given by tAG because bµ(x, y) = b1(µx, y).
Thus det(bµ) = det(tAG) = det(A) det(b1). On the other hand, we have det(A) = NE/K(µ) =
NEσ/K(µ2) = NEσ/K(µ)2. Hence det(bµ) = det(A) det(b1) = det(b1) in K

×/K×2 as required.
(ii). The case M = E is essential and follows from [11, Theorem 4.3]. Suppose that m :=

dimM ≥ 1. By Equation (∗), Lemma 4.31 (iii), and the case M = E, we have

HWK(TrE/K ◦h)−HWK(TrE/K ◦h′) = HWK(
⊕m

i=1 bµi)−HWK(
⊕m

i=1 bµ′i)

=
∑m

i=i

(
HWK(bµi)−HWK(bµ′i)

)
=
∑m

i=i

(
corEσ/K([σ, µi/µ

′
i]Eσ)

)
= corEσ/K([σ,

∏m
i=i(µi/µ

′
i)]Eσ)

= corEσ/K([σ, det(h)/ det(h′)]Eσ),

as required. □

4.10 Hermitian products over local and global fields

This subsection gives an classification of hermitian products over local fields. Moreover, we show
an analog of the global existence theorem 4.57. We begin with the case over C. In this case, the
complex conjugate · is a nontrivial involution. We remark that Tw(C, · ) = {1,−1}.
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Lemma 4.70. Let r and s be non-negative integers. The inner product associated with (r + s)
dimensional hermitian product 〈1〉⊕rC ⊕ 〈−1〉⊕sC is isomorphic to the 2(r + s) dimensional inner
product 〈1〉⊕2r

R ⊕ 〈−1〉⊕2s
R .

Proof. Let ε be 1 or −1. It is enough to show that the inner product b associated with
(C, h) := 〈ε〉C is isomorphic to 〈ε, ε〉R. We have b(1, 1) = 2h(1, 1) = 2ε and b(

√
−1,

√
−1) =

2h(
√
−1,

√
−1) = 2

√
−1

√
−1h(1, 1) = 2ε. Hence, the Gram matrix of b with respect to the basis

1,
√
−1 of the R-vector space C is diag(2ε, 2ε), which shows that b ∼= 〈2ε, 2ε〉R ∼= 〈ε, ε〉R. This

completes the proof. □

Theorem 4.71. Let (M,h) be a hermitian product space over C. There exist unique non-
negative integers r and s such that (M,h) ∼= 〈1〉⊕rC ⊕ 〈−1〉⊕sC .

Proof. Since Tw(C, · ) = {1,−1}, Proposition 4.65 implies that (M,h) ∼= 〈1〉⊕rC ⊕ 〈−1〉⊕sC for
some r, s ∈ Z≥0. Moreover, the pair (2r, 2s) is uniquely determined by h since Lemma 4.70
means that (2r, 2s) is the signature of the inner product associated with h. Therefore, the pair
(r, s) is also unique. □

This theorem leads to the following definition.

Definition 4.72. Let (M,h) be a hermitian product space over C. The signature of (M,h) is
the unique pair (r, s) of non-negative integers such that (M,h) ∼= 〈1〉⊕rC ⊕〈−1〉⊕sC . The difference
r−s is called the index of (M,h) and denoted by idx(h). Note that idx(b) = 2 idx(h) by Lemma
4.70, where b is the inner product associated with h.

We proceed to the case of non-archimedean local fields. In this case, the classification theorem
is similar to that of inner products over finite fields (Theorem 4.38).

Theorem 4.73. Let E be a non-archimedean local field of characteristic not 2 with a nontrivial
involution σ, and fix ν ∈ (Eσ)× with ν 6= 1 in Tw(E, σ). Let (M,h) be a hermitian product
space over E. If we write d = dimM then

(M,h) ∼=

{
〈1〉⊕dE if det(h) = 1

〈1〉⊕d−1
E ⊕ 〈ν〉E if det(h) = ν.

In particular, the isomorphism class of (M,h) is uniquely determined by its dimension and
determinant.

Proof. Note that Tw(E, σ) = {1, ν} by Corollary 3.28. Then, Proposition 4.65 implies that
b ∼= 〈1〉⊕mE ⊕ 〈ν〉⊕m′

E where m and m′ are non-negative integers with m + m′ = d. Hence, it
is sufficient to show that 〈ν, ν〉E ∼= 〈1, 1〉E . Let (U, hU ) be a 2-dimensional hermitian product
space isomorphic to 〈ν, ν〉E , and let b denote the inner product associated with hU . Then b is
4-dimensional over Eσ. Thus, there exists a vector u ∈ U such that b(u, u) = 2 by Proposition
4.44. Since hU (u, u) =

1
2b(u, u) = 1, we have (U, hU ) ∼= 〈1, det(hU )〉E = 〈1, 1〉E . This completes

the proof. □

We proceed to the global existence theorem. Let E be an algebraic number field with a
nontrivial involution σ, and let W be the set of places of the fixed subfield Eσ. Let w ∈ W be a
place, and we use the same symbols as in Notation 3.30. If (M,h) is a hermitian product space
over E then h extends to a hermitian product (M ⊗E Ew)× (M ⊗E Ew) → Ew in a unique way.
This extension of h is denoted by h ⊗E Ew or just h ⊗ Ew. Note that w is a place of Eσ and
not of E.
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Theorem 4.74. Let E be an algebraic number field with a nontrivial involution σ, and W the
set of places of Eσ. Let M be an m-dimensional E-vector space, and let {hw}w∈W be a family
consisting of hermitian products hw : (M ⊗E Ew) × (M ⊗E Ew) → Ew such that det(hw) = 1
in Tw(Ew, σ) for almost all w ∈ W and

∑
w∈W ιw(det(hw)) = 0, where the algebra Ew and

homomorphism ιw : Tw(Ew, σ) → Z/2Z are defined as in Notation 3.30. Then there exists a
hermitian product h on M such that h⊗ Ew ∼= hw for all w ∈ W.

Proof. For each w ∈ W , put µw = det(hw) ∈ Tw(Ew, σ). By Proposition 3.31, there exists
µ ∈ Tw(E, σ) such that µ = µw in Tw(Ew, σ) for all w ∈ W . Let W∞ ⊂ W be the set of all
infinite places of Eσ. For each w ∈ W∞, we can write

hw ∼= 〈αw,1, . . . , αw,m−1, αw,1 · · ·αw,m−1µ〉Ew

by Proposition 4.65, where αw,i ∈ (Eσw)
×. Since W∞ is a finite set, the approximation theorem

1.26 shows that for each i = 1, . . . ,m − 1 there exists αi ∈ Eσw arbitrarily close to αw,i for
all w ∈ W∞. Noting that Tw(Ew, σ) has order at most 2, we get αi = αw,i in Tw(Ew, σ) by
Proposition 2.12. Now, we define a hermitian product h on M = Em by

h = 〈α1, . . . , αm−1, α1 · · ·αm−1µ〉E .

Then

h⊗ Ew = 〈α1, . . . , αm−1, α1 · · ·αm−1µ〉Ew
∼= 〈αw,1, . . . , αw,m−1, αw,1 · · ·αw,m−1µ〉Ew

∼= hw

for each w ∈ W∞. Furthermore, for each finite place w ∈ W , we have h⊗Ew ∼= hw by Corollary
4.66 if w is split in E, and by Theorem 4.73 if w is not split in E since det(h⊗Ew) = µ = µw =
det(hw). Therefore h is the desired hermitian product on M . □

5 Lattices

This section gives an explanation of inner products defined over Dedekind domains. We refer to
[35], [39], and [40] as in §4.

5.1 Module theory over Dedekind domains

We summarize results of module theory over Dedekind domains here. Let O be an integral
domain, and M an O-module. For x ∈ M , we define Ann(x) := {α ∈ O | α.x = 0}. This is
an ideal of O. If Ann(x) 6= 0 then the element x is called a torsion element. We say that M is
a torsion module if every element of M is a torsion element, and M is torsion-free if it has no
torsion element except for 0. The submodule of M consisting of all torsion elements is called
the torsion submodule of M . If T is the torsion submodule of M then it is clear that M/T is
torsion-free.

If O is a Dedekind domain then any finitely generated module is the direct sum of a torsion-
free module and a torsion module. More precisely, the following theorem is known, which is
a generalization of the structure theorem for finitely generated modules over a principal ideal
domain.

Theorem 5.1 (Structure theorem). Let O be a Dedekind domain, M a finitely generated O-
module, and T the torsion submodule of M . Then M is isomorphic to the direct sum of M/T
and T . Moreover, the torsion-free module M/T is isomorphic to the direct sum of finitely many
ideals of O, and the torsion module T is isomorphic to the direct sum of finitely many modules
of the form O/pn, where p is a prime ideal of O and n ∈ Z>0 is a positive integer.
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Proof. See [21]. □

By this structure theorem, a finitely generated module over a Dedekind domain is projective
if and only if torsion-free, because any ideal of a Dedekind domain is a projective module.

Projective modules Let O be a Dedekind domain and K its field of fractions. We will often
consider that projective O-modules are contained in K-vector spaces. Indeed, if Λ is a projective
O-module, then it is flat, and the canonical homomorphism Λ = Λ⊗O O → Λ⊗OK is injective.
So we identify Λ with its image and consider that Λ is contained in the K-vector space Λ⊗OK.
In general, we say that a finitely generated O-module in a K-vector space V is on V if its K-span
coincides with V . A finitely generated projective O-module Λ is on the K-vector space Λ⊗OK.

Theorem 5.2. Let O be a Dedekind domain and K its field of fractions. Let V be a finite
dimensional K-vector space, and Λ,Λ′ finitely generated O-submodules on V . Then there exists
a basis e1, . . . , ed of V and fractional ideals a1, . . . , ad, b1, . . . , bd of O such that

Λ = a1e1 + · · ·+ aded and Λ′ = a1b1e1 + · · ·+ adbded.

In particular, the sum Λ+Λ′ and intersection Λ∩Λ′ are again finitely generated O-modules on
V .

Proof. See [35, Theorem 81:11]. Note that a finitely generated O-module in a K-vector space is
called a lattice in O’Meara’s book [35], see §81A and Example 81:6. However, in this thesis, a
lattice will mean a finitely generated projective O-module equipped with an inner product. □

Torsion modules For torsion modules over a Dedekind domain, length plays the role of
dimension for finite dimensional vector spaces, and is helpful. Let O be a Dedekind domain,
and M an O-module. For a chain

M0 ⊊M1 ⊊ · · · ⊊Ml−1 ⊊Ml (18)

of O-submodules of M , its length is the integer l ≥ 0. The length of M , denoted len(M), is the
largest length of its chains. The length is defined to be infinite if there exists a chain of infinite
length. Any ideal of O has infinite length as an O-module. Indeed, if a is an ideal with a ⊊ O
then the chain a ⊋ a2 ⊋ a3 ⊋ · · · has infinite length. On the other hand, for a prime ideal p
and a positive integer n, the module O/pn has finite length. In fact O/pn, p/pn, . . . , pn−1/pn, 0
are all submodules of O/pn. Hence, when M is finitely generated, it follows from the structure
theorem 5.1 that the length of M is finite if and only if M is a torsion module. Note that this is
not true when M is not finitely generated. For example, the Z-module Q/Z is a torsion module
but has infinite length.

The chain (18) is called a composition series ifM0 = 0, Ml =M , and the quotient Mj/Mj−1

has no nontrivial submodule for all j = 1, . . . , l. For composition series, the Jordan-Hölder
theorem is fundamental (it holds in the case O is an arbitrary ring in fact).

Theorem 5.3 (Jordan-Hölder theorem). LetM be an O-module which has a composition series.
For any two composition series M0 ⊊ M1 ⊊ · · · ⊊ Ml−1 ⊊ Ml and M

′
0 ⊊ M ′

1 ⊊ · · · ⊊ M ′
l′−1 ⊊

M ′
l′ of M , we have l = l′, and there exists a permutation σ of {1, . . . , l} such that Mj/Mj−1

∼=
M ′
σ(j)/M

′
σ(j−1) for all j = 1, . . . , l.

Proof. See [48, Theorem 7.42]. □

As a result, the length of M is the length of its composition series (if it is finite). This leads
to the following property of lengths.
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Corollary 5.4. Let 0 → T
ϕ→ T ′ → T ′′ → 0 be an exact sequence of finitely generated torsion

O-modules. Then we have len(T ′) = len(T ) + len(T ′′).

Proof. Let 0 = T0 ⊊ T1 ⊊ · · · ⊊ Tl = im(φ) be a composition series of im(φ), and let im(φ) =
T ′′
0 ⊊ T ′′

1 ⊊ · · · ⊊ T ′′
l′′ = T be a chain such that T ′′

j /T
′′
j−1 has no nontrivial submodule for all j.

Then, the chain
0 = T0 ⊊ T1 ⊊ · · · ⊊ Tl ⊊ T ′′

1 ⊊ · · · ⊊ T ′′
l′′ = T

is a composition series of T , and T has length l + l′′. On the other hand, we have l = len(T ).
Moreover l′′ = len(T ′′) because T ′′ ∼= T/ im(φ) and the chain 0 = T ′′

0 / im(φ) ⊊ T ′′
1 / im(φ) ⊊

· · · ⊊ T ′′
l′′/ im(φ) = T/ im(φ) is a composition series of T/ im(φ). This completes the proof. □

Another property we will need concerns the dual. Let K be the field of fractions of O. For
a torsion O-module T , the dual module HomO(T,O) (in usual sense) is zero, but the module
HomO(T,K/O) plays the role of dual.

Proposition 5.5. A finitely generated torsion O-module T is isomorphic to HomO(T,K/O).

Proof (Sketch). By the structure theorem 5.1, it is enough to show the case where T = O/pn
for some prime ideal p and positive integer n. In this case, it can be checked that

HomO(T,K/O) → T, ξ 7→ πnξ(1)

is a well-defined isomorphism, where π ∈ p \ p2. □

On can prove that HomO(HomO(T,K/O),K/O) is canonically isomorphic to T if T is a
finitely generated torsion O-module, although we do not use this fact.

5.2 Torsion product modules

In this subsection, we introduce torsion product modules, which arise naturally from lattices.
Let O be a Dedekind domain and K its field of fractions.

Definition 5.6. Let T be a finitely generated torsion O-module. A torsion form on T (over O)
is a symmetric O-bilinear form T × T → K/O. For a torsion form b : T × T → K/O we write
b∗ for the homomorphism T → T ∗ := HomO(T,K/O) defined by

b∗(x) = (y 7→ b(y, x)) (x, y ∈ T ).

A torsion form b : V × V → K is nondegenerate if the homomorphism b∗ is injective, and a
nondegenerate torsion form is referred to as a torsion product. If b : T × T → K/O is a torsion
product on T , then the pair (T, b) is called a torsion product module over O.

Properties of torsion product modules are similar to those of inner product spaces. As
mentioned in §5.1, it follows from the structure theorem 5.1 that the length of a finitely generated
torsion O-module is finite. Let T = (T, b) be a torsion product module over O.

Lemma 5.7. The homomorphism b∗ : T → T ∗ is isomorphic.

Proof. we have len(T ∗) = len(T ) since T ∗ ∼= T by Proposition 5.5, and b∗ is injective by defini-
tion. Thus b∗ must be surjective by Corollary 5.4. □

For a submodule U ⊂ T , we define U⊥ := {x ∈ T | b(u, x) = 0 for any u ∈ U}. The following
proposition is an analog of Proposition 4.4.
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Proposition 5.8. Let U be a submodule of T . Then the sequence

0 → U⊥ → T
b∗(·)|U−→ U∗ → 0

is exact, where the second arrow is the inclusion. Moreover, we have:

(i) lenT = lenU⊥ + lenU .

(ii) (U⊥)⊥ = U .

(iii) If U is nondegenerate then so is U⊥, and T = U ⊕ U⊥.

Proof. We prove surjectivity of b∗(·)|U : T → U∗. Let ξ : U → K/O be an element of U∗. It
is known that K/O is an injective O-module (see [48, §6.3 Exercise 9]). Hence, there exists an
extension ξ̃ : T → K/O of ξ, and we can take x ∈ T such that b∗(x) = ξ̃ by Lemma 5.7. Then
b∗(x)|U = ξ, which shows that b∗(·)|U is surjective. The remaining assertions follow similarly to
Proposition 4.4. □

5.3 Lattices over Dedekind domains

Let O be a Dedekind domain and K its field of fractions.

Definition 5.9. Let Λ be a finitely generated projective O-module. For a symmetric bilinear
form b : Λ× Λ → K (taking values in the field of fractions), we write b∗ for the homomorphism
Λ → HomO(Λ,K) defined by

b∗(x) = (y 7→ b(y, x)) (x, y ∈ Λ).

A symmetric bilinear form b : Λ×Λ → K is nondegenerate if the homomorphism b∗ is injective,
and a nondegenerate symmetric bilinear form is referred to as an inner product as in §4. If b is
an inner product on Λ then the pair (Λ, b) is called a lattice. Let (Λ, b), (Λ′, b′) be lattices over
O. An isometry from (Λ, b) to (Λ′, b′) is a homomorphism t : Λ → Λ′ of O-modules satisfying
b′(t(x), t(y)) = b(x, y) for any x, y ∈ Λ. Two lattices (Λ, b) and (Λ′, b′) are isomorphic if there
exists an isomorphism Λ → Λ′ of O-modules which is also an isometry. An isometry from (Λ, b)
to (Λ, b) itself is referred to as an isometry of (Λ, b), and the group of all isometries of (Λ, b) is
denoted by O(Λ, b) or just by O(Λ).

For a lattice (Λ, b) over O, the inner product b is extended linearly on the K-vector space
Λ ⊗O K, which is denoted by b ⊗ K or just by b, and the pair (Λ ⊗O K, b) becomes an inner
product space over K. In this case, we consider that Λ is contained in Λ ⊗O K as in §5.1.
Conversely, if (V, b) is an inner product space over K and Λ is a finitely generated O-submodule
on V , then Λ is regarded as a lattice with the restriction of b. A lattice on an inner product
space (V, b) is a finitely generated O-module on V equipped with the inner product defined by
the restriction of b. When we say that (V, b) contains a lattice Λ, it is often assumed that Λ is
on V . It is clear that a lattice (Λ, b) over O is a lattice on the inner product space (Λ⊗O K, b).

For a lattice (Λ, b) over O, the O-module

Λ∨ := {y ∈ Λ⊗O K | b(y, x) ∈ O for all x ∈ Λ}

(equipped with the inner product b) is called the dual lattice of Λ.

Lemma 5.10. Let (Λ, b) be a lattice over O, and put V = Λ ⊗O K. When Λ is written as
Λ = a1e1 + · · · + aded in V , where e1, . . . , ed ∈ V is a basis of V and a1, . . . , ad are fractional
ideals of O, the dual lattice Λ∨ is given by Λ∨ = a−1

1 e∨1 + · · · + a−1
d e∨d , where e

∨
1 , . . . , e

∨
n ∈ V is

the dual basis of e1, . . . , ed with respect to b⊗K. Hence Λ∨ is a lattice on (V, b), and the double
dual Λ∨∨ := (Λ∨)∨ is equal to Λ itself.
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Proof. Straightforward. □

Definition 5.11. A lattice (Λ, b) over O is said to be integral if b(x, y) ∈ O for any x, y ∈ Λ,
or equivalently Λ ⊂ Λ∨. If Λ = Λ∨ then (Λ, b) is said to be unimodular. For an integral lattice
(Λ, b), the quotient module Λ∨/Λ is called the discriminant module of (Λ, b). We write x̄ for
x + Λ in Λ∨/Λ where x ∈ Λ∨. An integral lattice (Λ, b) is said to be even if b(x, x) ∈ 2O; and
odd otherwise. Note that every integral lattice is even if 2 is a unit of O.

Proposition 5.12. Suppose that Λ = (Λ, b) is an integral lattice.

(i) The discriminant module is a finitely generated torsion module.

(ii) The discriminant module is naturally a torsion product module with the torsion form b̄ :
(Λ∨/Λ)× (Λ∨/Λ) → K/O defined by

b̄(x̄, ȳ) = b(x, y) +O (x, y ∈ Λ∨).

Proof. (i). The lattice Λ and its dual Λ∨ is on V := Λ⊗OK by Lemma 5.10. Thus, Theorem 5.2
shows that there exists a basis e1, . . . , ed of V and fractional ideals a1, . . . , ad, b1, . . . , bd of O such
that Λ = a1e1+ · · ·+ aded and Λ∨ = a1b1e1+ · · ·+ adbded. Moreover b1, . . . , bd must be integral
ideals since Λ ⊂ Λ∨. Then, the discriminant module Λ∨/Λ is isomorphic to O/b1 ⊕ · · · ⊕ O/bd,
and it is a finitely generated torsion module.

(ii). It is easy to check that b̄ is a well-defined torsion form on Λ∨/Λ. We show that b̄ is
nondegenerate. Let x ∈ Λ∨, and assume that b̄(x̄, ȳ) = 0 (in K/O) for any ȳ ∈ Λ∨/Λ. Then
b(x, y) ∈ O for any y ∈ Λ∨, which means that x ∈ Λ∨∨ = Λ. Therefore x̄ = 0, and this shows
that b̄ is nondegenerate. □

Let (Λ, b) be a lattice, and U a submodule of Λ. If b|U is nondegenerate (resp. unimodular)
then U is said to be nondegenerate (resp. unimodular). We define U⊥ := {y ∈ Λ | b(x, y) =
0 for any x ∈ U}. For a lattice (Λ, b), a nondegenerate submodule is not a direct summand of
Λ in general, unlike in the case over a field. However, a unimodular submodule of a unimodular
lattice is a direct summand.

Proposition 5.13. Let (Λ, b) be a unimodular lattice over O, and U is a unimodular submodule
of Λ. Then Λ = U ⊕ U⊥, and U⊥ is also unimodular.

Proof. Put V = Λ ⊗O K. Since the K-span KU of U is nondegenerate, V decomposes as
V = KU ⊕ (KU)⊥ by Proposition 5.8 (iii). Let x ∈ Λ. It can be uniquely written as x = x1+x2
for some x1 ∈ KU and x2 ∈ (KU)⊥ by the decomposition V = KU ⊕ (KU)⊥. For the equality
Λ = U ⊕ U⊥, it suffices to show that x1 ∈ U and x2 ∈ U⊥. We have b(x1, U) = b(x, U) ⊂
b(x,Λ) ⊂ O since Λ is unimodular. This means that x1 ∈ U∨ = U . Furthermore, we have
x2 = x− x1 ∈ Λ. This implies that x2 ∈ (KU)⊥ ∩ Λ = U⊥. Therefore, we obtain Λ = U ⊕ U⊥.
Then U⊥ must be unimodular because 0 = Λ∨/Λ = (U∨/U)⊕ ((U⊥)∨/U⊥). □

In this thesis, we will actually treat mainly the case where O is a principal integral domain.
In this case, any projective module is free. In general, for a lattice whose underlying O-module
is free, we can define the Gram matrix in the same way for an inner product over a field.

Definition 5.14. Let (Λ, b) be an integral lattice over O such that the O-module Λ is free.
For a basis e1, . . . , ed of Λ, the d× d matrix (b(ei, ej))ij ∈ Md(O) is called the Gram matrix of
(Λ, b). The square class of det((b(ei, ej))ij) ∈ O× in O×/O×2 does not depend on the chose of
the basis. This class is referred to as the determinant of (Λ, b) and denoted by det(b).
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Let G = (gij)ij ∈ Md(O) be a d × d nondegenerate symmetric matrix. The symbol 〈G〉O
denotes the integral lattice that its underlying space is Od and G is the Gram matrix with
respect to the standard basis of Od. If G is a diagonal matrix, say diag(a1, . . . , ad), then we
write 〈a1, . . . , ad〉O = 〈diag(a1, . . . , ad)〉O for short. The symbol HO denotes the lattice〈

0 1
1 0

〉
O

as in Definition 4.11. A lattice isomorphic to HO is referred to as a hyperbolic lattice.

The structure of the discriminant module as a torsion O-module is expressed by the invariant
factors of a Gram matrix.

Proposition 5.15. Let (Λ, b) be an integral lattice over O, and suppose that Λ has a basis
e1, . . . , ed. Let G ∈ Md(O) be the Gram matrix of (Λ, b) with respect to e1, . . . , ed, and let
a1, . . . , ad ∈ O× be the invariant factors of G. Then Λ∨/Λ ∼= O/a1O ⊕ · · · ⊕ O/adO as torsion
O-modules.

Proof. Let e∨1 , . . . , e
∨
d ∈ Λ∨ be the dual basis of e1, . . . , ed with respect to b. Then, it can be seen

that G is the representation matrix of the inclusion Λ → Λ∨ with respect to bases e1, . . . , ed and
e∨1 , . . . , e

∨
d . Hence, the quotient Λ∨/Λ is isomorphic to O/a1O ⊕ · · · ⊕ O/adO. □

As a result, an integral lattice over O whose underlying O-module is free is unimodular if
and only if its Gram matrix is invertible over O.

Definition 5.16. Let (Λ, b) be an integral lattice over O. An overlattice of Λ is an integral
lattice on (Λ⊗O K, b) containing Λ.

For an overlattice Λ′ of an integral lattice Λ, we have Λ′ ⊂ Λ∨, and the quotient Λ′/Λ is
a submodule of the discriminant module Λ∨/Λ. This submodule Λ′/Λ is totally isotropic, i.e.,
b̄(x̄, x̄) = 0 for all x̄ ∈ Λ′/Λ, because Λ′ is integral by definition.

Proposition 5.17. Let Λ be an integral lattice over O. Sending an overlattice Λ′ of Λ to the
submodule Λ′/Λ gives rise to a one-to-one correspondence between the overlattices of Λ and the
totally isotropic submodules of Λ∨/Λ.

Proof. For a totally isotropic submodule U of Λ∨/Λ, define ΛU := {x ∈ Λ∨ | x̄ ∈ U}. Then the
mapping U 7→ ΛU is the inverse of Λ′ 7→ Λ′/Λ. □

5.4 Unimodular lattices over the valuation ring of a local field

Let O be the valuation ring of a non-archimedean local field K of characteristic not 2. In this
section, we give a classification theorem of unimodular lattices over O. Let v be the normalized
valuation of K. We begin with the non-dyadic case.

Theorem 5.18. Suppose that 2 is a unit of O, and fix a non-square unit ε ∈ O×. Let (Λ, b) be
a unimodular lattice over O. Then

(Λ, b) ∼=

{
〈1〉⊕dO if det b = 1

〈1〉⊕d−1
O ⊕ 〈ε〉O if det b = ε.

Proof. We first show that there exists x ∈ Λ such that v(b(x, x)) = 0. Let e1, . . . , ed ∈ Λ be a
basis of Λ. If there is i such that v(b(ei, ei)) = 0 then we are done. Suppose that v(b(ei, ei)) > 0
for all i. Since b is unimodular, there exist i, j such that v(b(ei, ej)) = 0. Then

v(b(ei + ej , ei + ej)) = v(b(ei, ei) + 2b(ei, ej) + b(ej , ej)) = 0,
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and we are done.
Let x ∈ Λ be an element with v(b(x, x)) = 0. Then the submodule Ox ⊂ Λ is unimodular.

Thus Λ decomposes as Λ = Ox ⊕ (Ox)⊥, and (Ox)⊥ is also unimodular by Proposition 5.13.
Hence, by induction on rank, we get (Λ, b) ∼= 〈α1, . . . , αd〉O, where α1, . . . , αd ∈ O× are units
of O. Moreover, since O×/O×2 = {1, ε} by Theorem 2.10 (i), we have (Λ, b) ∼= 〈1〉⊕mO ⊕ 〈ε〉⊕m′

O ,
where m and m′ are non-negative integers with m+m′ = d. It remains to show that 〈ε, ε〉O ∼=
〈1, 1〉O. By Lemma 4.37, the equation X2

1 +X
2
2 = ε has a primitive root modulo p, where p is the

maximal ideal of O. Thus, it has a primitive root over O by Proposition 1.37. This means that
〈1, 1〉O represents ε. Hence, we obtain 〈1, 1〉O ∼= 〈ε, ε · det(〈1, 1〉O)〉O ∼= 〈ε, ε〉O. This completes
the proof. □

This theorem leads immediately to the following corollary.

Corollary 5.19. Suppose that K is non-dyadic, and let (V, b) be an inner product space over
K. If (V, b) contains a unimodular lattice over O then its Hasse-Witt invariant is zero. □

Let us proceed the dyadic case. We assume that K is dyadic, that is, 2 is not a unit of O,
and let (Λ, b) be a lattice over O.

Definition 5.20. The scale of Λ, denoted sΛ, is a fractional ideal generated by {b(x, y) | x, y ∈
Λ}. The norm group of Λ, denoted gΛ, is the additive group {b(x, x) | x ∈ Λ}+2sΛ. The norm
of Λ, denoted nΛ, is a fractional ideal generated by gΛ. The largest fractional ideal contained
in gΛ is denoted by mΛ.

We have
2sΛ ⊂ mΛ ⊂ gΛ ⊂ nΛ (19)

by their definitions. It can be checked that

v(mΛ) + v(nΛ) ≡ 0 mod 2, (20)

see [35, p.253]. Suppose that (Λ, b) is integral. Then sΛ is an integral ideal. Furthermore nΛ
and mΛ are also integral ideals since gΛ ⊂ O. If (Λ, b) is unimodular then sΛ = O.

Theorem 5.21. Let Λ and Λ′ be unimodular lattices on an inner product space (V, b) over a
dyadic local field K of characteristic not 2. There exists an isometry τ ∈ O(V, b) such that
τ(Λ′) = Λ if and only if gΛ = gΛ′.

Proof. See Theorem 93:16 and p.222 of [35]. □

In the following, we restrict ourselves to the case K = Q2.

Corollary 5.22. Let Λ and Λ′ be unimodular lattices on an inner product space (V, b) over Q2.
Suppose that Λ and Λ′ are both even or both odd. Then there exists an isometry τ ∈ O(V, b)
such that τ(Λ′) = Λ.

Proof. Note that sΛ = Z2 since Λ is unimodular. Suppose first that Λ and Λ′ are both even.
Then gΛ ⊂ 2Z2, and thus gΛ = 2Z2 by (19). Similarly, we get gΛ′ = 2Z2. Thus we are done
by Theorem 5.21. Suppose then that Λ and Λ′ are both odd. Then 2Z2 ⊊ gΛ ⊂ Z2, which
means that nΛ = Z2. On the other hand, we have mΛ = Z2 or 2Z2 by (19). Thus mΛ = Z2 by
(20), and hence gΛ = Z2 by (19) again. Similarly, we get gΛ′ = Z2. Therefore, Theorem 5.21
completes the proof. □

An even unimodular lattice over Z2 has the following standard form. We refer to [35, Example
93:18] for a more general result.

77



Theorem 5.23. Let (Λ, b) be an even unimodular lattice over Z2. Then, the rank of Λ is even,
say 2n, and (−1)n det(b) = 1 or −3 in Z×

2 /Z
×2
2 . Moreover, we have

(Λ, b) ∼=


H⊕n

Z2
if (−1)n det(b) = 1

H⊕n−1
Z2

⊕

〈
2 1

1 2

〉
Z2 if (−1)n det(b) = −3.

Proof (Sketch). Since (Λ, b) is unimodular, there exist x, y ∈ Λ such that b(x, y) = 1. Since (Λ, b)
is even, x and y are linearly independent, and we can write b(x, x) = 2α and b(y, y) = 2β for

some α, β ∈ Z2 . Then Z2x⊕Z2y is a unimodular submodule of Λ isomorphic to

〈
2α 1
1 2β

〉
Z2 .

Thus (Z2x⊕Z2y)
⊥ is also unimodular, and (Λ, b) is decomposes as (Z2x⊕Z2y)⊕ (Z2x⊕Z2y)

⊥

by Proposition 5.13. On the other hand, one can show that〈
2α 1
1 2β

〉
Z2

∼=

{
HZ2 if αβ ∈ 2Z2

〈A〉Z2 if αβ 6∈ 2Z2,

where A :=

(
2 1
1 2

)
. Hence, by induction on rank, we obtain (Λ, b) ∼= H⊕m

Z2
⊕ 〈A〉⊕m′

Z2
, where m

and m′ are non-negative integers. In particular, the rank rk(Λ) = 2m+2m′ is even, and putting
n = rk(Λ)/2, we have (−1)n det(b) = 1 or −3 in Z×

2 /Z
×2
2 . It remains to show that 〈A〉⊕2

Z2

∼= H⊕2
Z2

.
One can show this isomorphism in a direct way or by using Corollary 5.22. □

5.5 Even unimodular lattices over Z

Here we consider even unimodular lattices over Z. The signature and index of a lattice (Λ, b) over
Z are respectively those of the inner product space (Λ⊗R, b⊗R) over R. The hyperbolic lattice
HZ is an even unimodular lattice of signature (1, 1). Another example of an even unimodular
lattice is given by the matrix

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 −1 0 0 0
0 0 −1 2 0 0 0 0
0 0 −1 0 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


.

The lattice which has this matrix as a Gram matrix is denoted by E8 (this is the root lattice of
type E8). The lattice E8 is an even unimodular lattice of signature (8, 0).

Theorem 5.24. Let (Λ, b) be an even unimodular lattice over Z of signature (r, s). Then, the
rank r + s is even, (−1)(r+s)/2 det(b) = 1, and r ≡ s mod 8.

Proof. The rank r + s of Λ is also the rank of the localization (Λ ⊗ Z2, b⊗ Z2) at 2. Thus, it is
even by Theorem 5.23. Put n = (r + s)/2. Theorem 5.23 also shows that (−1)n det(b) = 1 or
−3 in Z×

2 /Z
×2
2 . On the other hand, since (Λ, b) is unimodular, we have (−1)n det(b) = 1 or −1

in Z×/Z×2, and hence in Z×
2 /Z

×2
2 . These show that (−1)n det(b) = 1 in Z×/Z×2. It remains
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to show that r ≡ s mod 8. We have n ≡ s mod 2 because (−1)n = det(b ⊗ R) = (−1)s. A
computation shows that

hw2(b⊗Q2) = hw2(H⊕n
Q2

) =
n(n− 1)

2
=

{
0 if n ≡ 0, 1 mod 4

1 if n ≡ 2, 3 mod 4,

and we have

hw∞(b⊗ R) =
s(s− 1)

2
=

{
0 if s ≡ 0, 1 mod 4

1 if s ≡ 2, 3 mod 4

by Theorem 4.60. Moreover, it follows from the reciprocity (Proposition 4.53) and Corollary
5.19 that hw∞(b⊗ R) + hw2(b⊗Q2) = 0. Hence n ≡ s mod 4. Therefore

r − s = (2n− s)− s = 2(n− s) ≡ 0 mod 8.

This completes the proof. We refer to [40, Chapter V] for another proof. □

Theorem 5.25. Let r, s ∈ Z≥0 be non-negative integers with r ≡ s mod 8. Then there exists
an even unimodular lattice over Z of signature (r, s). Moreover, if r and s are positive then such
a lattice is unique up to isomorphism.

Proof. Let r, s be non-negative integers with r ≡ s mod 8. If r− s ≥ 0 then E
⊕(r−s)/8
8 ⊕H⊕s

Z is
an even unimodular lattice of signature (r, s). If r − s < 0 then an even unimodular lattice of

signature (r, s) is obtained by multiplying the inner product of E
⊕(s−r)/8
8 ⊕H⊕r

Z by −1. For the
uniqueness, see [40, Chapter V, Theorem 6]. □

It is known that E8 is a unique even unimodular lattice of signature (8, 0). However, in
Theorem 5.25, the assumption that r and s are positive cannot be dropped for the uniqueness.
In fact, it is known that there exist two isomorphism classes of even unimodular lattices of
signature (16, 0), and 24 isomorphism classes of even unimodular lattices of signature (24, 0).
For these facts, we refer to [40, Chapter V, §2.3].
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Chapter III

Isometries and their characteristic polynomials

6 Equivariant Witt groups

This section gives a foundation of equivariant Witt groups. This theory is an equivariant version
of that of Witt groups for inner product spaces, and was well known to experts, but the paper
[3] of E. Bayer-Fluckiger and L. Taelman published in 2020 seems to be the first document that
summarizes the theory explicitly, see Introduction of that paper. This section is written with
reference to the paper [3].

6.1 General results

Let K be a field, and let A be a K-algebra with a K-linear involution σ : A→ A.

Definition 6.1. An A-inner product space over K is a pair (V, b) consisting of an A-module V
whose K-dimension is finite and an inner product b : V × V → K over K satisfying

b(ax, y) = b(x, σ(a)y) (21)

for all a ∈ A and x, y ∈ V . When we need refer to the A-module structure ρ : A → End(V )
of V , the A-inner product space is denoted by the triple (V, b, ρ). Two A-inner product spaces
(V, b) and (V ′, b′) are isomorphic if there exists an isomorphism V → V ′ of A-modules which is
also an isometry of inner product spaces over K.

Example 6.2. Let (V, b) be an inner product space over K, and let G be a group. Suppose that
each element of G acts on V as an isometry. Then we have b(g.x, y) = b(x, g−1.y) for any g ∈ G
and x, y ∈ V . This means that the pair (V, b) can be regarded as a K[G]-inner product space,
where K[G] is the group algebra with the K-linear involution induced by g 7→ g−1 for all g ∈ G.

Definition 6.3. Let V = (V, b) be an A-inner product space. We refer to an A-submodule of
V as an A-stable subspace. A lagrangian of V is an A-stable subspace X satisfying X = X⊥. If
V has a lagrangian then V is said to be neutral.

It is clear that the direct sum of two neutral spaces is again neutral. The following lemma
is useful to check whether an A-stable subspace is a lagrangian.

Lemma 6.4. Let (V, b) be an A-inner product space. An A-stable subspace X of V is a la-
grangian if and only if X ⊂ X⊥ and 2 dimX = dimV . In particular, any neutral space is of
even dimension (over K).

Proof. Let X be an A-stable subspace of V . Note that dimV = dimX⊥+dimX by Proposition
4.4 (i). If X is a lagrangian then dim V = dimX⊥ + dimX = 2dimX. Conversely, suppose
that X ⊂ X⊥ and 2 dimX = dimV . Then dimX⊥ + dimX = dimV = 2dimX, and we get
dimX⊥ = dimX. This means that X = X⊥, and X is a lagrangian. □
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Two A-inner product spaces V and V ′ are Witt equivalent, written V ∼ V ′, if there exist
neutral spaces N and N ′ such that V ⊕ N ∼= V ′ ⊕ N ′. Any neutral space is Witt equivalent
to the 0-dimensional space. Let MA denote the monoid of all isomorphism classes of A-inner
product spaces, where the operation is the direct sum ⊕.

Lemma 6.5. The Witt equivalence ∼ is an equivalence relation on MA.

Proof. Reflexivity and symmetry are obvious. Let V, V ′, V ′′ ∈ MA satisfy V ∼ V ′ and V ′ ∼
V ′′. By definition, there exist neutral spaces N,N ′,M ′,M ′′ such that V ⊕ N ∼= V ′ ⊕ N ′ and
V ′ ⊕M ′ ∼= V ′′ ⊕M ′′. Then

V ⊕N ⊕M ′ ∼= V ′ ⊕N ′ ⊕M ′ ∼= (V ′ ⊕M ′)⊕N ′ ∼= V ′′ ⊕M ′′ ⊕N ′,

which implies that V ∼ V ′′ since N ⊕M ′ and M ′′ ⊕N ′ are neutral. This completes the proof.
□

Each equivalence class is called an (A-equivariant) Witt class. The Witt class of (V, b) will
be denoted by [(V, b)] or [V, b] simply. We now show that the quotient MA/∼ becomes a group.

Lemma 6.6. Let (V, bV ), (V
′, bV ′), (W, bW ), (W ′, bW ′) be A-inner product spaces.

(i) (V, bV )⊕ (V,−bV ) is neutral, and hence, Witt equivalent to 0.

(ii) If (V, bV ) ∼ (W, bW ) and (V ′, bV ′) ∼ (W ′, bW ′) then (V, b)⊕(V ′, bV ′) ∼ (W, bW )⊕(W ′, bW ′).

Proof. For (i), put X = {(x, x) ∈ (V, bV )⊕ (V,−bV ) | x ∈ V }. Then X ⊂ X⊥ and

2 dimX = 2dimV = dim((V, bV )⊕ (V,−bV )).

Thus, Lemma 6.4 shows that X is a lagrangian of (V, bV )⊕ (V,−bV ), and (V, bV )⊕ (V,−bV ) is
neutral. We then show the assertion (ii). Suppose that V ∼W and V ′ ∼W ′. Then there exist
neutral spaces N,M,N ′,M ′ such that V ⊕N ∼=W ⊕M and V ′ ⊕N ′ ∼=W ′ ⊕M ′. Thus

(V ⊕ V ′)⊕ (N ⊕N ′) ∼= (V ⊕N)⊕ (V ′ ⊕N ′)
∼= (W ⊕M)⊕ (W ′ ⊕M ′) ∼= (W ⊕W ′)⊕ (M ⊕M ′),

which shows that V ⊕ V ′ ∼W ⊕W ′. □

Definition 6.7. Lemma 6.6 means that the operation + defined by

[V, b] + [V ′, b′] = [(V, b)⊕ (V ′, b′)]

makes MA/∼ an additive group. The zero is the class containing the 0-dimensional space, and
the inverse of [V, b] is given by [V,−b]. This group is called the (A-equivariant) Witt group of
K or the Witt group for A-inner product spaces, and denoted by WA(K).

The following proposition means that the set of all neutral spaces forms a Witt class, which
is the zero of WA(K).

Proposition 6.8. An A-inner product space V is neutral if and only if V ∼ 0.

Proof. Let V be an A-inner product space. If V is neutral then the equivalence V ∼ 0 is clear
by definition. Suppose that V ∼ 0. Then there exists a neutral space M such that V ⊕M is
neutral. The dimensions of V ⊕M and M are even since they are neutral, and hence that of V
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is also even. Say dim V = 2n and dimM = 2m. Let X ⊂ V ⊕M and Y ⊂ M be lagrangians,
and put

S := X ∩ (V ⊕ Y ) ⊂ V ⊕M and Z := πV (S) ⊂ V,

where πV : V ⊕M → V is the projection. We show that Z is a lagrangian of V . Let bV , bM ,
and bV⊕M denote the inner products of V,M , and V ⊕M respectively. For v + y, v′ + y′ ∈ S
(v′, v′ ∈ V , y, y′ ∈ Y ) we have

0 = bV⊕M (x+ y, x′ + y′) = bV (x, x
′) + bM (y, y′) = bV (πV (x+ y), πV (x

′ + y′)) + 0.

This equation means that Z ⊂ Z⊥ since any element of Z is of the form πV (x + y). We then
calculate the dimension of Z. It follows from the rank-nullity formula that

dimZ = dimS − dimker(πV |S). (22)

On the other hand, we have

ker(πV |S) = S ∩ (0⊕M) = (X ∩ (V ⊕ Y )) ∩ (0⊕M) = X ∩ (0⊕ Y )

and
(X ∩ (0⊕ Y ))⊥V⊕M = X⊥

V⊕M + (0⊕ Y )⊥V⊕M = X + (V ⊕ Y ⊥
M ) = X + (V ⊕ Y ),

where each subscript stands for the space in which we take the orthogonal space. Thus

dimker(πV |S) = dim(V ⊕M)− dim(ker(πV |S)⊥)
= 2n+ 2m− dim(X + (V ⊕ Y ))

= 2n+ 2m− (dimX + dim(V ⊕ Y )− dimS)

= 2n+ 2m− (n+m+ 2n+m− dimS)

= n− dimS.

Combining this equation and equation (22) yields

dimZ = dimS − (n− dimS) = n,

which means that Z is a lagrangian of V by Lemma 6.4. Therefore V is neutral, and the proof
is complete. □

Our next purpose is to obtain a direct sum decomposition of WA(K). The precise statement
is in Theorem 6.11.

Lemma 6.9. Let (V, b) be an A-inner product space, and X an A-stable subspace with X ⊂ X⊥.
The quotient X⊥/X is an A-inner product space with the symmetric bilinear form

(v +X, v′ +X) 7→ b(v, v′) (v, v′ ∈ V ⊥),

which is also denoted by b. Moreover, we have [V, b] = [X⊥/X, b].

Proof. It is easy to check that the bilinear form b on X⊥/X is well defined and has the property
(21). To show nondegeneracy of b, let v ∈ X⊥, and assume that b(v + X,X⊥/X) = 0. Then
b(v,X⊥) = 0, which means that v ∈ X⊥⊥ = X. Thus v = 0 in X⊥/X, and b is nondegenerate.

We then prove that [V, b] = [X⊥/X, b]. We claim that the direct sum (V,−b)⊕ (X⊥/X, b) is
neutral. Put Y = {(v, v +X) ∈ V ⊕ (X⊥/X) | v ∈ X⊥}. Then Y is an A-stable subspace with
dim(Y ) = dim(X⊥) and Y ⊂ Y ⊥. Moreover

dim(V ⊕ (X⊥/X)) = dim(V ) + dim(X⊥)− dim(X) = 2 dim(X⊥) = 2 dim(Y ),
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where the second equality follows from Proposition 4.4 (i). Hence Y is a lagrangian by Lemma
6.4, and (V,−b)⊕ (X⊥/X, b) is neutral. Therefore

0 = [(V,−b)⊕ (X⊥/X, b)] = −[V, b] + [X⊥/X, b],

and [V, b] = [X⊥/X, b] as required. □

An A-inner product space (V, b) is simple if V is simple as an A-module. If an A-inner
product space is expressed as a direct sum of simple spaces, then the A-inner product space is
said to be semisimple. It is stronger than the underlying A-module being semisimple because it
requires that each simple component of the underlying A-module is nondegenerate.

Proposition 6.10. Any class in WA(K) is represented by a semisimple A-inner product space.

Proof. Set

M′
A := {(V, b) ∈ MA | [V, b] can be represented by a semisimple space} ⊂ MA.

It suffices to show that M′
A = MA. Suppose to the contrary that M′

A ⊊ MA and take
V ∈ MA \M′

A so that its K-dimension is minimal. The space V is not simple and thus contains
a nontrivial A-stable subspace W . Put X =W ∩W⊥.

If X = 0, thenW andW⊥ are nondegenerate and V =W ⊕W⊥. Hence, we have [W ] /∈ M′
A

or [W⊥] /∈ M′
A, since otherwise the class [V ] = [W ]+[W⊥] would be represented by a semisimple

space. However, in either case, this contradicts the minimality of the dimension of V since
dim(W ) and dim(W⊥) are less than dim(V ).

Suppose that X 6= 0. Then X ⊂ X⊥. Lemma 6.9 shows that [V ] = [X⊥/X]. However, we
would have

dim(X⊥/X) = dim(X⊥)− dim(X) ≤ dimK(V )− dim(X) < dim(V ),

which contradicts the minimality of the dimension of V . Therefore M′
A = MA, and the proof

is complete. □

Let P be a simple A-module. The symbol WA(K;P ) denotes the subgroup of WA(K)
generated by the classes of the form [P, b] where b is an inner product on P over K which makes
(P, b) an A-inner product space. Any class in WA(K;P ) is represented by an A-inner product
space whose underlying A-module is a direct sum of copies of P . We remark that the subgroup
WA(K;P ) is determined only by the isomorphism class of P .

Theorem 6.11. The Witt group WA(K) decomposes as

WA(K) =
⊕
P

WA(K;P )

where P ranges over the isomorphism classes of simple A-modules.

Proof. Proposition 6.10 implies that WA(K) =
∑

P WA(K;P ). Hence, it suffices to show that
the sum

∑
P WA(K;P ) is a direct sum. Let

∑
P [VP ] be an element of

∑
P WA(K;P ) where each

VP is a direct sum of copies of P , and assume that
∑

P [VP ] = 0. Since [
⊕

P VP ] =
∑

P [VP ] = 0,
Proposition 6.8 implies that the space V :=

⊕
P VP is neutral. Let X be a lagrangian of V , and

set XP := X ∩ VP for each simple module P . We remark that†

X =
⊕
P

XP . (23)

†Equation (23) is a not so trivial property of semisimple modules, but its proof is omitted here to avoid getting
off the main line. We refer to [48, §7.2].
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We claim that XP is a lagrangian of VP for each P . The inclusion XP ⊂ (XP )
⊥ in VP is obvious.

Moreover, it follows from Lemma 6.4 and equation (23) that

dim(V ) = 2 dim(X) = 2
∑
P

dim(XP ) ≤
∑
P

dim(VP ) = dim(V ).

Thus 2 dim(XP ) must be equal to dim(VP ) for each P , and this implies that XP is a lagrangian of
VP . Therefore, VP is neutral, or equivalently, [VP ] = 0. This implies that the sum

∑
P WA(K;P )

is a direct sum. The proof is complete. □

Let Γ be an infinite cyclic group with generator τ . We will use Theorem 6.11 in the case A =
K[Γ]. This is a special case of Example 6.2. For any (non-constant) irreducible polynomial f ∈
K[X] except for X, the quotient K[X]/(f) is a simple K[Γ]-module via the action determined
by

τ.v = Xv (v ∈ K[X]/(f))

(note that multiplication by X is invertible in K[X]/(f)). Conversely, every simple K[Γ]-
module whose K-dimension is finite is isomorphic to K[X]/(f) for some irreducible polynomial
f ∈ K[X]. This gives rise to a bijection between the set of irreducible monic polynomials in
K[X] except for X and the set of isomorphism classes of simple K[Γ]-modules. For an irreducible
polynomial f(X) 6= X, we write WK[Γ](K; f) = WK[Γ](K;K[X]/(f)). In this case, Theorem
6.11 is as follows.

Corollary 6.12. We have

WK[Γ](K) =
⊕
f

WK[Γ](K; f)

where f ranges over all irreducible monic polynomials in K[X] expect for X. □

6.2 Witt groups for torsion product modules

In this subsection, we assume that K is the field of fractions of a Dedekind domain O, and let A
be an O-algebra with a linear involution σ. We define the A-equivariant Witt group for torsion
product modules similarly to that for inner product spaces.

Definition 6.13. An A-torsion product module over O is a pair (T, b) consisting of an A-module
T finitely generated over O and a torsion product b : T × T → K/O over O satisfying

b(ax, y) = b(x, σ(a)y) (24)

for all a ∈ A and x, y ∈ T . Two A-torsion product modules (T, b) and (T ′, b′) are isomorphic if
there exists an isomorphism T → T ′ of A-modules which is also an isometry of torsion product
modules over O.

Definition 6.14. A lagrangian of an A-torsion product module T = (T, b) is an A-submodule
X satisfying X = X⊥. If T has a lagrangian then T is said to be neutral. Two A-torsion product
modules T and T ′ are Witt equivalent, written T ∼ T ′, if there exist neutral modules N and N ′

such that T ⊕N ∼= T ′ ⊕N ′.

Properties of A-torsion product modules can be proved similarly to those of A-inner product
spaces by using lengths instead of dimensions.

Lemma 6.15. Let T = (T, b) be an A-torsion product module. An A-submodule X of T is a
lagrangian if and only if T ⊂ T⊥ and 2 lenX = lenT . In particular, any neutral module is of
even length.
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Proof. The same proof as that of Lemma 6.4 is valid by replacing dimensions with lengths, and
by using Proposition 5.8 instead of Proposition 4.4. □

Let MTA denote the monoid of all isomorphism classes of A-torsion product modules. The
Witt equivalence is an equivalence relation of MTA as in Lemma 6.5. Each equivalence class is
called an (A-equivalent) Witt class, and the Witt class of (T, b) is denoted by [(T, b)] or [T, b].
Moreover, Lemma 6.6 holds mutatis mutandis, and thus, the quotient MTA/∼ becomes a group
with the operation + defined by

[T, b] + [T ′, b′] = [(T, b)⊕ (T ′, b′)].

Here the zero is the class containing the zero module, and the inverse of [T, b] is given by [T,−b].

Definition 6.16. The group MTA/∼ is called the (A-equivariant) Witt group for A-torsion
product modules, and denoted by WTA(O).

We also have analogs of Proposition 6.8 and Lemma 6.9:

Proposition 6.17. Let T be an A-torsion product module.

(i) T is neutral if and only if T ∼ 0.

(ii) If X is an A-submodule of T satisfying X ⊂ X⊥ then X⊥/X is an A-torsion product
module in a natural way, and T ∼ X⊥/X.

Proof. These can be proved by imitating the proofs of Proposition 6.8 and Lemma 6.9. □

In the rest of this subsection, we assume that O is a discrete valuation ring. Let κ denote
its residue field, and fix a uniformizer π of O. We write Aκ for the κ-algebra A⊗O κ. Our aim
is to give an isomorphism between two Witt groups WTA(O) and WAκ(κ) (Theorem 6.21).

Definition 6.18. Let T be a finitely generated torsion module over O. By the structure theorem
5.1, the set {n ∈ Z≥0 | πnT = 0} is bounded. The minimum of this set is called the exponent of
T . The exponent is independent of the choice of π.

Lemma 6.19. Let T = (T, b) be an A-torsion product module of exponent n.

(i) If n ≥ 2 then U := πn−1T is a nonzero totally isotropic A-submodule.

(ii) T is Witt equivalent to an A-torsion product module of exponent at most 1.

In particular, any Witt class of WTA(O) is represented by an A-torsion product module of
exponent at most 1.

Proof. (i). Let n ≥ 2. It is clear that U = πn−1T is a nonzero A-submodule. Moreover

b(U,U) = b(πn−1T, πn−1T ) = b(πnT, πn−2T ) = b(0, πn−2T ) = 0.

Thus U is totally isotropic.
(ii). If n ≤ 1 then there is nothing to prove. Let n ≥ 2. Then U = πn−1T is a totally

isotropic A-submodule by (i). Proposition 6.17 (ii) shows that T ∼ U⊥/U . Since the exponent
of U⊥/U is at most n− 1 by the definition of U , it follows inductively that T is equivalent to a
module whose exponent is at most 1. □

85



Let (T, b) be an A-torsion product module of exponent at most 1. The underlying A-module
T can be seen as an Aκ-module by the ring homomorphism Aκ = A⊗O κ→ End(T ) determined
by

a⊗ (γ + πO) 7→ (x 7→ (aγ).x) (a ∈ A, γ ∈ O, x ∈ T ).

Furthermore b takes values in (π−1O)/O ⊂ K/O. Indeed, we have

πb(x, y) = b(πx, y) = b(0, y) = 0 in K/O

for any x, y ∈ T . Hence, we obtain the inner product

πb : T × T
b→ (π−1O)/O ×π−→ O/(πO) = κ,

and the pair (T, πb) is an Aκ-inner product space over κ.

Lemma 6.20. Let T = (T, b) be an A-torsion product module of exponent at most 1. The
A-torsion product module (T, b) is neutral if and only if the Aκ-inner product space (T, πb) is
neutral. In other words, [T, b] = 0 in WTA(O) if and only if [T, πb] = 0 in WAκ(κ).

Proof. If X is a lagrangian of (T, b) (resp. (T, πb)) then X is also a lagrangian of (T, πb)
(resp. (T, b)). Hence (T, b) is neutral if and only if (T, πb) is neutral. By Proposition 6.8 and
Proposition 6.17 (i), we can also say that [T, b] = 0 in WTA(O) if and only if [T, πb] = 0 in
WAκ(κ). □

Theorem 6.21. Sending ω ∈ WTA(O) to [T, πb] ∈ WAκ(κ), where (T, b) is a representative of
ω whose exponent at most 1, gives rise to a well-defined isomorphism from WTA(O) to WAκ(κ).

Proof. Let ω ∈ WTA(O). Then there exists a representative (T, b) of ω whose exponent is at
most 1 by Lemma 6.19. We firstly show that the Witt class of (T, πb) ∈WAκ(κ) is independent
of the choice of (T, b). Let (T ′, b′) be another representative of ω. Then

0 = −[T, b] + [T ′, b′] = [T,−b] + [T ′, b′] = [T ⊕ T ′, (−b)⊕ b′] in WTA(O),

and thus 0 = [T ⊕ T ′, π((−b)⊕ b′)] in WAκ(κ) by Lemma 6.20. Moreover, we have

[T ⊕ T ′, π((−b)⊕ b′)] = [T,−πb] + [T ′, πb′] = −[T, πb] + [T ′, πb′],

and hence [T, πb] = [T ′, πb′] inWAκ(κ). This means that the Witt class of (T, πb) is independent
of the choice of (T, b).

It is easy to check the mapping WTA(O) → WAκ(κ), ω 7→ [T, πb] is a group homomor-
phism. We then show that this homomorphism is an isomorphism. Lemma 6.20 implies that the
homomorphism is injective. Let (V, b) be an Aκ-inner product space over κ. Then the underlying
space V can be naturally seen as an O-torsion module of exponent at most 1. By defining the
torsion form π−1b : V × V → K/O as

π−1b : V × V
b→ κ = O/(πO)

×π−1

−→ (π−1O)/O ⊂ K/O,

the pair (V, π−1b) becomes an A-torsion product module whose exponent is at most 1. Since
the image of [V, π−1b] ∈ WTA(O) is equal to [V, b] ∈ WAκ(κ), the homomorphism WTA(O) →
WAκ(κ) is surjective. This completes the proof. □
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6.3 Stable lattices over discrete valuation rings

In this subsection, we assume that K is a discrete valuation field, and let v, O, and κ denote
its normalized valuation, valuation ring, and residue field respectively. Furthermore, we fix a
uniformizer π of O. Let A be an O-algebra with a linear involution σ. The K-algebra A⊗O K
is denoted by AK . We will give a necessary and sufficient condition for an AK-inner product
space to contain an A-stable unimodular lattice in terms of Witt groups.

Definition 6.22. Let (V, b) be an AK-inner product space. A lattice Λ on V is A-stable if
AΛ = Λ. If V contains an A-stable lattice, then V is said to be bounded. The subgroup of
WAK

(K) generated by the classes which can be represented by a bounded AK-inner product
space is denoted by W b

AK
(K).

Proposition 6.23. Let V = (V, b) be an AK-inner product space.

(i) For any lattice Λ on V , the set {v(b(x, y)) ∈ Z | x, y ∈ Λ} is bounded below.

(ii) If V is bounded then V contains an A-stable integral lattice.

Proof. (i). Let e1, . . . , ed be a basis of Λ, and let x, y ∈ Λ. We can write

x =
∑d

i=1 αiei, y =
∑d

j=1 βjej where αi, βj ∈ O.

Then

v(b(x, y)) = v
(∑

i,j αiβjb(ei, ej)
)

≥ min{v(αiβjb(ei, ej)) | 1 ≤ i, j ≤ d}
= min{v(αi) + v(βj) + v(b(ei, ej)) | 1 ≤ i, j ≤ d}
≥ min{v(b(ei, ej)) | 1 ≤ i, j ≤ d}.

Thus, the set {v(b(x, y)) ∈ Z | x, y ∈ Λ} is bounded below.
(ii). Suppose that V contains an A-stable lattice Λ, and put m = min{v(b(x, y)) ∈ Z | x, y ∈

Λ}. If m ≥ 0 then Λ is integral, and we are done. Let m < 0. It is clear that π−mΛ is A-stable.
Moreover, we have

min{v(b(π−mx, π−my)) ∈ Z | x, y ∈ Λ} = min{2v(π−m) + v(b(x, y)) ∈ Z | x, y ∈ Λ}
= −2m+min{v(b(x, y)) ∈ Z | x, y ∈ Λ}
= −m
> 0,

which implies that π−mΛ is integral. This completes the proof. □

A usual inner product space V over K can be regarded as a K-inner product space (in the
sense of Definition 6.1). In this case, the space V is always bounded (letting A = O) because
the O-span of a K-basis of V is an O-stable lattice. There is a non-bounded example.

Example 6.24. Let Γ be an infinite cyclic group with generator τ , and let A be the group algebra
O[Γ]. Then AK = O[Γ]⊗O K = K[Γ]. Let (V, b) be a hyperbolic plane over K with hyperbolic
basis (e1, e2) (see Definition 4.11). Suppose that K[Γ] acts on V by τ.e1 = πe1 and τ.e2 = π−1e2.
Then

b(τ.e1, τ.e1) = b(πe1, πe1) = π2b(e1, e1) = 0,

b(τ.e2, τ.e2) = b(π−1e2, π
−1e2) = π−2b(e2, e2) = 0,

b(τ.e1, τ.e2) = b(πe1, π
−1e2) = b(e1, e2) = 1.
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These equations mean that τ acts as an isometry, and hence V is a K[Γ]-inner product space.
Suppose that charK 6= 2, and let Λ be a lattice on V . Then Λ contains an anisotropic vector
since so does V , say z = α1e1 + α2e2 ∈ Λ (α1, α2 ∈ K). Note that α1 6= 0 and α2 6= 0 since z is
anisotropic. For any n ∈ Z>0 we have

b(τn.z, z) = b(α1π
ne1 + α2π

−ne2, α1e1 + α2e2) = α1α2(π
n − π−n),

and thus
v(b(τn.z, z)) = v(α1) + v(α2) + v(πn − π−n) = v(α1) + v(α2)− n.

This means that the set {v(b(x, y)) ∈ Z | x, y ∈ AΛ} is not bounded below. Therefore AΛ is not
a lattice by Proposition 6.23 (i), and in particular AΛ 6= Λ. This implies that V is not bounded.

We now introduce a homomorphism W b
AK

(K) → WTA(O). Let V = (V, b) be a bounded
AK-inner product space, and Λ be an A-stable integral lattice on V . Then, the dual lattice Λ∨

is also A-stable, and the discriminant module (Λ∨/Λ, b̄) becomes an A-torsion product module
naturally.

Proposition 6.25. For two A-stable integral lattices Λ1,Λ2 on V , we have [Λ∨
1 /Λ1] = [Λ∨

2 /Λ2]
in WTA(O).

Proof. Set Λ0 = Λ1 ∩ Λ2. Then Λ0 is an A-stable integral lattice on V by Theorem 5.2. We
show that [Λ∨

0 /Λ0] = [Λ∨
1 /Λ1]. Put U = Λ1/Λ0 ⊂ Λ∨

0 /Λ0. Then

U⊥ = {ȳ ∈ Λ∨
0 /Λ0 | b̄(ȳ,Λ1/Λ0) = 0} = {y ∈ Λ∨

0 | b(y,Λ1) ⊂ O} = Λ∨
1 /Λ0.

Thus
[Λ∨

0 /Λ0] = [U⊥/U ] = [(Λ∨
1 /Λ0)/(Λ1/Λ0)] = [Λ∨

1 /Λ1],

where the first equality follows from Proposition 6.17 (ii). Similarly, we have [Λ∨
0 /Λ0] = [Λ∨

2 /Λ2].
Therefore [Λ∨

1 /Λ1] = [Λ∨
2 /Λ2] in WTA(O). □

This proposition means that the Witt class of the A-torsion product module Λ∨/Λ does
not depend on the choice of Λ. Thus, sending V to [Λ∨/Λ] ∈ WTA(O) gives rise to a monoid
homomorphism Mb

AK
→WTA(O), where Mb

AK
is the submonoid of MAK

consisting of isomor-
phism classes represented by bounded spaces. We show that this monoid homomorphism factors
through W b

AK
(K) ⊂WAK

(K).

Lemma 6.26. Let (V, b) be an inner product space over K. For any O-submodule M in V ,
we define M∨ := {y ∈ V | b(y, x) ∈ O for all x ∈M}. Let M,M ′ be O-submodules in V , and
assume that they are expressed as M = W ⊕ Λ, M ′ = W ′ ⊕ Λ′, where W,W ′ are K-subspaces
and Λ,Λ′ are finitely generated O-submodules in V .†

(i) If M is a K-subspace of V then M∨ =M⊥.

(ii) M∨∨ =M .

(iii) (M +M ′)∨ =M∨ ∩ (M ′)∨.

(iv) (M ∩M ′)∨ =M∨ + (M ′)∨.

†One can show that any O-submodule in V can be expressed this way.
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Proof. (i). It is clear that M⊥ ⊂ M∨. Suppose that M is a K-subspace of V , and let y ∈ M∨.
Then, for any α ∈ K we have

αb(y,M) = b(y, αM) = b(y,M) ⊂ O.

This implies that b(y,M) = 0, and we get M∨ ⊂M⊥.
(ii). Let e1, . . . , ek be a K-basis of W , and ek+1, . . . , el an O-basis of Λ. Then e1, . . . , el are

linearly independent over K, and there exist vectors el+1, . . . , ed such that e1, . . . , ed is a K-basis
of V . Let e∨1 , . . . , e

∨
d denote the dual basis of e1, . . . , ed with respect to b. Then, we have

M∨ = Oek+1 + · · ·+Oel +Kel+1 + · · ·+Ked,

and similarly
M∨∨ = Ke1 + · · ·+Kek +Oek+1 + · · ·+Oel =M.

This shows the assertion (ii).
(iii). Note that the operation •∨ reverses inclusion. Then, we get (M +M ′)∨ ⊂M∨, (M ′)∨,

and hence (M +M ′)∨ ⊂ M∨ ∩ (M ′)∨. Let y ∈ M∨ ∩ (M ′)∨. For any x ∈ M and x′ ∈ M ′ we
have b(y, x+ x′) = b(y, x) + b(y, x′) ∈ O. Hence M∨ ∩ (M ′)∨ ⊂ (M +M ′)∨.

(iv). By the assertions (ii) and (iii), we have

M∨ + (M ′)∨ = (M∨ + (M ′)∨)∨∨ = (M∨∨ ∩ (M ′)∨∨)∨ = (M ∩M ′)∨

as required. □

Proposition 6.27. If (V, b) is neutral, then so is (Λ∨/Λ, b̄).

Proof. Let X ⊂ V be a lagrangian. Set U := X ∩ Λ∨ and write U for its image under the

natural surjection Λ∨ → Λ∨/Λ. We show that U is a lagrangian, that is, U
⊥

= U in Λ∨/Λ.

The inclusion U ⊂ U
⊥

follows from X ⊂ X⊥. Take an element z̄ of U
⊥

where z ∈ Λ∨. Then
b(z, U) ⊂ O, or equivalently, z is in U∨. On the other hand, we have

U∨ = (X ∩ Λ∨)∨ = X∨ + Λ∨∨ = X⊥ + Λ = X + Λ

by Lemma 6.26. Thus z can be expressed as z = x + y for some x ∈ X and y ∈ Λ. Then

x = z− y ∈ Λ∨, and z̄ = x̄ ∈ X ∩ Λ∨ = U . This shows that U
⊥ ⊂ U , and the proof is complete.

□

This proposition shows that the monoid homomorphism Mb
AK

→ WTA(O), V 7→ [Λ∨/Λ]

factors through W b
AK

(K). The induced group homomorphism [V ] 7→ [Λ∨/Λ] is denoted by

∂̃ : W b
AK

(K) → WTA(O). We show that V contains an A-stable unimodular lattice if and only

if ∂̃[V, b] = 0. As in Proposition 5.17, we have:

Lemma 6.28. Let (V, b) be a bounded AK-inner product space, and Λ an A-stable integral lattice
on V . Sending an A-stable overlattice Λ′ of Λ to the Aκ-submodule Λ′/Λ ⊂ Λ∨/Λ gives rise to
a one-to-one correspondence between the A-stable overlattices of Λ and the totally isotropic Aκ-
submodules of (Λ∨/Λ, b̄). □

Theorem 6.29. A bounded AK-inner product space (V, b) contains an A-stable unimodular
lattice if and only if ∂̃[V, b] = 0.
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Proof. If V contains an A-stable unimodular lattice Λ then ∂̃[V, b] = [Λ∨/Λ, b̄] = 0. Suppose
that ∂̃[V, b] = 0, and take a maximal A-stable integral lattice Λ on V . Note that (Λ∨/Λ, b̄) is
neutral since [Λ∨/Λ, b̄] = ∂̃[V, b] = 0. We show that Λ is unimodular. Suppose to the contrary
that Λ were not unimodular. Then (Λ∨/Λ, b̄) would have a non-trivial lagrangian U since it is
neutral. Because the lagrangian U is totally isotropic, there exists an A-stable overlattice of Λ
by Lemma 6.28. However, this contradicts the maximality of Λ. Therefore Λ is unimodular.
This completes the proof. □

Definition 6.30. Let θ : WTA(O) → WAκ(κ) denote the isomorphism in Theorem 6.21. The
composition θ ◦ ∂̃ :WAK

(K) →WAκ(κ) is called the residue homomorphism and denoted by ∂.

We remark that the residue homomorphism depends on the choice of π since so does θ :
WTA(O) →WAκ(κ), but it is independent whether ∂[V, b] is zero or not.

Lemma 6.31. Any bounded AK-inner product space contains an A-stable almost unimodular
lattice.

Proof. Let V be a bounded AK-inner product space, and let Λ be a maximal A-stable integral
lattice on V . We show that Λ is almost unimodular. It is sufficient to prove that the exponent
of the discriminant module Λ∨/Λ is at most 1, that is, π(Λ∨/Λ) = 0; because it means that
πΛ∨ ⊂ Λ. Suppose that the exponent n of Λ∨/Λ were greater than 1. Then U := πn−1(Λ∨/Λ) is
a nonzero totally isotropic A-submodule by Lemma 6.19 (i), and there would exist the A-stable
overlattice corresponding U by Lemma 6.28. This contradicts the maximality of Λ. Hence the
exponent of Λ∨/Λ is at most 1, and the proof is complete. □

We conclude this subsection with the following theorem, which summarizes the discussion
so far.

Theorem 6.32. Let (V, b) be a bounded AK-inner product over K. Then V contains an A-
stable almost unimodular lattice Λ, and the image of [V, b] under the residue homomorphism
∂ :W b

AK
(K) →WAκ(κ) is given by [Λ∨/Λ, πb̄]. The space (V, b) contains an A-stable unimodular

lattice if and only if ∂[V, b] = 0 in WAκ(κ).

Proof. By Lemma 6.31, there exists an A-stable almost unimodular lattice Λ on (V, b). The
discriminant module (Λ∨/Λ, b̄) has exponent at most 1, and ∂[V, b] = θ[Λ∨/Λ, b̄] = [Λ∨/Λ, πb̄].
Since θ : WTA(O) → WAκ(κ) is an isomorphism, ∂[V, b] = 0 if and only if ∂̃[V, b] = 0. So, the
last assertion follows from Theorem 6.29. □

6.4 Dimensions and discriminants

Let K be an arbitrary field, and A a K-algebra with K-linear involution as in §6.1. Let ω ∈
WA(K) be a Witt class, and (V, b) an A-inner product space representing ω. Then, the dimension
dim(V ) modulo 2 is independent of the choice of the representative (V, b) since every neutral
space has even dimension. We refer to the value dim(V ) + 2Z ∈ Z/2Z as the dimension of
ω (modulo 2), and write dim(ω). We also want to define the determinant of ω, but det(b)
depends on the choose of the representative (V, b). For example, let us consider the case where
A = K and −1 is not a square of K. In this case, the hyperbolic plane HK is neutral, and thus
(V, b)⊕HK ∼ (V, b). However det((V, b)⊕HK) = det(b) det(HK) = − det(b) 6= det(b). To avoid
this problem, we introduce the discriminant for an inner product space.

Definition 6.33. Let (V, b) be an inner product space over K of dimension d. The discriminant
of b, denoted disc(b), is defined to be (−1)d(d−1)/2 det(b) ∈ K×/K×2. If the dimension d is even,
say 2n, then disc(b) = (−1)n det(b).
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We remark that the equality disc(b⊕ b′) = disc(b) · disc(b′) does not hold for inner products
b, b′ in general. However, a short calculation shows that this equality holds if dim(b) or dim(b′)
is even. Moreover, if an inner product space (V, b) over K contains a subspace X with X = X⊥

(i.e., if V is neutral as a K-inner product space), then disc(b) = 1. Indeed, letting e1, . . . , e2n
be a basis of V such that e1, . . . , en is a basis of X, then the Gram matrix with respect to this
basis is of the form

G =

(
O A
tA B

)
,

where A,B ∈Mn(K) and A is nondegenerate. Hence

disc(b) = (−1)n det(G) = (−1)n · (−1)n det(A) det(tA) = 1

in K×/K×2.

Definition 6.34. Let A be a K-algebra with K-linear involution, and ω ∈ WA(K) a Witt
class. The discriminant of ω, denoted disc(ω), is the discriminant of its representative. This is
independent of the choice of the representative.

We conclude this subsection with a relation between these invariants and the residue homo-
morphism defined in Definition 6.30.

Proposition 6.35. As in §6.3, suppose that K is a discrete valuation field, with discrete valu-
ation v, valuation ring O, and residue field κ. Let A be an O-algebra with O-linear involution,
and (V, b) a bounded AK-inner product space. Then dimκ ∂[V, b] ≡ v(disc(b)) mod 2.

Proof. By Lemma 6.31, there exists an A-stable almost unimodular lattice Λ on V . Let G
be a Gram matrix of Λ, and let πi1 , . . . , πid be the invariant factors of G. Then Λ∨/Λ ∼=
O/πi1O ⊕ · · · ⊕ O/πidO by Proposition 5.15. Furthermore Λ∨/Λ has exponent at most 1 since
Λ is almost unimodular. Thus i1, . . . , id must be 0 or 1. Let r be the number of 1’s in i1, . . . , id.
Then Λ∨/Λ ∼= (O/πO)⊕r, and dimκ ∂[V, b] ≡ dimκ(Λ

∨/Λ) ≡ r mod 2. On the other hand, we
have

v(disc(b)) ≡ v(det(G)) = v(πi1 · · ·πid) = v(πr) = r mod 2.

This completes the proof. □

6.5 Usual Witt groups of finite fields

This subsection gives the structures of usual Witt groups of finite fields. Here, the usual Witt
group of a field K means the Witt group for K-inner product spaces. It is denoted by W (K)
instead of WK(K).

Lemma 6.36. Let κ be a finite field of characteristic not 2.

(i) Let (V, b) be an inner product space over κ. If dimV ≥ 3 then (V, b) is isotropic.

(ii) Any Witt class ω ∈ W (κ) can be represented by an inner product space of dimension at
most 2.

Proof. (i). It suffices to show that every 3-dimensional inner product space is isotropic. Let
(V, b) be a 3-dimensional inner product space, and let ε ∈ κ× be a non-square element. Then
(V, b) ∼= 〈1〉⊕3

κ or 〈1〉⊕2
κ ⊕ 〈ε〉κ by Theorem 4.38. On the other hand, the 2-dimensional inner

product space 〈1〉⊕2
κ represents −1 and −ε by Lemma 4.37. Therefore (V, b) is isotropic.

(ii). Let ω ∈ W (κ) be a Witt class, and V its representative. If dim V ≤ 2 then nothing to
prove. Suppose that dim V ≥ 3. Then there exists a nonzero isotropic vector u by the assertion
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(i). Let U denote the one-dimensional subspace κu ⊂ V . Then U ⊂ U⊥, and [V ] = [U⊥/U ] by
Lemma 6.9. Since the dimension of U⊥/U is less than that of V , an induction on dimension
shows that V is Witt equivalent to an inner product space of dimension at most 2. The proof
is complete. □

Remark 6.37. Lemma 6.36 is also true when char κ = 2, although we do not need the case.

Theorem 6.38. Let κ be a finite field.

(i) If charκ = 2 then sending ω ∈ W (κ) to dimω mod 2 ∈ Z/2Z gives an isomorphism
W (κ) → Z/2Z.

(ii) Suppose that charκ 6= 2. Then any class of W (κ) is uniquely determined by its dimension
(mod 2) and discriminant. In particular, a class ω ∈ W (κ) is the trivial class if and only
if dimω ≡ 0 mod 2 and discω = 1 in κ×/κ×2. Moreover, we have

W (κ) ∼=

{
Z/2Z× Z/2Z if #κ ≡ 1 mod 4

Z/4Z if #κ ≡ 3 mod 4.

Proof. (i). Let (V, b) be an inner product space over κ. By Theorem 4.36, there exist non-
negative integers m and n such that (V, b) ∼= 〈1〉⊕mκ ⊕ H⊕n

κ . Since the hyperbolic plane Hκ is
neutral, we have [V ] = 〈1〉⊕mκ . Moreover 〈1〉⊕2

κ is neutral. Indeed, if e1, e2 is an orthogonal basis
of 〈1〉⊕2

κ with self-inner products are both 1, then the one-dimensional subspace κ(e1 + e2) is a
lagrangian. Hence, we obtain

[V, b] =

{
0 if m is even

[〈1〉κ] if m is odd.

Since dimV ≡ m mod 2, we arrive at the assertion.
(ii). Any Witt class can be represented by an inner product space of dimension at most 2

by Lemma 6.36 (ii). Hence, by Theorem 4.38, the Witt group W (κ) consists of the following at
most 5 elements:

0, [〈1〉κ], [〈ε〉κ], [〈1, 1〉κ] , [〈1, ε〉κ] ,
where ε ∈ κ× is a non-square element. Furthermore, it can be seen that there are at least 4
distinct elements by considering their dimensions and discriminants.

Suppose that #κ ≡ 1 mod 4. Then −1 is a square in κ (see Corollary 2.3). Thus [〈1, 1〉κ] =
[〈1,−1〉κ] = 0, which means that

W (κ) = {0, [〈1〉κ], [〈ε〉κ], [〈1, ε〉κ]} .

This shows that any class is uniquely determined by its dimension and discriminant. Moreover
W (κ) ∼= Z/2Z× Z/2Z because any class has order at most 2.

Suppose that #κ ≡ 3 mod 4. Then −1 is not a square in κ. Thus [〈1, ε〉κ] = [〈1,−1〉κ] = 0,
which means that

W (κ) = {0, [〈1〉κ], [〈ε〉κ], [〈1, 1〉κ]} .
This shows that any class is uniquely determined by its dimension and discriminant. Moreover
W (κ) ∼= Z/4Z because [〈1〉κ] has order 4. This completes the proof. □

7 Isometries of inner product spaces

We here study isometries of inner product spaces, in particular their characteristic polynomials.
We refer to [4] and [29]. The letter K stands for a field throughout this section.
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7.1 Symmetric polynomials

Definition 7.1. Let F (X) ∈ K[X] be a polynomial. We define F∨(X) ∈ K[X] by

F∨(X) := XdegFF (X−1).

If F (X) =
∑n

i=0 aiX
i (an 6= 0) then F∨(X) =

∑n
i=0 aiX

n−i =
∑n

i=0 an−iX
i. For ε ∈ {1,−1},

we say that F is ε-symmetric if F∨(X) = εF (X).

Most of polynomials treated in this thesis are monic and have nonzero constant terms. We
may sometimes assume that a factor of a monic polynomial is monic without mentioning.

Definition 7.2. Let F (X) ∈ K[X] be a monic polynomial with F (0) 6= 0. We define a monic
polynomial F ∗(X) ∈ K[X] by

F ∗(X) := F (0)−1F∨(X) = F (0)−1XdegFF (X−1).

If F (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 (a0 6= 0) then

F ∗(X) = a−1
0 (a0X

n + a1X
n−1 + · · ·+ an−1X + an).

We say that F is ∗-symmetric if F ∗ = F .

It will be turn out in the next subsection that the characteristic polynomial of any isometry
of an inner product space is ∗-symmetric. The following are basic properties of ∗.

Lemma 7.3. Let F,G ∈ K[X] be monic polynomials with F (0) 6= 0 and G(0) 6= 0.

(i) (F ∗)∗ = F .

(ii) (FG)∗ = F ∗G∗.

(iii) F is irreducible if and only if F ∗ is irreducible.

(iv) If two of three polynomials F,G, FG are ∗-symmetric, then so is the rest one.

Proof. Let us write F (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0. Then

(F ∗(X))∗ =

(
Xn +

a1
a0
Xn−1 + · · ·+ an−1

a0
X +

1

a0

)∗

= a0

(
1

a0
Xn +

an−1

a0
Xn−1 + · · ·+ a1

a0
X + 1

)
= F (X),

which shows the assertion (i). Furthermore, we have

(FG)∗ = (F (0)G(0))−1F∨G∨ = F (0)−1F∨ ·G(0)−1G∨ = F ∗G∗,

which is the assertion (ii). The assertions (iii) and (iv) follow from (i) and (ii). □

Lemma 7.4. A monic polynomial F with F (0) 6= 0 is ∗-symmetric if and only if F is +1-
symmetric or −1-symmetric.
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Proof. Let F ∈ K[X] be a monic polynomial with F (0) 6= 0. We remark that F∨(0) = 1 since
F is monic. If F is ε-symmetric (ε ∈ {1,−1}) then F (0) = εF∨(0) = ε. Therefore

F ∗(X) = F (0)−1F∨(X) = ε−1εF (X) = F (X),

which means that F is ∗-symmetric. Conversely, if F is ∗-symmetric then

F (0) = F ∗(0) = F (0)−1F∨(0) = F (0)−1,

which means that F (0) = 1 or −1. Since F∨(X) = F (0)F ∗(X) = F (0)F (X), the polynomial F
is F (0)-symmetric. This completes the proof. □

Note that there is no difference between +1-symmetric and −1-symmetric when the charac-
teristic of K is 2.

Lemma 7.5. Let F ∈ K[X] be a polynomial.

(i) If F is +1-symmetric and has odd degree then (X + 1) | F .

(ii) If char(K) 6= 2 and F is −1-symmetric then (X − 1) | F .

Proof. (i). Suppose that F is +1-symmetric and has odd degree. Then F can be written as

F (X) = a0 + a1X + · · ·+ alX
l + alX

l+1 + · · ·+ a1X
2l + a0X

2l+1

where a0, . . . , al ∈ K. Thus F (−1) = 0, which means that (X + 1) | F .
(ii). Suppose that char(K) 6= 2 and F is −1-symmetric. Then F (1) = −F∨(1) = −F (1),

which implies that F (1) = 0 since char(K) 6= 2. Thus we get (X − 1) | F . □

This lemma implies that every ∗-symmetric irreducible polynomial other than X − 1 and
X + 1 is +1-symmetric and has even degree.

Definition 7.6. We say that a ∗-symmetric polynomial f ∈ K[X] is of

• type 0 if f is a product of powers of (X − 1) and of (X + 1);

• type 1 if f is a product of +1-symmetric irreducible monic polynomials of even degrees;

• type 2 if f is a product of polynomials of the form gg∗, where g is monic, irreducible and
g∗ 6= g.

Note that if f is of type 2 then f is +1-symmetric and of even degree as well as the type 1 case.
For a monic polynomial F ∈ K[X], we write Ii(F ;K) for the set of its irreducible factors of type
i over K (i = 0, 1), and define I(F ;K) := I0(F ;K) ∪ I1(F ;K). The symbol I2(F ;K) denotes
the set of non-∗-symmetric irreducible factors of F in K[X].

Proposition 7.7. Let F ∈ K[X] be a ∗-symmetric polynomial. For any irreducible monic
polynomial g ∈ K[X], the multiplicity of g∗ in F is equal to that of g. As a result, F can be
expressed as

F =
∏

f∈I0(F ;K)

fmf ×
∏

f∈I1(F ;K)

fmf ×
∏

{g,g∗}⊂I2(F ;K)

(gg∗)mg ,

where mf is the multiplicity of f ∈ K[X] in F .
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Proof. Let g be an irreducible monic polynomial. If g = g∗ then the assertion is clear. Suppose
that g 6= g∗, and let mg,mg∗ be the multiplicities of g, g∗ respectively. We may assume that
mg∗ ≥ mg since g∗∗ = g. Because g and g∗ have no common factor, we can write

F = gmg(g∗)mg∗H = (gg∗)mg(g∗)mg∗−mgH

for some monic polynomial H ∈ K[X]. Since F and (gg∗)mg are ∗-symmetric, it follows from
Lemma 7.3 (iv) that (g∗)mg∗−mgH is also ∗-symmetric, i.e., gmg∗−mgH∗ = (g∗)mg∗−mgH. In
particular gmg∗−mg | (g∗)mg∗−mgH. However, both g∗ andH are coprime to g. Hencemg∗−mg =
0. This completes the proof. □

Definition 7.8. Let F ∈ K[X] be a ∗-symmetric polynomial. For each i = 0, 1, 2, the factor
Fi :=

∏
f∈Ii(F ;K) f

mf of F is referred to as the type i component of F in K[X].

Let F ∈ K[X] be a ∗-symmetric polynomial. It is clear that F0 and F1 are ∗-symmetric poly-
nomials of type 0 and of type 1 respectively. Furthermore, we have F2 =

∏
{g,g∗}⊂I2(F ;K)(gg

∗)mg

by Proposition 7.7, and it is actually a ∗-symmetric polynomial of type 2. The factorization
F = F0F1F2 depends on the field being considered. For example, the polynomial X2 + 1 is
irreducible and of type 1 in Q[X], but it is factorized as X2 + 1 = (X −

√
−1)(X +

√
−1) and

of type 2 in Q(
√
−1)[X]. On the other hand, X − 1 and X + 1 are of type 0 over any field. It

can be seen that if a ∗-symmetric polynomial F ∈ K[X] is of type 2 over K then it is also type
2 over any extension field of K.

We can characterize ∗-symmetric polynomials in terms of their roots.

Proposition 7.9. Let F ∈ K[X] be a monic polynomial with F (0) 6= 0, and let K be the alge-
braic closure of K. Then F is ∗-symmetric if and only if α and α−1 have the same multiplicity
as roots of F for all α ∈ K.

Proof. We remark that (X − α)∗ = (X − α−1) for any α ∈ K. Then, the assertion follows from
Proposition 7.7. □

A +1-symmetric polynomial of even degree can be expressed by using a polynomial of half
degree.

Proposition 7.10. Let F ∈ K[X] be a +1-symmetric polynomial of even degree 2n. There
exists a unique polynomial H of degree n such that F (X) = XnH(X +X−1). Moreover, if F is
monic then so does H, and if the coefficients of F are in a subring R of K then those of H are
also in R.

Proof. Let Hw(Y ) = wn + wn−1Y + · · ·+ w0Y
n ∈ K[Y ] be a polynomial of degree n, where we

consider the coefficients w = (w0, . . . , wn) to be variables. Then F ′(X) := XnHw(X+X−1) is a
+1-symmetric polynomial of degree 2n, and we can write F ′(X) = a′0+a

′
1X+ · · ·+a′n−1X

n−1+
a′nX

n + a′n−1X
n+1 + · · ·+ a′0X

2n. Moreover, we have

F ′(X) = Xn

(
n∑
l=0

wl (X +X−1)n−l

)

=
n∑
l=0

wlXn
n−l∑
j=0

((
n− l

j

)
XjX−(n−l−j)

)
=

n∑
l=0

wl n−l∑
j=0

(
n− l

j

)
X l+2j

 .
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Thus t(a′0, . . . , a
′
n) = C t(w0, . . . , wn), where C is an upper triangular matrix such that its entries

are in the image of Z → K and the diagonal entries are all 1. Note that det(C) = 1.
Now we write F (X) = a0 + a1X + · · ·+ an−1X

n−1 + anX
n + an−1X

n+1 + · · ·+ a0X
2n, and

define b = (b0, . . . , bn) ∈ Kn+1 to be a unique solution of t(a0, . . . , an) = C t(w0, . . . , wn). Then
H := Hb is a polynomial of degree n such that F (X) = XnH(X +X−1), and such a polynomial
H is unique by the uniqueness of b.

Moreover, by the form of the matrix C, if a0 = 1 then b0 = 1. In other words, if F is monic
then so does H. Let R be a subring of K, and suppose that a0, . . . , an ∈ R. Since det(C) = 1
and the entries of C belong to the image of Z → K and in particular to R, the equation system
t(a0, . . . , an) = C t(w0, . . . , wn) can be solved over R. Hence, the coefficients of H are in R if
those of F are in R. This completes the proof. □

Definition 7.11. In the situation of Proposition 7.10, the polynomial H is call the trace poly-
nomial of F .

7.2 K[Γ]-inner product spaces

Let (V, b) be an inner product space over K, t an isometry of V , and F ∈ K[X] the characteristic
polynomial of t. For a polynomial f ∈ K[X], we define

V (f ; t) := {v ∈ V | f(t)N .v = 0 for some N ∈ Z≥0}.

Note that each V (f ; t) is t-stable, i.e., t.V (f ; t) ⊂ V (f ; t). For each factor f of F , the symbol
mf denotes the multiplicity of f in F . Linear algebra shows the following lemma, which is
independently of the inner product b. The proof is omitted.

Lemma 7.12. If f1, . . . , fl ∈ K[X] are pairwise coprime monic polynomials such that F =
f1 · · · fl, then V admits the direct sum decomposition V =

⊕l
i=1 V (fi; t) as a K-vector space.

For an irreducible factor f of F we have V (f ; t) = {v ∈ V | f(t)mf .v = 0} and dimV (f ; t) =
mf deg f . □

In taking account of the inner product, the following lemma holds.

Lemma 7.13. Let f and g be irreducible factors of F . If f∗ 6= g then V (f ; t) and V (g; t) are
orthogonal.

Proof. Assume that f∗ 6= g. We claim that the linear map v 7→ f(t−1).v is an automorphism
of V (g; t). To show this, let v ∈ V (g; t). We have f(t−1).v ∈ V (g; t) because g(t)N .f(t−1).v =
f(t−1).g(t)N .v = 0 for sufficiently large N ∈ Z≥0. Moreover t and f∗(t) are invertible on V (g; t)
since both X and f∗(X) are coprime to g(X). Thus, the operator f(t−1) = f(0)t− deg ff∗(t) is
also invertible on V (g; t). This shows that v 7→ f(t−1).v is an automorphism of V (g; t).

Let u ∈ V (f ; t) and v ∈ V (g; t). By the claim proved now, the vector v can be expressed as
v = f(t−1)mf .v′ for some v′ ∈ V (g; t). Then

b(u, v) = b(u, f(t−1)mf .v′) = b(f(t)mf .u, v′) = b(0, v′) = 0,

which means that V (f ; t) and V (g; t) are orthogonal. □

The following theorem is fundamental in considering an isometry.

Theorem 7.14. Let t be an isometry of an inner product space (V, b), and let F ∈ K[X]
denote the characteristic polynomial of t. Then F is ∗-symmetric, and V admits the following
orthogonal direct sum decomposition:

V =
⊕

f∈I(F ;K)

V (f ; t)⊕
⊕

{g,g∗}⊂I2(F ;K)

V (gg∗; t).
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Proof. In order to show that F is ∗-symmetric, it is sufficient to show that mg = mg∗ for any irre-
ducible factor g of F . This is clear if g = g∗. Suppose that g 6= g∗, and set U := V (g; t)⊕V (g∗; t).
If we write F = gmg(g∗)mg∗h then there is the decomposition V = U ⊕ V (h; t) by Lemma 7.12,
and it is an orthogonal direct sum by Lemma 7.13. Hence V (h; t) and U must be nondegenerate.
Moreover V (g; t) ⊂ V (g; t)⊥ by Lemma 7.13, and dimV (g; t) + dimV (g; t)⊥ = dimU by Propo-
sition 4.4. These mean that dim V (g; t) ≤ dim(U)/2. Similarly we get dim V (g∗; t) ≤ dim(U)/2.
Since we also have dimU = dimV (g; t) + dimV (g∗; t), dimensions dim V (g; t) and dimV (g∗; t)
are both equal to dim(U)/2. Thus, by Lemma 7.12, we have

mg deg g = dimV (g; t) = dimV (g∗; t) = mg∗ deg g
∗ = mg∗ deg g,

which leads to mg = mg∗ . Hence F is ∗-symmetric. Furthermore, any irreducible factor g of F
is accompanied with g∗. Therefore, we obtain the desired orthogonal direct sum decomposition
by Lemmas 7.12 and 7.13. The proof is complete. □

Considering an inner product space together with an isometry is equivalent to considering a
K[Γ]-inner product space:

Notation 7.15. Throughout this thesis, the symbol Γ denotes an infinite cyclic group. Let τ be
a generator of Γ. The group algebra K[Γ] has the involution determined by τ 7→ τ−1. If (V, b)
is an inner product space over K and t is an isometry of (V, b), then the triple (V, b, t) denotes
the K[Γ]-inner product space (V, b, ρ), where ρ : K[G] → O(V, b) is the action determined by
ρ(τ) = t, see Example 6.2.

Proposition 7.16. Let t be an isometry of an inner product space (V, b) of even dimension
2n. Suppose that the characteristic polynomial of t can be written as (gg∗)m for some non-∗-
symmetric irreducible polynomial g and some integer m. Note that V = V (gg∗; t) = V (g; t) ⊕
V (g∗; t). Let T ∈ Mn(K) be a representation matrix of t|V (g;t) : V (g; t) → V (g; t), and let
B denote the inner product on K2n whose Gram matrix with respect to the standard basis is(
O Idn
Idn O

)
. Then (V, b, t) is isomorphic to

(
K2n, B,

(
T O
O tT−1

))
as K[Γ]-inner product spaces.

Proof. Take a basis e1, . . . , en of V (g; t) so that T is the representation matrix of t|V (g;t) :

V (g; t) → V (g; t) with respect to this basis. Since V (g; t)⊥ = V (g; t), we have the exact sequence

0 → V (g; t) → V
b∗(·)|V (g;t)−→ V (g; t)∗ → 0

by Proposition 4.4. From this, it can be seen that

b∗(· |V (g∗;t))|V (g;t) : V (g∗; t) → V (g; t)∗, v 7→ b∗(v)|V (g;t) (v ∈ V (g∗; t))

is surjective, and hence isomorphic since dim(V (g∗; t)) = n = dim(V (g∗; t)). Thus, there exists a
basis e′1, . . . , e

′
n of V (g∗; t) such that b∗(e′i) = ξi for i = 1, . . . , n, where ξ1, . . . , ξn ∈ V (g; t)∗ is the

dual basis of e1, . . . , en. Then, the Gram matrix of b and representation matrix of t with respect

to the basis e1, . . . , en, e
′
1, . . . , e

′
n of V are

(
O Idn
Idn O

)
and

(
T O
O tT−1

)
respectively. Therefore,

the K-linear isomorphism V → K2n obtained by fixing the basis e1, . . . , en, e
′
1, . . . , e

′
n gives the

desired isomorphism of K[Γ]-inner product spaces. □
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7.3 Semisimple modules associated with polynomial

Let Γ be an infinite cyclic group with generator τ as in Notation 7.15. Let F ∈ K[X] be a monic
polynomial with F (0) 6= 0. For a factor f of F , we write mf for the multiplicity of f in F .

Definition 7.17. We define a K-algebra M by

M :=
∏
f

(K[X]/(f))×mf where f ranges over all irreducible factors of F .

Let α : M → M denote the K-linear transformation defined by the multiplication by X. It
is a semisimple transformation with characteristic polynomial F , and in particular invertible
since F (0) 6= 0. Thus M has the K[Γ]-module structure determined by τ 7→ α. This K[Γ]-
module M is referred to as the semisimple K[Γ]-module associated with F or just the associated
K[Γ]-module of F with transformation α.

Lemma 7.18. Let V be a finite dimensional K-vector space with a semisimple linear transfor-
mation t of characteristic polynomial F . Then V is isomorphic to the associated K[Γ]-module
of F when V is regarded as a K[Γ]-module by τ 7→ t.

Proof. By Lemma 7.12, we can write V = ⊕fV (f ; t) where f ranges over all irreducible factors
of F . Let f be an irreducible factor of F . Since t is semisimple, the subspace V (f ; t) can be
seen as a vector field over K[X]/(f). Furthermore dimK[X]/(f) V (f ; t) = mf by Lemma 7.12.
Thus V (f ; t) ∼= (K[X]/(f))mf as K[Γ]-modules. This completes the proof. □

Our purpose is to know which inner product on the associated K[Γ]-module M of F makes
α an isometry. Note that F must be ∗-symmetric by Theorem 7.14 if M admits such an
inner product. We use the following notation in considering the associated K[Γ]-module of a
∗-symmetric polynomial.

Notation 7.19. Let F ∈ K[X] be a ∗-symmetric polynomial. For a factor f which is in I(F ;K)
or of the form gg∗ for some g ∈ I2(F ;K), we write Ef for the K-algebra K[X]/(f), and define
Mf := (Ef )×mf . In this case, the associated K[Γ]-module M of F can be written as

M =
∏

f∈I(F ;K)

Mf ×
∏

{g,g∗}⊂I2(F ;K)

Mgg∗ , (25)

or
M =M+ ×M− ×

∏
f∈I1(F ;K)

Mf ×
∏

{g,g∗}⊂I2(F ;K)

Mgg∗ ,

where M± := MX∓1. Note that Mf is nothing but the associated K[Γ]-module of fmf . We
write αf ∈ Ef for the image of X under the natural surjection K[X] → Ef . The restriction
α|Mf :Mf →Mf (α is as in Definition 7.17) is the same as the multiplication by αf . Since f is
∗-symmetric, an involution σ : Ef → Ef is defined by αf 7→ (αf )−1. Note that this involution
is non-trivial if f(X) is neither X − 1 nor X + 1. If f = gg∗ for some g ∈ I2(F ;K) then Ef is
of type (sp) with this involution (type (sp) is defined in Definition 1.9).

Under the setting in Notation 7.19, the submodule Mf can be written as

Mf = {x ∈M | f(α).x = 0}

for a factor f which is in I(F ;K) or of the form gg∗ for some g ∈ I2(F ;K). Hence, Theorem
7.14 means that the decomposition (25) is an orthogonal direct sum decomposition for any inner
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product on M making α an isometry. Therefore, the problem of considering inner products on
M making α an isometry can be addressed componentwise.

As for the component M±, any inner product b± makes α|M± an isometry since α|M± =
±idM± . Let f be a factor of F which is in I1(F ;K) or of the form gg∗, and assume that f is
separable. Then, for any hermitian product h on Mf over Ef , the symmetric bilinear form

Mf ×Mf → K, (x, y) 7→ TrEf/K ◦h(x, y)

is nondegenerate by Proposition 4.68. Furthermore α|Mf is an isometry with respect to this
inner product. Indeed, we have

TrEf/K ◦h(αfx, αfy) = TrEf/K ◦h(x, αfσ(αf )y) = TrEf/K ◦h(x, y)

for any x, y ∈Mf . Note that separability of f guarantees that the trace map TrEf/K is surjective
(see Corollary 1.7).

Proposition 7.20. Let F be a ∗-symmetric polynomial and M the associated K[Γ]-module of
F with transformation α. Let f be a factor of F which is in I1(F ;K) or of the form gg∗ for
some g ∈ I2(F ;K), and suppose that f is separable. If bf is an inner product on the K-vector
space Mf making α an isometry, then there exists one and only one hermitian form hf on Mf

over Ef such that bf = TrEf/K ◦hf .

Proof. Let b (instead of bf ) be an inner product on Mf which makes α an isometry. For
x, y ∈Mf we define the element h(x, y) of Ef as follows. Let L : Ef → K be the K-linear map
defined by L(γ) = b(γx, y) for γ ∈ Ef . Since the trace map TrEf/K is surjective, the symmetric
bilinear form

T : Ef × Ef → K, (γ, γ′) 7→ TrEf/K(γγ′)

is nondegenerate, and T ∗ : Ef → HomK(Ef ,K) is an isomorphism. Thus there exists a unique
element γ′ ∈ Ef such that T ∗(γ) = L. We define h(x, y) to be the element γ′. In other words,
h(x, y) is a unique element satisfying the equation

TrEf/K(γ h(x, y)) = b(γx, y) (∗)

for all γ ∈ Ef . We now consider the map h : Mf ×Mf → Ef . Taking γ = 1 in (∗), we obtain
b = TrEf/K ◦h.
Claim 1: h is Ef -linear in the first variable. Let x1, x2, y ∈Mf . For any γ ∈ Ef we have

T (γ, h(x1 + x2, y)) = b(γ(x1 + x2), y) = b(γx1, y) + b(γx2, y)

= T (γ, h(x1, y)) + T (γ, h(x2, y)) = T (γ, h(x1, y) + h(x2, y)),

which shows that h(x1 + x2, y) = h(x1, y) + h(x2, y) since T is nondegenerate. Furthermore, for
any γ, γ′ ∈ Ef we have

T (γ, h(γ′x1, y)) = b(γγ′x1, y) = TrEf/K(γγ′h(x1, y)) = T (γ, γ′h(x1, y)),

which implies that h(γ′x1, y) = γ′h(x1, y). This completes the proof of Claim 1.

Claim 2: h(y, x) = σh(x, y) for any x, y ∈ Mf . Let x1, x2, y ∈ Mf and γ ∈ Ef . Note that
b(γy, x) = b(y, σ(γ)x) since b makes α an isometry. We have

T (γ, h(y, x)) = b(γy, x) = b(y, σ(γ)x) = b(σ(γ)x, y) = TrEf/K(σ(γ)h(x, y))

= TrEf/K(σ(σ(γ)h(x, y))) = TrEf/K(γ σ(h(x, y))) = T (γ, σh(x, y)).
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This shows that h(y, x) = σh(x, y).

Claims 1 and 2 mean that h :Mf ×Mf → Ef is a hermitian form. It remains to prove the
uniqueness. Let h′ be another hermitian form satisfying b = TrEf/K ◦h′. Then

T (γ, h′(x, y)) = TrEf/K(h′(γx, y)) = b(γx, y) = T (γ, h(x, y))

for any x, y ∈Mf and γ ∈ Ef . Therefore h′ = h. The proof is complete. □

7.4 Isometries of inner product spaces over R

In §4.6, we defined an invariant of an inner product space over R called the index. This subsection
gives the definition of the index for an isometry, and study it. We begin by determining the
forms of irreducible monic polynomials over R. The symbol T denotes the unit circle in C.

Proposition 7.21. Let h ∈ R[X] be an irreducible monic polynomial.

(i) h is of type 1 if and only if f(X) = X2 − (δ + δ−1)X + 1 for some δ ∈ T \ {1,−1}.

(ii) h is not ∗-symmetric if and only if h(X) = X − β for some β ∈ R \ {1,−1} or h(X) =
X2 − (γ + γ̄)X + γγ̄ for some γ ∈ C \ (T ∪ R).

Proof. An irreducible monic polynomial with real coefficients has one of the following forms:

X − 1, X + 1,

X2 − (δ + δ−1)X + 1 (δ ∈ T \ {1,−1}),
X − β (β ∈ R \ {1,−1}),
X2 − (γ + γ̄)X + γγ̄ (γ ∈ C \ (T ∪ R)).

The polynomials X − 1 and X + 1 are of type 0; X2 − (δ + δ−1)X + 1 is of type 1; and X − β
and X2 − (γ + γ̄)X + γγ̄ are of type 2. Thus the assertions (i) and (ii) hold. □

Corollary 7.22. Let F ∈ R[X] be a ∗-symmetric polynomial, and let m(F ) denote the number
of roots of F whose absolute values are greater than 1 counted with multiplicity. Then m(F ) =
deg(F2)/2, where F2 is the type 2 component of F in R[X].

Proof. By Proposition 7.21, we have m(F ) = m(F2), and F2 can be expressed as

F2(X) =
k∏
i=1

(X − βi)(X − βi)
∗ ×

l∏
j=1

(X2 − (γj + γj)X + γjγj)(X
2 − (γj + γj)X + γjγj)

∗

=
k∏
i=1

(X − βi)(X − β−1
i )×

l∏
j=1

(X2 − (γj + γj)X + γjγj)(X
2 − (γ−1

j + γ−1
j )X + γ−1

j γ−1
j )

where βi ∈ R \ {1,−1} and γj ∈ C \ (T ∪ R). Hence m(F ) = deg(F2)/2 as required. □

Let (V, b) be an inner product space over R. Let t be an isometry of (V, b), and F ∈ R[X]
its characteristic polynomial. Then F is ∗-symmetric and we have the orthogonal direct sum
decomposition

V =
⊕

f∈I(F ;R)

V (f ; t)⊕
⊕

{g,g∗}⊂I2(F ;R)

V (gg∗; t) (26)

by Theorem 7.14. Note that idx(V (gg∗; t)) = 0 for g ∈ I2(F ;R) since V (gg∗; t) is metabolic by
Proposition 7.16.
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Definition 7.23. The map idxt : I(F ;R) → Z defined by

idxt(f) = idx(V (f ; t)) (f ∈ I(F ;R))

is called the index of t (with respect to b). It is sometimes written by idxbt if the inner product
b needs to be emphasized.

The index of an isometry has the following properties.

Proposition 7.24. Suppose that t is semisimple. For each f ∈ I(F ;R), we have:

(i) − deg(fmf ) ≤ idxt(f) ≤ deg(fmf ) and idxt(f) ≡ deg(fmf ) mod 2.

(ii) If f ∈ I1(F ;R) then (deg(fmf )+ idxt(f))/2 ≡ (deg(fmf )− idxt(f))/2 ≡ 0 mod 2 (actually
deg(fmf ) = 2mf by Proposition 7.21).

Proof. Let (rf , sf ) be the signature of the subspace V (f ; t) ⊂ V . We remark that deg(fmf ) =
dim(V ; f) = rf + sf by Lemma 7.12, and idxt(f) = rf − sf . Thus the assertion (i) is clear.
We prove the assertion (ii). Suppose that f ∈ I1(F ;R), and identify V with the associated
R[Γ]-module M of F (see Lemma 7.18). Then V (f ; t) = Mf , and Proposition 7.20 shows that
there exists a hermitian product hf :Mf×Mf → Ef over Ef = C such that b|Mf = TrEf/R ◦hf .
Let (r′f , s

′
f ) denote the signature of hf . Then rf = 2r′f ≡ 0 and rf = 2r′f ≡ 0 mod 2 by Lemma

4.70. This is assertion (ii). □

Remark 7.25. In Proposition 7.24, the assumption for t to be semisimple can be removed in
fact, see [4, §8].

The discussion so far yields the following relationship between the signature of the space V
and the characteristic polynomial F of the isometry t.

Theorem 7.26. Let t be a semisimple isometry of an inner product space (V, b) over R of
signature (r, s). Let F ∈ R[X] denote the characteristic polynomial of t, and m(F ) the number
of roots of F whose absolute values are greater than 1 counted with multiplicity. Then

r, s ≥ m(F ) and if F (1)F (−1) 6= 0 then r ≡ s ≡ m(F ) mod 2. (Sign)

Proof. Let (r+, s+) and (r−, s−) denote the signatures of the subspaces V (X − 1; t) and V (X +
1; t) respectively, and (rf , sf ) the signature of V (f ; t) for each f ∈ I1(F ;R) or f = gg∗ where
g ∈ I2(F ;R). Then we have

r = r+ + r− +
∑

f∈I1(F ;R)

rf +
∑

{g,g∗}⊂I2(F ;R)

rgg∗

by the orthogonal direct sum decomposition (26). Furthermore rgg∗ = deg((gg∗)mg)/2 since
V (gg∗; t) has index 0. Thus∑

{g,g∗}⊂I2(F ;R)

rgg∗ =
∑

{g,g∗}⊂I2(F ;R)

deg((gg∗)mg)/2 = deg(F2)/2 = m(F )

by Corollary 7.22, and we get

r = r+ + r− +
∑

f∈I1(F ;R)

rf +m(F ).

In particular r ≥ m(F ). Moreover, since rf ≡ 0 mod 2 by Proposition 7.24 (ii), if F (1)F (−1) 6= 0
then r+ = r− = 0, and r ≡ m(F ) mod 2. It follows similarly that s ≥ m(F ) and if F (1)F (−1) 6=
0 then s ≡ m(F ) mod 2. □
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The condition (Sign) is denoted by (Sign)r,s if necessary. Changing from the situation so far,
suppose that a ∗-symmetric polynomial F ∈ R[X] is given. For a given map i : I(F ;R) → Z,
we consider when there exists an inner product space over R and its semisimple isometry t such
that F is the characteristic polynomial of t and idxt = i.

Definition 7.27. Let r, s be non-negative integers. The symbol Idx(r, s;F ) denotes the set of
all maps i : I(F ;R) → Z satisfying the following three conditions:

− deg(fmf ) ≤ i(f) ≤ deg(fmf ) and i(f) ≡ deg(fmf ) mod 2 for each f ∈ I(F ;R). (27)

deg(fmf ) + i(f)

2
≡ deg(fmf )− i(f)

2
≡ 0 mod 2 for each f ∈ I1(F ;R). (28)∑

f∈I(F ;R)

i(f) = r − s. (29)

Each map in Idx(r, s;F ) is referred to as an index map.

For any semisimple isometry t of an inner product space over R of signature (r, s), with
characteristic polynomial F , its index idxt belongs to Idx(r, s;F ). Indeed, the conditions (27),
(28) follow from Proposition 7.24, and (29) from the decomposition (26). Conversely, any index
map i ∈ Idx(r, s;F ) is realized as the index of some isometry t. More precisely, the following
theorem holds.

Theorem 7.28. Let r, s be non-negative integers, and let F ∈ R[X] be a ∗-symmetric polynomial
of degree r+s. Suppose that the condition (Sign)r,s holds. Then the set Idx(r, s;F ) is not empty.
Moreover, for any i ∈ Idx(r, s;F ), there exists an inner product b on the associated R[Γ]-module
M of F with transformation α such that it makes α an isometry with index i. As a result, we
can write

Idx(r, s;F ) =

{
idxt

∣∣∣∣ t is a semisimple isometry of an inner product space
of signature (r, s) with characteristic polynomial F

}
.

Proof. We write F (X) = (X−1)m+(X−1)m−F1(X)F2(X), where m+,m− are the multiplicities
of X − 1, X + 1, and F1, F2 are the type 1, 2 components over R. Put r′ = r − m(F ). Then
r′ ≥ 0 and if m+ = m− = 0 then r′ ≡ 0 mod 2 by (Sign). Moreover, since r = dim(V ) − s ≤
deg(F )−m(F ) by (Sign) and 2m(F ) = deg(F2) by Corollary 7.22, we have

r′ ≤ (deg(F )−m(F ))−m(F ) = deg(F )− deg(F2) = m+ +m− +
∑

f∈I1(F ;R)

2mf .

Hence, there exists a partition r′ = r+ + r− +
∑

f∈I1(F ;R) rf of r′ into non-negative integers
r+, r−, rf (f ∈ I1(F ;R)) such that

r+ ≤ m+, r− ≤ m−, rf ≤ 2mf and rf ≡ 0 mod 2 (f ∈ I1(F ;R)).

We now define a map i : I(F ;R) → Z by

i(X − 1) = 2r+ −m+, i(X + 1) = 2r− −m−, and i(f) = 2rf − 2mf (f ∈ I1(F ;R)).

Then, this map satisfies the conditions (27), (28) and (29), and belongs to Idx(r, s;F ).
We then show the latter assertion. Let i ∈ Idx(r, s;F ) be an index map. We will define an

inner product on M in accordance with the decomposition (25). Note that any inner product on

M± makes α|M± = ±idM± an isometry, and that m±+i(X∓1)
2 and m±−i(X∓1)

2 are non-negative
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integers by (27). Let b± be an inner product on M± of signature (m±+i(X∓1)
2 , m±−i(X∓1)

2 ). For

f ∈ I1(F ;R), noting that
2mf+i(f)

4 and
2mf−i(f)

4 are non-negative integers by (28), we define an
inner product bf onMf by bf := TrEf/R ◦hf , where hf :Mf ×Mf → Ef is a hermitian product

with signature (
2mf+i(f)

4 ,
2mf−i(f)

4 ). Then bf is an inner product of signature (
2mf+i(f)

2 ,
2mf−i(f)

2 )
by Lemma 4.70, and it makes α|Mf an isometry as seen in the paragraph above Proposition 7.20.
For g ∈ I2(F ;R), we take a hermitian product hgg

∗
: Mgg∗ ×Mgg∗ → Egg

∗
arbitrary, and set

bgg
∗
:= TrEgg∗/R ◦hgg∗ . Note that idx(bgg

∗
) = 0 by Proposition 7.16. Now, let us define an inner

product b on M =M+ ⊕M− ⊕
⊕

f∈I1(F ;R)M
f ⊕

⊕
{g,g∗}⊂I2(F ;R)M

gg∗ by

b := b+ ⊕ b− ⊕
⊕

f∈I1(F ;R)

bf ⊕
⊕

{g,g∗}⊂I2(F ;R)

bgg
∗
.

Then b makes α an isometry and idxbα = i by its construction. This completes the proof. □

Corollary 7.29. Let r, s be non-negative integers, and let F ∈ R[X] be a ∗-symmetric polynomial
of degree r + s. The set Idx(r, s;F ) is not empty if and only if the condition (Sign)r,s holds.

Proof. The if part is included in Theorem 7.28. Suppose that Idx(r, s;F ) 6= ∅. Then, Theorem
7.28 shows that there exists a semisimple isometry of an inner product space of signature (r, s)
with characteristic polynomial F . Hence, the condition (Sign)r,s holds by Theorem 7.26. □

7.5 Spinor norm

This subsection gives a description of the spinor norm of an isometry. Let K be a field charac-
teristic not 2.

Definition 7.30 (Zassenhaus). Let t be an isometry of an inner product space (V, b) over K.
The spinor norm sn(t) ∈ K×/K×2 of t is the square class defined by

sn(t) := det(b|V (X+1;t)) · det
(
1 + t

2

∣∣∣∣V (X+1;t)⊥

)
,

where V (X +1; t) = {v ∈ V | (t+1)N .v = 0 for some N ∈ Z≥0}. Note that the former factor is
the determinant of the inner product b|V (X+1;t), but the latter factor is the determinant of the

K-linear transformation 1+t
2 |V (X+1;t)⊥ : V (X + 1; t)⊥ → V (X + 1; t)⊥.

In the situation of Definition 7.30, if the characteristic polynomial of t is written as F (X) =
(X − 1)m+(X + 1)m−F12(X), where m+,m− are the multiplicities of X − 1, X + 1, and F12 is
the product of type 1 and 2 components, then

det

(
1 + t

2

∣∣∣∣V (X+1;t)⊥

)
= (−2)deg(F )−m+ · det

(
−1− t

∣∣∣V (X+1;t)⊥

)
= (−2)deg(F )−m+ · (−1− 1)m−F12(−1)

= (−2)deg(F12)F12(−1)

= F12(−1)

in K×/K×2 since deg(F12) is even. Thus, we get

sn(t) = det(b|V (X+1;t)) · F12(−1). (30)

103



Let (V, b) be an inner product space over K. For a reflection σz ∈ O(V ) orthogonal to an
anisotropic vector z ∈ V , we have V (X + 1;σz) = Kz and 1+σz

2 |V (X+1;σz)⊥ = idV (X+1;σz)⊥ .

Hence sn(σz) = b(z, z) in K×/K×2. Zassenhaus showed in his paper [49] that

sn(tt′) = sn(t) sn(t′)

for any isometries t, t′ ∈ O(V ). In other words, the spinor norm sn : O(V ) → K×/K×2 is a
group homomorphism. As a corollary, if an isometry t is expressed as a product of reflections,
say t = σzm · · ·σz1 where each zi ∈ V is an anisotropic vector, then

sn(t) = b(z1, z1) · · · b(zm, zm) in K×/K×2. (31)

Remark 7.31. It can be checked by using Lemma 4.17 that any isometry of V can be expressed
as a product of reflections. The spinor norm was originally defined by equation (31). When
we adopt this definition, it is clear that the spinor norm sn : O(V ) → K×/K×2 is a group
homomorphism, but it is non-trivial whether sn(t) is well-defined because it is defined by using
an expression as a product of reflections, which is not unique. One way to show the well-
definedness is to introduce the Clifford algebra, see [35, §55].

Proposition 7.32. Let t be an isometry of an inner product space (V, b) over K. Suppose that
the characteristic polynomial F ∈ K[X] satisfies F (1)F (−1) 6= 0. Then det(b) = F (1)F (−1) in
K×/K×2.

Proof. We remark that V (X + 1; t) = 0 and V (X + 1;−t) = V (X − 1; t) = 0 since F (−1) 6= 0
and F (1) 6= 0. Then we have

sn(t) sn(−t) = det

(
1 + t

2

)
det

(
1− t

2

)
= (−2)− dimV F (−1) · 2− dimV F (1) = F (1)F (−1)

in K×/K×2. On the other hand, we have

sn(t) sn(−t) = sn(t)2 sn(−idV ) = sn(−idV ) = det(b)

because V (X + 1;−idV ) = V . Hence det(b) = F (1)F (−1) in K×/K×2. (There is a more
elementary proof without spinor norms, see e.g. [4, Proposition 5.1].) □

Spinor norms of isometries of an even unimodular lattice over the valuation ring of a local
field are as follows.

Theorem 7.33. Let K be a non-archimedean local field of characteristic not 2, and OK the
valuation ring of K. For any even unimodular lattice (Λ, b) over OK , we have sn(SO(Λ, b)) =
1 ·K×2 if rkΛ = 1, and sn(SO(Λ, b)) = O×

K ·K×2 if rkΛ ≥ 2.

Proof. See [35, Proposition 92:5] for the non-dyadic case, and see [20, Lemma 1] for the dyadic
case. □

Corollary 7.34. Let p be a prime number, and let (Λ, b) be an even unimodular lattice over Zp.
For any isometry t ∈ O(Λ, b), we have

vp(sn(t)) ≡

{
0 if det t = 1

vp(2) if det t = −1
mod 2.
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Proof. Let t be an isometry of Λ. If det t = 1 then the congruence vp(sn(t)) ≡ 0 mod 2 follows
from Theorem 7.33. Suppose that det t = −1.

Case I: p 6= 2. In this case, there exists z ∈ Λ such that b(z, z) is a unit of Zp by Theorem 5.18.
Then, we have

vp(sn(σz ◦ t)) ≡ vp(sn(σz)) + vp(sn(t)) ≡ vp(b(z, z)) + vp(sn(t)) ≡ vp(sn(t)) mod 2.

On the other hand, vp(sn(σz ◦ t)) ≡ 0 mod 2 since det(σz ◦ t) = 1. Hence vp(sn(t)) ≡ 0 ≡
vp(2) mod 2 as required.

Case II: p = 2. In this case, there exists z ∈ Λ such that b(z, z) = 2 by Theorem 5.23. Indeed, if
Λ contains a sublattice isomorphic to HZ2 then b(e1+e2, e1+e2) = 2, where e1, e2 is a hyperbolic
basis of the sublattice. Then, we get

0 ≡ v2(sn(σz ◦ t)) ≡ v2(b(z, z)) + v2(sn(t)) ≡ v2(2) + v2(sn(t)) mod 2

as in Case I. This completes the proof. □

We will need the following proposition. It is stated without spinor norms but we use spinor
norms for its proof, as in Proposition 7.32.

Proposition 7.35. Let (V, b) be an inner product space over Qp where p is a prime, t ∈ O(V, b)
an isometry, and F ∈ Qp[X] the characteristic polynomial of t. We write F (X) = (X−1)m+(X+
1)m−F12(X) where m+,m− ∈ Z≥0 are non-negative integers and F12 is the product of type 1
and 2 components of F . If t preserves an even unimodular lattice on (V, b) then

vp(det(b|V (X∓1;t))) ≡

{
vp(F12(±1)) if det t = 1

vp(2F12(±1)) if det t = −1.

Proof. By (30), we have

vp(sn(t)) ≡ vp(det(b|V (X+1;t))) + vp(F12(−1)) mod 2,

and hence
vp(det(b|V (X+1;t))) ≡ vp(F12(−1)) + vp(sn(t)) mod 2.

Suppose that t preserves an even unimodular lattice on (V, b). Then

vp(det(b|V (X+1;t))) ≡

{
vp(F12(−1)) + 0 if det t = 1

vp(F12(−1)) + vp(2) if det t = −1

≡

{
vp(F12(−1)) if det t = 1

vp(2F12(−1)) if det t = −1
mod 2 (32)

by Corollary 7.34. On the other hand, we have det(b) ∈ Z×
p ·Q×2

p because b is an inner product
of a unimodular lattice. Thus

0 ≡ vp(det b)

≡ vp(det(b|V (X−1;t) ⊕ b|V (X+1;t) ⊕ b|V (F12;t)))

≡ vp(det(b|V (X−1;t))) + vp(det(b|V (X+1;t))) + vp(det(b|V (F12;t)))

≡ vp(det(b|V (X−1;t))) + vp(det(b|V (X+1;t))) + vp(F12(1)F12(−1)) mod 2

where the last congruence follows from Proposition 7.32. Hence

vp(det(b|V (X−1;t))) ≡ vp(F12(1)) + vp(F12(−1)) + vp(det(b|V (X+1;t))) mod 2.
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Substituting (32), we obtain

vp(det(b|V (X−1;t))) ≡

{
vp(F12(1)) if det t = 1

vp(2F12(1)) if det t = −1
mod 2.

The proof is complete. □

8 Local theory

Our main concern is to know which polynomial occurs as the characteristic polynomial of an
even unimodular lattice over Z. In this section, we address the localized version of this problem.
Let Γ be an infinite cyclic group. Let K be a non-archimedean local field, and assume that
charK = 0, though most of results in this section holds if we assume that charK 6= 2 and field
extensions are separable. The symbols vK , OK , pK , and κ denote the normalized valuation,
valuation ring, maximal ideal, and residue field of K respectively.

8.1 Residue maps

Let E be a commutative K-algebra whose K-dimension is finite, with a nontrivial involution
σ : E → E. Moreover, we assume that E is a field or of type (sp) (see Definition 1.9). When
E is a field, we say that E is of type (ur) if E/Eσ is an unramified extension, and of type (rm)
otherwise.

Let OE denote the integral closure of OK in E. It coincides with the valuation ring of E if
E is of type (ur) or (rm), see Theorem 1.35. Let α ∈ O×

E be a unit with ασ(α) = 1, and let
M be a finitely generated free E-module. The linear transformation M → M defined as the
multiplication by α is also denoted by α. For any hermitian product h :M ×M → E, the inner
product TrE/K ◦h on M over K makes α an isometry (cf. the paragraph before Proposition
7.20), and the triple (M,TrE/K ◦h, α) can be seen as a K[Γ]-inner product space. Moreover,
this K[Γ]-inner product space is bounded (considering A = OK [Γ] in Definition 6.22) because∑m

i=1OE ei ⊂ M is an α-stable lattice for a basis e1, . . . , em of M over E. Our aim of the
first half of this section is to study its image ∂[M,TrE/K ◦h, α] ∈ Wκ[Γ](κ) under the residue
homomorphism ∂ :WK[Γ](K) →Wκ[Γ](κ).

Proposition 8.1. Let h be a hermitian product on M . The Witt class of the K[Γ]-inner product
space (M,TrE/K ◦h, α) is uniquely determined by deth ∈ Tw(E, σ).

Proof. Let h′ be another hermitian product with det h′ = deth. Then, there exists an isomor-
phism φ : (M,h) → (M,h′) of hermitian product spaces by Corollary 4.66 or Theorem 4.73.
This isomorphism commutes with α since it is E-linear. Thus φ is also a K[Γ]-module isomor-
phism. Hence φ gives an isomorphism between K[Γ]-inner product spaces (M,TrE/K ◦h, α) and
(M,TrE/K ◦h′, α). In particular [M,TrE/K ◦h, α] = [M,TrE/K ◦h′, α]. The proof is complete. □

This proposition leads to the following definition.

Definition 8.2. The map

Tw(E, σ) →Wκ[Γ](κ), µ 7→ ∂[M,TrE/K ◦h, α]

where h is a hermitian product on M of determinant µ, is defined independently of the choice
of h by Proposition 8.1. This map is referred to as the residue map and denoted by ∂M,α :
Tw(E, σ) →Wκ[Γ](κ).

106



We remark that the residue map is not a group homomorphism in general. Our purpose
can be rephrased as studying the image of the residue map. To this end, the case where the
E-module M is E itself is essential.

Notation 8.3. For µ ∈ (Eσ)×, the symbol bµ denotes the inner product E × E → K defined
by bµ(x, y) = TrE/K(µxσ(y)) for x, y ∈ E.

The map E × E → E, (x, y) 7→ µxσ(y) is a hermitian product on the E-module E with
determinant µ. Thus, we have

∂E,α(µ) = ∂[E, bµ, α].

Proposition 8.4. Suppose that E is of type (sp), and let µ ∈ (Eσ)×. The K[Γ]-inner product
space (E, bµ, α) is neutral, and in particular ∂E,α(µ) = 0. The inner product space (E, bµ) has
an OE-stable unimodular lattice. Furthermore, if Eσ/K is an unramified extension and µ is a
unit of OEσ then OE is an OE-stable (and hence α-stable) unimodular lattice on (E, bµ).

Proof. We may assume that E = E0 × E0 for some field E0 isomorphic to Eσ. Then X :=
{(x, 0) ∈ E | x ∈ E0} is a lagrangian of the K[Γ]-inner product space (E, bµ, α). Thus (E, bµ, α)
is neutral, and ∂E,α(µ) = ∂[E, bu, α] = 0.

We regard E as theK-algebraK⊗OK
OE . SinceX is also a lagrangian of the E-inner product

space (E, bµ) over K, the image of [E, bµ] under the residue homomorphism ∂ : WE(K) →
Wκ⊗OK

OE
(κ) is also zero. This implies that the space (E, bµ) contains an OE-stable unimodular

lattice by Theorem 6.32.
Suppose that Eσ/K is an unramified extension and µ is a unit of OEσ . It remains to show

that the lattice (OE , bµ) is unimodular. Let e1, . . . , en ∈ OE0 be anOK-basis of the valuation ring
OE0 of E0. Then (e1, 0), . . . , (en, 0), (0, e1), . . . , (0, en) ∈ OE is an OK-basis of OE = OE0 ×OE0 .

The Gram matrix of bµ : OE×OE → Z with respect to this basis is of the form

(
O G
G O

)
, where

G is the Gram matrix of the inner product

Tµ : E0 × E0 → K, (x, y) 7→ TrE0/K(µxy)

with respect to the basis e1, . . . , en. Since µ is a unit, the dual lattice of OE0 with respect
to Tµ is the codifferent ideal D−1

E0/K
. On the other hand, it follows from Theorem 1.40 that

DE0/K = OE0 since E0/K is unramified. Hence (OE0 , Tµ) is unimodular, and G is invertible

over OK . Therefore

(
O G
G O

)
is also invertible over OK , and (OE , bµ) is unimodular. This

completes the proof. □

The case where E is a field is discussed in §§8.2 and 8.3.

8.2 Almost unimodular lattices on (E, bµ)

Let E be a field with a nontrivial involution σ, and with [E : K] < ∞. As in the previous
subsection, we fix a unit α ∈ O×

E with ασ(α) = 1. This subsection gives a specific almost
unimodular lattice on (E, bµ, α) in order to compute ∂[E, bµ, α]. The symbols vE , OE , pE ,
and λ denote the normalized valuation, valuation ring, maximal ideal, and residue field of E
respectively. Let D ∈ Z≥0 denote the valuation of the different ideal DE/K , that is, D :=
vE(DE/K).

Lemma 8.5. Let n ∈ Z and µ ∈ (Eσ)×. Then pnE is an α-stable lattice on the inner product

space (E, bµ) over K, and we have (pnE)
∨ = p

−n−D−vE(µ)
E .
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Proof. Any nonzero fractional ideal of E is an α-stable lattice on (E, bµ), and in particular, so
is pnE . Since (p

n
E)

∨ is also a fractional ideal of E, we can write (pnE)
∨ = pmE for some m ∈ Z. Our

assertion is that m = −n−D − vE(µ). Because

OK ⊃ bµ(p
n
E , p

m
E ) = TrE/K(µpnEσ(p

m
E )) = TrE/K(µpn+mE ),

we have µpn+mE ⊂ D−1
E/K = p−DE by the definition of the different ideal. This inclusion shows

that vE(µ)+n+m ≥ −D and hence m ≥ −n−D−vE(µ). We now suppose that m were greater
than −n−D− vE(µ). Then m− 1 ≥ −n−D− vE(µ) and thus vE(µ) + n+m− 1 ≥ −D. This
inequality shows that µpn+m−1

E ⊂ p−DE = D−1
E/K , and

TrE/K(µpnEσ(p
m−1
E )) = TrE/K(µpn+m−1

E ) ⊂ OK .

This would imply that pm−1
E ⊂ (pnE)

∨ = pmE , but this is a contradiction. Therefore we obtain
m = −n−D − vE(µ). The proof is complete. □

Let σ̄ : λ→ λ denote the involution induced by σ : E → E. We remark that it can be trivial.
In fact, we have:

Proposition 8.6. The involution σ̄ is nontrivial if and only if E is of type (ur). In this case,
the residue field of Eσ is the fixed subfield λσ̄.

Proof. Let λ′ be the residue field of Eσ. If E is of type (rm) then λ′ = λ and σ̄ is trivial.
Suppose that E is of type (ur). Then the canonical homomorphism Gal(E/Eσ) → Gal(λ/λ′)
is an automorphism by Corollary 2.17. Thus σ̄ ∈ Gal(λ/λ′) must be nontrivial since so is
σ ∈ Gal(E/Eσ). In this case, we have λ′ = λσ because [λ : λσ̄] = 2 = [λ : λ′]. This completes
the proof. □

Let L ⊂ E be a maximal unramified extension in E/K. By Corollary 2.16, such a field is
uniquely determined as an unramified field contained in E with residue field λ. For any x ∈ OL,
we write x̄ = x+pL ∈ λ. For a σ-invariant element u ∈ OL, the symbol bū denotes the symmetric
bilinear form λ× λ→ κ defined by

bū(x̄, ȳ) = Trλ/κ(ūx̄σ̄(ȳ)) (x, y ∈ OL) (33)

as in Notation 8.3, although σ̄ may be the identity. This symmetric bilinear form is nondegen-
erate if and only if ū 6= 0, or equivalently, u is a unit of OL.

Proposition 8.7. Let πK and πE be uniformizers of K and E. Let µ ∈ (Eσ)×.

(i) If vE(µ) + D is even, set n = −(vE(µ) + D)/2 and Λ = pnE. Then Λ is an α-stable
unimodular lattice in (E, bµ) (clearly it is also OE-stable).

(ii) If vE(µ)+D is odd, set n = −(vE(µ)+D−1)/2 and Λ = pnE. Then Λ is an α-stable almost
unimodular lattice on (E, bµ). Moreover, there is an isomorphism (Λ∨/Λ, πKbµ, α) ∼=
(λ, bū, ᾱ) of κ[Γ]-inner product spaces, where u ∈ OL is the σ-invariant unit defined by
u := uµ := TrE/L(µπKπ

n−1
E σ(πn−1

E )).

Proof. (i). Suppose that vE(µ) +D is even, and set n = −(vE(µ) +D)/2 and Λ = pnE . Then it
follows from Lemma 8.5 that

Λ∨ = p
−n−D−vE(µ)
E = pn = Λ,

which shows that Λ is unimodular.
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(ii). Suppose that vE(µ)+D is odd, and set n = −(vE(µ)+D−1)/2 and Λ = pnE . It follows

from Lemma 8.5 that Λ∨ = p
−n−D−vE(µ)
E = pn−1

E . Hence we obtain

Λ = pn ⊂ pn−1 = Λ∨ and πKΛ∨ = πKpn−1
E ⊂ pnE = Λ.

These mean that Λ is almost unimodular. Put u = TrE/L(µπKπ
n−1
E σ(πn−1

E )). Then

σ(u) = σ

 ∑
τ∈Homal

L (E,L)

τ(µπKπ
n−1
E σ(πn−1

E ))


=

∑
τ∈Homal

L (E,L)

σ ◦ τ ◦ σ−1 ◦ σ(µπKπn−1
E σ(πn−1

E ))

=
∑

τ ′∈Homal
L (E,L)

τ ′(µπKσ(π
n−1
E )πn−1

E )

= u,

where L is an algebraic closure of L containing E, and an extension of σ to L is also written by
σ. Moreover, we have

vE(µπKπ
n−1
E σ(πn−1

E )) = vE(µ) + vE(πK) + 2(n− 1)

= vE(µ) + vE(πK)− vE(µ)−D − 1 = vE(πK)− 1−D ≥ −D,

which leads to µπKπ
n−1
E σ(πn−1

E ) ∈ p−DE = D−1
E/K . On the other hand, because DL/K = OL by

Theorem 1.40, it follows from Proposition 1.39 (i) that DE/K = DE/LDL/K = DE/L. Hence

µπKπ
n−1
E σ(πn−1

E ) ∈ D−1
E/L, which leads to u = TrE/L(µπKπ

n−1
E σ(πn−1

E )) ∈ OL. It will be shown
later that u is a unit.

We show that the map φ : λ→ Λ∨/Λ = pn−1
E /pnE defined by

φ(x̄) = xπn−1
E + pnE (x ∈ OL)

gives an isomorphism (λ, bū, ᾱ) → (Λ∨/Λ, πKbµ, α) of κ[Γ]-inner product spaces. It is clear that
φ is a κ[Γ]-module isomorphism. Moreover, for x, y ∈ OL we have

πKbµ(φ(x̄), φ(ȳ)) = πK TrE/K(µxπn−1
E σ(yπn−1

E )) + pK

= TrL/K ◦TrE/L(µπKxπn−1
E σ(yπn−1

E )) + pK

= TrL/K
(
xσ(y) · TrE/L(µπKπn−1

E σ(πn−1
E ))

)
+ pK

= TrL/K(uxσ(y)) + pK

= Trλ/κ(ūx̄σ̄(ȳ)),

where the last equality is by Proposition 2.19. This means that φ is an isometry between (λ, bū)
and (Λ∨/Λ, πKbµ). Hence φ : (Λ∨/Λ, πKbµ, α) → (λ, bū, ᾱ) is an isomorphism of κ[Γ]-inner
product spaces. In particular bū is nondegenerate since so is πKbµ. Therefore u must be a unit
of OL. This completes the proof. □

This proposition shows that ∂E,α(µ) = 0 or [λ, bū, ᾱ] for any µ ∈ Tw(E, σ). In particular,
if m(X) ∈ κ[X] denotes the minimal polynomial of ᾱ then ∂E,α(µ) ∈ Wκ[Γ](κ;m), where the
symbol Wκ[Γ](κ;m) is defined in the paragraph above Corollary 6.12.
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8.3 Images of residue maps

We keep the notation of §8.2.

Lemma 8.8. Suppose that ᾱ ∈ λ is neither 1 nor −1.

(i) The induced involution σ̄ : λ→ λ is nontrivial and λ = κ(ᾱ).

(ii) Let b : λ × λ → κ be an inner product which makes ᾱ : λ → λ an isometry, and let
b1 : λ× λ→ κ be the inner product defined in (33) as ū = 1. Then (λ, b, ᾱ) ∼= (λ, b1, ᾱ) as
κ[Γ]-inner product spaces.

Proof. (i). We have

ᾱ 6= 1,−1 ⇐⇒ ᾱ2 − 1 6= 0 ⇐⇒ ᾱ− ᾱ−1 6= 0 ⇐⇒ ᾱ 6= σ̄(ᾱ).

Let ᾱ 6= 1,−1. Then σ̄ is nontrivial since ᾱ 6= σ̄(ᾱ). Thus λσ̄ is a proper subfield of λ and
[λ : λσ̄] = 2. If [λ : κ(ᾱ)] were greater than 1 then we would get

[λσ̄ : κ] = [λ : κ]/2 ≥ [λ : κ]/[λ : κ(ᾱ)] = [κ(ᾱ) : κ].

This means that κ(ᾱ) ⊂ λσ̄ but this inclusion contradicts ᾱ 6= σ̄(ᾱ). Hence we obtain [λ :
κ(ᾱ)] = 1, and λ = κ(ᾱ).

(ii). We write h1 for the one-dimensional hermitian product λ×λ→ λ defined by h1(1, 1) =
1. Then b1 = Trλ/κ ◦h1. On the other hand, by assertion (i) and Proposition 7.20, there
exists a hermitian product h : λ × λ → λ such that b = Trλ/κ ◦h. In order to show that
(λ, b, ᾱ) ∼= (λ, b1, ᾱ), it is enough to give an isomorphism between hermitian product spaces
(λ, h) and (λ, h1). Let w̄ ∈ λ be an element such that Nλ/λσ̄(w̄) = h(1, 1). Such an element
exists by Corollary 2.5. Then, the multiplication by w̄ gives an isomorphism from (λ, h) to
(λ, h1). Indeed

h1(w̄x̄, w̄ȳ) = w̄x̄σ̄(w̄)σ̄(ȳ)h1(1, 1) = h(1, 1)x̄σ̄(ȳ) = h(x̄, ȳ) (x̄, ȳ ∈ λ).

Hence, we obtain the isomorphism (λ, b, ᾱ) ∼= (λ, b1, ᾱ) of κ[Γ]-inner product spaces. □

Let us compute the images of residue maps by using an almost unimodular lattice given in
Proposition 8.7.

Proposition 8.9. Suppose that E is of type (ur).

(i) If ᾱ 6= 1,−1 then im ∂E,α = {0, [κ(ᾱ), b1, ᾱ]} ⊂ Wκ[Γ](κ), and the class [κ(ᾱ), b1, ᾱ] has
order 2.

(ii) If ᾱ = ±1 then im ∂E,α = {ω ∈Wκ[Γ](κ;X ∓ 1) | dimω ≡ 0 mod 2}.

Proof. Since E/Eσ is unramified, the twisting group Tw(E, σ) can be written as Tw(E, σ) =
{µ, µ′} where µ, µ′ ∈ (Eσ)× with vE(µ) 6≡ vE(µ

′) mod 2, see Theorem 2.22. Without loss of
generality, we assume that vE(µ)+D is odd and vE(µ

′)+D is even. Proposition 8.7 shows that

∂E,α(µ) = ∂[E, bµ, α] = [λ, bū, ᾱ] and ∂E,α(µ
′) = ∂[E, bµ′ , α] = 0

where u = uµ as in Proposition 8.7.
Suppose that α 6= 1,−1. Then λ = κ(ᾱ) by Lemma 8.8 (i), and thus ∂E,α(µ) = [κ(α), b1, ᾱ].

Moreover, we have [κ(α),−b1, ᾱ] = [λ,−b1, ᾱ] = [λ, b1, ᾱ] = [κ(α), b1, ᾱ], where the second
equation follows from Lemma 8.8 (ii). This means that the order of [κ(α), b1, ᾱ] in Wκ[Γ](κ) is
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at most 2. On the other hand, the class [κ(α), b1, α] in not zero because κ(α) is irreducible as a
κ[Γ]-module. This completes the proof of the assertion (i).

Suppose that α = ±1, and put W ′ = {ω ∈ Wκ[Γ](κ;X ∓ 1) | dimω ≡ 0 mod 2}. We
have [λ : κ] = [λ : λσ̄][λσ̄ : κ] = 2[λσ̄ : κ], since σ̄ is nontrivial by Proposition 8.6. Thus
∂E,α(µ) = [λ, bū, ᾱ] ∈W ′. We remark that Wκ[Γ](κ;X ∓ 1) is naturally isomorphic to the usual
Witt group W (κ). If charκ = 2 then W ′ = {0} by Theorem 6.38 (i), and hence we obtain
im ∂E,α = W ′. Suppose that char κ 6= 2. Then W ′ is a subgroup of Wκ[Γ](κ;X ∓ 1) with order
2 by Theorem 6.38 (ii).

Claim: disc(b1) 6= 1 in κ×/κ×2. Let x1, . . . , x2n ∈ λ be a basis of λ over κ, and let τ be the
generator of the Galois group Gal(λ/κ) defined by x̄ 7→ x̄#κ, see Proposition 2.4. Note that
σ̄ = τn. We define a matrix A ∈ M2n(λ) by A := (τ i−1(xj))ij . Then (b1(xi, xj))ij = tAAσ̄,
where Aσ̄ = (σ̄τ i−1(xj))ij . We remark that

τ(detA) = det(τ i(xj))ij = sgn(1, 2, . . . , 2n) · detA = − detA, (∗)

and
det(Aσ̄) = σ̄(detA) = τn(detA) = (−1)n detA.

Then, the discriminant of b1 is calculated as

disc(b1) = (−1)n det(b1) = (−1)n det(tA) det(Aσ̄) = (detA)2.

Furthermore, we have (detA)#κ−1 = τ(detA)/ detA = −1 by (∗). This means that the square
class disc(b1) = det(A)2 ∈ κ×/κ×2 is not 1 by Proposition 2.2 (ii).

From Claim and Theorem 6.38 (ii), it follows that the class ∂E,α(µ) = [λ, b1,±1] is not zero
in W ′. This shows that im ∂E,α =W ′. The proof is complete. □

Proposition 8.10. Suppose that E is of type (rm). Then ᾱ = 1 or −1. Let ᾱ = ±1.

(i) If charκ 6= 2 then im ∂E,α = {ω ∈Wκ[Γ](κ;X ∓ 1) | dimω ≡ [λ : κ] mod 2}.

(ii) If charκ = 2 then for any µ ∈ (Eσ)× we have

∂E,α(µ) =

{
0 if [λ : κ]D is even

ω if [λ : κ]D is odd

where ω is the nontrivial element of Wκ[Γ](κ;X − 1) ∼=W (κ).

Proof. The induced involution σ̄ is the identity by Proposition 8.6. Thus ᾱ = 1 or −1 by Lemma
8.8 (i). Let ᾱ = ±1. We remark that vE = e(pE/pEσ)vEσ = 2 vEσ on Eσ by Corollary 1.36.

(i). Suppose that char κ 6= 2, and put W ′ = {ω ∈ Wκ[Γ](κ;X ∓ 1) | dimω ≡ [λ : κ] mod 2}.
The quadratic extension E/Eσ is tamely ramified (i.e., pE is tamely ramified over Eσ) since

charκ 6= 2. Thus DE/Eσ = p
e(pE/pEσ )−1
E = pE by Theorem 1.40. Because

D = vE(DE/K) = vE(DE/Eσ ·DEσ/K) = vE(DE/Eσ) + vE(DEσ/K) = 1 + 2 vEσ(DEσ/K),

we have
vE(µ) +D = 2vEσ(µ) + 1 + 2 vEσ(DEσ/K) ≡ 1 mod 2

for any µ ∈ (Eσ)×. Hence, it follows from Proposition 8.7 that ∂E,α(µ) = [λ, buµ ,±1] for any
µ ∈ (Eσ)×. This shows that im ∂E,α ⊂W ′.
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Claim: We have L ⊂ Eσ, and disc(buµ) = Nλ/κ (µ̄) disc(bu1) for any µ ∈ O×
L . Since E/Eσ is

ramified, the unramified extension L is contained in Eσ. Let µ ∈ O×
L . We have

uµ = TrE/L(µπKπ
n−1
E σ(πn−1

E )) = µ · TrE/L(πKπn−1
E σ(πn−1

E )) = µ̄ · u1

in λ, where n = −(vE(µ) +D − 1)/2 as in Proposition 8.7. Thus, for any x̄, ȳ ∈ λ, we have

buµ(x̄, ȳ) = Trλ/κ(uµx̄σ̄(ȳ)) = Trλ/κ(µ̄u1x̄σ̄(ȳ)) = bu1(µ̄x̄, ȳ).

This shows that det(buµ) = Nλ/κ(µ̄) · det(bu1), and we obtain disc(buµ) = Nλ/κ (µ̄) · disc(bu1).
Let ω ∈ W ′. Since the norm map Nλ/κ : λ → κ is surjective (Corollary 2.5), there exists

µ ∈ O×
L such that Nλ/κ (µ̄) = disc(bu1)

−1 disc(ω) (in κ×/κ×2). Then, we have disc(buµ) = disc(ω)
by Claim. This implies [λ, buµ ,±1] = ω by Theorem 6.38 (ii). Therefore im ∂E,α =W ′.

(ii). Suppose that char κ = 2, and let µ ∈ (Eσ)×. If D is even then so is vE(µ) + D =
2 · vEσ(µ) +D. In this case, Proposition 8.7 (i) shows that ∂E,α(µ) = 0. If D is odd then so is
vE(µ) +D. In this case, Proposition 8.7 (ii) shows that ∂E,α(µ) ≡ [λ, buµ , 1]. Thus

∂E,α(µ) =

{
0 if [λ : κ] ≡ 0 mod 2

nontrivial if [λ : κ] ≡ 1 mod 2

by Theorem 6.38 (i). This completes the proof. □

Theorem 8.11. Let E be a commutative K-algebra with a nontrivial involution σ. We assume
that [E : K] < ∞ and E is a field or of type (sp). Let M be a free E-module of rank m, and
α ∈ O×

E a unit with ασ(α) = 1.

(i) If E is of type (sp) then ∂M,α is the zero map.

(ii) If E is of type (ur) then

im ∂M,α =

{
{0, [κ(ᾱ), b1, ᾱ]} if ᾱ 6= 1,−1

{ω ∈Wκ[Γ](κ;X ∓ 1) | dimω ≡ 0 mod 2} if ᾱ = ±1.

In the case ᾱ 6= 1,−1, the Witt class [κ(ᾱ), b1, ᾱ] is of order 2.

(iii) If E is of type (rm) then ᾱ = 1 or −1, and moreover,

• if charκ 6= 2 and ᾱ = ±1 then im ∂M,α = {ω ∈ Wκ[Γ](κ;X ∓ 1) | dimω ≡ m[λ :
κ] mod 2};

• if charκ = 2 then for any µ ∈ Tw(E, σ) we have

∂M,α(µ) =

{
0 if m[λ : κ]D is even

the nontrivial class if m[λ : κ]D is odd
in Wκ[Γ](κ;X − 1).

Proof. By fixing a basis ofM over E, we identifyM with Em. For µ ∈ (Eσ)×, the value ∂M,α(µ)
can be calculated as

∂M,α(µ) = ∂[M,TrE/K ◦〈µ, 1, . . . , 1〉E , α]
= ∂[(Em, bµ ⊕ b1 ⊕ · · · ⊕ b1, α)]

= ∂[E, bµ, α] + (m− 1)∂[E, b1, α]

= ∂E,α(µ) + (m− 1)∂E,α(1). (∗)

If E is of type (sp) then it is zero by Proposition 8.4. This shows the assertion (i). The assertions
(ii) and (iii) follows from (∗) with Propositions 8.9 and 8.10 respectively. □
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Remark 8.12. In the situation of Theorem 8.11, assume that E is of type (sp) or of type (ur),
and M is the E-algebra Em, the direct product of m copies of E. We write OM for the integral
closure of OK in M , which is equal to Om

E ⊂M = Em.

(i) There exists µ ∈ (Eσ)× such that (M,TrE/K ◦〈µ, . . . , µ〉E) is an OE-stable unimodular
lattice. Indeed, if E is of type (sp) then (E, bµ) contains an OE-stable unimodular lattice
for any µ ∈ (Eσ)× by Proposition 8.4; and if E is of type (ur) then there exists µ ∈ (Eσ)×

such that vE(µ) + D is even, and (E, bµ) contains an OE-stable unimodular lattice by
Proposition 8.7 (i). Hence, in either case, the space (M,TrE/K ◦〈µ, . . . , µ〉E) = (E, bµ)

⊕m

contains an OE-stable unimodular lattice.

(ii) Let µ1, . . . , µm ∈ (OEσ)× be units, and suppose that the extension Eσ/K is unramified.
Then, in a similar manner as in (i), it follows from Propositions 8.4 and 8.7 that OM is
an α-stable unimodular lattice on (M,TrE/K ◦〈µ1, . . . , µm〉E).

8.4 Characteristic polynomial of isometry

In the rest of this section, we deal with the problem of determining which polynomial occurs
as the characteristic polynomial of an even unimodular lattice over OK . Let F ∈ OK [X]
be a ∗-symmetric polynomial, and write F (X) = (X − 1)m+(X + 1)m−F1(X)F2(X) where
m+,m− ∈ Z≥0 are non-negative integers and Fi ∈ OK [X] is the type i component of F for
i = 1, 2, see Definition 7.8. The product F1F2 will be abbreviated to F12.

We give subscripts for irreducible factors of F1 as follows. Note that for each f ∈ I1(F ;K)
the K-algebra K[X]/(f) has the nontrivial involution σ defined by X +(f) 7→ (X +(f))−1. We
define subsets I1,ur(F ;K) and I1,rm(F ;K) of I1(F ;K) as

I1,ur(F ;K) = {f ∈ I1(F ;K) | K[X]/(f) is of type (ur) },
I1,rm(F ;K) = {f ∈ I1(F ;K) | K[X]/(f) is of type (rm) }.

Let Wur and Wrm be sets of cardinalities #I1,ur(F ;K) and #I1,rm(F ;K) respectively. Then, fix
bijections

Wur → I1,ur(F ;K), Wrm → I1,rm(F ;K)

and write fw for the factor corresponding to w ∈ WurtWrm. We also give subscripts for factors
of F2 as follows. Let Wsp be a set of cardinality #I2(F ;K)/2, Then there is a bijection between
Wsp and the set of all pairs of the form {g, g∗} in I2(F ;K). We fix such a bijection and write
{gw, g∗w} for the pair corresponding to w ∈ Wsp, and put fw = gwg

∗
w. Under this notation, the

polynomials F1 and F2 can be written as

F1 =
∏

w∈Wur

fmw
w ×

∏
w∈Wrm

fmw
w , F2 =

∏
w∈Wsp

fmw
w =

∏
w∈Wsp

(gwg
∗
w)
mw ,

where mw denotes the multiplicity of fw in F .
In the following, the symbolM denotes the associated K[Γ]-module of F with transformation

α. Set W := Wur t Wrm t Wsp. For each w ∈ W , we write Ew,Mw, αw for Efw ,Mfw , αfw in
Notation 7.19. Then M can be expressed as

M =M+ ×M− ×
∏

w∈Wur

Mw ×
∏

w∈Wrm

Mw ×
∏

w∈Wsp

Mw,

where M± :=MX∓1 = (K[X]/(X ∓ 1))×m± . We can write

Wur = {w ∈ W | Ew is of type (ur) },
Wrm = {w ∈ W | Ew is of type (rm) },
Wsp = {w ∈ W | Ew is of type (sp) }.
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By Proposition 8.10, if K is non-dyadic then Wrm decomposes as Wrm = W+ t W−, where
W± := {w ∈ Wrm | αw = ±1}. For each w ∈ Wur ∪Wrm, the residue field of Ew is denoted by
λw.

Lemma 8.13. Let w ∈ Wur ∪Wrm. For any c ∈ K we have

vK(fw(c)) ≡ [λw : κ]vEw(c− αw).

Proof. Put d = [Ew : K], and let β1, . . . , βd ∈ Ẽw be all conjugates of αw ∈ Ew, where Ẽw is
the Galois closure of Ew/K. Then fw can be written as fw(X) =

∏d
j=1(X − βj). For any finite

extension L/K, we write e(L/K) for the ramification index of corresponding maximal ideals.
By using Corollary 1.36 and the fundamental identity (Proposition 1.22), we obtain

vK(fw(c)) = e(Ẽw/K)−1 · v
Ẽw

(
∏d
j=1(c− βj))

= e(Ẽw/K)−1 · d · v
Ẽw

(c− αw)

= e(Ẽw/K)−1 · d · e(Ẽw/Ew) · vEw(c− αw)

= e(Ew/K)−1 · d · vEw(c− αw)

= [λw : κ] · vEw(c− αw)

for any c ∈ K, as required. □

Lemma 8.14. Let w ∈ W.

(i) If w ∈ Wsp ∪Wur then vK(fw(1)) ≡ vK(fw(−1)) ≡ 0 mod 2.

(ii) Suppose that K is non-dyadic and w ∈ W±. Then vK(fw(∓1)) = 0. Moreover, for any
µw ∈ Tw(Ew, σ) we have dim ∂Mw,αw(µw) ≡ mwvK(fw(±1)) mod 2.

Proof. (i). Suppose that w ∈ Wsp. We remark that gw(0) is a unit of OK because gw(0) and
gw(0)

−1 are the constant terms of gw and g∗w ∈ OK [X] respectively. Then

vK(fw(±1)) = vK(gw(±1)g∗w(±1))

= vK(gw(±1)gw(0)
−1(−1)deg ggw(±1)) = 2vK(gw(±1)) ≡ 0 mod 2.

Suppose that w ∈ Wur. Then vK(fw(±1)) = [λw : κ]vEw(1∓ αw) by Lemma 8.13. Furthermore
[λw : κ] is even since the induced involution σ̄ : λw → λw is nontrivial (Proposition 8.6). Hence
vK(fw(±1)) ≡ 0 mod 2. This completes the proof of the assertion (i).

(ii). We have vK(fw(∓1)) = [λw : κ]vEw(1∓αw) by Lemma 8.13, and 1±αw ∈ O×
Ew

because

1± αw = 2 6= 0 in λw. Thus vK(fw(∓1)) = 0. To prove the latter assertion, let µw ∈ Tw(Ew, σ),
and let hw be a hermitian product on M with determinant µw. Then dim ∂Mw,αw(µw) ≡
vK(det(TrEw/K ◦hw)) mod 2 by Proposition 6.35, and det(TrEw/K ◦hw) = fw(1)

mwfw(−1)mw

in K×/K×2 by Proposition 7.32. Thus

dim ∂Mw,αw(µw) ≡ vK(det(TrEw/K ◦hw))
≡ vK(fw(1)

mwfw(−1)mw)

= mwvK(fw(1)) +mwvK(fw(−1))

= mwvK(fw(±1)) mod 2,

where the last equality follows from vK(fw(∓1)) = 0. This completes the proof. □

Lemma 8.14 yields a necessary condition for the existence of an inner product b on M such
that (M, b) contains an α-stable unimodular lattice.
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Proposition 8.15. Suppose that K is non-dyadic. If there exists an inner product b on M such
that (M, b) contains an α-stable unimodular lattice over OK then vK(F (1)) ≡ vK(F (−1)) ≡
0 mod 2. Here, we adopt the convention that vK(0) ≡ 0 mod 2.

Proof. Let b be an inner product onM such that (M, b) contains an α-stable unimodular lattice.
If F (1) = 0 then vK(F (1)) ≡ 0 mod 2 by our convention. Suppose that F (1) 6= 0. Note that
for any w ∈ W there exists µw ∈ Tw(Ew, σ) and such that ∂[Mw, b|Mw , αw] = ∂Mw,αw(µw) by
Proposition 7.20. We have

vK(F (1)) = vK
(
(1 + 1)m−

∏
w∈W fw(1)

mw
)

≡
∑
w∈W+

mwvK(fw(1)) +
∑
w∈W−

mwvK(fw(1))

≡
∑
w∈W+

dim(∂[Mw, b|Mw , αw]) mod 2

by Lemma 8.14. On the other hand, we have ∂[M, b, α] = 0 since (M, b) contains an α-stable
unimodular lattice. Thus the image of ∂[M, b, α] ∈ Wκ[Γ](κ) under the projection Wκ[Γ](κ) →
Wκ[Γ](κ;X − 1) is also 0, and in particular has dimension 0 mod 2. Moreover, the dimension
of the image is given by dim

∑
w∈W+

dim(∂[Mw, b|Mw , αw]) because dim(∂[Mw, b|Mw , αw]) ≡
0 mod 2 for any w ∈ Wsp ∪ Wur by Theorem 8.11 (or by Proposition 7.32 and Lemma 8.14
(i)). Therefore vK(F (1)) ≡

∑
w∈W+

dim(∂[Mw, b|Mw , αw]) ≡ 0 mod 2. Similarly we obtain
vK(F (−1)) ≡

∑
w∈W−

dim(∂[Mw, b|Mw , αw]) ≡ 0 mod 2. The proof is complete. □

The congruence vK(F (1)) ≡ vK(F (−1)) ≡ 0 mod 2 is also a sufficient condition.

Theorem 8.16. Suppose that K is non-dyadic. Let F ∈ OK [X] be a ∗-symmetric polynomial,
and M the associated K[Γ]-module of F with transformation α. Assume that vK(F (1)) ≡
vK(F (−1)) ≡ 0 mod 2. Then there exists an inner product b on M such that (M, b) contains an
α-stable unimodular lattice over OK . Furthermore

(a) if F (±1) = 0 then such an inner product can be chosen to satisfy det(b|M±) = u±F12(±1)
for any given u± ∈ O×

K ; and

(b) if Wrm = ∅ then such an inner product can be chosen so that each of subspaces (M+, b|M+),
(M−, b|M−), and (Mw, b|Mw) for all w ∈ W contains an α-stable unimodular lattice.

Proof. Let u+, u− ∈ O×
K be units. If F (±1) = 0 we take an inner product b± on M± whose

Gram matrix is diag(u±F12(±1), 1, . . . , 1). Note that for any family (µw)w∈W± consisting of
µw ∈ Tw(Ew, σ), we have

vK(F12(±1)) =
∑
w∈W

mwvK(fw(±1)) ≡
∑
w∈W±

mwvK(fw(±1)) ≡
∑
w∈W±

∂Mw,αw(µw) mod 2 (∗)

by Lemma 8.14.

Claim: If W± = ∅ then ∂[M±, b±,±1] = 0. If W± 6= ∅ then there exists a family (µw)w∈W±

consisting of µw ∈ Tw(Ew, σ) such that
∑

w∈W±
∂Mw,αw(µw) = −∂[M±, b±,±1]. Suppose that

W± = ∅. Then vK(F12(±1)) ≡ 0 mod 2 by (∗). Let e1, . . . , em± be a basis of (M±, b±) such
that the corresponding Gram is diag(u±F12(±1), 1, . . . , 1). Then the lattice

OK(π
−vK(F12(±1))/2
K e1) +OKe2 + · · ·+OKem±
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is a unimodular lattice on (M±, b±). Hence ∂[M±, b±,±1] = 0. Suppose that W± 6= ∅. For any
family (µw)w∈W± , we have

dim(−∂[M±, b±,±1]) ≡ vK(det b±) ≡ vK(F12(±1)) ≡
∑
w∈W±

∂Mw,αw(µw) mod 2,

where the first and last congruences follow from Proposition 6.35 and Equation (∗) respec-
tively. Thus, Theorem 8.11 (iii) shows that we can take a suitable family (µw)w∈W± so that∑

w∈W±
∂Mw,αw(µw) = −∂[M±, b±,±1]. This completes the proof of Claim.

Let (µw)w∈W± be a family as in Claim if W± 6= ∅. Furthermore, for each w ∈ Wsp ∪Wur, we
take µw ∈ Tw(Ew, σ) satisfying ∂Mw,αw(µw) = 0. This is possible by Theorem 8.11 (i), (ii). Let
hw :Mw ×Mw → Ew be a hermitian product with determinant µw for each w ∈ W , and define
the inner product b on M by

b := b+ ⊕ b− ⊕
⊕
w∈W

TrEw/K ◦hw.

Then

∂[M, b, α] = ∂[M+, b+,+1] + ∂[M−, b−,−1] +
∑

w∈Wsp∪Wur

∂Mw,αw(µw)

+
∑
w∈W+

∂Mw,αw(µw) +
∑
w∈W−

∂Mw,αw(µw)

= 0.

This implies that (M, b) contains an α-stable unimodular lattice by Theorem 6.32. The assertions
(a) and (b) are obvious by the construction of b. □

Corollary 8.17. Suppose that K is non-dyadic. Let F ∈ OK [X] be a ∗-symmetric polynomial.
There exists a unimodular lattice having a semisimple isometry with characteristic polynomial
F if and only if vK(F (1)) ≡ vK(F (−1)) ≡ 0 mod 2.

Proof. The if part follows from Theorem 8.16. Suppose that there exists a unimodular lattice
(Λ, b) having a semisimple isometry t with characteristic polynomial F . Then Λ ⊗OK

K can
be identified with the associated K[Γ]-module M of F with transformation t by Lemma 7.18.
In this case b ⊗ K is an inner product on M such that Λ is a t-stable unimodular lattice on
(M, b⊗K). Hence, we obtain vK(F (1)) ≡ vK(F (−1)) ≡ 0 mod 2 by Proposition 8.15. □

8.5 Dyadic case

Let us proceed to the dyadic case. We restrict ourselves to the case K = Q2 to avoid complexity.
We refer to [22] for the general case.

Proposition 8.18. Let (V, b) be an inner product space over Q2, and t an isometry of V . There
exists a t-stable even unimodular lattice on V if and only if the following three conditions hold:

(i) V contains a t-stable unimodular lattice.

(ii) V contains an even unimodular lattice.

(iii) v2(sn(t)) ≡

{
0 mod 2 if det t = 1

1 mod 2 if det t = −1
mod 2.
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Proof. If there exists a t-stable even unimodular lattice on V then the conditions (i) and (ii)
hold clearly, and (iii) follows from Corollary 7.34.

Suppose conversely that the three conditions hold, and let Λ0 be a t-stable lattice and Λ′
1 an

even unimodular lattice on V . If Λ′
1
∼=
〈
2 1
1 2

〉
Z2 then a computation shows that every integral

lattice on V is even, and in particular Λ0 is a t-stable even unimodular lattice. So, by Theorem
5.23, we may assume that Λ′

1 contains a hyperbolic sublattice H. Furthermore, we assume that
Λ0 is odd since we are done if it is even. Let e′1 and e

′
2 ∈ V be vectors such that 2e′1 and e

′
2 form a

hyperbolic basis of H. Put N ′ = H⊥ ⊂ Λ′
1 and Λ′

0 = N ′+Z2(e
′
1+e

′
2)+Z2(e

′
1−e′2). Then Λ′

0 is an
odd lattice on V , and Corollary 5.22 shows that there exists τ ∈ O(V, b) such that τ(Λ′

0) = Λ0.
We show that the even unimodular lattice Λ1 := τ(Λ1) on V is t-stable. Put H = τ(H ′),
e1 = τ(e′1) and e2 = τ(e′2). Then Λ1 = N+Z2(2e1)+Z2e2 and Λ0 = N+Z2(e1+e2)+Z2(e1−e2).
In addition, we consider lattices Λ2 and Λ on V defined by Λ2 := N + Z2e1 + Z2(2e2) and
Λ := N + Z2(2e1) + Z2(2e2) respectively. Then Λ2 is an even unimodular lattice different from
Λ1, and Λ is contained in Λ0, Λ1 and Λ2. Note that

Λ∨/Λ ∼= (Z2(2e1) + Z2(2e2))
∨/(Z2(2e1) + Z2(2e2)) ∼= Z2/2Z2 ⊕ Z2/2Z2

∼= Z/2Z⊕ Z/2Z,

see Proposition 5.15. This implies that Λ∨/Λ has exactly 3 submodules except for 0 and Λ∨/Λ
itself, and Λ has at most 3 overlattices by Proposition 5.17. Hence, there is no overlattice of Λ
other than Λ0, Λ1 and Λ2.

Claim: We have Λ = {x ∈ Λ0 | b(x, x) ∈ 2Z2}. Put Λ′ = {x ∈ Λ0 | b(x, x) ∈ 2Z2}. Since N is
an even lattice, b(2e1, 2e1) = b(2e2, 2e2) = 0 and b(2e1, 2e2) = 2, we have Λ ⊂ Λ′. To prove the
reverse inclusion, it is enough to show that any x ∈ Z2(e1 + e2) + Z2(e1 − e2) belongs to Λ if
b(x, x) ∈ 2Z2. Let x = c1(e1 + e2) + c2(e1 − e2) ∈ Z2(e1 + e2) + Z2(e1 − e2) (c1, c2 ∈ Z2), and
suppose that b(x, x) ∈ 2Z2. Because

b(x, x) = b((c1 + c2)e1 + (c1 − c2)e2, (c1 + c2)e1 + (c1 − c2)e2) = (c1 + c2)(c1 − c2),

we have (c1 + c2)(c1 − c2) ∈ 2Z2. This means that c1 + c2 ∈ 2Z2 or c1 − c2 ∈ 2Z2, and hence
both belong to 2Z2. Therefore x = (c1 + c2)e1 + (c1 − c2)e2 ∈ Z2(2e1) + Z2(2e2) ⊂ Λ, and this
completes the proof of Claim.

By Claim, the lattice Λ is preserved by t since so is Λ0. Thus, the overlattices of Λ are
permuted by t. Since Λ0 is odd, and Λ1,Λ2 are even, we have t(Λ1) = Λ1 or t(Λ1) = Λ2.
Suppose to the contrary that we had t(Λ1) = Λ2. Let s denote the reflection orthogonal to
e1 + e2. Then s(Λ2) = Λ1, and s ◦ t preserves Λ1. On the other hand, we have

v2(sn(s ◦ t)) = v2(sn(s)) + v2(sn(t))

= v2(b(e1 + e2, e1 + e2)) + v2(sn(t))

≡

{
0 mod 2 if det t = 1

1 mod 2 if det t = −1

≡

{
0 mod 2 if det(s ◦ t) = −1

1 mod 2 if det(s ◦ t) = 1

by the assumption (iii). However, this contradicts Corollary 7.34. Therefore, we have t(Λ1) = Λ1

as required. The proof is complete. □

Theorem 8.19. Let F ∈ Z2[X] be a ∗-symmetric polynomial of even degree 2n, and let δ ∈
{1,−3} ⊂ Q×

2 /Q
×2
2 . Assume that
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(a) v2(F (1)) ≡ v2(F (−1)) ≡ 0 mod 2; and

(b) if F (1)F (−1) 6= 0 then (−1)nF (1)F (−1) = δ in Q×
2 /Q

×2
2 .

Then there exists an inner product b on the associated Q2[Γ]-module M of F with transforma-
tion α such that disc b = δ and (M, b) contains an α-stable even unimodular lattice over Z2.
Furthermore, if F (1) = F (−1) = 0 then such an inner product can be chosen to satisfy

detM± =

{
u±F12(±1) if m+ is even

2u±F12(±1) if m+ is odd

for any given u+, u− ∈ O×
K such that u+u− = (−1)n δ.

Proof. We take an inner product b on M as follows. First, set

δ± =

{
u±F12(±1) if m+ is even

2u±F12(±1) if m+ is odd

and take inner products b+ on M+ and b− on M− satisfying

det b+ =

{
(−1)nδF12(1)F12(−1) if F (1) = 0 and F (−1) 6= 0

δ+ if F (1) = F (−1) = 0,

det b− =

{
(−1)nδF12(1)F12(−1) if F (1) 6= 0 and F (−1) = 0

δ− if F (1) = F (−1) = 0.
(∗)

Next, for each w ∈ Wsp ∪ Wur we fix µw ∈ Tw(Ew, σ) satisfying ∂Mw,αw(µw) = 0. This is
possible by Theorem 8.11. Furthermore, we take µw ∈ Tw(Ew, σ) arbitrarily for each w ∈ Wrm.
Then, for each w ∈ W we define an inner product bw on Mw by bw := TrEw/Q2

◦hw, where hw is
a hermitian product on Mw over Ew with determinant µw, and define b := b+⊕ b−⊕

⊕
w∈W bw.

Then, the discriminant of b is δ, and α is an isometry with respect to b.

Claim 1: For any b constructed as above, the inner product space (M, b) with the isometry α
satisfies the conditions (i) and (iii) in Proposition 8.18. For (i), it is enough to show that
∂[M, b, α] = 0 by Theorem 6.32. By Proposition 6.35, we have

dim ∂[M+ ⊕M−, b+ ⊕ b−, α|M+⊕M− ] ≡ v2(det(b
+ ⊕ b−))

≡ v2((−1)nδF12(1)F12(−1))

≡ v2(F12(1)F12(−1)) mod 2.

On the other hand, since ∂[Mw, bw, α|Mw ] = ∂Mw,αw(µw) = 0 for w ∈ Wsp ∪Wur, we have

dim ∂

[ ⊕
w∈Wrm

Mw,
⊕

w∈Wrm

bw, α|⊕
w∈Wrm

Mw

]
≡ dim ∂

[⊕
w∈W

Mw,
⊕
w∈W

bw, α|⊕
w∈W Mw

]

≡ v2

(
det

(⊕
w∈W

bw

))
≡ v2(F12(1)F12(−1)) mod 2

by Propositions 6.35 and 7.32. Hence

dim ∂[M+ ⊕M− ⊕
⊕

w∈Wrm

Mw, b
+ ⊕ b− ⊕

⊕
w∈Wrm

bw, α|M+⊕M−⊕
⊕

w∈Wrm
Mw

] ≡ 0 mod 2,
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which means that

∂[M+ ⊕M− ⊕
⊕

w∈Wrm

Mw, b
+ ⊕ b− ⊕

⊕
w∈Wrm

bw, α|M+⊕M−⊕
⊕

w∈Wrm
Mw

] = 0

by Theorem 6.38 (i). Therefore

∂

[
M+ ⊕M− ⊕

⊕
w∈W

Mw, b
+ ⊕ b− ⊕

⊕
w∈W

bw, α|M+⊕M−⊕
⊕

w∈W Mw

]

= ∂

[
M+ ⊕M− ⊕

⊕
w∈Wrm

Mw, b
+ ⊕ b− ⊕

⊕
w∈Wrm

bw, α|M+⊕M−⊕
⊕

w∈Wrm
Mw

]
+

∑
w∈Wsp∪Wur

∂Mw,αw(µw)

= 0.

Let us show (iii). If F (−1) 6= 0 then v2(sn(α)) ≡ v2(F12(−1)) ≡ 0 mod 2 by (30) and the
assumption (a). Suppose that F (−1) = 0. If F (1) 6= 0 then

v2(sn(α)) ≡ v2((−1)nδF12(1)F12(−1)) + v2(F12(−1)) ≡ v2(F12(1)) ≡ 0 mod 2

by (30), (∗), and the assumption (a). If F (1) = 0 then

v2(sn(α)) ≡

{
v2(δ−) + v2(F12(−1)) ≡ 0 if m+ is even

v2(δ−) + v2(F12(−1)) ≡ 1 if m+ is odd
mod 2

by (30) and (∗). Hence, the condition (iii) holds in any case, and Claim 1 has now been proved.

Claim 2: If b+ and b−, and µw ∈ Tw(Ew, σ) for each w ∈ Wrm are suitably chosen, then (M, b)
satisfies the condition (ii) in Proposition 8.18, that is, (M, b) contains an even unimodular lattice.
In general, for each non-negative even integer d ∈ 2Z≥0 there is a unique θd ∈ {0, 1} such that
any inner product space over Q2 of dimension d, discriminant δ, and Hasse-Witt invariant θd
contains an even unimodular lattice. This is a consequence of Theorem 5.23. Suppose first that
Wrm 6= ∅, and let w0 ∈ Wrm. Let µ̂w0 ∈ Tw(Ew0 , σ) be an element different from µw0 , and ĥw0

a hermitian product on Mw0 with determinant µ̂w0 . Then, we define b̂w0 := TrEw0/Q2
◦ĥw0 and

b̂ := b+⊕b−⊕ b̂w0⊕
⊕

w 6=w0
bw. Because hw2(b) 6= hw2(̂b), we have hw2(b) = θ2n or hw2(̂b) = θ2n.

This means that the condition (ii) holds for (M, b) or (M, b̂).
Suppose then that Wrm = ∅. We first show that (Mw, bw) contains an (α-stable) even

unimodular lattice for each w ∈ Wsp ∪Wur. Let w ∈ Wsp ∪Wur. We may assume that (Mw, bw)
contains an OE-stable unimodular lattice Λw by Remark 8.12 (i). Note that there exists γ ∈ OE

such that γ+σ(γ) = 1. It is clear if w ∈ Wsp and follows from Corollary 2.20 if w ∈ Wur. Then,
for any x ∈ Λw we have

b(x, x) = b((γ + σ(γ))x, x) = b(γx, x) + b(σ(γ)x, x) = 2b(γx, x) ∈ 2Z2.

This shows that (Mw, bw) contains an even unimodular lattice for each w ∈ Wsp ∪Wur. So, in
order to complete the proof of Claim 2, it is sufficient to show that (M+⊕M−, b+⊕b−) contains
an even unimodular lattice under a suitable choice of b+ and b−.

Case I. m+ > 2 or m− > 2. Suppose that m+ > 2. Then there exists an inner product
b̂+ on M+ with det b̂+ = det b+ and hw2(̂b

+) 6= hw2(b
+). Because hw2(b

+ ⊕ b−) = θm++m− or

hw2(̂b
+ ⊕ b−) = θm++m− , either (M

+ ⊕M−, b+ ⊕ b−) or (M+ ⊕M−, b̂+ ⊕ b−) contains an even
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unimodular lattice. Similarly, if m− > 2 then (M+⊕M−, b+⊕ b−) contains an even unimodular
lattice for a suitable b−.

Case II. (m+,m−) = (2, 2). If δ+ 6= −1 or δ− 6= −1 in Q×
2 /Q

×2
2 then we can choose b+ and

b− so that hw2(b
+ ⊕ b−) = θ4 as in Case I. If δ+ = δ− = −1 in Q×

2 /Q
×2
2 then b+ and b− are

isomorphic to the hyperbolic plane and contain even unimodular lattices respectively.
Case III. (m+,m−) = (2, 0) or (0, 2). A similar proof of Case II works, and b+ or b− contains

an even unimodular lattice if we choose b+ or b− suitably.
Case IV. (m+,m−) = (1, 1). Since b has discriminant δ ∈ {1,−3} and (

⊕
w∈W Mw,

⊕
w∈W bw)

contains an even unimodular lattice, we have disc(b+ ⊕ b−) = disc(b)−1 · disc(
⊕

w∈W bw) = 1 or
−3 by Theorem 5.23. If disc(b+ ⊕ b−) = 1 then b+ ⊕ b− is isomorphic to the hyperbolic plane
and contains an even unimodular lattice. Suppose that disc(b+ ⊕ b−) = −3. Lemma 8.14 (i)
implies that v2(F12(1)) ≡ 0 mod 2 since Wrm = ∅. The Hasse-Witt invariant of b+ ⊕ b− can be
calculated as

hw2(b
+ ⊕ b−) = (δ+, δ−)2 = (δ+,−δ+δ−)2 = (2u+F12(1), disc(b

+ ⊕ b−))2

= (2u+F12(1),−3)2 = (2,−3)2 + (u+F12(1),−3)2 = 1

by Theorem 4.61 (iii), and this means that b+⊕b− is isomorphic to the lattice

〈
2 1
1 2

〉
Z2 . Thus,

the space (M+ ⊕M−, b+ ⊕ b−) contains an even unimodular lattice.
In any case, the space (M+⊕M−, b+⊕ b−) contains an even unimodular lattice if we choose

b+ and b− suitably. This completes the proof of Claim 2.

Claims 1 and 2 mean that the inner product space (M, b) with the isometry α satisfies the
conditions (i)–(iii) in Proposition 8.18 for a suitable inner product b. This implies that (M, b)
contains an α-stable even unimodular lattice. The latter part of this theorem is obvious by the
construction of b. □

Corollary 8.20. Let F ∈ Z2[X] be a ∗-symmetric polynomial of even degree. There exists an
even unimodular lattice having a semisimple isometry with characteristic polynomial F if and
only if the following conditions hold.

(a) v2(F (1)) ≡ v2(F (−1)) ≡ 0 mod 2.

(b) If F (1)F (−1) 6= 0 then (−1)deg(F )/2F (1)F (−1) = 1 or −3 in Q×
2 /Q

×2
2 .

Proof. The if part follows from Theorem 8.19. Suppose that there exists an even unimodular
lattice (Λ, b) having a semisimple isometry t with characteristic polynomial F , and put V =
Λ⊗Z2 Q2. If det t = −1, i.e., F is −1-symmetric, then F (1) = F (−1) = 0, and the conditions (a)
and (b) are clear. Suppose that det t = 1, and write F as F (X) = (X − 1)m+(X + 1)m−F12(X)
where m+,m− are the multiplicities of X − 1, X + 1, and F12 is the product of type 1 and 2
components. Note that m+ and m− are even since F is +1-symmetric and of even degree. We
have

v2(det(b|V (X+1;t))) + v2(F12(−1)) ≡ v2(sn(t)) ≡ 0 mod 2 (∗)

by Equation (30) and Corollary 7.34. On the other hand, we have

v2(det(b|V (X−1;t))) + v2(det(b|V (X+1;t))) + v2(F12(1)) + v2(F12(−1)) ≡ v2(det b) ≡ 0 mod 2

by Proposition 7.32, and hence

v2(det(b|V (X−1;t))) + v2(F12(1)) ≡ 0 mod 2. (∗∗)
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If F (−1) 6= 0 then

v2(F (−1)) ≡ v2((−1− 1)m+F12(−1)) = m+ + v2(F12(−1)) ≡ v2(F12(−1)) ≡ 0 mod 2

by Equation (∗). Similarly, if F (1) 6= 0 then v2(F (1)) ≡ v2(F12(1)) ≡ 0 mod 2 by Equation (∗∗).
Therefore, we get the condition (a). Suppose that F (1)F (−1) 6= 0. Then, we have

(−1)deg(F )/2F (1)F (−1) = (−1)deg(F )/2 det b = disc b = 1 or −3 in Q×
2 /Q

×2
2 ,

where the first and last equalities follow from Proposition 7.32 and Theorem 5.23 respectively.
This is the condition (b), and the proof is complete. □

9 Local-global principle and obstruction

In this section, we fix non-negative integers r, s ∈ Z≥0 with r ≡ s mod 8 and a ∗-symmetric
polynomial F ∈ Z[X] of degree r+ s. Note that the congruence r ≡ s mod 8 is a necessary and
sufficient condition for the existence of an even unimodular lattice (over Z) of signature (r, s)
(see Theorem 5.24). We will establish a criterion for the existence of an even unimodular lattice
of signature (r, s) having a semisimple isometry with characteristic polynomial F and with a
prescribed index i ∈ Idx(r, s;F ). The key idea is to use local-global theory on the associated
Q[Γ]-module of F . We refer to an isometry with characteristic polynomial F and index i as an
(F, i)-isometry for short.

9.1 Local conditions

If F is the characteristic polynomial of a semisimple isometry t of an even unimodular lattice
(Λ, b) of signature (r, s), then F is also the characteristic polynomial of a semisimple isometry t
of the inner product space (Λ⊗ R, b⊗ R) over R of signature (r, s). Thus, Theorem 7.26 shows
that F must satisfy the condition (Sign)r,s:

r, s ≥ m(F ) and if F (1)F (−1) 6= 0 then r ≡ s ≡ m(F ) mod 2,

where m(F ) is the number of roots of F whose absolute values are greater than 1 counted with
multiplicity. Namely, the localization at the infinite place yields the condition (Sign)r,s. So,
what condition is produced by the localizations at finite places? The answer is as follows.

Proposition 9.1. Suppose that F is the characteristic polynomial of a semisimple isometry t
of an even unimodular lattice (Λ, b) over Z. Then deg(F ) is even and

|F (1)|, |F (−1)| and (−1)(degF )/2F (1)F (−1) are all squares. (Square)

Proof. The degree of F is even since any even unimodular lattice has even rank. Corollaries
8.17 and 8.20 show that vp(F (1)) ≡ vp(F (−1)) ≡ 0 mod 2 for every prime p, since F is the
characteristic polynomial of a semisimple isometry of the even unimodular lattice (Λ⊗Zp, b⊗Zp)
over Zp. Thus |F (1)| and |F (−1)| are squares in Z by considering their prime factorizations.
If F (1) or F (−1) is zero then (−1)(degF )/2F (1)F (−1) = 0 and we are done. Suppose that
F (1)F (−1) 6= 0. Then (−1)(degF )/2F (1)F (−1) = disc(b ⊗ Q) in Q×/Q×2 by Proposition 7.32.
On the other hand, we have disc(b) = 1 by Theorem 5.24. Therefore (−1)(degF )/2F (1)F (−1) is
a square. This completes the proof. □

For the condition (Square), we have the following lemma.

Lemma 9.2. The following assertions hold.
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(i) Let f and g ∈ Z[X] be ∗-symmetric polynomials of even degrees. If f and g satisfy (Square)
then so does fg. If g and fg satisfy (Square), and g(1)g(−1) 6= 0, then f satisfies (Square).

(ii) Any ∗-symmetric polynomial in Z[X] of type 2 over Q satisfies (Square).

Proof. (i). Straightforward.
(ii). Let f ∈ Z[X] be a ∗-symmetric polynomial of type 2. Then, there exists a monic

polynomial g ∈ Z[X] such that f = gg∗. Note that g(0) is a unit, i.e., g(0) = 1 or −1, because
g(0) and g(0)−1 are the constant terms of g and g∗ ∈ Z[X] respectively. Then

|f(±1)| = |g(±1)g∗(±1)| = |g(±1)g(0)−1(±1)deg gg(±1)| = |g(±1)|2.

Moreover, we have

(−1)deg(f)/2f(1)f(−1) = (−1)deg gg(1)g∗(1) · g(−1)g∗(−1)

= (−1)deg gg(1)g(0)−1g(1) · g(−1)g(0)−1(−1)deg gg(−1)

= (g(1)g(−1))2.

This completes the proof. □

It follows from this lemma that F satisfies (Square) if and only if F0F1 satisfies (Square),
where Fi is the type i component over Q. Furthermore, it can be easily seen that F satisfies
(Sign)r,s if and only if F0F1 satisfies (Sign)r′,s′ , where r

′ := r−deg(F2)/2 and s′ := s−deg(F2)/2.
One will see that the type 2 component has no substantial role in this section.

To consider when there exists an even unimodular lattice having a semisimple (F, i)-isometry,
we use local-global theory for inner products on the associated Q[Γ]-module of F .

Notation 9.3. We use the following notation.

(i) The set of all places of Q is denoted by V. The infinite place of Q is denoted by ∞.

(ii) For a monic polynomial f ∈ Z[X], we write mf for the multiplicity of f in F . We often
write m± for mX∓1 briefly. Furthermore, the sets I(F ;Q), I1(F ;Q), and I2(F ;Q) are
abbreviated to I, I1, and I2 respectively. The product of the type 1 and 2 components of
F is denoted by F12. Under this notation, we can write

F (X) = (X − 1)m+(X + 1)m−F12(X),

F12(X) =
∏
f∈I1

f(X)mf ×
∏

{g,g∗}⊂I2

(g(X)g∗(X))mg .

(iii) The symbol M denotes the associated Q[Γ]-module of F with transformation α, and
Mf ,M±, Ef , αf , σ (f is a factor in I or of the form gg∗ for some g ∈ I2) are as in
Notation 7.19. Furthermore, we define M1 :=

∏
f∈I1 M

f and M2 :=
∏

{g,g∗}⊂I2 M
gg∗ .

(iv) For a place v ∈ V , we define Mv := M ⊗Qv. Similarly Mf
v := Mf ⊗Qv for f which is in

I or of the form gg∗ for some g ∈ I2, and M
i
v :=M i ⊗Qv for i = 1, 2. Then

Mv =M+
v ⊕M−

v ⊕
⊕
f∈I1

Mf
v ⊕

⊕
{g,g∗}⊂I2

Mgg∗
v .

Note that α is extended to a Qv-linear transformation on Mv in a unique way, and Mv is
(isomorphic to) the associated Qv[Γ]-module of F .

122



We will consider when there exists an inner product b onM such that α becomes an isometry
having a given index i and (M, b) contains an α-stable even unimodular lattice of signature (r, s).
The following notation concerns localizations of this question.

Notation 9.4. Let i ∈ Idx(r, s;F ) be an index map. We consider the following three properties
(P1)–(P3) of an inner product bv on Mv for each v ∈ V . The first property is that

α :Mv →Mv is an isometry with respect to bv. (P1)

Assume that bv has the property (P1). The second property is that

if v 6= ∞ then there exists an α-stable even unimodular lattice over Zv on (Mv, bv), and

if v = ∞ then the isometry α of (M∞, b∞) has index i.
(P2)

The last property is that
det(bv|M±

v
) = δ± in Q×

v /Q×2
v , (P3)

where δ+ and δ− ∈ Q× are nonzero rational numbers defined by

δ± :=

{
(−1)(m±−i(X∓1))/2 |F12(±1)| if m+ is even

(−1)(m±−i(X∓1))/2 2|F12(±1)| if m+ is odd.

Moreover, we write Bi for the set of families {bv}v∈V of inner products on Mv such that each bv
has the properties (P1)–(P3) and #{v ∈ V | hwv(bv|Mf

v
) 6= 0} is finite for all f ∈ I.

It will be seen in the next subsection that if b is an inner product on M such that α becomes
an isometry having index i and (M, b) contains an α-stable even unimodular lattice of signature
(r, s), then the family {b ⊗ Qv}v∈V obtained by localizations belongs to Bi. We close this
subsection by showing that Bi 6= ∅ for any i ∈ Idx(r, s;F ) if F satisfies the conditions (Sign)r,s
and (Square).

Lemma 9.5. Suppose that F satisfies the condition (Sign)r,s, and let i ∈ Idx(r, s;F ) be an index
map. Put n = deg(F )/2 and s± = (m± − i(X ∓ 1))/2. Then the signature of F12(1)F12(−1) is
equal to (−1)n+s++s− , or equivalently, we have

(−1)nF12(1)F12(−1) = (−1)s+ |F12(1)| · (−1)s− |F12(−1)|.

Proof. Let b∞ be an inner product on M∞ which makes α an isometry with index i. Such an
inner product exists by Theorem 7.28. Let s12 denote the signature of the subspace M1

∞ ⊕M2
∞

of M∞ = (M∞, b∞). Then s+ + s− + s12 = s since (M∞, b∞) has signature (r, s). Furthermore,
since n ≡ (r + s)/2 ≡ s mod 2, we get (−1)n+s++s− = (−1)s+s++s− = (−1)s12 .

On the other hand, it follows from Proposition 7.32 that the signature of F12(1)F12(−1) is
equal to det(b|M1

∞⊕M2
∞
), which is (−1)s12 . Hence, the signature of F12(1)F12(−1) is equal to

(−1)n+s++s− . □

Theorem 9.6. If F satisfies the conditions (Sign)r,s and (Square) then Bi is not empty for any
i ∈ Idx(r, s;F ).

Proof. Assume that F satisfies the conditions (Sign)r,s and (Square), and take i ∈ Idx(r, s;F )
arbitrarily. Put n = deg(F )/2 and s± = (m± − i(X ∓ 1))/2 as in Lemma 9.5. By Theorem
7.28, there exists an inner product b∞ with the properties (P1) and (P2). Such an inner product
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satisfies (P3) automatically. Let p be a prime, and put u± = (−1)s±F12(±1)/|F12(±1)| ∈
{1,−1}. Note that the property (P3) is equivalent to

det(bp|M±
p
) =

{
u±F12(±1) if m+ is even

2u±F12(±1) if m+ is odd
in Q×

p /Q×2
p .

By the assumption (Square), we have vp(F (1)) ≡ vp(F (−1)) ≡ 0 mod 2, and if F (1)F (−1) 6= 0
then (−1)nF (1)F (−1) = 1 mod squares.

Suppose that p = 2. Theorem 8.19 shows that there exists an inner product b2 on M2 of
discriminant 1 with the properties (P1) and (P2), and moreover if F (1) = F (−1) = 0 then b2 can
be chosen to satisfy (P3). We claim that b2 has property (P3) also in the cases where F (1) = 0
and F (−1) 6= 0, and where F (1) 6= 0 and F (−1) = 0. Suppose that F (1) = 0 and F (−1) 6= 0.
In this case, we have det(b2) = det(b2|M+) det(b2|M1

2⊕M2
2
) since M2 =M+

2 ⊕M1
2 ⊕M2

2 . On the

other hand, we have det(b2) = (−1)n disc(b2) = (−1)n and det(b2|M1
2⊕M2

2
) = F12(1)F12(−1) by

Proposition 7.32. Thus

det(b2|M+) = det(b2) det(b2|M1
2⊕M2

2
) = (−1)nF12(1)F12(−1) = (−1)s+ |F12(1)||F12(−1)|

mod squares, where the last equality is by Lemma 9.5. Furthermore, we have |F12(−1)| =
|(−1 − 1)−m+F (−1)| = 2−m+ |F (−1)|. Here m+ must be even since m− = 0, and |F (−1)| is a
square by the assumption (Square). Hence |F12(−1)| is a square, and we obtain det(b2|M+) =
(−1)s+ |F12(1)| in Q×

2 /Q
×2
2 , which is the property (P3). Similarly, it can be seen that b2 has

property (P3) in the case where F (1) 6= 0 and F (−1) = 0.
Suppose that p is an odd prime. Then there exists an inner product bp onMp with properties

(P1)–(P3) by Theorem 8.16. Moreover, if p is unramified in Ef then bp can be chosen so that

(Mf
p , bp|Mf

p
) contains a unimodular lattice for each f ∈ I by the latter assertion in Theorem

8.16. In this case, we have hwp(bp|Mf
p
) = 0 by Corollary 5.19.

Let {bv}v∈V be the family consisting of inner products bv chosen as above. Then each bv has
properties (P1)–(P3). Let f ∈ I, and put

V ′ = {∞, 2} ∪ {p | p is an odd prime ramified in Ef} ⊂ V .

Then V ′ is a finite set by Corollary 1.41, and hwp(bp|Mf
p
) = 0 for any p ∈ V \V ′ by construction.

Hence #{v ∈ V | hwv(bv|Mf
v
) 6= 0} < ∞. This shows that {bv}v∈V ∈ Bi. The proof is complete.

□

9.2 Local-global principle

In the rest of this section, we assume that F satisfies the conditions (Sign)r,s and (Square), and
fix an index map i ∈ Idx(r, s;F ). The aim of this subsection is to show the following theorem,
which is the local-global principle for the desired inner product on the associated Q[Γ]-module
of F .

Theorem 9.7. Let r, s ∈ Z≥0 be non-negative integers with r ≡ s mod 8, F ∈ Z[X] a ∗-
symmetric polynomial of degree r + s with the conditions (Sign)r,s and (Square), and i ∈
Idx(r, s;F ) an index map. The following conditions are equivalent:

(i) There exists an inner product b on M such that α : M → M becomes an isometry having
index i and (M, b) contains an α-stable even unimodular lattice over Z.

(ii) There exists a family {bv}v∈V ∈ Bi such that
∑

v∈V hwv(bv|Mf
v
) = 0 for any f ∈ I.
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We begin with the necessary condition, that is, (i) ⇒ (ii) of Theorem 9.7.

Proposition 9.8. Suppose that M admits an inner product b such that α becomes an isometry
having index i and (M, b) contains an α-stable even unimodular lattice over Z. Then, the family
{b ⊗ Qv}v∈V obtained by localizations belongs to Bi. Moreover

∑
v∈V hwv((b ⊗ Qv)|Mf

v
) = 0 for

any f ∈ I.

Proof. Let v ∈ V be a place of Q. it is obvious that b ⊗ Qv has properties (P1) and (P2).
For (P3), it is sufficient to show that det(b|M±) = δ± in Q×/Q×2. We remark that det(b|M±)
and δ± have the same signature (−1)(m±−i(X∓1))/2 because the signature of (M±, b|M±) is given
by ((m± + i(X ∓ 1))/2, (m± − i(X ∓ 1))/2). Moreover, it follows from Proposition 7.35 that
vp(det(b|M±)) ≡ vp(δ±) mod 2 for every prime p. By comparing the prime factorizations of
det(b|M±) and δ±, we obtain det(b|M±) = δ± in Q×/Q×2, which means that b⊗Qv has property
(P3). Moreover, for each f ∈ I, the reciprocity (Proposition 4.53) shows that hwv((b⊗Qv)|Mf

v
) =

0 for almost all v ∈ V and
∑

v∈V hwv((b⊗Qv)|Mf
v
) = 0. This completes the proof. □

This proposition shows that (i) ⇒ (ii) of Theorem 9.7, so it remains to prove the converse (ii)
⇒ (i). Let f be a factor of F which is in I1 or of the form gg∗ for g ∈ I2, and let v ∈ V be a place
of Q. The fixed subfield (Ef )σ ⊂ Ef of the involution σ is abbreviated to Ef,σ. The symbol
W(f ; v) denotes the set of all places of Ef,σ above v. For w ∈ W(f ; v), we write (Ef,σ)w for the
completion at w. We fix the isomorphism Ef,σ ⊗Q Qv

∼=
∏
w∈W(f ;v)(E

f,σ)w defined in Theorem

1.44, and identify them. Put Efv = Ef ⊗Q Qv and Efw = Ef ⊗Ef,σ (Ef,σ)w for w ∈ W(f ; v).

Note that σ : Ef → Ef extends to an involution of Efw, and the fixed subfield (Efw)σ ⊂ Efw is

canonically isomorphic to (Ef,σ)w. We identify them and often write Ef,σw . The algebra Efv is

decomposed into the product of Efw:

Efv = Ef ⊗Ef,σ Ef,σ ⊗Q Qv = Ef ⊗Ef,σ

 ∏
w∈W(f ;v)

(Ef,σ)w


=

∏
w∈W(f ;v)

Ef ⊗Ef,σ (Ef,σ)w =
∏

w∈W(f ;v)

Efw.

Similarly, putting Mf
w =Mf ⊗Ef,σ (Ef,σ)w for w ∈ W(f ; v), we have

Mf
v =

∏
w∈W(f ;v)

Mf
w.

We write αfw = αf ⊗ 1 ∈ Efw = Ef ⊗Ef,σ (Ef,σ)w. The linear transformation Mf
w →Mf

w defined

as the multiplication by αfw is the same as α|
Mf

w
.

Lemma 9.9. Let b be an inner product on M such that (Mp, b⊗Qp) contains an α-stable even
unimodular lattice Λp for every prime p. If Λp = OMp for almost all primes p then

Λ := {x ∈M | ιp(x) ∈ Λp for every prime p}

is an α-stable even unimodular lattice on (M, b). Here OMp is the integral closure of Zp in the
Qp-algebra Mp, and ιp :M →Mp =M ⊗Qp is the natural homomorphism.

Proof. Suppose that Λp = OMp for almost all primes p, and put S = {p : prime | Λp 6= OMp}.
We first show that Λ is a finitely generated Z-module on M . For each p ∈ S, there exist integers
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Np, N
′
p ≥ 0 such that pN

′
pOMp ⊂ Λp ⊂ p−NpOMp , since Λp and OMp are finitely generated

Zp-modules on Mp. Noting that Zpιp(OM ) = OMp , we obtain(∏
p∈S p

N ′
p

)
OM ⊂ Λ ⊂

(∏
p∈S p

−Np

)
OM .

Since
(∏

p∈S p
−Np

)
OM is finitely generated over Z, so is its submodule Λ. Furthermore, the

Q-span of Λ is M since so is that of
(∏

p∈S p
N ′

p

)
OM . Hence Λ is a finitely generated Z-module

on M .
We next show that (Λ, b) is integral and even. Let x, y ∈ Λ. For any prime p, we have

vp(b(x, y)) = vp((b ⊗ Qp)(ιp(x), ιp(y))) ≥ 0 since ιp(x) and ιp(y) are in the integral lattice
(Λp, b ⊗ Qp) over Zp. Thus b(x, y) ∈ Z, and (Λ, b) is integral. Similarly, we have v2(b(x, x)) =
v2((b⊗Q2)(ι2(x), ι2(x))) ≥ 1 since (Λ2, b⊗Q2) is an even lattice. This shows that (Λ, b) is even.

It is easy to see that Λ is α-stable. So, it remains to prove that (Λ, b) is unimodular. We have
Λ ⊂ Λ∨ since Λ is integral. Let y ∈ Λ∨, and let p be a prime. Then (b⊗Qp)(ιp(y),Zpιp(Λ)) ⊂ Zp.
On the other hand, one can show that Zpιp(Λ) = Λp in Mp. Thus ιp(y) ∈ (Zpιp(Λ))∨ = (Λp)

∨ =
Λp since Λp is unimodular. This means that y ∈

⋂
p:prime ι

−1
p (Λp) = Λ. Hence Λ∨ ⊂ Λ, and Λ is

unimodular. The proof is complete. □

Proposition 9.10. Let {bv}v∈V be a family in Bi such that
∑

v∈V hwv(bv|Mf
v
) = 0 for all f ∈ I.

Then M admits an inner product b such that α is an isometry of (M, b), the index of α with
respect to b is i, and (M, b) contains an α-stable even unimodular lattice.

Proof. Let b+ and b− be inner products M+ and M− such that b± ⊗ Qv
∼= bv|M±

v
for all

v ∈ V . Such inner products exist by Theorem 4.57, since det(bv|M±
v
) = δ± for all v ∈ V and∑

v∈V hwv(bv|M±
v
) = 0.

Claim 1: For almost all primes p, the integral closure OM±
p

of Zp in M±
p is an even unimodular

lattice on (M±
p , b

± ⊗Qp). Let e1, . . . , em± be a Z-basis of the integral closure OM± of Z in M±.
Then ιp(e1), . . . , ιp(em±) is a Zp-basis of OM±

p
because OM± ⊗ Zp = OM±

p
. Let G = (gij)ij be

the Gram matrix of b with respect to the basis e1, . . . , em± . Then G is also the Gram matrix of
b± ⊗Qp with respect to the basis ιp(e1), . . . , ιp(em±) for each p (by considering entries to be in
Zp). We define

S := {p : prime | p 6= 2, and all entries of G and det(G) are units of Zp}.

Then G is invertible over Zp for any prime p ∈ S. This means that OM±
p
is a unimodular lattice,

and furthermore it is an even lattice since p 6= 2. Because almost all primes belong to S, the
proof of Claim 1 is complete.

Let f be a factor of F which is in I1 or of the form gg∗ for g ∈ I2, and let W(f) denote

the set of places of Ef,σ. For each w ∈ W(f), there exists a hermitian product hfw such that

bv|Mf
w

= Tr
Ef

w/Qv
◦hfw by Proposition 7.20, where v is the place of Q below w. Put µfw =

det(hfw) ∈ Tw(Efw, σ).

Claim 2: We have
∑

w∈W(f) ιw(µ
f
w) = 0 for f ∈ I1, where ιw : Tw(Ef , σ) → Z/2Z is defined in

Notation 3.30. Let ĥf : Mf ×Mf → Ef be a hermitian product of determinant 1, and b̂f the
inner product TrEf/Q ◦ĥf :Mf ×Mf → Q. For each v ∈ V , it follows from Proposition 4.69 (ii)
that

cor
Ef,σ

w /Qv

(
[σ, µfw]Ef,σ

w

)
= HWKv

(
Tr

Ef
w/Qv

◦hfw
)
+HWKv

(
Tr

Ef
w/Qv

◦(ĥf ⊗ Efw)
)

= HWKv

(
bv|Mf

w

)
+HWKv

(
(̂bf ⊗Qv)|Mf

w

)
.
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Summing over w ∈ W(f ; v) yields∑
w∈W(f ;v)

cor
Ef,σ

w /Qv

(
[σ, µfw]Ef,σ

w

)
=

∑
w∈W(f ;v)

HWKv

(
bv|Mf

w

)
+

∑
w∈W(f ;v)

HWKv

(
(̂bf ⊗Qv)|Mf

w

)
= HWKv

(
bv|Mf

v

)
+HWKv

(
(̂bf ⊗Qv)|Mf

v

)
,

where the last equality follows from Lemma 4.31 (iii). Thus∑
v∈V

∑
w∈W(f ;v)

invKv

(
cor

Ef,σ
w /Qv

(
[σ, µfw]Ef,σ

w

))

=
∑
v∈V

invKv

 ∑
w∈W(f ;v)

cor
Ef,σ

w /Qv

(
[σ, µfw]Ef,σ

w

)
=
∑
v∈V

invKv ◦HWKv

(
bv|Mf

v

)
+
∑
v∈V

invKv ◦HWKv

(
(̂bf ⊗Qv)|Mf

v

)
= 0,

where the last equality follows by assumption and by the reciprocity (Proposition 4.53). This

leads to
∑

w∈W(f) ιw(µ
f
w) = 0 as required, because we have the commutative diagram

Tw(Efw, σ)
[σ, · ]

E
f,σ
w //

ιw

��

Br(Ef,σw )
cor

E
f,σ
w /Qv //

inv
��

Br(Qv)

inv
��

Z/2Z
× 1

2 // Q/Z id // Q/Z,

see §3.5.
Let f ∈ I1. By Claim 2 and Theorem 4.74, there exists a hermitian product hf :Mf×Mf →

Ef such that hf ⊗ Ew ∼= hfw for all w ∈ W(f). Let e1, . . . , emf be the standard basis of
Mf = (Ef )mf over Ef . We may assume that e1, . . . , emf is an orthogonal basis with respect
to the hermitian product hf by Proposition 4.65 (or by the proof of Theorem 4.74), i.e., hf =
〈µ1, . . . , µmf

〉Ef for some µ1, . . . , µmf
∈ (Ef,σ)×. We define an inner product bf :Mf×Mf → Q

by bf := TrE/Q ◦hf . Note that

(Mf
v , b

f
v , α|Mf

v
) =

⊕
w∈W(f ;v)

(Mf
w,TrEf

w/Qv
◦hfw, αfw)

∼=
⊕

w∈W(f ;v)

(Mf
w,TrEf

w/Qv
◦(hf ⊗ Efw), α

f
w)

= (Mf
v , (b

f ⊗Qv), α|Mf
v
) (∗)

as Q[Γ]-inner product spaces for all v ∈ V . Let g ∈ I2. In this case, we put hgg
∗
= 〈1, . . . , 1〉Egg∗

and define an inner product bgg∗ on Mgg∗ by TrEgg∗/Q ◦hgg∗ . Then, for all v ∈ V we have

(Mgg∗
v , bgg

∗
v , α|

Mgg∗
v

) ∼= (Mgg∗
v , (bgg

∗ ⊗Qv), α|Mgg∗
v

) as in (∗), by Corollary 4.66.

Claim 3: Let f be a factor of F which is in I1 or of the form gg∗ for g ∈ I2. For almost all
primes p, the integral closure O

Mf
p
of Zp in Mf

p is an even unimodular lattice on (Mf
p , bf ⊗Qp).

We recall that hf is expressed as hf = 〈µ1, . . . , µmf
〉Ef for some µ1, . . . , µmf

∈ (Ef,σ)×. Put

T =

{
p : prime

∣∣∣∣ p 6= 2, p is unramified in Ef , and w(µfi ) = 0 for all w ∈ W(f ; p),
where w is identified with the corresponding valuation.

}
.
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Then, almost all primes belong to T by Corollary 1.41. Moreover, for every p ∈ T , the integral
closure O

Mf
p
=
∏
w∈W(f ;p)OMf

w
is an even unimodular lattice on the space (Mf

p , bf ⊗ Qp) =⊕
w∈W(f ;p)(M

f
w,TrEf

w/Qp
◦(hf ⊗Efw)) by Remark 8.12 (ii). This completes the proof of Claim 3.

Now, we define an inner product b on M =M+ ⊗M− ⊕
⊕

f∈I1 M
f ⊕

⊕
{g,g∗}⊂I2 M

gg∗ by

b = b+ ⊗ b− ⊕
⊕
f∈I1

bf ⊕
⊕

{g,g∗}⊂I2

bgg
∗
.

Then (Mv, b⊗Qv, α) ∼= (Mv, bv, α) as Q[Γ]-inner product spaces by its construction. In partic-
ular, the index of the isometry α with respect to b is i, and (Mp, b ⊗ Qp) contains an α-stable
even unimodular lattice Λp. Moreover, we may assume that Λp = OMp by Claims 1 and 3 for
almost all primes p. Therefore, it follows from Lemma 9.9 that (M, b) contains an α-stable even
unimodular lattice. This completes the proof. □

Proof of Theorem 9.7. The implication (i) ⇒ (ii) follows from Proposition 9.8, and Proposition
9.10 shows the converse (ii) ⇒ (i). □

9.3 Local-global obstruction 1

We keep the setting and notation of §§9.1 and 9.2. In particular r, s ∈ Z≥0 are non-negative
integers with r ≡ s mod 8, F ∈ Z[X] is a ∗-symmetric polynomial of degree r + s with the
conditions (Sign)r,s and (Square), and i ∈ Idx(r, s;F ) is an index map.

Notation 9.11. Let C(I) denote the Z/2Z-module consisting of all maps from I = I(F ;Q) to
Z/2Z, that is, C(I) := {γ : I → Z/2Z} = (Z/2Z)⊕I . Moreover, we define a map η : Bi → C(I)
by

η(β)(f) =
∑
v∈V

hwv(bv|Mf
v
) ∈ Z/2Z (β = {bv}v∈V ∈ Bi, f ∈ I).

Under this notation, the condition (ii) in Theorem 9.7 can be rephrased as the one that there
exists a family β ∈ Bi such that η(β) = 0, where 0 ∈ C(I) is the zero map. So we study the
image of the map η : Bi → Z/2Z. It will turn out that the image η(Bi) coincides with a coset of
some submodule in C(I).

Notation 9.12. For a monic polynomial f ∈ Z[X], the symbol I(f ;Qp) denotes the set of
irreducible factors of reductions modulo p of polynomials in I(f ;Qp):

I(f ;Qp) :=

h̄ ∈ Fp[X]

∣∣∣∣∣∣
h̄ is irreducible, and there exists a ∗-symmetric
irreducible factor of f in Zp[X] whose reduction
modulo p is divisible by h̄ in Fp[X]

 .

Moreover, we define

I(X ∓ 1;Qp)
′
:=

{
I(X ∓ 1;Qp) = {X ∓ 1} if m± ≥ 3; or m± = 2 and δ± 6= −1 ∈ Q×

p /Q×2
p

∅ otherwise

(m± and δ± are defined in Notations 9.3 and 9.4) and I(f ;Qp)
′
:= I(f ;Qp) for a monic polyno-

mial with f(1)f(−1) 6= 0. Note that the set I(X ∓ 1;Qp)
′
depends on the polynomial F and the

value i(X∓1) since so do m± and δ±. We define a set ΠFi (f, g) of primes for monic polynomials
f, g ∈ Z[X] by

ΠFi (f, g) := {p : prime | I(f ;Qp)
′ ∩ I(g;Qp)

′ 6= ∅}.
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Remark 9.13. We give some remarks on Notation 9.12. Let p be a prime.

(i) The set I(f ;Qp) is a subset of I(f mod p;Fp), but they do not necessarily coincide. For
example, let us consider the case f(X) = X2− 11X +1 and p = 3. Then f decomposes as

f(X) = (X − (11 + 3
√
13)/2)(X − (11− 3

√
13)/2) in Q3[X]

because 13 is a square in Z3. Thus f is of type 2 in Q3[X] and I(f ;Q3) = ∅. On the other
hand, we have I(f mod 3;F3) = {X − 1} since f(X) mod 3 = X2 − 2X + 1 = (X − 1)2.

(ii) Let f ∈ I1, and let h̄ ∈ Fp[X] be an irreducible polynomial. Then h̄ ∈ I(f ;Qp)
′
if and only

if there exists a place w ∈ W(f ; p) \Wsp(f ; p) of E
f,σ such that h̄ | fw mod p, where fw is

the irreducible factor of f in Qp[X] corresponding to w. In this case Tw(Efw, σ) ∼= Z/2Z.

(iii) The condition for I(X ∓ 1;Qp)
′
to be not empty, m± ≥ 3 or m± = 2 and δ± 6= −1 ∈

Q×
p /Q×2

p , guarantees that there exist inner products b±p and b̂±p onM±
p such that det(b±p ) =

det(̂b±p ) = δ± and hwp(b
±
p ) 6= hwp(̂b

±
p ), see Theorem 4.46.

For a subset J of I, we write 1J ∈ C(I) for the characteristic function:

1J(f) =

{
1 if f ∈ J

0 if f /∈ J
(f ∈ I).

Let C0 denote the submodule of C(I) generated by the subset

{1{f,g} | f, g ∈ I are distinct factors with ΠF
i (f, g) 6= ∅}.

Our first goal is to show that the image η(Bi) ⊂ C(I) is equal to a coset of C0. For a prime

p and for inner products b±p on M±
p and bfw on Mf

w making αfw an isometry where f ∈ I1 and
w ∈ W(f ; p), we write

∂[b±p ] = ∂[M±
p , b

±
p ,±1], ∂[bfw] = ∂[Mf

w, b
f
w, α

f
w]

for short.

Lemma 9.14. Let p be a prime.

(i) Let b±p and b̂±p be inner products on M±
p with determinant δ±. If hwp(b

±
p ) = hwp(b

±
p ) then

∂[b±p ] = ∂ [̂b±p ]. The converse is true unless p = 2.

(ii) Let f ∈ I1 and w ∈ W(f ; p). Let hfw, ĥ
f
w be hermitian products on Mf

w over Efw, and b
f
w, b̂

f
w

the inner products on Mf
w over Qp defined by bfw := Tr

Ef
w/Qp

◦hfw, b̂fw := Tr
Ef

w/Qp
◦ĥfw. The

following two conditions are equivalent.

(a) hwp(b
f
w) = hwp(̂b

f
w).

(b) det(hfw) = det(ĥfw).

Moreover, if (a) (or (b)) holds then ∂[bfw] = ∂ [̂bfw]. The converse is true unless p = 2 and
w ∈ Wrm(f ; 2).
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Proof. (i). If hwp(b
±
p ) = hwp(̂b

±
p ) then b±p

∼= b̂±p by Theorem 4.45, and ∂[b±p ] = ∂ [̂b±p ]. The
converse in the case p 6= 2 follows from a direct computation with Corollary 4.62.

(ii). We have

HWQp(b
f
w)−HWQp (̂b

f
w) = cor

Ef,σ
w /Qp

(
[σ, det(h

f
w)

det(ĥfw)
]
Ef,σ

w

)
by Proposition 4.69. The left-hand side is zero if and only if the condition (a) holds. The right-

hand side is zero if and only if the condition (b) holds because [σ, ·]
Ef,σ

w
: Tw(Efw, σ) → Br(Ef,σw )

is injective by Theorem 3.20, and cor
Ef,σ

w /Qp
: Br(Ef,σw ) → Br(Qp) is bijective by Proposition

3.27. Hence (a) and (b) are equivalent.

Suppose that the condition (a) holds. Then (b) also holds, and it implies that hfw ∼= ĥfw
by Theorem 4.73. Thus (Mf

w, b
f
w, α

f
w) ∼= (Mf

w, b̂
f
w, α

f
w) as Qp[Γ]-inner product spaces, and in

particular ∂[bfp ] = ∂ [̂bfp ]. Conversely, suppose that ∂[bfp ] = ∂ [̂bfp ], and assume that p 6= 2 or

w 6∈ Wrm(f ; 2). If w ∈ Wsp(f ; p) then Tw(Efw, σ) = {1}, and the condition (b) holds. In the

other cases, Theorem 8.11 that ∂
Mf

w,α
f
w
: Tw(Efw, σ) → Wκ[Γ](κ) is injective. Thus, the equality

∂
Mf

w,α
f
w
(det(hfw)) = ∂[bfp ] = ∂ [̂bfp ] = ∂

Mf
w,α

f
w
(det(ĥfw)) implies the condition (b). The proof is

complete. □

We will also need the following lemma about the usual Witt group of a finite field, whose
structure is described in Theorem 6.38.

Lemma 9.15. Let κ be a finite field of characteristic not 2. Let ω1, ω2 ∈W (κ) be Witt classes,
and let ω̂i be a unique class different from ωi with dim(ω̂i) ≡ dim(ωi) mod 2 for i = 1, 2. Then
ω1 + ω2 − ω̂1 − ω̂2 = 0 in W (κ).

Proof. It can be seen from Theorem 6.38 (ii) that both of ω1 − ω̂1 and ω2 − ω̂2 are the unique
nontrivial class of even dimension, and it has order 2. Hence

ω1 + ω2 − ω̂1 − ω̂2 = (ω1 − ω̂1) + (ω2 − ω̂2) = 0

as required. □

For f ∈ I1 and a finite place w of Ef,σ, we write ᾱfw for the image of αfw ∈ O
Ef

w
under the

natural surjection from O
Ef

w
to its residue field.

Proposition 9.16. For any β ∈ Bi and distinct f, g ∈ I with ΠFi (f, g) 6= ∅, there exists β̂ ∈ Bi

such that η(β) + 1{f,g} = η(β̂). In particular, the image im η ⊂ C(I) contains a coset of C0.

Proof. Let β = {bv}v ∈ Bi, and let f, g ∈ I be distinct factors with ΠF
i (f, g) 6= ∅. Take a

prime p ∈ ΠFi (f, g). Suppose that f, g ∈ I1. By the definition of ΠF
i (f, g), there exist places

w0 ∈ W(f ; p) \Wsp(f ; p) and u0 ∈ W(g; p) \Wsp(g; p) such that fw0 mod p and gu0 mod p have

a common irreducible factor h̄ in Fp[X]. Note that h̄ is the minimal polynomial of ᾱfw0 and ᾱgu0 ,

which implies that ∂[Mf
w0 , bp|Mf

w0
, αfw0 ] and ∂[M

g
u0 , bp|Mf

u0
, αgu0 ] are in WFp[Γ](Fp; h̄).

By Proposition 7.20, there exist hermitian products hfw0 on Mf
w0 and hgu0 on Mg

u0 such that
bp|Mf

w0
= Tr

Ef
w0
/Qp

◦hfw0 and bp|Mg
u0

= TrEg
u0
/Qp

◦hgu0 . Let ĥfw0 and ĥgu0 be hermitian products

on Mf
w0 and Mg

u0 such that det(ĥfw0) 6= det(hfw0) in Tw(Efw0 , σ) and det(ĥfw0) 6= det(hfw0) in

Tw(Egu0 , σ). Then we define inner products b̂fp on Mf
p =

⊕
w∈W(f ;p)M

f
w and b̂gp on Mg

p =
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⊕
u∈W(g;p)M

g
u by

b̂fp =
(
Tr

Ef
w0
/Qp

◦ĥfw0

)
⊕

⊕
w∈W(f ;p)\{w0}

bfp |Mf
w
,

b̂gp =
(
TrEg

u0
/Qp

◦ĥgu0
)
⊕

⊕
u∈W(g;p)\{u0}

bgp|Mf
u
, (34)

and define b̂p on Mp by

b̂p := bp|M+
p ⊕M−

p
⊕ b̂fp ⊕ b̂gp ⊕

 ⊕
k∈I1\{f,g}

bp |Mk
p

⊕ bp|M2
p
.

Claim: The inner product b̂p has properties (P1)–(P3). Properties (P1) and (P3) are clear. We
first show that the class

ω : = ∂ [̂bp|Mf
w0
] + ∂ [̂bp|Mg

u0
]− ∂[bp|Mf

w0
]− ∂[bp|Mg

u0
]

= ∂
Mf

w0
,αf

w0
(det(ĥfw0

)) + ∂Mg
u0
,αg

u0
(det(ĥgu0))− ∂

Mf
w0
,αf

w0
(det(hfw0

))− ∂Mg
u0
,αg

u0
(det(hgu0))

is equal to 0. If ᾱfw0 6= 1,−1 then it follows from Theorem 8.11 (ii) that

ω =
(
∂
Mf

w0
,αf

w0
(det(ĥfw0

))− ∂
Mf

w0
,αf

w0
(det(hfw0

))
)

+
(
∂Mg

u0
,αg

u0
(det(ĥgu0))− ∂Mg

u0
,αg

u0
(det(hgu0))

)
= [Fp(ᾱfw0

), b1, ᾱ
f
w0
] + [Fp(ᾱgu0), b1, ᾱ

g
u0 ]

= 2[Fp(ᾱfw0
), b1, ᾱ

f
w0
]

= 0.

Suppose that ᾱfw0 = 1 or −1. Note that WFp[Γ](Fp; h̄) ∼= W (Fp) in this case. If p = 2 then
Theorem 6.38 (i) implies that ω = 0 since dim(ω) ≡ 0 mod 2. If p is an odd prime then Lemma
9.15 leads to ω = 0 since

∂
Mf

w0
,αf

w0
(det(ĥfw0

)) 6= ∂
Mf

w0
,αf

w0
(det(hfw0

)),

dim ∂
Mf

w0
,αf

w0
(det(ĥfw0

)) ≡ dim ∂
Mf

w0
,αf

w0
(det(hfw0

)) mod 2,

∂Mg
u0
,αg

u0
(det(ĥgu0)) 6= ∂Mg

u0
,αg

u0
(det(hgu0)),

dim ∂Mg
u0
,αg

u0
(det(ĥgu0)) ≡ dim ∂Mg

u0
,αg

u0
(det(hgu0)) mod 2

by Theorem 8.11 (ii) or (iii). Hence, we have ω = 0 in any case. We then show that b̂p has

property (P2). By the construction of b̂p, it follows that

∂[Mp, b̂p, α] = ∂[Mp, bp, α]− ∂[bp|Mf
w0
]− ∂[bp|Mg

u0
] + ∂ [̂bp|Mf

w0
] + ∂ [̂bp|Mg

u0
]

= ∂[Mp, bp, α] + ω.

On the other hand, we have ω = 0 as proved now and ∂[Mp, bp, α] = 0 because (Mp, bp) contains

an α-stable unimodular lattice by property (P2) for bp. Hence ∂[Mp, b̂p, α] = 0, which implies

that (Mp, b̂p) contains an α-stable unimodular lattice by Theorem 6.32. If p is odd then the
lattice is even and we are done.
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Suppose that p = 2. It is sufficient to show that the three conditions (i)–(iii) of Proposition
8.18 hold for V =M2, b = b̂2, and t = α. Note that the three conditions hold for (M2, b2, α) since
it contains an α-stable even unimodular lattice. The condition (i) for (M2, b̂2, α) has already
been proved. We write sn(α; b2) and sn(α; b̂2) for the spinor norms of α :M2 →M2 with respect
to b2 and b̂2 respectively. Then

sn(α; b̂2) = det(b̂−2 ) · det
(
1 + α

2

∣∣∣∣M+
2 ⊕M1

2⊕M2
2

)
= det(b−2 ) · det

(
1 + α

2

∣∣∣∣M+
2 ⊕M1

2⊕M2
2

)
= sn(α; b2),

which implies that the condition (iii) holds for (M2, b̂2, α). For the condition (ii), it suffices to
show that b̂2 ∼= b2. Lemma 9.14 implies that

hw2(̂b2|Mf
w0
)− hw2(b2|Mf

w0
) = hw2(TrEf

w/Q2
◦ĥfw0

)− hw2(TrEf
w/Q2

◦hfw0
) = 1

since det(ĥfw0) 6= det(hfw0). Similarly we get hw2(̂b2|Mg
u0
)− hw2(b2|Mg

u0
) = 1. Thus

hw2(̂b2)− hw2(b2) = hw2(̂b2|Mf
w0
) + hw2(̂b2|Mg

u0
)− hw2(b|Mf

w0
)− hw2(b|Mg

u0
) = 0

where the first equality follows from Lemma 4.31 (iii). Hence b̂2 and b2 have the same dimension,
same determinant, and same Hasse-Witt invariant, which means that b̂2 ∼= b2 as required.
Therefore (M2, b̂2) contains an α-stable even unimodular lattice, that is, b̂2 has property (P2).
This completes the proof of Claim.

We now define
β̂ := {b̂v}v∈V where b̂v = bv for v 6= p.

Then each b̂v has the properties (P1)–(P3); this is clear for v 6= p and proved now for v = p.
Moreover, for each f ∈ I, the set {v ∈ V | hwv (̂bv|Mf

v
) 6= 0} is contained in {p} ∪ {v ∈ V |

hwv(bv|Mf
v
) 6= 0}, and in particular, it is a finite set. Hence β̂ ∈ Bi. It remains to show that

η(β) + 1{f,g} = η(β̂). It is obvious that η(β)(k) = η(β̂)(k) for k 6= f, g, and we have

η(β̂)(f)− η(β)(f) = hwp(̂bp|Mf
p
)− hwp(bp|Mf

p
) = hwp(̂b|Mf

w0
)− hwp(b|Mf

w0
) = 1.

The same calculation yields η(β̂)(g)− η(β)(g) = 1, and thus η(β)+1{f,g} = η(β̂). The proof for
the case f, g ∈ I1 has been completed now.

Suppose that f(X) = X∓1. In this case, there exists an inner product b̂fp = b̂±p on M±
p such

that det(b̂±p ) = δ± and hwp(̂b
±
p ) 6= hwp(b

±
p ), see Remark 9.13 (iii). Let b̂gp be an inner product

defined similarly if g(X) = X ± 1 and as in (34) if g ∈ I1. We define

b̂p := b̂fp ⊕ b̂gp ⊕

 ⊕
k∈I\{f,g}

bkp

⊕ b2p,

β̂ := {b̂v}v∈V where b̂v = bv for v 6= p.

Then it can be shown similarly that β̂ ∈ Bi and η(β) + 1{f,g} = η(β̂). The proof is complete. □
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We then prove that the image η(Bi) is contained in a coset of C0. For β = {bv}v∈V ∈ Bi and
v ∈ V , we write ηv(β) ∈ C(I) for the map defined by ηv(β)(f) = hwv(bv|Mf

v
) (f ∈ I). This map

ηv(β) : I → Z/2Z is determined only by bv and does not depend on any other bv′ . Note that
η(β)(f) =

∑
v∈V ηv(β)(f). Furthermore, we define

V (β, β̂) := {v ∈ V | ηv(β) 6= ηv(β̂)}

for β, β̂ ∈ Bi. This set V (β, β̂) is a finite set of primes. Indeed, η∞(β) = η∞(β̂) since b∞ ∼= b̂∞,
and ηv(β) = 0 = ηv(β̂) for almost all v ∈ V by the definition of Bi. The following lemma is
crucial in proving η(Bi) is contained in a coset of C0.

Lemma 9.17. Let β = {bv}v, β̂ = {b̂v}v ∈ Bi, and suppose that a prime p belongs to V (β, β̂).
Then there exists β̃ ∈ Bi such that η(β̃) − η(β) ∈ C0, V (β̃, β̂) ⊂ V (β, β̂), and it satisfies the
following conditions:

∂ [̃bp|M+
p
] = ∂ [̂bp|M+

p
], ∂ [̃bp|M−

p
] = ∂ [̂bp|M−

p
],

∂ [̃bp|Mf
w
] = ∂ [̂bp|Mf

w
] for any f ∈ I1 and w ∈ W(f ; p).

(35)

Proof. We first show that there exists β′′ = {b′′v}v ∈ Bi such that η(β′′)− η(β) ∈ C0, V (β′′, β̂) ⊂
V (β, β̂), ∂[b′′p|M+

p
] = ∂ [̂bp|M+

p
], and ∂[b′′p|M−

p
] = ∂ [̂bp|M−

p
]. If p = 2 then it follows from The-

orem 6.38 (i) that ∂[b2|M±
2
] = ∂ [̂b2|M±

2
] because they have the same dimension module 2 by

Proposition 6.35. Thus β is the required family in this case. Suppose that p 6= 2, and
∂[bp|M+

p
] 6= ∂ [̂bp|M+

p
]. Since we have ∂[Mp, bp, α] = ∂[Mp, b̂p, α] = 0, the images of them un-

der the projection WFp[Γ](Fp) → WFp[Γ](Fp;X − 1) are also 0. Thus there exists f ∈ I1 and

w0 ∈ W(f ; p) such that (X − 1) | fw0 mod p and ∂[bp|Mf
w0
] 6= ∂ [̂bp|Mf

w0
] in WFp[Γ](Fp;X − 1).

In this case w0 /∈ Wsp(f ; p) because otherwise both ∂[bp|Mf
w0
] and ∂ [̂bp|Mf

w0
] would be 0. In

particular X−1 ∈ I(f ;Qp). On the other hand, we have X−1 ∈ I(X − 1;Qp)
′
. Indeed, neither

m+ = 1 nor m+ = 2 and δ+ = −1 in Q×
p /Q×2

p occurs because Lemma 9.14 (i) implies that

hwp(bp|M+
p
) 6= hwp(̂bp|M+

p
). Thus p ∈ ΠFi (X − 1, f). We now define

b′p := b̂p|M+
p
⊕ bp|M−

p
⊕

b̂p|Mf
w0

⊕
⊕

w∈W(f ;p)\{w0}

bp|Mf
w

⊕

 ⊕
k∈I1\{f}

bp|Mk
p

⊕ bp|M2
p
,

β′ := {b′v}v∈V where b′v = bv for v 6= p.

Then β′ belongs to Bi, and η(β
′) = η(β) + 1{X−1,f} as in the proof of Proposition 9.16. Thus

η(β′)−η(β) ∈ C0. It is clear that V (β′, β̂) ⊂ V (β, β̂) and ∂[b′p|M+
p
] = ∂ [̂bp|M+

p
] by the definition of

β′. If ∂[b′p|M−
p
] 6= ∂ [̂bp|M−

p
] then we repeat a similar procedure to obtain β′′ = {b′′v}v∈V ∈ Bi such

that η(β′′) − η(β′) ∈ C0, V (β′′, β̂) ⊂ V (β′, β̂), ∂[b′′p|M+
p
] = ∂ [̂bp|M+

p
], and ∂[b′′p|M−

p
] = ∂ [̂bp|M−

p
].

This is the first goal since η(β′′)− η(β) = (η(β′′)− η(β′)) + (η(β′)− η(β)) ∈ C0 and V (β′′, β̂) ⊂
V (β′, β̂) ⊂ V (β, β̂).

By considering β′′ instead of β, we assume that ∂[bp|M+
p
] = ∂ [̂bp|M+

p
] and ∂[bp|M−

p
] = ∂ [̂bp|M−

p
]

without loss of generality. Set Dp(β, β̂) :=
⊔
f∈I1{w ∈ W(f ; p) | ∂[bp|Mf

w
] 6= ∂ [̂bp|Mf

w
]}. If

#Dp(β, β̂) = 0 then β itself is the desired family. Suppose that #Dp(β, β̂) > 0, and take

f ∈ I1 and w0 ∈ W(f ; p) satisfying ∂[bp|Ef
w0
] 6= ∂ [̂bp|Ef

w0
]. Note that w0 /∈ Wsp(f ; p) as above.

Let h̄ ∈ Fp[X] denote the unique irreducible factor of (fw0 mod p), where fw0 ∈ Zp[X] is the
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irreducible factor of f in Qp[X] corresponding to the place w0. Since the images of ∂[Mp, bp, α]

and ∂[Mp, b̂p, α] under the projection WFp[Γ](Fp) → WFp[Γ](Fp; h̄) are the trivial class, there

exists g ∈ I1 and u0 ∈ W(g; p) \Wsp(g; p) such that h̄ | (gu0 mod p) and ∂[bp|Eg
u0
] 6= ∂ [̂bp|Eg

u0
] in

WFp[Γ](Fp; h̄). Note that p ∈ ΠFi (f, g). We now define an inner product b
(1)
p on Mp as the one

obtain by replacing bp|Mf
w0

with b̂p|Mf
w0

and bp|Eg
u0

with b̂p|Eg
u0

in

bp = bp|M+
p ⊕M−

p
⊕

⊕
k∈I1

⊕
w∈W(k;p)

bp|Mk
w

⊕ bp|M2
p
,

and set β(1) := {b(1)v }v∈V where b
(1)
v = bv for v 6= p. Then, as in the proof of Proposition 9.16,

we have β(1) ∈ Bi, and

η(β(1)) =

{
η(β) + 1{f,g} if f 6= g

η(β) if f = g,

which implies that η(β(1)) − η(β) ∈ C0. Moreover, by the construction of β(1), we have
V (β(1), β̂) ⊂ V (β, β̂) and #Dp(β

(1), β̂) = #Dp(β, β̂) − 2. Therefore we obtain the desired

family β̃ ∈ Bi by repeating the same procedure until #Dp(β̃, β̂) = 0. The proof is complete. □

Proposition 9.18. We have η(β̂) − η(β) ∈ C0 for any β, β̂ ∈ Bi. In other words, the image
im η ⊂ C(I) is contained in a coset of C0.

Proof. Let β = {bv}v, β̂ = {b̂v}v ∈ Bi. we can obtain β̃ = {b̃v}v ∈ Bi such that η(β̃)−η(β) ∈ C0,
V (β̃, β̂) ⊂ V (β, β̂), and satisfies (35) for all p ∈ V (β, β̂) by applying Lemma 9.17 repeatedly,
since V (β, β̂) is a finite set of primes. It is sufficient to show that η(β̂)− η(β̃) ∈ C0. Since

ηp(β̂)(f)− ηp(β̃)(f) =

{
hwp(̂bp|M±

p
)− hwp(̃bp|M±

p
) if f(X) = X ∓ 1∑

w∈W(f ;p)(hwp(̂bp|Mf
w
)− hwp(̃bp|Mf

w
)) if f ∈ I1

for f ∈ I and p ∈ V (β, β̂), Lemma 9.14 with (35) implies that ηp(β̂)(f) − ηp(β̃)(f) = 0 unless

p 6= 2. In other words V (β̃, β̂) ⊂ {2}. Hence

η(β̂)− η(β̃) =
∑

p∈V (β̃,β̂)

(ηp(β̂)− ηp(β̃)) = η2(β̂)− η2(β̃).

Put J = {f ∈ I | η2(β̂)(f) 6= η2(β̃)(f)}. An element of J is X − 1, X + 1, or f ∈ I1 with
Wrm(f ; 2) 6= ∅ by Lemma 9.14. Thus, any element f ∈ J has a ∗-symmetric irreducible factor
whose reduction modulo 2 is divisible by X − 1 (in F2[X]). This shows that 2 ∈ ΠFi (f, g), and
in particular 1{f,g} ∈ C0 for any distinct f, g ∈ J . We then show that the number of elements of

J is even. Since (M2, b̂2) and (M2, b̃2) contain even unimodular lattices of discriminant 1, they
are isomorphic. Thus

0 = hw2(̂b2)− hw2(̃b2) =
∑
f∈I

(
hw2(̂b2|Mf

2
)− hw2(̃b2|Mf

2
)
)
.

This shows that #J is even. Write J = {f1, . . . , f2l}. Then we obtain

η(β̂)− η(β̃) = η2(β̂)− η2(β̃) = 1{f1,f2} + · · ·+ 1{f2l−1,f2l} ∈ C0

as required. The proof is complete. □

Theorem 9.19. The image η(Bi) ⊂ C(I) coincides with a coset of C0.

Proof. This is a consequence of Propositions 9.16 and 9.18. □
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9.4 Local-global obstruction 2

Definition 9.20. The equivalence relation defined by (F, i), written ∼, is the one on I generated
by the binary relation {(f, g) ∈ I×I | ΠFi (f, g) 6= ∅}. We write Ωi for the submodule {c ∈ C(I) |
c(f) = c(g) if f ∼ g} of C(I). This is the submodule consisting of maps which are constant on
each equivalence class with respect to ∼.

We now introduce an inner product C(I)× C(I) → Z/2Z by

γ · c =
∑
f∈I

γ(f)c(f) (γ, c ∈ C(I)).

Lemma 9.21. We have Ωi = C⊥
0 , or equivalently Ω⊥

i = C0.

Proof. Let c ∈ Ωi. Then 1{f,g} · c = c(f) + c(g) = 2c(f) = 0 for any f, g ∈ I with ΠFi (f, g) 6= ∅.
Since C0 is generated by {1{f,g} | ΠFi (f, g) 6= ∅}, we get Ωi ⊂ C⊥

0 .

Let c ∈ C⊥
0 . Let J ⊂ I be an equivalence class with respect to ∼, and take f, g ∈ J with f 6=

g. Then, there exist distinct h1, . . . , hl ∈ J such that ΠFi (f, h1),Π
F
i (hj , hj+1) (j = 1, . . . , l − 1),

and ΠFi (hl, g) are not empty. Thus

c(f) + c(g) = 1{f,g} · c
= (1{f,h1} + 1{h1,h2} + · · ·+ 1{hk−1,hk} + 1{hk,g}) · c
= 1{f,h1} · c+ 1{h1,h2} · c+ · · ·+ 1{hk−1,hk} · c+ 1{hk,g} · c
= 0,

which implies that c(f) = c(g). Hence c is constant on J . This means that c ∈ Ωi, and therefore
C⊥
0 ⊂ Ωi. This completes the proof. □

Definition 9.22. The homomorphism

Ωi → Z/2Z, c 7→ η(β) · c

is defined independently of the choice of β ∈ Bi since η(Bi) is a coset of C0 by Theorem 9.19
and Ωi ⊂ C⊥

0 by Lemma 9.21. This homomorphism is called the obstruction map for (F, i) and
denoted by obi : Ωi → Z/2Z. The submodule Ωi ⊂ C(I) is called the obstruction group for (F, i).
Note that the obstruction group Ωi does not depend on i unless m+ = 2 or m− = 2 since so
does ∼.

We will prove that there exists an even unimodular lattice over Z of signature (r, s) having
a semisimple (F, i)-isometry if and only if the obstruction map obi : Ωi → Z/2Z is the zero
map. Before that, let us see that the obstruction map factors through the quotient module
Ωi/{constant maps}.

Proposition 9.23. We have η(β) · 1I = 0 for any β ∈ Bi.

Proof. We define an inner product b on M as follows. Let b± be an inner product on M± which
has Gram matrix diag(δ±, 1, . . . , 1). For each f which is in I1 or of the form gg∗ for g ∈ I2, take
a hermitian product hf : Mf ×Mf → Ef arbitrarily and set bf := TrEf/Q ◦hf . Then, define

the inner product b on M by b := b+ ⊕ b− ⊕
⊕

f∈I1 b
f ⊕

⊕
{g,g∗}⊂I2 b

gg∗ .
Let β = {bv}v∈V ∈ Bi. It follows from Lemma 4.31 (iii) that

hwv(bv)−
∑
f∈I

hwv(bv|Mf
v
)−

∑
{g,g∗}⊂I2

hwv(bv|Mgg∗
v

)

= hwv(b⊗Qv)−
∑
f∈I

hwv(b
f ⊗Qv)−

∑
{g,g∗}⊂I2

hwv(b
gg∗ ⊗Qv)
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for any v ∈ V , since det(bv|M±
v
) = δ± = det(b|M± ⊗ Qv) and det(bv|Mf

v
) = f(1)mf f(−1)mf =

det(b|Mf ⊗ Qv) for each f ∈ I1 or f = gg∗ by Proposition 7.32. Furthermore, since bv|Mgg∗
v

∼=
b|Mgg∗ ⊗Qv for each g ∈ I2 by Corollary 4.66, we get

hwv(bv)−
∑
f∈I

hwv(bv|Mf
v
) = hwv(b⊗Qv)−

∑
f∈I

hwv(b
f ⊗Qv).

Summing over v ∈ V yields∑
v∈V

hwv(bv)−
∑
f∈I

∑
v∈V

hwv(bv|Mf
v
) =

∑
v∈V

hwv(b⊗Qv)−
∑
f∈I

∑
v∈V

hwv(b
f ⊗Qv) = 0,

where the last equality is by the reciprocity (Proposition 4.53). Since

η(β) · 1I =
∑
f∈I

η(β)(f) =
∑
f∈I

∑
v∈V

hwv(bv|Mf
v
),

it remains to show that
∑

v∈V hwv(bv) = 0. Let (Λ, B) be an even unimodular lattice over Z of
signature (r, s). It follows from Theorems 5.18 and 5.23 that B⊗Qp

∼= bp for every prime p since
they have the same discriminant and contain even unimodular lattices respectively. Furthermore
B⊗Q∞ ∼= b∞ since they have the same signature. Hence

∑
v∈V hwv(bv) =

∑
v∈V hwv(B⊗Qv) = 0

by the reciprocity. This completes the proof. □

Definition 9.24. We refer to the quotient module Ω̃i := Ωi/{0,1I} as the reduced obstruction
group for (F, i). The obstruction map factors through Ω̃i by Proposition 9.23. The induces
homomorphism Ω̃i → Z/2Z is referred to as the reduced obstruction map for (F, i) and denoted

õbi : Ωi → Z/2Z.

We conclude this section with the following theorem.

Theorem 9.25. Let r, s ∈ Z≥0 be non-negative integers with r ≡ s mod 8, F ∈ Z[X] a
∗-symmetric polynomial of degree r + s with the conditions (Sign)r,s and (Square), and i ∈
Idx(r, s;F ) an index map. The following conditions are equivalent:

(i) There exists an even unimodular lattice over Z of signature (r, s) having a semisimple
(F, i)-isometry.

(ii) The associated Q[Γ]-module M of F with transformation α admits an inner product b such
that α becomes an isometry having index i and (M, b) contains an α-stable even unimodular
lattice over Z.

(iii) There exists a family β ∈ Bi such that η(β) = 0.

(iv) The obstruction map obi : Ωi → Z/2Z is the zero map.

(v) The reduced obstruction map õbi : Ω̃i → Z/2Z is the zero map.

Moreover, if both r and s are positive then the following condition is also equivalent:

(vi) Any even unimodular lattice of signature (r, s) admits a semisimple (F, i)-isometry.

Proof. Suppose that there exists an even unimodular lattice (Λ, b) over Z of signature (r, s)
having a semisimple (F, i)-isometry t. By identifying Λ⊗Q with M and t with α, we obtain (i)
⇒ (ii). The reverse implication (ii) ⇒ (i) is obvious. The equivalence (ii) ⇔ (iii) is nothing but
Theorem 9.7. (iii) ⇒ (iv) is clear. We prove (iv) ⇒ (iii). Suppose that the obstruction map
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obi : Ωi → Z/2Z vanishes, and take β̃ ∈ Bi arbitrarily. Then η(β̃) ∈ Ω⊥
i = C0 by Lemma 9.21.

Thus η(Bi) = C0 by Theorem 9.19, and there exists β ∈ Bi such that η(β) = 0. This shows (iv)
⇒ (iii). The equivalence (iv) ⇔ (v) is obvious. Moreover, if both r and s are positive then the
equivalence (i) ⇔ (vi) follows from the uniqueness of an even unimodular lattice of signature
(r, s) (Theorem 5.25). The proof is complete. □

Remark 9.26. We give some historical remarks on Theorem 9.25. Let F ∈ Z[X] be a ∗-symmetric
polynomial of even degree. As mentioned in Introduction, Bayer-Fluckiger and Taelman [3]
proved that when F is irreducible (or a power of a ∗-symmetric irreducible polynomial), the con-
ditions (Sign) and (Square) are necessary and sufficient for the existence of an even unimodular
lattice with a prescribed signature, having a semisimple isometry of characteristic polynomial F .
For its proof, the local-global idea was introduced as well as the argument for the local existence
of a unimodular lattice in terms of equivariant Witt groups. Afterwards, Bayer-Fluckiger [5, 6, 7]
proceeded to the case where the polynomial F is reducible and +1-symmetric, and proved that
the equivalence (i) ⇔ (v) of Theorem 9.25 when F is +1-symmetric. However, the first proof
given in her preprint [6] was difficult to follow, and did not take account of subtle conditions for

obstruction that arise from the difference among the sets I(f ;Qp), I(f ;Qp)
′
, and I(f mod p;Fp)

for a monic polynomial of f ∈ Z[X], see Notation 9.12 and Remark 9.13. On the framework
established by her, the author [45] improved the outlook of the proof, for example, by giving
the intermediate result, Theorem 9.7, between (i) and (v). He also modified the definition of
obstruction. Moreover, in [45], the result extended to the case where F is ∗-symmetric, which
covers the −1-symmetric case, mainly by careful analysis at the prime 2. The descriptions in
this thesis are more detailed and refined.

9.5 Some examples

This subsection gives some examples such that the obstruction vanishes. We keep the setting
and notation of the previous subsections. In particular F ∈ Z[X] is a ∗-symmetric polynomial
of degree r + s with the conditions (Sign)r,s and (Square), and i ∈ Idx(r, s;F ) is an index map.

We say that an equivalence relation on I is weakest if all elements of I are equivalent one
another.

Theorem 9.27. There exists an even unimodular lattice over Z of signature (r, s) having a
semisimple (F, i)-isometry if the equivalence relation on I defined by (F, i) is weakest.

Proof. Suppose that equivalence relation on I defined by (F, i) is weakest. This means that Ωi

consists of the constant maps, and Ω̃i is a trivial group. Hence, the reduced obstruction map
õbi : Ω̃i → Z/2Z is zero, which implies that there exists an even unimodular lattice over Z of
signature (r, s) having a semisimple (F, i)-isometry by Theorem 9.25. □

For example, if F is a power of a ∗-symmetric irreducible polynomial f ∈ Z[X] then I = {f}
and the equivalence relation defined by (F, i) is clearly weakest. In this case, the obstruction
vanishes independently of the index map i.

Theorem 9.28. Suppose that F ∈ Z[X] is of the form F (X) = (X − 1)(X + 1)f(X)mf , where
f ∈ Z[X] is a ∗-symmetric irreducible polynomial with f(1)f(−1) 6= 0 and mf is non-negative
integer. Then the obstruction map obi is zero. As a result, there exists an even unimodular
lattice over Z of signature (r, s) having a semisimple (F, i)-isometry.

Proof. Let β = {bv}v∈V ∈ Bi. For each v ∈ V we have hwv(bv|M±
v
) = 0 since bv|M±

v
is one

dimensional. This implies that η(β)(X − 1) = 0 and η(β)(X + 1) = 0. Moreover, noting that
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I = {X − 1, X + 1, f} we have

η(β)(f) = η(β)(f) + η(β)(X − 1) + η(β)(X + 1) = η(β) · 1I = 0

where the last equality is by Proposition 9.23. Therefore η(β) = 0, and the obstruction map obi
is the zero map. As a result, there exists an even unimodular lattice over Z of signature (r, s)
having a semisimple (F, i)-isometry by Theorem 9.25. □

10 Computation of obstruction

This section gives some results for computing obstruction. In particular, Theorem 10.15, which
compares two obstruction maps, together with results in §11, provides a systematic way to
compute an obstruction map.

10.1 Computation of Π(f, g)

Definition 10.1. Let K be a field, and let f(X) =
∑m

i=0 aiX
i and g(X) =

∑n
j=0 bjX

j ∈ K[X]
be polynomials of degrees m and n respectively. The resultant of f and g is the determinant of
the (m+ n)× (m+ n) matrix

am am−1 · · · a0
. . .

. . .
. . .

am am−1 · · · a0
bn bn−1 · · · b0

. . .
. . .

. . .

bn bn−1 · · · b0


,

and denoted by Res(f, g).

Under the setting in Definition 10.1, let α1, . . . , αm and β1, . . . , βn ∈ K be the roots of f and
g respectively. Then it is known that

Res(f, g) = anmb
m
n

m∏
i=1

n∏
j=1

(αi − βj). (36)

As a result, the resultant Res(f, g) vanishes if and only if f and g have a common root. If f and
g are monic then Equation (36) can also be written as

Res(f, g) =
m∏
i=1

g(αi) = (−1)m
n∏
j=1

f(βj).

Let f and g ∈ Z[X] be monic polynomials with coefficients in Z. Note that Res(f, g)
(considered as f, g ∈ Q[X]) is an integer by definition. Moreover, for any prime p we have

Res(f mod p, g mod p) ≡ Res(f, g) mod p.

Thus (f mod p) and (g mod p) ∈ Fp[X] have a common factor if and only if Res(f, g) ≡ 0 mod p.

Notation 10.2. For two monic polynomials f and g ∈ Z[X], we define

Π(f, g) := {p : prime | I(f ;Qp) ∩ I(g;Qp) 6= ∅},

where the set I(f ;Qp) is defined in Notation 9.12. In the situation of Notation 9.12, we have
ΠFi (f, g) ⊂ Π(f, g) and they coincide if f(1)f(−1)g(1)g(−1) 6= 0.
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The set Π(f, g) and the resultant Res(f, g) are related as follows.

Proposition 10.3. Let f and g ∈ Z[X] be monic polynomials. Then

Π(f, g) ⊂ {p : prime | p is a factor of Res(f, g)}.

Proof. Suppose that a prime p belongs to Π(f, g). Then (f mod p) and (g mod p) ∈ Fp[X] have
a common factor, and thus p | Res(f, g). This shows the assertion. □

Example 10.4. Let f(X) = X4−X2+1; this is the 12-th cyclotomic polynomial and irreducible
(see §10.2). Then, the resultant Res(f,X − 1) = −f(1) = −1 has no prime factor. This means
that Π(f,X − 1) = ∅ by Proposition 10.3.

We will give an explicit description of the set Π(f, g) when f and g are cyclotomic polynomials
in §10.3. The following proposition will be useful.

Proposition 10.5. Let f ∈ Z[X] be a ∗-symmetric polynomial with f(1)f(−1) 6= 0, and let p
be a prime.

(i) If vp(f(1)) is odd then X − 1 ∈ I(f ;Qp).

(ii) If vp(f(−1)) is odd then X + 1 ∈ I(f ;Qp).

(iii) If (−1)deg(f)/2f(1)f(−1) 6= 1 nor −3 in Q×
2 /Q

×2
2 then X − 1 ∈ I(f ;Q2).

Proof. We prove the assertions (i) and (ii) simultaneously. Suppose that vp(f(±1)) is odd.
Hensel’s lemma (Theorem 1.33) implies that f is factorized as f = gh, where g and h ∈ Zp[X]
are monic polynomials such that g(X) mod p = (X ∓ 1)deg(g) and h(±1) 6≡ 0 mod p. In order to
get X ∓ 1 ∈ I(f ;Qp), it is sufficient to show that I(g;Qp) 6= ∅, or equivalently g is not of type
2 in Qp[X]. Suppose that g were of type 2. Then g decomposes as g = kk∗ in Zp[X] for some
k ∈ Zp[X] with k 6= k∗. Note that k(0) ∈ Z×

p since k(0) and k(0)−1 are the constant terms of k
and k∗ ∈ Zp[X] respectively. Then we would have

vp(f(±1)) = vp(g(±1)) = vp(k(±1)k∗(±1))

= vp(k(±1)k(0)−1(±1)deg(k)k(±1)) = 2vp(k(±1)).

This is a contradiction. Therefore g is not of type 2, and we obtain X ∓ 1 ∈ I(f ;Qp). This
completes the proofs of (i) and (ii).

We proceed to the assertion (iii). Suppose that (−1)deg(f)/2f(1)f(−1) 6= 1 nor −3 in
Q×

2 /Q
×2
2 . As above, Hensel’s lemma implies that f is factorized as f = gh, where g and

h ∈ Z2[X] are monic polynomials such that g(X) mod 2 = (X ∓ 1)deg(g) and h(±1) 6≡ 0 mod 2,
and it is enough to show that g is not of type 2. Let φ be the trace polynomial of h (see
Definition 7.11). Then h(1)− (−1)deg(h)/2h(−1) = φ(2)− φ(−2) ≡ 0 mod 4, which implies that
(−1)deg(h)/2h(1)h(−1) ≡ 1 mod 4. Thus (−1)deg(h)/2h(1)h(−1) = 1 or −3 in Z2/8Z2, and hence
in Q×

2 /Q
×2
2 . We now suppose that g were of type 2. Then (−1)deg(g)/2g(1)g(−1) is a square as

in Lemma 9.2 (ii). Thus we would get

(−1)deg(f)/2f(1)f(−1) = (−1)deg(g)/2g(1)g(−1) · (−1)deg(h)/2h(1)h(−1) = 1 or −3

in Q×
2 /Q

×2
2 . This is a contradiction. Therefore g is not of type 2, and we obtain X−1 ∈ I(f ;Q2).

The proof is complete. □
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10.2 Cyclotomic polynomials modulo p

In this subsection, we study factorizations of cyclotomic polynomials modulo a prime number.
For a positive integer n ∈ Z>0, we define Rn := {j ∈ Z | 1 ≤ j ≤ n and gcd(j, n) = 1}.
The function ϕ : Z>0 → Z defined by ϕ(n) = #Rn is called Euler’s totient function. Let n
be a positive integer. The complex number ζn := exp(2π

√
−1/n) is a primitive n-th root of

unity (the letter π is the circle ratio). There are exactly ϕ(n) primitive n-th roots of unity, and
they are given by ζjn for j ∈ Rn. The polynomial

∏
j∈Rn

(X − ζjn) ∈ C[X] is called the n-th
cyclotomic polynomial and denoted by Φn(X). It is known that Φn(X) is a monic polynomial
with coefficients in Z. Moreover, it is the minimal polynomial of ζn over Q, and in particular
irreducible in Q[X].

In the following, we fix a prime p, and write f̄ ∈ Fp[X] for the reduction modulo p of a
polynomial f ∈ Z[X].

Proposition 10.6. Let n be a positive integer, and write n = pem where e,m ∈ Z≥0 and
gcd(p,m) = 1. Then Φn(X) = Φm(X)φ(p

e) in Fp[X].

Proof. For each j ∈ Z with 0 ≤ j ≤ e, the polynomial Φm(X
pe) vanishes at X = ζpjm because

the power ζp
e

pjm
= ζp

e−j

m is a primitive m-th root of unity. This means that Φm(X
pe) is divisible

by Φm(X)Φpm(X) · · ·Φpem(X) since Φpjm(X) is the minimal polynomial of ζpjm. On the other
hand, we have

deg(Φm(X)Φpm(X) · · ·Φpem(X)) = ϕ(m) +
e∑
j=1

ϕ(pjm) = ϕ(m) +
e∑
j=1

ϕ(pj)ϕ(m)

= ϕ(m) +
e∑
j=1

(
pj−1(p− 1)ϕ(m)

)
= ϕ(m) + (p− 1)ϕ(m)

e∑
j=1

pj−1

= ϕ(m) + ϕ(m)(pe − 1) = ϕ(m)pe = deg(Φm(X
pe)).

Thus Φm(X)Φpm(X) · · ·Φpem(X) = Φm(X
pe), and

Φm(X)Φpm(X) · · ·Φpem(X) = Φm(X
pe) = Φm(X)p

e
(in Fp[X]).

By induction on e, we obtain Φn(X) = Φpem(X) = Φm(X)φ(p
e) as required. □

We then consider the factorization of Φm(X) for a positive integer m with gcd(p,m) = 1.
It is clear that Φ1(X) = X − 1 and Φ2(X) = X + 1. Let m ≥ 3 be a positive integer with
gcd(p,m) = 1. We write Fp for the algebraic closure of Fp, and Fq for the unique subfield of Fp
whose cardinality equals q, that is, Fq = {α ∈ Fp | αq = α}, where q is a power of p.

Proposition 10.7. Let f̄ ∈ Fp[X] be any irreducible factor of Φm, and let d denote the order
of p in the multiplicative group (Z/mZ)×.

(i) Let ζ̄ ∈ Fp be any root of f̄ . Then the order of ζ̄ in Fp
×

equals m.

(ii) deg(f̄) = d.

(iii) f̄ is +1-symmetric if and only if there exists a non-negative integer r such that pr ≡
−1 mod m.

In particular, all irreducible factors of Φm have degree d and are all +1-symmetric or all not.

140



Proof. (i). Let m′ denote the order of ζ̄ in Fp
×
. Since f̄(X) | Φm(X) | (Xm − 1), we have

ζ̄m = 1, which shows that m′ | m. Note that Xm − 1 ∈ Fp[X] is separable since it is coprime to
its derivative mXm−1 in Fp[X] by the assumption gcd(p,m) = 1. If m′ were less than m then
the polynomial

Xm − 1 =
∏
r|m

Φr(X) = (Xm′ − 1)
∏

r|m,r∤m′

Φr(X)

would have ζ̄ as a multiple root since ζ̄m
′ −1 = 0 and Φm(ζ̄) = 0, but it contradicts separability.

Therefore m′ = m.
(ii). Let ζ̄ ∈ Fp be a root of f̄ . Since pd ≡ 1 mod m and ζ̄m = 1, it follows that ζ̄p

d
= ζ̄.

This shows that ζ̄ ∈ Fpd , and Fp(ζ̄) ⊂ Fpd . Thus

deg(f̄) = [Fp(ζ̄) : Fp] ≤ [Fpd : Fp] = d.

On the other hand, we have ζ̄p
deg(f̄)−1 = 1 since the extension Fp(ζ̄)/Fp is of degree deg(f̄).

Hence pdeg(f̄) − 1 ≡ 0 mod m by (i), and pdeg(f̄) ≡ 1 mod m. Therefore d | deg(f̄), which shows
that d = deg(f̄).

(iii). Suppose that f̄ is +1-symmetric. Then f̄(ζ̄−1) = f̄∗(ζ̄−1) = 0 for a root ζ̄ of f̄ . In other
words, ζ̄−1 and ζ̄ are conjugate. Thus, there exists r ∈ Z≥0 such that ζ̄p

r
= ζ̄−1, or equivalently

ζ̄p
r+1 = 1. This implies that pr + 1 ≡ 0 mod m by (i), and pr ≡ −1 mod m.
Conversely, suppose that there exists r ∈ Z≥0 such that pr ≡ −1 mod m. Then, for any root

ζ̄ of f̄ , its inverse ζ̄−1 = ζ̄p
r
is conjugate to ζ̄. Note that every root of f̄ has multiplicity 1 since

f̄ is separable. Thus f̄ is ∗-symmetric by Proposition 7.9. Furthermore, any root of ζ̄ is not 1
since its order in Fp

×
is m ≥ 3. Hence X − 1 is not a factor of f̄ , and f̄ is +1-symmetric. □

The n-th cyclotomic polynomial decomposes in Fp[X] as follows.

Theorem 10.8. Let n be a positive integer, and write n = pem where e,m ∈ Z≥0 and
gcd(p,m) = 1.

(i) Φn(X) = Φm(X)φ(p
e) in Fp[X].

(ii) Suppose that m ≥ 3, and let d denote the order of p in (Z/mZ)×. Then Φm has exactly
ϕ(m)/d irreducible factors of degree d in Fp[X]. Moreover, the irreducible factors are all
+1 symmetric or all not, and the former case occurs if and only if there exists r ∈ Z≥0

such that pr ≡ −1 mod m.

Proof. (i) is nothing but Proposition 10.6, and (ii) follows from Proposition 10.7. □

10.3 Computation of Π(Φn,Φn′)

This subsection gives an explicit description of the set Π(Φn,Φn′). The goal is the following
theorem.

Theorem 10.9. Let n and n′ be positive integers with n > n′.

(i) If n/n′ is not a power of a prime, then Π(Φn,Φn′) = ∅.

(ii) Suppose that n/n′ is a power of a prime p, and write n = pem where gcd(p,m) = 1. Then

Π(Φn,Φn′) =

{
{p} if there exists r ∈ Z≥0 such that pr ≡ −1 mod m

∅ otherwise.
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Definition 10.10. Let n be a positive integer. The field Q(ζn) is called the n-th cyclotomic
field, and denoted by En, where ζn = exp(2π

√
−1/n). If n ≥ 3 then we write σ : En → En for

the nontrivial involution σ on En determined by σ(ζn) = ζ−1
n , and (En)

σ for the fixed subfield
{x ∈ En | σ(x) = x}. Note that (En)

σ = Q(ζn + ζ−1
n ).

The following general proposition is useful to observing ramifications of finite places.

Proposition 10.11. Let A be a Dedekind domain, and K its field of fractions. Let L/K be
a finite separable extension, and B the integral closure of A in L. Suppose that L = K(θ) for
some θ ∈ B, and let f be the conductor of A[θ], that is, the biggest ideal of B which is contained
in A[θ]. Let p be a nonzero prime ideal of A such that f and pB are coprime. Suppose that the
minimal polynomial F (X) ∈ A[X] of θ decomposes over the residue field A/p as

(F (X) mod p) = f1(X)e1 · · · fl(X)el

where each ej is a positive integer, and f1, . . . , fl ∈ (A/p)[X] are distinct irreducible polynomials.
Then the ideal p decomposes in B as

pB = Pe1
1 · · ·Pel

l

where P1, . . . ,Pl are distinct prime ideals of B, and the inertia degree of Pj equals deg(fj) for
each j.

Proof. See [32, Chapter I, Proposition 8.3]. □

Lemma 10.12. Let n ≥ 3 be a positive integer.

(i) A Z-basis of the integer ring OEn of En is given by 1, ζn, . . . , ζ
φ(n)−1
n . Hence OEn = Z[ζn].

(ii) The integer ring O(En)σ of (En)
σ is Z[ζn + ζ−1

n ].

Proof. See e.g. [32, Chapter I, Proposition 10.2] for (i). We show the assertion (ii). The inclusion
Z[ζn + ζ−1

n ] ⊂ O(En)σ is obvious. Let α ∈ O(En)σ , and write

α = br−1 + br−2(ζn + ζ−1
n ) + · · ·+ b0(ζn + ζ−1

n )r−1,

where r := ϕ(n)/2, and b0, . . . , br−1 ∈ Q are rational numbers. We show that b0, . . . , br−1 belong
to Z. Put h(Y ) =

∑r−1
j=0 br−1−jY

j and f(X) = Xr−1h(X +X−1). Then f can be written as

f(X) = a0 + a1X + · · ·+ ar−2X
r−2 + ar−1X

r−1 + ar−2X
r + · · ·+ a1X

2r−3 + a0X
2r−2,

where a0, . . . , ar−1 ∈ Q are rational numbers (determined by b0, . . . , br−1 ∈ Q). The coefficients
a0, . . . , ar−1 belong to Z by the assertion (i), since the value f(ζn) = ζr−1

n h(ζn+ ζ
−1
n ) = ζr−1

n α is
inOEn . Hence b0, . . . , br−1 also belong to Z by Proposition 7.10. This means that α ∈ Z[ζn+ζ−1

n ],
and O(En)σ ⊂ Z[ζn + ζ−1

n ]. The proof is complete. □

Let n ≥ 3 be a positive integer. We write Ψn for the minimal polynomial of ζn + ζ−1
n . This

is noting but the trace polynomial of Φn. By Proposition 10.11 and Lemma 10.12, a prime
decomposes into prime ideals over En and (En)

σ in the same way as the reductions of Φn and
Ψn modulo the prime. So, we can know decompositions of prime ideals of (En)

σ over En via
decompositions of the reductions of Φn and Ψn.
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Proposition 10.13. Let n ≥ 3 be an integer, and p a prime. Then W(Φn; p) = Wrm(Φn; p)
if n = pe or 2pe for some integer e ≥ 0. Suppose that n = pem where e ≥ 0, m ≥ 3, and
gcd(p,m) = 1. Then

W(Φn; p) =

{
Wur(Φn; p) if there exists r ∈ Z≥0 such that pr ≡ −1 mod m

Wsp(Φn; p) otherwise.

Proof. We write f̄ for the reduction modulo p for f ∈ Z[X]. Suppose that n = pe or 2pe

for some integer e ≥ 0. Then Φn(X) = (X − 1)φ(n) or (X + 1)φ(n) by Theorem 10.8 (i), and
Ψn(Y ) = (Y − 2)φ(n)/2 or (Y + 2)φ(n)/2 because Ψn is the trace polynomial of Φn. Thus, it can
be seen from Proposition 10.11 that there exists one and only one prime ideal of (En)

σ above p
which is ramified in En. In particular W(Φn; p) = Wrm(Φn; p).

Suppose that n = pem where e ≥ 0, m ≥ 3, and gcd(p,m) = 1. Then Theorem 10.8 (ii)
shows that Φn is factorized in Fp[X] as Φn = f1 · · · fl, where if there exists r ∈ Z≥0 such that
pr ≡ −1 mod m then f1, . . . , fl ∈ Fp[X] are distinct +1-symmetric irreducible polynomials of
degree d, and otherwise they are distinct polynomials of degree 2d which can be written as
fj = gj gj

∗ for some irreducible polynomial gj ∈ Fp[X] with gj
∗ 6= gj

∗. Let hj be the trace
polynomial of fj . Then h1, . . . , hl are irreducible and Ψn = h1 · · ·hl. Thus Proposition 10.11
implies that there are l prime ideals of (En)

σ above p. Moreover, they are all non-split and
unramified in En if there exists r ∈ Z≥0 such that pr ≡ −1 mod m, and otherwise they are all
split in En. This completes the proof. □

We use the following formula in proving Theorem 10.9.

Proposition 10.14 (Apostol). Let n ∈ Z>0 be a positive integer. Then

Res(Φn,Φ1) =

{
−p if n is a power of a prime p

−1 otherwise.

Let n′ ∈ Z>0 be a positive integer such that 1 < n′ < n. Then

Res(Φn,Φn′) =

{
pφ(n

′) if n/n′ is a power of a prime p

1 otherwise.

Proof. See [1]. □

Proof of Theorem 10.9. Let n and n′ be positive integers with n > n′. If n/n′ is not a power of
a prime then |Res(Φn,Φn′)| = 1 by Proposition 10.14 and thus Π(Φn,Φn′) = ∅ by Proposition
10.3. This shows the assertion (i). We then show the assertion (ii). Suppose that n/n′ is a
power of a prime p, and write n = pem, n′ = pe

′
m where e > e′ > 1 and gcd(p,m) = 1. Note

that Π(Φn,Φn′) ⊂ {p} by Propositions 10.14 and 10.3.

Suppose that m = 1 or 2. Then Φn(X) = (X ∓ 1)φ(p
e), Φn′(X) = (X ∓ 1)φ(p

e′ ) in Fp[X] by
Theorem 10.8 (i), and W(Φn; p) = Wrm(Φn; p), W(Φn′ ; p) = Wrm(Φn′ ; p) by Proposition 10.13.
Hence X ∓ 1 ∈ I(Φn;Qp) ∩ I(Φn′ ;Qp) and p ∈ Π(Φn,Φn′). Therefore Π(Φn,Φn′) = {p}.

Suppose that m ≥ 3. If there is no integer r ∈ Z≥0 such that pr ≡ −1 mod m then
W(Φn; p) = Wsp(Φn; p) and W(Φn′ ; p) = Wsp(Φn′ ; p) by Proposition 10.13. Thus I(Φn;Qp) =

I(Φn′ ;Qp) = ∅ and p /∈ Π(Φn,Φn′). Therefore Π(Φn,Φn′) = ∅. If there exists r ∈ Z≥0 such

that pr ≡ −1 mod m then Φn(X) = Φm
φ(pe)

, Φn′(X) = Φm
φ(pe

′
)
in Fp[X] and Φm has a +1-

symmetric irreducible factor h̄ ∈ F[X] by Theorem 10.8. Moreover W(Φn; p) = Wur(Φn; p) and
W(Φn′ ; p) = Wur(Φn′ ; p) by Proposition 10.13. Thus there exist +1-symmetric factors f and
f ′ ∈ Zp[X] of Φn and Φn′ in Qp[X] respectively such that h̄ | (f mod p) and h̄ | (f ′ mod p). This

implies that h̄ ∈ I(Φn;Qp) ∩ I(Φn′ ;Qp) and p ∈ Π(Φn,Φn′). Therefore Π(Φn,Φn′) = {p}. This
completes the proof. □
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10.4 Comparison

One practical way to compute an obstruction map is to compare it with another. Let F ∈ Z[X]
be a ∗-symmetric polynomial of even degree with the condition (Square). As in Notation 9.3,
the symbols M and M∞ denote the associated Q[Γ]-module with transformation α and its
localization at the infinite place ∞ respectively. Let r, s be non-negative integers with r ≡
s mod 8 such that F satisfies the condition (Sign)r,s, and i ∈ Idx(r, s;F ) an index map. Then,
there exists an inner product bi on M∞ which makes α an isometry with index i. For any
f ∈ I := I(F ;Q), the index of the restriction bi|Mf

∞
is given by

∑
g∈I(f ;R) i(g), and thus its

isomorphism class is uniquely determined by i independently of the choice of bi. So we define
the map η∞(i) : I → Z/2Z by

η∞(i)(f) = hw∞(bi|Mf
∞
) (f ∈ I).

By Theorem 4.60, this map is explicitly as follows:

η∞(i)(f) =

{
0 if (deg(fmf )−

∑
g∈I(f ;R) i(g))/2 ≡ 0 or 1 mod 4

1 if (deg(fmf )−
∑

g∈I(f ;R) i(g))/2 ≡ 2 or 3 mod 4
(f ∈ I). (37)

Let r′, s′ be non-negative integers with r′ ≡ s′ mod 8 such that F satisfies the condition
(Sign)r′,s′ , and j ∈ Idx(r′, s′;F ) an index map. We remark that if

i(X − 1) ≡ j(X − 1) and i(X − 1) ≡ j(X − 1) mod 4 (38)

then two equivalence relations on I defined by (F, i) and (F, j) are the same, because they are
determined by the values δ+ and δ− defined in Notation 9.4, see also Notation 9.12 and Definition
9.20. In this case, the obstruction group Ωi for (F, i) is the same as that for (F, j).

Theorem 10.15. Let F ∈ Z[X] be a ∗-symmetric polynomial of even degree with the condition
(Square), and r, s, r′, s′ non-negative integers with r ≡ s and r′ ≡ s′ mod 8 such that (Sign)r,s
and (Sign)r′,s′ hold for F . Let i ∈ Idx(r, s;F ) and j ∈ Idx(r′, s′;F ) be index maps satisfying
(38). Then we have

obi(c) = obj(c) + (η∞(i)− η∞(j)) · c

for all c ∈ Ωi. In particular, if obj is zero, then obi is zero precisely when the map

Ωi → Z/2Z, c 7→ (η∞(i)− η∞(j)) · c

is zero.

Proof. Let βi = {bi} ∪ {bp}p∈V\{∞} ∈ Bi. Then the family βj := {bj} ∪ {bp}p∈V\{∞} belongs to
Bj, where bj is an inner product on M∞ which makes α an isometry with index j. For any f ∈ I
we have

η(βi)(f) = hw∞(bi|Mf
∞
) +

∑
p∈V\{∞}

hwp(bp|Mf
p
)

=

hw∞(bj|Mf
∞
) +

∑
p∈V\{∞}

hwp(bp|Mf
p
)

+ hw∞(bi|Mf
∞
)− hw∞(bj|Mf

∞
)

= η(βj)(f) + (η∞(i)− η∞(j))(f).

This implies that obi(c) = obj(c) + (η∞(i)− η∞(j)) · c for all c ∈ Ωi as required. □
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Example 10.16. Let F (X) = (X−1)4f(X), where f(X) = Φ12(X) = X4−X2+1 as in Example
10.4. Note that the obstruction group Ω for (F, i) does not depend on the index map i, and is
given by Ω = C(I) since Π(f,X−1) = ∅ as shown in Example 10.4, where I = I(F ;Q). Let Λ be
the lattice E8. Then there is no isometry of Λ with characteristic polynomial F (any isometry of
Λ is semisimple because Λ has definite signature). To prove this, we first show that Λ4,4 admits
a semisimple isometry with characteristic F , where Λn,n is the unique even unimodular lattice
of signature (n, n) for n ∈ Z>0. It follows from Theorem 9.27 that Λ2,2 admits a semisimple
isometry tf with characteristic polynomial f because f satisfies the conditions (Sign)2,2 and
(Square), and is irreducible. Thus the direct sum t′ := tf ⊕ idΛ2,2 is a semisimple isometry
of Λ4,4 = Λ2,2 ⊕ Λ2,2 with characteristic polynomial F . Hence obj = 0, where j ∈ Idx(4, 4;F )
denotes the index of t′.

We now suppose to contrary that the E8-lattice Λ admitted an isometry t with characteristic
polynomial F . Then the index i ∈ Idx(8, 0;F ) of t is uniquely determined: i(g) = deg(g)mg for
every g ∈ I(F ;R) where mg is the multiplicity of g in F . Thus we would get

(η∞(i)− η∞(j)) · 1{X−1} = η∞(i)(X − 1)− η∞(j)(X − 1) = 0− 1 = 1 (in Z/2Z),

but this contradicts Theorem 10.15. Therefore, there is no isometry of Λ with characteristic
polynomial F .

11 Isometries on even unimodular lattices of index 0

Let n be a positive integer. We write Λn,n for an even unimodular lattice over Z of signature
(n, n). Such a lattice is unique up to isomorphism, see Theorem 5.25. We show that any ∗-
symmetric polynomial F ∈ Z[X] of degree 2n with the condition (Square) can be realized as
the characteristic polynomial of an isometry of Λn,n unless the multiplicity of X − 1 or that of
X + 1 is one. In fact, a more stronger version will be proved as Theorem 11.9. Furthermore,
it will be shown that the assumption on the multiplicities of X − 1 and X + 1 can be removed
when F is a product of cyclotomic polynomials.

11.1 General case

Let F ∈ R[X] be a ∗-symmetric polynomial. As in §7.4, we write mf for the multiplicity of a
polynomial f in F andm± := mX∓1. Furthermore F12 is the product of type 1 and 2 components
of F , and m(F ) is the number of roots of F whose absolute values are greater than 1 counted
with multiplicity.

Let P ∈ R[X] be a ∗-symmetric polynomial with P (1)P (−1) 6= 0. Then P is +1-symmetric
and of even degree. The signature of (−1)deg(P )/2P (1)P (−1) is denoted by e(P ) ∈ {1,−1}. If H
is the trace polynomial of P then (−1)deg(P )/2P (1)P (−1) = H(2)H(−2), and thus e(P ) is the
signature of H(2)H(−2). Note that if the coefficients of P are in Z and P satisfies the condition
(Square) then e(P ) = 1 since (−1)deg(P )/2P (1)P (−1) is a square. Let T denote the unit circle
in C.

Lemma 11.1. The number of roots of a ∗-symmetric polynomial F ∈ R[X] on T \ {1,−1}
counted with multiplicity is equal to 2

∑
f∈I1(F ;R)mf . Moreover, we have 2

∑
f∈I1(F ;R)mf ≡

1− e(F12) mod 4.

Proof. Let N be the number of roots of F on T \ {1,−1} counted with multiplicity. The former
assertion, N = 2

∑
f∈I1(F ;R)mf , follows from Proposition 7.21 (i). Let H denote the trace

polynomial of F12, and N ′ the number of roots of H on the interval (−2, 2). Then N = 2N ′

because T \ {1,−1} is mapped two-to-one onto (−2, 2) under the function C → C, x 7→ x +
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x−1. On the other hand, by considering the graph of H, it can be seen that N ′ is even if
H(2)H(−2) > 0 and odd if H(2)H(−2) < 0. Since e(F12) is the signature of H(2)H(−2), we
have N ′ ≡ (1− e(F12))/2 mod 2. Hence

N = 2N ′ ≡ 1− e(F12) mod 4.

The proof is complete. □

Proposition 11.2. Let F ∈ Z[X] be a ∗-symmetric polynomial of even degree 2n with the
condition (Square).

(i) Let r, s ∈ Z≥0 be non-negative integers with r ≡ s mod 8 and r + s = 2n such that F
satisfies the condition (Sign)r,s. Then we have i(X − 1) + i(X + 1) ≡ 1 − e(F12) mod 4
for any i ∈ Idx(r, s;F ).

(ii) F satisfies the condition (Sign)n,n. Moreover, for i+, i− ∈ Z with

−m+ ≤ i+ ≤ m+, −m− ≤ i− ≤ m−, i+ ≡ i− ≡ m+ mod 2, and

i+ + i− ≡ 1− e(F12) mod 4,
(39)

there exists i ∈ Idx(n, n;F ) such that i(X − 1) ≡ i+ and i(X + 1) ≡ i− mod 4.

Proof. (i). Let i ∈ Idx(r, s;F ). We have

i(X − 1) + i(X + 1) +
∑

f∈I1(F ;R) i(f) = r − s ≡ 0 mod 4

by (29). On the other hand, each f ∈ I1(F ;R) satisfies 2mf − i(f) ≡ 0 mod 4 by (28). Thus

i(X − 1) + i(X + 1) ≡ −
∑

f∈I1(F ;R) i(f) ≡ −
∑

f∈I1(F ;R) 2mf

≡ 2
∑

f∈I1(F ;R)mf ≡ 1− e(F12) mod 4,

where the last congruence is by Lemma 11.1.
(ii). By Corollary 7.29, it suffices to prove the latter assertion. Let i+, i− ∈ Z be integers

satisfying (39), and take i′+ ∈ {−1, 0, 1, 2} and i′− ∈ {−2,−1, 0, 1} so that i′+ ≡ i+ and i′− ≡ i−
mod 4. Then −3 ≤ i′+ + i′− ≤ 3. Moreover, since i′+ + i′− ≡ i+ + i− ≡ 1− e(F12) mod 4 we have

i′+ + i′− = 1− e(F12) or e(F12)− 1. (∗)

We now put

r0 = (m+ + i′+)/2 + (m− + i′−)/2, s0 = (m+ − i′+)/2 + (m− − i′−)/2,

r12 = n− r0, s12 = n− s0.

Then the map i0 : {X − 1, X +1} → Z defined by i0(X − 1) = i′+ and i0(X +1) = i′− belongs to
Idx(r0, s0;F0), where F0 is the type 0 component of F (to be precise, i0|I0(F0;R) ∈ Idx(r0, s0;F0)).

We show that F12 satisfies the condition (Sign)r12,s12 . Note that m(F ) = (2n−m+ −m− −
2
∑

f∈I1(F ;R)mf )/2. Then

r12 −m(F12) = (n− r0)−m(F ) =
∑

f∈I1(F ;R)

mf − (i′+ + i′−)/2. (∗∗)

Here
∑

f∈I1(F ;R)mf ≥ (1 − e(F12))/2 since
∑

f∈I1(F ;R)mf ≥ 0 and
∑

f∈I1(F ;R)mf ≡ (1 −
e(F12))/2 mod 2 by Lemma 11.1. Hence, it follows from Equations (∗) and (∗∗) that

r12 −m(F12) ≥ (1− e(F12))/2− (1− e(F12))/2 = 0,

r12 −m(F12) ≡ (1− e(F12))/2− (1− e(F12))/2 ≡ 0 mod 2.
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Similarly, we get s12 −m(F12) ≥ 0 and s12 −m(F12) ≡ 0 mod 2, and therefore F12 satisfies the
condition (Sign)r12,s12 .

Let i1 ∈ Idx(r12, s12;F12) be an index map. Then the sum i := i0 ⊕ i1 : I(F ;R) → Z belongs
to Idx(n, n;F ). This is the desired index map since i(X ∓ 1) = i′± ≡ i± mod 4. The proof is
complete. □

We reformulate Notation 9.12 and Definition 9.20.

Definition 11.3. Let F ∈ Z[X] be a ∗-symmetric polynomial of even degree, and m± the
multiplicity of X ∓ 1 in F . Let i+, i− ∈ Z be integers with i± ≡ m± mod 2. We define

δ±(F ; i+, i−) :=

{
(−1)(m±−i±)/2 |F12(±1)| if m+ is even

(−1)(m±−i±)/2 2|F12(±1)| if m+ is odd.

Moreover

I(X ∓ 1;Qp)
′
:=

{
{X ∓ 1} if m± ≥ 3; or m± = 2 and δ±(F ; i+, i−) 6= −1 ∈ Q×

p /Q×2
p

∅ otherwise

and I(f ;Qp)
′
:= I(f ;Qp) for a monic polynomial with f(1)f(−1) 6= 0 as in Notation 9.12. We

then define a set ΠFi+,i−(f, g) of primes for monic polynomials f, g ∈ Z[X] by

ΠFi+,i−(f, g) := {p : prime | I(f ;Qp)
′ ∩ I(g;Qp)

′ 6= ∅}.

The equivalence relation defined by (F ; i+, i−) is the one on I(F ;Q) generated by the binary
relation {(f, g) ∈ I(F ;Q)× I(F ;Q) | ΠFi+,i−(f, g) 6= ∅}. Note that ΠFi+,i−(f, g) = ΠFi (f, g) if i is
an index map with i(X − 1) ≡ i+ and i(X + 1) ≡ i− mod 4.

In the following, F ∈ Z[X] is a ∗-symmetric polynomial of even degree 2n with the condition
(Square), and i+, i− are integers satisfying (39). Note that m+ +m− = deg(F0) is even since
so are deg(F ) and deg(F12). Note also that the condition (Square) holds for the factor (X −
1)m+(X+1)m−F1(X) by Lemma 9.2. For a subset J in I := I(F ;Q), we define FJ :=

∏
f∈J f

mf ,
where mf is the multiplicity of f in F . If J is empty then FJ is defined to be the constant 1.
The subset J \ {X − 1, X + 1} of J is denoted by J◦.

Lemma 11.4. Suppose that m+ 6= 1 and m− 6= 1. Let J be an equivalence class in I with respect
to the equivalence relation defined by (F ; i+, i−). If |FJ◦(±1)| is not a square then X ∓ 1 ∈ J
i.e., FJ(±1) = 0.

Proof. Suppose that |FJ◦(±1)| is not a square, and let p be a prime such that vp(FJ◦(±1)) is
odd. We remark that there is no g ∈ I1 \ J such that vp(g(±1)) is odd; because otherwise
Proposition 10.5 implies that p ∈ ΠFi+,i−(FJ◦ , g), and we would have g ∈ J . Hence

vp(F12(±1)) ≡ vp(F1(±1)) ≡ vp(FJ◦(±1)) ≡ 1 mod 2.

This implies that |F (±1)| = 0 since |F (±1)| is a square, and thus m± ≥ 2 by the assumption
m± 6= 1. Moreover, if m± = 2 then δ±(F ; i+, i−) 6= −1 in Q×

p /Q×2
p since vp(δ±(F ; i+, i−)) ≡

vp(F12(±1)) ≡ 1 mod 2. Therefore I(X ∓ 1;Qp)
′
= {X∓1}, which leads to p ∈ ΠFi+,i−(FJ◦ , X∓

1), and X ∓ 1 ∈ J . This means that FJ(±1) = 0, and the proof is complete. □

Proposition 11.5. Suppose that m+ 6= 1 and m− 6= 1. For any equivalence class J in I with
respect to the equivalence relation defined by (F ; i+, i−), the corresponding factor FJ has even
degree and satisfies the condition (Square).
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Proof. We begin with the case F (1)F (−1) 6= 0, i.e., m+ = m− = 0. Let J be an equivalence
class in I. The degree of FJ is even since FJ has no type 0 component. We first show that
|FJ(1)| and |FJ(−1)| are squares simultaneously. Suppose that |FJ(±1)| were not a square, and
let p be prime such that vp(FJ(±1)) is odd. Note that vp(F1(±1)) is even since the condition
(Square) holds for F1. Then there exists g ∈ I \ J such that vp(g(±1)) is odd. In this case,

we have X ∓ 1 ∈ I(FJ ;Qp) = I(FJ ;Qp)
′
and X ∓ 1 ∈ I(g;Qp) = I(g;Qp)

′
by Proposition

10.5. Thus p ∈ ΠFi+,i−(FJ , g), and g would be contained in the equivalence class J , but this is a
contradiction. Hence |FJ(1)| and |FJ(−1)| are squares.

We then show that (−1)nJFJ(1)FJ(−1) is a square, where nJ := deg(FJ)/2. Suppose that
(−1)nJFJ(1)FJ(−1) were not a square. Since |FJ(1)| and |FJ(−1)| are squares as proved now,
we have (−1)nJFJ(1)FJ(−1) = −1 in Q×/Q×2 and hence in Q×

2 /Q
×2
2 . Thus there exists g ∈ I\J

such that (−1)deg(g)/2g(1)g(−1) 6= 1 nor −3 in Q×
2 /Q

×2
2 because (−1)deg(F1)/2F1(1)F1(−1) = 1 in

Q×
2 /Q

×2
2 . In this case, we have X−1 ∈ I(FJ ;Q2) = I(FJ ;Q2)

′
and X−1 ∈ I(g;Q2) = I(g;Q2)

′

by Proposition 10.5. Thus 2 ∈ ΠFi+,i−(FJ , g), and g would be contained in the equivalence class
J , but this is a contradiction. Hence (−1)nJFJ(1)FJ(−1) is a square. This completes the case
F (1)F (−1) 6= 0.

We proceed to the case F (1)F (−1) = 0. Let J ⊂ I be an equivalence class. Note that
FJ◦ has even degree. If m+ and m− are even then it is obvious that deg(FJ) is even. If m+

and m− are odd then m+,m− ≥ 3 by the assumption m+,m− 6= 1. This implies that J = J◦

or {X − 1, X + 1} ⊂ J , and deg(FJ) is even. We now show that FJ satisfies the condition
(Square). If FJ◦ satisfies (Square) then so does FJ . Hence, it is enough to consider the case
where FJ◦ does not satisfy (Square). Lemma 11.4 implies that if |FJ◦(1)| or |FJ◦(−1)| is not
a square then FJ satisfies (Square). Suppose then that |FJ◦(1)| and |FJ◦(−1)| are squares but

(−1)deg(FJ◦ )/2FJ◦(1)FJ◦(−1) = −1 mod squares. If m+ ≥ 3 or m− ≥ 3 then I(X − 1;Q2)
′
=

{X − 1} or I(X + 1;Q2)
′
= {X − 1}, and 2 ∈ ΠFi+,i−(FJ , X − 1) or 2 ∈ ΠFi+,i−(FJ , X + 1) by

Proposition 10.5. Thus X − 1 ∈ J or X + 1 ∈ J , and FJ(1)FJ(−1) = 0. This leads to the
condition (Square) for FJ . Suppose that (m+,m−) = (2, 2), (2, 0) or (0, 2). Note that there is
no g ∈ I1 \ J such that (−1)deg(g)/2g(1)g(−1) 6= 1 nor −3 since otherwise we would have g ∈ J
by Proposition 10.5. This shows that in Q×

2 /Q
×2
2 we have

(−1)deg(F12)/2F12(1)F12(−1)

= (−1)deg(FJ◦ )/2FJ◦(1)FJ◦(−1)×
∏

g∈I1\J

(−1)deg(g)/2g(1)g(−1)× (−1)deg(F2)/2F2(1)F2(−1)

= −
∏

g∈I1\J

(−1)deg(g)/2g(1)g(−1)

∈ {−1, 3}.

Thus

δ+(F ; i+, i−)δ−(F ; i+, i−) = (−1)(m+−i+)/2|F12(1)|(−1)(m+−i+)/2|F12(−1)|
= (−1)nF12(1)F12(−1)

= (−1)(m++m−)/2(−1)deg(F12)/2F12(1)F12(−1)

=

{
1 or − 3 if (m+,m−) = (2, 0) or (0, 2)

−1 or 3 if (m+,m−) = (2, 2)

in Q×
2 /Q

×2
2 , where the second equality is obtained by applying Lemma 9.5 after taking i as in

Proposition 11.2 (ii). Hence, if (m+,m−) = (2, 0) then δ+(F ; i+, i−) 6= −1; if (m+,m−) = (0, 2)
then δ−(F ; i+, i−) 6= −1; and if (m+,m−) = (2, 2) then δ−(F ; i+, i−) 6= −1 or δ−(F ; i+, i−) 6= −1
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in Q×
2 /Q

×2
2 . These imply that X − 1 ∈ I(X − 1;Q2)

′
or X − 1 ∈ I(X + 1;Q2)

′
, and X − 1 ∈ J

or X + 1 ∈ J . Therefore (−1)deg(FJ )/2FJ(1)FJ(−1) = 0, which leads to the condition (Square)
for FJ . The proof is complete. □

Let J± denote the equivalence class in I (with respect to the equivalence relation defined by
(F ; i+, i−)) containing X ∓ 1. If m± = 0 then J± is defined to be the empty set. Note that J+
and J− coincide or have no intersection.

Lemma 11.6. Suppose that m+ 6= 1 and m− 6= 1. Then δ+(FJ+ ; i+, i−) = δ+(F ; i+, i−) and
δ−(FJ− ; i+, i−) = δ−(F ; i+, i−) in Q×/Q×2. As a result, for any equivalence class J in I with
respect to the equivalence relation defined by (F ; i+, i−), the equivalence relation on J = I(FJ ;Q)
defined by (FJ ; i+, i−) is weakest.

Proof. Suppose first that J+ 6= J−. Then F12 = FJ◦
+
FJ◦

−
×
∏
H 6=J+,J− FH × F2, where H ranges

over all equivalence classes other than J+ and J−. Note that |FJ◦
−
(1)| must be a square since

otherwise X−1 would belong to J− by Lemma 11.4, but this contradicts J+ 6= J−. Furthermore
|FH(1)| for H 6= J+, J− and |F2(1)| are also squares by Proposition 11.5 and Lemma 9.2 (ii).
Thus, we obtain

|F12(1)| = |FJ◦
+
(1)||FJ◦

−
(1)| ×

∏
H 6=J+,J−

|FH(1)| × |F2(1)| = |FJ◦
+
(1)| in Q×/Q×2.

If J+ = J− then F12 = FJ◦
+
×
∏
H 6=J+ FH × F2, and it also follows from Proposition 11.5

and Lemma 9.2 (ii) that |F12(1)| = |FJ◦
+
(1)| in Q×/Q×2. Furthermore, the multiplicity of

X − 1 in FJ+ is m+. Hence δ+(FJ+ ; i+, i−) = δ+(F ; i+, i−) in Q×/Q×2. Similarly, we have
δ−(FJ− ; i+, i−) = δ−(F ; i+, i−) in Q×/Q×2.

For the latter assertion, it suffices to check that ΠFJ
i+,i−

(f, g) = ΠFi+,i−(f, g) for any f, g ∈ J . If

f, g /∈ {X−1, X+1} then ΠFJ
i+,i−

(f, g) and ΠFi+,i−(f, g) are equal to Π(f, g) (defined in Notation
10.2), and they coincide. So it is enough to prove this assertion for J+ and J−, but it follows from
the equalities δ+(FJ+ ; i+, i−) = δ+(F ; i+, i−) and δ−(FJ− ; i+, i−) = δ−(F ; i+, i−) in Q×/Q×2,
which we proved above. □

The following lemma is a special case of the main theorem 11.9.

Lemma 11.7. Suppose that m+ 6= 1 andm− 6= 1. Let i+, i− ∈ Z be integers with (39). If J+∪J−
is one equivalence class in I with respect to the equivalence relation defined by (F ; i+, i−) then
there exists i ∈ Idx(n, n;F ) with i(X − 1) ≡ i+ and i(X + 1) ≡ i− mod 4 such that Λn,n admits
a semisimple (F, i)-isometry.

Proof. LetH be an equivalence class in I other than J+ and J−, and put nH = deg(FH)/2. Then
FH satisfies the conditions (Sign)nH ,nH and (Square) by Proposition 11.2 (ii) and Proposition
11.5. Moreover, the equivalence relation on H = I(FH ;Q) defined by (FH ; i+, i−) is weakest by
Lemma 11.6. Let iH ∈ Idx(nH , nH ;FH) be an index map. Theorem 9.27 shows that ΛnH ,nH has
a semisimple (FH , iH)-isometry tH .

Suppose that J := J+ ∪ J− is one equivalence class in I. Then F1 = FJ ×
∏
H 6=J FH , where

H ranges over all equivalence classes other than J . Note that e(FH) = 1 for each H 6= J and
e(F2) = 1 since FH and F2 satisfy the condition (Square). Thus

e(F12) = e(FJ)×
∏
H 6=J

e(FH)× e(F2) = e(FJ). (40)

Furthermore, the multiplicities of X − 1 and X + 1 in FJ are m+ and m− respectively. Hence,
there exists iJ ∈ Idx(nJ , nJ ;FJ) with iJ(X − 1) ≡ i+ and iJ(X + 1) ≡ i− mod 4 by Proposition
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11.2 (ii), where nJ := deg(FJ)/2. Lemma 11.6 and Theorem 9.27 imply that ΛnJ ,nJ has a
semisimple (FJ , iJ)-isometry tJ .

We now define an isometry t on Λn,n = ΛnJ ,nJ ⊕
⊕

H 6=J ΛnH ,nH by t := tJ ⊕
⊕

H 6=J tH , and
define i ∈ Idx(n, n;F ) to be the index of t. Then i(X − 1) ≡ iJ(X − 1) ≡ i+ and i(X + 1) ≡
iJ(X + 1) ≡ i− mod 4. This completes the proof. □

The following proposition is an essential part of the proof of the main theorem.

Proposition 11.8. Let i+, i− ∈ Z be integers with (39). Suppose that m+ = m− = 2. Then
there exists i ∈ Idx(n, n;F ) with i(X − 1) ≡ i+ and i(X + 1) ≡ i− mod 4 such that Λn,n admits
a semisimple (F, i)-isometry.

Proof. If J− ∪ J+ is one equivalence class then we are done by Lemma 11.7. So we assume that
J+ and J− are distinct non-empty equivalence classes. Then |FJ◦

+
(−1)| and |FJ◦

−
(1)| are squares

by Lemma 11.4. Thus, we have

(−1)
deg(FJ◦

+
)/2
FJ◦

+
(1)FJ◦

+
(−1) = e(FJ◦

+
)|FJ◦

+
(1)||FJ◦

+
(−1)| = e(FJ◦

+
)|FJ◦

+
(1)|,

(−1)
deg(FJ◦

−
)/2
FJ◦

−
(1)FJ◦

−
(−1) = e(FJ◦

−
)|FJ◦

−
(1)||FJ◦

−
(−1)| = e(FJ◦

−
)|FJ◦

−
(−1)|

(∗)

in Q×/Q×2. We also have the relation

e(F12) = e(FJ◦
+
)e(FJ◦

−
)×

∏
H 6=J+,J−

e(FH)× e(F2) = e(FJ◦
+
)e(FJ◦

−
)

as in Equation (40).

Case I: e(F12) = 1. We have (e(FJ◦
+
), e(FJ◦

−
)) = (1, 1) or (−1,−1). Furthermore (i+, i−) ≡ (0, 0)

or (2, 2) mod 4 by (39).
Case I-(a): (e(FJ◦

+
), e(FJ◦

−
)) = (1, 1) and (i+, i−) ≡ (0, 0) mod 4. By applying Proposition

11.2 (ii) as F = FJ+ and (i+, i−) = (0, 0), we get iJ+ ∈ Idx(nJ+ , nJ+ ;FJ+) with iJ+(X − 1) = 0.
Similarly, there exists iJ− ∈ Idx(nJ− , nJ− ;FJ−) with iJ−(X + 1) = 0. Then we can obtain the
desired i ∈ Idx(n, n;F ) as in Lemma 11.7.

Case I-(b): (e(FJ◦
+
), e(FJ◦

−
)) = (−1,−1) and (i+, i−) ≡ (2, 2) mod 4. By applying Proposi-

tion 11.2 (ii) as F = FJ+ and (i+, i−) = (2, 0), we get iJ+ ∈ Idx(nJ+ , nJ+ ;FJ+) with iJ+(X−1) =
2. Similarly, there exists iJ− ∈ Idx(nJ− , nJ− ;FJ−) with iJ−(X + 1) = 2. So we are done as in
Case I-(a).

Case I-(c): (e(FJ◦
+
), e(FJ◦

−
)) = (1, 1) and (i+, i−) ≡ (2, 2) mod 4. We show that this case

does not occur. Note that in Q×/Q×2 we have

(−1)
deg(FJ◦

+
)/2
FJ◦

+
(1)FJ◦

+
(−1) = |FJ◦

+
(1)|, (−1)

deg(FJ◦
−
)/2
FJ◦

−
(1)FJ◦

−
(−1) = |FJ◦

−
(−1)|

by (∗) and
δ+(F ; i+, i−) = |FJ◦

+
(1)|, δ−(F ; i+, i−) = |FJ◦

−
(−1)|

by Lemma 11.6. These equations imply that

X − 1 ∈ I(FJ◦
+
;Q2)

′
if |FJ◦

+
(1)| = −1 in Q×

2 /Q
×2
2 ,

X − 1 ∈ I(FJ◦
−
;Q2)

′
if |FJ◦

−
(−1)| = −1 in Q×

2 /Q
×2
2 ,

X − 1 ∈ I(X − 1;Q2)
′

if |FJ◦
+
(1)| 6= −1 in Q×

2 /Q
×2
2 ,

X − 1 ∈ I(X + 1;Q2)
′

if |FJ◦
−
(−1)| 6= −1 in Q×

2 /Q
×2
2
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by Proposition 10.5 (iii) and the definition of the set I(f ;Q2)
′
. Hence, if |FJ◦

+
(1)| = −1 and

|FJ◦
−
(−1)| = −1 in Q×

2 /Q
×2
2 then 2 ∈ ΠFi+,i−(FJ◦

+
, FJ◦

−
), and we would have J+ = J−; if

|FJ◦
+
(1)| = −1 and |FJ◦

−
(−1)| 6= −1 in Q×

2 /Q
×2
2 then 2 ∈ ΠFi+,i−(FJ◦

+
, X + 1), and we would

have J+ = J−; if |FJ◦
+
(1)| 6= −1 and |FJ◦

−
(−1)| = −1 in Q×

2 /Q
×2
2 then 2 ∈ ΠFi+,i−(X − 1, FJ◦

+
),

and we would have J+ = J−; if |FJ◦
+
(1)| 6= −1 and |FJ◦

−
(−1)| 6= −1 in Q×

2 /Q
×2
2 then 2 ∈

ΠFi+,i−(X − 1, X + 1), and we would have J+ = J−. Therefore Case I-(c) does not occur.
Case I-(d): (e(FJ◦

+
), e(FJ◦

−
)) = (−1,−1) and (i+, i−) ≡ (0, 0) mod 4. This case does not

occur for similar reasons to Case I-(c). So we are done in Case I.

Case II: e(F12) = −1. We have (e(FJ◦
+
), e(FJ◦

−
)) = (1,−1) or (−1, 1). Furthermore (i+, i−) ≡

(2, 0) or (0, 2) mod 4 by (39). Hence there are 4 cases; (a) (e(FJ◦
+
), e(FJ◦

−
)) = (1,−1), (i+, i−) ≡

(0, 2); (b) (e(FJ◦
+
), e(FJ◦

−
)) = (−1, 1), (i+, i−) ≡ (2, 0); (c) (e(FJ◦

+
), e(FJ◦

−
)) = (1,−1), (i+, i−) ≡

(2, 0); and (d) (e(FJ◦
+
), e(FJ◦

−
)) = (−1, 1), (i+, i−) ≡ (0, 2). As in Case I, we obtain the desired

i ∈ Idx(n, n;F ) in the cases (a) and (b), and it can be seen that the cases (c) and (d) do not
occur. This completes the proof. □

Theorem 11.9. Let F ∈ Z[X] be a ∗-symmetric polynomial of even degree, and i+, i− ∈ Z
integers with (39). Suppose that m+ 6= 1 and m− 6= 1, where m± is the multiplicity of X ∓ 1
in F . Then there exists i ∈ Idx(n, n;F ) with i(X − 1) ≡ i+ and i(X + 1) ≡ i− mod 4 such that
Λn,n admits a semisimple (F, i)-isometry.

Proof. Suppose first that m+ and m− are odd. Then m+,m− ≥ 3 by the assumption m+,m− 6=
1. Thus ΠFi+,i−(X − 1, X + 1) = Π(X − 1, X + 1) 3 2. This implies that J+ = J−, and Lemma
11.7 leads to the assertion.

Suppose then that m+ and m− are even. If m+ = 0 or m− = 0 then J+ = ∅ or J+ = ∅, and
we arrive at the assertion by Lemma 11.7. Suppose that m+,m− ≥ 2, and put n′± = (m±−2)/2.
Then F can be written as

F (X) = (X − 1)2n
′
+(X + 1)2n

′
−F̃ (X),

where F̃ (X) := (X − 1)2(X + 1)2F12(X). Let Λ′
± and Λ̃ denote the even unimodular lattices

of signatures (n′±, n
′
±) and (ñ, ñ), where ñ := n − n′+ − n′−. By Proposition 11.8, there exists

ĩ ∈ I(ñ, ñ; F̃ ) with ĩ(X − 1) ≡ i+ and ĩ(X + 1) ≡ i− mod 4 such that Λ̃ admits a semisimple
(F̃ , ĩ)-isometry t̃. We now define an isometry t of Λn,n = Λ′

+⊕Λ′
−⊕ Λ̃ by t = idΛ′

+
⊕ (−idΛ′

−
)⊕ t̃.

Then t is a semisimple isometry of Λn,n with characteristic polynomial F . Moreover, if i denotes
the index of t then i(X − 1) ≡ i+ and i(X + 1) ≡ i− mod 4 by the construction of t. This
completes the proof. □

On the question of whether the assumption m+,m− 6= 1 in Theorem 11.9 can be removed,
the author has neither proof nor counterexample. However, it is possible if the polynomial F is
a product of cyclotomic polynomials.

11.2 Cyclotomic case

The aim of this subsection is to show the following theorem, which removes the assumption on
m+ and m− in Theorem 11.9 by assuming that F is a product of cyclotomic polynomials.

Theorem 11.10. Let F ∈ Z[X] be a product of cyclotomic polynomials. Assume that deg(F )
is even, say 2n. Let i+, i− ∈ Z be integers with (39). Then there exists i ∈ Idx(n, n;F ) with
i(X − 1) ≡ i+ and i(X + 1) ≡ i− mod 4 such that Λn,n admits a semisimple (F, i)-isometry.
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In the following, we assume that F is a product of cyclotomic polynomials of degree 2n.
For a map i : I(F ;R) → Z and a factor f ∈ I1(F ;Q) of F in Q[X], we write i(f) for the sum∑

g∈I1(f ;R) i(g) (although it may be a slight abuse of notation).

Lemma 11.11. Let r, s ∈ Z≥0 be non-negative integers with r + s = 2n. Suppose that F
satisfies the condition (Sign)r,s. Let j ∈ Idx(r, s;F ) be an index map, and let f ∈ I1(F ;Q) be a
+1-symmetric irreducible factor of F other than X + 1.

(i) If j(f) < deg(fmf ) then F satisfies the condition (Sign)r+2,s−2 and there exists i ∈ Idx(r+
2, s− 2;F ) such that

i(h) =

{
j(h) + 4 if h = f

j(h) if h 6= f
for h ∈ I(F ;Q).

(ii) If j(f) > − deg(fmf ) then F satisfies the condition (Sign)r−2,s+2 and there exists i ∈
Idx(r − 2, s+ 2;F ) such that

i(h) =

{
j(h)− 4 if h = f

j(h) if h 6= f
for h ∈ I(F ;Q).

Proof. We remark that f is a cyclotomic polynomial other than X − 1 and X + 1. This means
that f is of type 1 over R. In other words, it can be written as f =

∏
g∈I1(f ;R) g. The multiplicity

of each g ∈ I1(f ;R) in F is mf . We prove the assertion (i). It is enough to show the existence
of i by Corollary 7.29. Suppose that j(f) < deg(fmf ). Then there exists g0 ∈ I(f ;R) such that
j(g0) < deg(g

mf

0 ). Noting that j(g0) ≡ deg(g
mf

0 ) mod 4 by (28), we get j(g0) ≥ deg(g
mf

0 ) − 4.
Thus, the map i : I(F ;R) → Z defined by

i(g) =

{
j(g) + 4 if g = g0

j(g) if g 6= g0
for g ∈ I(F ;R)

satisfies the conditions (27) and (28). Furthermore∑
g∈I(F ;R)

i(g) = r − s+ 4 = (r + 2)− (s− 2).

These mean that the map i belongs to Idx(r+2, s− 2;F ), and it is the desired index map. The
assertion (ii) is obtained similarly. □

In the situation of this lemma, we have

η∞(i)(f) 6= η∞(j)(f) and η∞(i)(h) = η∞(j)(h) for all h ∈ I(F ;Q) \ {f}

by (37).

Proposition 11.12. Suppose that the multiplicities of X − 1 and X +1 in F are 1. Then Λn,n
admits a semisimple isometry with characteristic polynomial F .

Proof. We can write

F (X) = (X − 1)(X + 1)f1(X)m1f2(X)m2 · · · fl(X)ml ,

where f1, . . . , fl are distinct cyclotomic polynomials and m1, . . . ,ml are positive integers. Let
i ∈ Idx(n, n;F ) be an index map, and take βi = {bi} ∪ {bp}p∈V\{∞} ∈ Bi. The following claim is
essential.
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Claim: If η(βi) 6= 0 then there exists j ∈ Idx(n, n;F ) and βj ∈ Bj such that j(X − 1) = i(X −
1), j(X+1) = i(X+1) and Supp(η(βj)) ⊊ Supp(η(βi)). Suppose that η(βi) 6= 0. Since η(βi)(X−
1) = 0 and η(βi)(X + 1) = 0 as in the proof of Theorem 9.28, and η(βi) · 1I = 0 by Proposition
9.23, there exist k, k′ ∈ {1, . . . , l} such that η(βi)(fk) = η(βi)(fk′) = 1. We assume k = 1 and
k′ = 2 without loss of generality. Note that we have |i(f1) + i(f2)| ≤ deg(fm1

1 ) + deg(fm2
2 ) and

the equality holds if and only if one of the following two conditions holds:

i(f1) = deg(fm1
1 ) and i(f2) = deg(fm2

2 ), (41)

i(f1) = − deg(fm1
1 ) and i(f2) = − deg(fm2

2 ). (42)

Case I: |i(f1) + i(f2)| < deg(fm1
1 ) + deg(fm2

2 ). We may assume that i(f1) < deg(fm1
1 ). If

i(f2) > − deg(fm2
2 ) then it can be seen that there exists j ∈ Idx(n, n;F ) such that

j(h) =


i(h) + 4 if h = f1

i(h)− 4 if h = f2

i(h) if h 6= f1, f2

(h ∈ I(F ;Q))

by using Lemma 11.11 twice. We now define a family βj of inner products by βj := {bj} ∪
{bp}p∈V\{∞}, where bj is an inner product on M∞ such that idxbjα = j. Then βj belongs to Bj.
Moreover, we have

η(βj)(h)− η(βi)(h) = η∞(j)(h)− η∞(i)(h) =

{
1 if h = f1, f2

0 if h 6= f1, f2

by (37). Hence Supp(η(βj)) = Supp(η(βi)) \ {f1, f2} ⊊ Supp(η(βi)) as required. If i(f2) =
− deg(fm2

2 ) then i(f1) > − deg(fm1
1 ) by the assumption |i(f1) + i(f2)| < deg(fm1

1 ) + deg(fm2
2 ).

In this case, there exists j ∈ Idx(n, n;F ) such that

j(h) =


i(h)− 4 if h = f1

i(h) + 4 if h = f2

i(h) if h 6= f1, f2

(h ∈ I(F ;Q))

by Lemma 11.11. Hence, as above, we obtain Supp(η(βj)) ⊊ Supp(η(βi)) for βj := {bj}∪{bp}p ∈
Bj.

Case II: |i(f1) + i(f2)| = deg(fm1
1 ) + deg(fm2

2 ) and (41) holds. In this case, we remark that if

there exists i ≥ 3 such that i(fi) ≤ −2 and deg(fmi
i ) ≥ 4 (?)

then we arrive at Claim. Indeed, if (?) holds then it can be shown that there exists j ∈
Idx(n, n;F ) such that

j(h) =


i(h)− 4 if h = f1, f2

i(h) + 8 if h = fi

i(h) if h 6= f1, f2, fi

(h ∈ I(F ;Q))

by using Lemma 11.11 repeatedly. Therefore, as in Case I, we obtain Supp(η(βj)) = Supp(η(βi))\
{f1, f2} ⊊ Supp(η(βi)) for βj := {bj} ∪ {bp}p ∈ Bj. We also remark that∑l

i=3 i(fi) = −(i(X − 1) + i(X + 1))− (i(f1) + i(f2))

≤ 2− (deg(fm1
1 ) + deg(fm2

2 )) (43)

153



by the assumption (41).

Case II-(a): deg(fm1
1 ) + deg(fm2

2 ) ≥ 10. It follows from equation (43) that
∑l

i=3 i(fi) ≤ −8.
Because the number of cyclotomic polynomials of degree 2 is three (that is, Φ3,Φ4 and Φ6), the
inequality

∑l
i=3 i(f) ≤ −8 shows that (?) holds. Thus we are done.

Case II-(b): deg(fm1
1 ) + deg(fm2

2 ) = 8. It follows from equation (43) that
∑l

i=3 i(fi) ≤ −6.
If deg(fm1

1 ) = 2 or deg(fm2
1 ) = 2 then the number of cyclotomic polynomials of degree 2 which

are contained in {fi | i = 3, . . . , l} is at most two. Thus, the inequality
∑l

i=3 i(fi) ≤ −6 leads to
(?) as in Case II-(a). Suppose that deg(fm1

1 ) = deg(fm2
2 ) = 4 and (?) does not hold. In this case,

we have l = 5, {f3, f4, f5} = {Φ3,Φ4,Φ6}, m3 = m4 = m5 = 1, and i(Φ3) = i(Φ4) = i(Φ6) = −2.
By Lemma 11.11, we can take j ∈ Idx(n, n;F ) such that

j(h) =


i(h)− 4 if h = f1, f2

i(h) + 4 if h = Φ3,Φ6

i(h) if h 6= f1, f2,Φ3,Φ6

(h ∈ I(F ;Q))

We define β′j := {bj}∪{bp}p ∈ Bj. Because Π
F
j (Φ3,Φ6) = Π(Φ3,Φ6) = {2} 6= ∅ by Theorem 10.9,

there exists βj ∈ Bj such that η(βj) = η(β′j) + 1{Φ3,Φ6} by Proposition 9.16. This is the desired
family because Supp(η(βj)) = Supp(η(βi)) \ {f1, f2}.

Case II-(c): deg(fm1
1 ) + deg(fm2

2 ) = 6. We assume that deg(fm1
1 ) = 2 and deg(fm2

2 ) = 4
without loss of generality, and suppose that (?) does not hold. Then l = 4, m3 = m4 = 1,
deg(f3) = deg(f4) = 2, and i(f3) = i(f4) = −2. Note that {f1, f3, f4} = {Φ3,Φ4,Φ6}. If f1 = Φ4

then {f3, f4} = {Φ3,Φ6}, and we can obtain the desired index map j ∈ Idx(n, n;F ) and family
βj ∈ Bj as in Case II-(b). Suppose that f1 6= Φ4. We may assume that {f1, f3} = {Φ3,Φ6}.
Since η(βi)(X − 1) = η(βi)(X + 1) = 0 and η(βi)(f1) = η(βi)(f2) = 1, one of the following two
cases occurs by Proposition 9.23: (i) η(βi)(f3) = η(βi)(f4) = 1; or (ii) η(βi)(f3) = η(βi)(f4) = 0.
Note that ΠFi (f1, f3) = Π(Φ3,Φ6) = {2}. Then, there exists a family β′i = {b′v}v∈V ∈ Bi such
that η(β′i) = η(βi) + 1{f1,f3} by Proposition 9.16. In the case (i), this is the desired family
because Supp(η(β′i)) = {f2, f4} ⊊ {f1, f2, f3, f4} = Supp(η(βi)). In the case (ii), there exists
j ∈ Idx(n, n;F ) such that

j(h) =


i(h)− 4 if h = f2

i(h) + 4 if h = f4

i(h) if h 6= f2, f4

(h ∈ I(F ;Q))

by Lemma 11.11. We define βj := {bj} ∪ {b′p}p ∈ Bj. Then Supp(η(βj)) = ∅ since Supp(η(β′i)) =
{f2, f4}. Hence we are done.

Case II-(d): deg(fm1
1 ) + deg(fm2

2 ) = 4. This case is similar to Case II-(c). We have m1 =
m2 = 1 and deg(f1) = deg(f2) = 2. Suppose that (?) does not hold. Then l = 3, m3 = 1,
deg(f3) = 2, and i(f3) = −2. Thus {f1, f2, f3} = {Φ3,Φ4,Φ6}, and moreover we have η(β)(f3) =
0 by Proposition 9.23. If {f1, f2} = {Φ3,Φ6} then a family β′i ∈ Bi with η(β

′
i) = η(βi) + 1{f1,f2}

is the desired one. Suppose that {f1, f2} 6= {Φ3,Φ6}. We may assume {f1, f3} = {Φ3,Φ6}. Let
β′i = {b′v}v∈V ∈ Bi be a family with η(β′i) = η(βi) + 1{f1,f3}, and define βj := {bj} ∪ {b′p}p ∈ Bj,
where j ∈ Idx(n, n;F ) is an index map satisfying

j(h) =


i(h)− 4 if h = f2

i(h) + 4 if h = f3

i(h) if h 6= f2, f3

(h ∈ I(F ;Q)).

Then Supp η(βj) = ∅, and we are done.
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Case III: |i(f1)+ i(f2)| = deg(fm1
1 )+deg(fm2

2 ) and (42) holds. In this case, Claim can be shown
as in Case II. The proof of Claim is complete.

By applying Claim repeatedly, we obtain j ∈ Idx(n, n;F ) and βj ∈ Bj such that j(X − 1) =
i(X − 1), j(X + 1) = i(X + 1) and η(βj) = 0. This means that Λn,n admits a semisimple
(F, j)-isometry by Theorem 9.25. The proof is complete. □

Proof of Theorem 11.10. If m+ and m− are even then the theorem follows from Theorem 11.9.
Suppose that m+ and m− are odd, and put n′± = (m± − 1)/2. Then F can be written as

F (X) = (X − 1)2n
′
+(X + 1)2n

′
−F̃ (X), where F̃ (X) = (X − 1)(X + 1)F12(X). Let Λ′

± and Λ̃
denote the even unimodular lattices of signatures (n′±, n

′
±) and (ñ, ñ), where ñ := n− n+ − n−.

By Proposition 11.12, there exists a semisimple isometry t̃ of Λ̃ with characteristic polynomial
F . Let b̃ denote the inner product of the lattice Λ̃. Note that (Λ̃,−b̃) is also an even unimodular

lattice of signature (ñ, ñ), and t̃ is a semisimple (F, −̃i)-isometry of (Λ̃,−b̃), where ĩ := idxb̃
t̃
.

Suppose that e(F12) = 1. Since ĩ(X − 1) ≡ ĩ(X + 1) ≡ 1 mod 2 by Proposition 7.24 and
ĩ(X − 1) + ĩ(X + 1) ≡ 0 mod 4 by Proposition 11.2 (i), we have (̃i(X − 1), ĩ(X + 1)) ≡ (1,−1)
or (−1, 1) mod 4. Similarly, we have (i+, i−) ≡ (1,−1) or (−1, 1) mod 4 by the assumption
(39). Hence, we assume without loss of generality that (̃i(X − 1), ĩ(X + 1)) ≡ (i+, i−) mod 4
by replacing b̃ by −b̃ if necessary. We now define an isometry t of Λn,n = Λ′

+ ⊕ Λ′
− ⊕ Λ̃ by

t := idΛ′
+
⊕ (−idΛ′

−
)⊕ t̃. Then t is a semisimple isometry of Λn,n with characteristic polynomial

F , and its index is the desired index map by construction. In the case e(F12) = −1, we can
obtain the desired index map similarly. The proof is complete. □
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Chapter IV

Automorphisms of K3 surfaces

12 K3 surfaces

This section gives a minimal explanation of K3 surfaces to describe the relationship between
automorphisms of K3 surfaces and isometries of a K3 lattice, assuming knowledge of complex
manifolds. We refer to [47] for complex manifolds, and [2] and [23] for more details on K3
surfaces.

12.1 Preliminaries

Before describing K3 surfaces, we make some preliminaries independent of complex manifold
theory.

Primitive submodules Let Λ be a finitely generated free Z-module. A submodule N of Λ
is said to be primitive in Λ if the quotient Λ/N is torsion-free.

Lemma 12.1. Let K be a subfield of C, and let W be a K-subspace of Λ ⊗ K. Then the
intersection Λ ∩W is primitive in Λ.

Proof. Let x ∈ Λ be a nonzero element, and suppose that nx ∈ Λ ∩W for some n ∈ Z>0. Then
x = n−1(nx) ∈W , and x ∈ Λ ∩W . This means that Λ/(Λ ∩W ) is torsion-free. □

For a submodule N of Λ, we write Q · N or just QN for the Q-span of N in Λ ⊗ Q. A
submodule N is primitive in Λ if and only if N = QN ∩ Λ. Note that if Λ is equipped with an
inner product b : Λ× Λ → Q then we have Q ·N⊥ = (QN)⊥ in Λ⊗Q.

Proposition 12.2. Let N be a submodule of Λ, and suppose that Λ is equipped with an inner
product b : Λ× Λ → Q.

(i) N⊥ = {y ∈ Λ | b(y, x) = 0 for all x ∈ N} is primitive.

(ii) If N is primitive then N⊥⊥ = N .

Proof. (i). The submodule N⊥ is the intersection of Λ and the Q-subspace {y ∈ Λ⊗Q | b(y, x) =
0 for all x ∈ N} of Λ⊗Q. Thus, it is primitive by Lemma 12.1.

(ii). Since N⊥⊥ is primitive by (i), we have N⊥⊥ = Q ·N⊥⊥ ∩ Λ. Furthermore Q ·N⊥⊥ =
(Q ·N⊥)⊥ = (Q ·N)⊥⊥ = Q ·N . Hence N⊥⊥ = Q ·N⊥⊥∩Λ = QN ∩Λ = N if N is primitive. □
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Weyl groups Let (Λ, b) be an even lattice of signature (3, n), where n ∈ Z>0. We consider
that the Euclidean topology is given on the R-vector space ΛR := Λ ⊗ R. The innner product
obtained by extending b linearly on ΛR is also denoted by b. Let E be a nondegenerate subspace
of ΛR of signature (2, 0), and put V = E⊥ ⊂ ΛR. Since V is of signature (1, n), the cone
{x ∈ V | b(x, x) > 0} has exactly two connected components. Let us fix one component C+

arbitrarily, and refer to it as the positive cone. The rest component is given by −C+. Note that
any isometry of V maps C+ onto C+ itself or onto −C+.

Put ∆ = {r ∈ Λ ∩ V | b(r, r) = −2}. This set may be infinite, or empty. For r ∈ ∆, the
hyperplane Hr := (Rr)⊥V in V orthogonal to r ∈ ∆ has signature (1, n − 1). This implies that
the intersection of Hr and C+ is not empty. Thus, the reflection orthogonal to r ∈ ∆ preserves
C+ since it fix a point of Hr ∩ C+. The subgroup W of O(Λ) ∩ O(V ) ⊂ O(ΛR) generated
by reflections orthogonal to vectors in ∆ is called the Weyl group with respective to ∆. Any
isometry in the Weyl group preserves C+ since so does each reflection.

In this situation, it can be shown that the action of W on C+ is properly discontinuous, see
[23, Lemma 2.12]. This implies that the family {Hr}r∈∆ is locally finite in C+, and the union⋃
r∈∆Hr is a closed set in C+, see Lemma 2.5 and Corollary 2.6 of [23]. A connected component

of C+ \
⋃
r∈∆Hr is called a chamber. If y is a point in C+ \

⋃
r∈∆Hr and K is the chamber

containing y, by letting ∆+ = {r ∈ ∆ | b(y, r) > 0}, this chamber can be written as

K = {x ∈ C+ | b(x, r) > 0 for all r ∈ ∆+}.

The following fact will be needed.

Theorem 12.3. Let K be a chamber in C+.

(i) C+ \
⋃
r∈∆Hr =

⋃
w∈W w(K ).

(ii) If w ∈ W satisfies w(K ) = K then w = id.

Namely, the Weyl group acts simply transitively on the set of chambers.

Proof. See [23, Theorem 2.9]. □

12.2 Basic facts

For a complex manifold Σ, the l-th singular cohomology group with coefficients in a ring R is
denoted by H l(Σ, R). In the case R = R or C, singular cohomology groups are often identified
with de Rham cohomology groups. Furthermore H i,j(Σ) denote the Dolbeault cohomology
group. We call a 2-dimensional manifold a surface.

Definition 12.4. A K3 surface is a compact complex surface Σ such that its canonical bundle
is trivial and dimC(H

0,1(Σ)) = 0.

A nonsingular quartic surface in the projective space P3 is a K3 surface, see [23, Example
4.1]. A K3 surface can be nonprojective. By Siu [43], it is shown that every K3 surface is Kähler.

In the following, Σ is a K3 surface. Since the canonical bundle is trivial, there exists a
nowhere vanishing holomorphic 2-form ωΣ, and it is unique up to scalar multiplication. We
have H2,0(Σ) = CωΣ, where we also use the symbol ωΣ for its cohomology class. Let 〈 · , · 〉 :
H2(Σ,Z) × H2(Σ,Z) → Z denote the intersection form, that is, the symmetric bilinear form
defined by the evaluation of the cup product on the fundamental class.

Theorem 12.5. Let Σ be a K3 surface. Then H2(Σ,Z) is a free Z-module of rank 22. Moreover,
the intersection form makes H2(Σ,Z) an even unimodular lattice of signature (3, 19).
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Proof. See [23, Theorem 4.5]. □

For any subfield K of C, we identify H2(Σ,Z) ⊗ K with H2(Σ,K) naturally and regard
H2(Σ,Z) as a submodule of H2(Σ,K). If K ⊂ L ⊂ C then we consider that H2(Σ,K) ⊂
H2(Σ, L) ⊂ H2(Σ,C). Furthermore H2(Σ,R) is regarded as the real part of H2(Σ,C). The
intersection form is extended linearly on H2(Σ,C), which is denoted by 〈 · , · 〉 again. Let ·̄ :
H2(Σ,C) → H2(Σ,C) denote the complex conjugate. Because 〈ωΣ, ωΣ〉 =

∫
Σ ωΣ ∧ ωΣ and

〈ωΣ, ωΣ〉 =
∫
Σ ωΣ ∧ ωΣ, we have

〈ωΣ, ωΣ〉 = 0 and 〈ωΣ, ωΣ〉 > 0. (44)

These equations are called the Riemann condition. Let E ⊂ H2(Σ,R) denote the real part of
H2,0(Σ,C)⊕H0,2(Σ,C) = CωΣ⊕CωΣ, which is generated by (ωΣ+ωΣ)/2 and (ωΣ−ωΣ)/2

√
−1.

The Riemann condition (44) means that E is of signature (2, 0) (with respect to the intersection
form).

Since Σ is Kähler as mentioned before, it follows from Hodge theory that the cohomology
group H2(Σ,C) decomposes as

H2(Σ,C) = H2,0(Σ)⊕H1,1(Σ)⊕H0,2(Σ)

(the Hodge decomposition), and H1,1(Σ) is orthogonal to the 2-dimensional subspace H2,0(Σ)⊕
H0,2(Σ). Let H1,1

R (Σ) denote the real part of H1,1(Σ). Then, the decomposition H2(Σ,R) =

H1,1
R (Σ) ⊕ E is an orthogonal direct sum decomposition. The signature of H1,1

R (Σ) is (1, 19)
since H2(Σ,R) and E have signature (3, 19) and (2, 0) respectively. The submodule PΣ :=
H2(Σ,Z)∩H1,1

R (Σ) ofH2(Σ,Z) is called the Picard lattice or Néron-Severi lattice. The restriction
of the intersection form on the Picard lattice can be degenerate, though we call it the Picard
‘lattice’.

As in the latter part of §12.1, the cone {x ∈ H1,1
R (Σ) | 〈x, x〉 > 0} has exactly two connected

components since H1,1
R (Σ) is of signature (1, 19). The one containing a Kähler class is called

the positive cone and deonted by C+
Σ . Put ∆Σ = {r ∈ PΣ | 〈r, r〉 = −2} and ∆+

Σ = {r ∈ ∆Σ |
r is effective}. Here, a cohomology class r ∈ PΣ is effective if it is the first Chern class of the
line bundle defined by an effective divisor. Then ∆Σ is decomposed as ∆Σ = ∆+

Σ t −∆+
Σ (see

[23, Lemma 4.16]), and

KΣ := {x ∈ C+
Σ | 〈x, r〉 > 0 for all r ∈ ∆+

Σ}

is a chamber in C+
Σ . We refer to this chamber as the Kähler cone of Σ. It is known that the

every point in the Kähler cone is a Kähler class, see Definition 4.17 and Theorem 7.5 of [23].
We close this subsection with a criterion for projectivity of a K3 surface in terms of the

Picard lattice. The following general result for compact complex surfaces is known.

Theorem 12.6. A compact complex surface Σ is projective if and only if there exists x ∈
H2(Σ,Z) ∩H1,1(Σ) such that 〈x, x〉 > 0, where 〈 · , · 〉 is the intersection form.

Proof. The Lefschetz theorem on (1, 1)-classes (see [2, Chapter IV, Theorem 2.13]) means that
PΣ = {c1(L) | L is a line bundle on Σ}, where c1(L) is the first Chern class of L. Then the
theorem follows from [2, Chapter IV, Theorem 6.2]. □

Corollary 12.7. A K3 surface Σ is projective if and only if the Picard lattice PΣ is nondegen-
erate and has signature (1, rk(PΣ)− 1).

Proof. This follows from Theorem 12.6 by noting that the Picard lattice PΣ of a K3 surface Σ
is contained in the space H1,1

R (Σ) of signature (1, 19). □
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12.3 Torelli theorem and surjectivity of the period mapping

For an isomorphism φ : Σ′ → Σ of K3 surfaces, we use the same symbol φ∗ for the induced
homomorphisms H2(Σ,Z) → H2(Σ′,Z) and H2(Σ,C) → H2(Σ′,C). It preserves structures
on the cohomology groups mentioned in §12.2. Namely, φ∗ is an isometry (with respect to
intersection forms), φ∗(CωΣ) = CωΣ′ , and φ∗(KΣ) = KΣ′ . The Torelli theorem states that such
an isometry between cohomology groups comes from an isomorphism between K3 surfaces.

Theorem 12.8 (Torelli theorem for K3 surfaces). Let Σ,Σ′ be K3 surfaces. Suppose that there
exists an isometry t : H2(Σ,Z) → H2(Σ′,Z) with t(ωΣ) ∈ CωΣ′ and t(KΣ) = KΣ′. Then there
exists a unique isomorphism φ : Σ′ → Σ of complex manifolds such that φ∗ = t.

Proof. See [23, Theorem 6.1]. □

We explain the period mapping of K3 surfaces.

Definition 12.9. A K3 lattice is an even unimodular lattice of signature (3, 19). Such a lattice
is unique up to isomorphism (Theorem 5.25).

As seen in §12.2, the second cohomology group of any K3 surface is a K3 lattice with the
intersection form. In the following, we fix a K3 lattice (Λ, b). For a nonzero vector ω ∈ ΛC :=
Λ ⊗ C, we write [ω] for its image under the projection ΛC \ {0} → P(ΛC), where P(ΛC) is the
projective space. The symbol b also denotes the inner product b⊗ C on ΛC. The set

ΩK3 := {[ω] ∈ P(ΛC) | b(ω, ω) = 0 and b(ω, ω) > 0}

is called the period domain of K3 surfaces. If Σ is a K3 surface and τΣ : H2(Σ,Z) → Λ is a
lattice isometry, then the Riemann condition (44) means that [τΣ(ωΣ)] belongs to ΩK3.

Definition 12.10. A marked K3 surface is a pair (Σ, τΣ) consisting of a K3 surface Σ and a
lattice isometry τΣ : H2(Σ,Z) → Λ. Two marked K3 surfaces (Σ, τΣ) and (Σ′, τΣ′) are isomorphic
if there exists an isomorphism φ : Σ′ → Σ such that τΣ = τΣ′ ◦ φ∗. Let M denote the set of
isomorphism classes of marked K3 surfaces. The map M → ΩK3 defined by sending a marked
K3 surface (Σ, τΣ) to [τΣ(ωΣ)] ∈ ΩK3 is called the period mapping of marked K3 surfaces.

Theorem 12.11 (Surjectivity of the period mapping). The period mapping is surjective. In
other words, for any [ω] ∈ ΩK3, there exists a marked K3 surface (Σ, τΣ) such that [τΣ(ωΣ)] = [ω].

Proof. See Theorem 6.9 and Section 7 of [23]. □

Definition 12.12. We refer to a vector ω ∈ ΛC with [ω] ∈ ΩK3 as a Hodge vector. An isometry
t of Λ is called a Hodge isometry with respect to a Hodge vector ω if [t(ω)] = [ω], i.e., if ω is an
eigenvector of t.

By using a Hodge vector, we introduce a Kähler cone for Λ formally as a chamber. Let
ω ∈ ΛC be a Hodge vector. Let H2,0, H0,2, and H1,1 be subspaces of ΛC defined as

H2,0 = Cω, H0,2 = Cω, H1,1 = (H2,0 +H0,2)⊥.

Then ΛC decomposes as ΛC = H2,0 ⊕H1,1 ⊕H0,2, and the real part H1,1
R of H1,1 is of signature

(1, 19). Let C+ be the positive cone, that is, one of two connected components of {x ∈ H1,1
R |

b(x, x) > 0} chosen arbitrarily. Put P = Λ ∩ H1,1
R and ∆ = {r ∈ P | b(r, r) = −2}. The

submodule P ⊂ Λ will be referred to as the Picard lattice of Λ (with respect to ω), and the Weyl
group with respect to ∆ will be referred to as the Weyl group of Λ determined by ω, which is
in fact determined by the class [ω]. As mentioned in the latter part of §12.1, the hyperplanes
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orthogonal to vectors in ∆ partition C+ into chambers. If we fix a chamber K , this chamber
is called the Kähler cone for Λ. Note that we make the choice of the positive cone C+ when we
fix a Kähler cone K .

Let us fix a Hodge vector ω and Kähler cone K for Λ. By Theorem 12.11, there exists a
marked K3 surface (Σ, τ ′Σ) with [τ ′Σ(ωΣ)] = [ω] in P(ΛC). Then, the positive cone C+

Σ is mapped
onto C+ or −C+ under τ ′Σ, since τ

′
Σ is an isometry. Put τ ′′Σ = −τ ′Σ if τ ′Σ(C

+
Σ ) = −C+ and

τ ′′Σ = τ ′Σ if τ ′Σ(C
+
Σ ) = C+. Then τ ′′Σ(C

+
Σ ) = C+, and the Kähler cone KΣ is mapped onto a

chamber K ′ in C+ under τ ′′Σ. Since the Weyl group W of Λ determined by ω acts transitivity
on the set of chambers by Theorem 12.3, there exists w ∈ W such that w(K ′) = K . We have
w(ω) = ω since w is a composition of reflections orthogonal to vectors in H1,1

R . Put τΣ = w ◦ τ ′′Σ.
Then the marked K3 surface (Σ, τΣ) has the condition

[τΣ(ωΣ)] = [ω] and τΣ(KΣ) = K .

This means that, in Theorem 12.11, a marked K3 surface (Σ, τΣ) can be chosen to have this
condition for any Hodge vector ω and Kähler cone K .

Theorem 12.13. Let Λ be a K3 lattice, ω ∈ ΛC a Hodge vector, and K a Kähler cone for Λ.
Let t be a Hodge isometry with respect to ω that preserves the Kähler cone K . Then there exists
a marked K3 surface (Σ, τΣ) and automorphism φ of Σ such that τΣ(ωΣ) ∈ Cω, τΣ(KΣ) = K ,
and φ∗ = τ−1

Σ ◦ t ◦ τΣ.

Proof. As explained now, there exists a marked K3 surface (Σ, τΣ) such that τΣ(ωΣ) = Cω and
τΣ(KΣ) = K . Then τ−1

Σ ◦ t ◦ τΣ preserves the vector ωΣ up to constant and the Kähler cone
KΣ. Hence, there exists an automorphism φ : Σ → Σ such that φ∗ = τ−1

Σ ◦ t ◦ τΣ by the Torelli
theorem 12.8. This completes the proof. □

13 Dynamical degrees of K3 surface automorphisms

In this section, we deal with the problem of which number can be realized as the dynamical
degree of an automorphism of a K3 surface. The main idea is to reduce this problem to the
problem of lattice isometries by Theorem 12.13, and use results established in Chapter III.

13.1 Salem numbers and Salem polynomials

This subsection gives a brief description of Salem numbers and Salem polynomials. We refer to
[38] and [44] for more detail.

Definition 13.1. A real algebraic integer β > 1 is called a Salem number if it is conjugate
to β−1 and all of its conjugates other than β and β−1 have absolute value 1. The minimal
polynomial of a Salem number over Q is called a Salem polynomial.

Any Salem number is a unit since its inverse is also an algebraic integer by definition. A
Salem number can be characterized as a real algebraic unit β > 1 such that all of its conjugates
other than β and β−1 have absolute value 1 (β is assumed to be a unit, and the condition that
β is conjugate to β−1 is dropped). Indeed, if such a real algebraic unit β were not conjugate
to β−1 then the product of all conjugates of β, the constant term of its minimal polynomial or
−1 times that value, would have absolute value greater than 1. However, this is a contradiction
since β is unit. Hence β is conjugate to β−1, and it is a Salem number. In the following, the
unit circle in C is denoted by T.

Proposition 13.2. Every Salem polynomial is a +1-symmetric irreducible polynomial of even
degree.
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Proof. Let β be a Salem number, and S its minimal polynomial. It is clear that S is irreducible.
If β has no conjugate other than β−1 then S(X) = X2 − (β + β−1)X + 1, and we are done.
Suppose that β has a conjugate δ ∈ T other than β−1. Let L be the Galois closure of Q(β)/Q,
and σ ∈ Gal(L/Q) be an automorphism with σ(β) = δ. Then δ−1 is also a conjugate of β since
σ(β−1) = σ(β)−1 = δ−1. Furthermore δ 6= δ−1 since δ 6= 1,−1. Hence, the set of roots of S is of
the form {β, β−1, δ1, δ

−1
1 , . . . , δn−1, δ

−1
n−1}, where δ1, . . . , δn−1 ∈ T \ {1,−1}. This means that S

can be written as S(X) = (X2 − (β + β−1)X + 1)×
∏n−1
j=1 (X

2 − (δj + δ−1
j )X + 1). Therefore S

is +1-symmetric and of even degree. □

Remark 13.3. Sometimes, a Salem number is assumed to have degree at least 4, or equivalently,
assumed to have at least one conjugate on the unit circle T. In this case, it coincides with
Salem’s definition ([38, p.26]). However, as in [25], it will be useful to allow Salem numbers of
degree 2 in our context.

For any even number d, there exist infinitely many Salem numbers of degree d, see e.g. [18,
§7]. On the other hand, for a positive integer d and a positive real number r, there are at
most finitely many Salem numbers of degree d smaller than r, because the coefficients of the
minimal polynomials of such Salem numbers are bounded. Hence, one can speak of the i-th
smallest Salem number of degree d. In his website [31], Mossinghoff gives a complete list of
Salem numbers of small degrees, below certain bounds. The smallest Salem number of degree
10 is called Lehmer’s number, and it is the smallest known Salem number.

Let S be a Salem polynomial. By Proposition 13.2, there is the trace polynomial R of S
(see Definition 7.11). Because T \ {1,−1} is mapped two-to-one onto the interval (−2, 2) under
the function C → C, x 7→ x + x−1, all roots of R except for β + β−1 > 2 lie on (−2, 2). By
considering the graph of R, the value S(1) = R(2) is always negative. The following lemma will
be needed.

Lemma 13.4. Let S be a Salem polynomial of degree d.

(i) If d ≡ 0 mod 4 then S does not satisfy the condition (Square).

(ii) Suppose that d ≡ 2 mod 4. Then S satisfies the condition (Square) if |S(1)| and |S(−1)|
are squares.

Proof. Put n = d/2, and let R be the trace polynomial of S. By consider the graph of R, the
value (−1)nS(1)S(−1) = R(2)R(−2) is negative if d ≡ 0 mod 4, and positive if d ≡ 2 mod 4. In
particular, if d ≡ 0 mod 4 then (−1)nS(1)S(−1) cannot be a square. This shows the assertion
(i). Suppose that d ≡ 2 mod 4. Then (−1)nS(1)S(−1) = |(−1)nS(1)S(−1)| = |S(1)||S(−1)|.
Hence, if |S(1)| and |S(−1)| are squares then so is (−1)nS(1)S(−1). This shows the assertion
(ii). □

13.2 Dynamical degrees

Here, we discuss dynamical degrees of K3 surface automorphisms.

Definition 13.5. Let Σ be a conpact complex surface, and φ an automorphism of Σ.

(i) The (first) dynamical degree of φ, denoted d(φ), is the spectral radius of the induced
homomorphism φ∗ : H2(X,C) → H2(X,C), that is,

d(φ) = max{|µ| | µ ∈ C is an eigenvalue of φ∗ : H2(X,C) → H2(X,C)}.

(ii) If Σ is a K3 surface, then there exists a complex number δ such that φ∗ωΣ = δωΣ since
φ∗ωΣ is again a nowhere vanishing holomorphic 2-form. This complex number δ is called
the determinant of φ.
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Remark 13.6. It is known as the Gromov–Yomdin theorem that the topological entropy of an
automorphism φ of a compact Kähler manifold Σ of dimension n is given by the logarithm of
the spectral radius of the induced homomorphism φ∗ :

⊕2n
i=0H

i(Σ,R) →
⊕2n

i=0H
i(Σ,R), see

[15, Theorem 2.1]. As a result, if Σ is a compact Kähler surface then the topological entropy
is given by log d(φ). By S. Cantat, it is shown that if a compact complex surface Σ admits an
automorphism with positive entropy then Σ is a torus, a K3 surface, an Enriques surface, or a
rational surface, see [12, Proposition 1].

Note that the determinant δ of a K3 surface automorphism φ lies on the unit circle T because
we have

〈ωΣ, ωΣ〉 = 〈φ∗(ωΣ), φ
∗(ωΣ)〉 = 〈δωΣ, δωΣ〉 = |δ|2〈ωΣ, ωΣ〉

and 〈ωΣ, ωΣ〉 > 0 by the Riemann condition (44). The reason why δ is referred to as the
determinant is that it coincides with the determinant of the complex derivative Dpφ : TpΣ → TpΣ
of φ at a fixed point p of φ if exists, see [25, Section 3]. It will turn out that the dynamical
degree of a K3 surface automorphism is 1 or a Salem number. More precisely, we prove the
following theorem.

Theorem 13.7. Let φ be an automorphism of a K3 surface Σ with determinant δ ∈ T. Suppose
that the dynamical degree β of φ is greater than 1.

(i) β is a Salem number of degree at most 22, and the characteristic polynomial F of φ∗ is
the product of the minimal polynomial S of β and a product C of cyclotomic polynomials
(C can be 1).

(ii) Σ is projective if and only if δ is a root of C. Equivalently, Σ is nonprojective if and only
if δ is a root of S.

(iii) φ∗ is semisimple.

This theorem is a consequence of φ∗ being a Hodge isometry of H2(Σ,Z) with respect to ωΣ

that preserves the positive cone C+
Σ . We begin with the following lemma.

Lemma 13.8. Let F ∈ Z[X] be a ∗-symmetric polynomial with coefficients in Z.

(i) If every root of F has absolute value 1 then F is a product of cyclotomic polynomials.

(ii) If F has exactly one root β with |β| > 1 then β or −β is a Salem number, and F is of the
form F = SC where S is the minimal polynomial of β and C is a product of cyclotomic
polynomials.

Proof. The assertion (i) follows from Kronecker’s Theorem (see e.g. [17] for the proof): an
algebraic integer whose all conjugates have absolute value 1 is a root of unity. We show the
assertion (ii). Suppose that F has exactly one root β with |β| > 1. Since the constant term of
F is 1 or −1, the number β is an algebraic unit. Furthermore β is a real number because its
complex conjugate is also a root of F with absolute value greater than 1. Note that any root of
F is accompanied by its inverse since F is ∗-symmetric. This implies that all roots of F other
than β and β−1 lie on the unit circle T. In particular, all conjugates of β (resp. −β) other than β
and β−1 (resp. −β and −β−1) lie on T. This means that the positive one of β and −β is a Salem
number. Let S ∈ Z[X] denote the minimal polynomial of β over Q. Then F factors as F = SC
in Z[X], where C ∈ Z[X] is a monic polynomial. In this case, all roots of C lie on T since β
and β−1 are roots of S. Furthermore, Lemma 7.3 (iv) shows that C is ∗-symmetric because S
is ∗-symmetric by Proposition 13.2. Therefore C is a product of cyclotomic polynomials by the
assertion (i). This complete the proof. □
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Let (Λ, b) be a K3 lattice, and ω ∈ ΛC := Λ⊗ C is a Hodge vector, i.e., satisfies b(ω, ω) = 0
and b(ω, ω) > 0. We define subspaces H2,0,H1,1,H0,2 ⊂ ΛC and the Picard lattice P as in the
paragraph below Definition 12.12. Moreover, fix a positive cone C+ and Kähler cone K . In the
following, a Hodge isometry means a Hodge isometry with respect to ω.

Proposition 13.9. Let t be a Hodge isometry of Λ with spectral radius greater than 1. If t
preserves the positive cone C+ then the characteristic polynomial F of t can be expressed as
F = SC, where S is a Salem polynomial and C is a product of cyclotomic polynomials (this
factor can be 1). In particular, the spectral radius of t is a Salem number of degree at most 22.

Proof. Note that F is a ∗-symmetric polynomial with coefficients in Z since t is a lattice isometry.
Since the spectral radius of t is greater than 1, the polynomial F has at least one root β with
|β| > 1. Let δ ∈ T be the eigenvalue of t corresponding to the Hodge vector ω. Then F
decomposes in R[X] as F (X) = G(X)(X2− (δ+ δ−1)X+1), where G(X) ∈ R[X]. The factor G
is the characteristic polynomial of t|

H1,1
R

, and β is a root of G. Since H1,1
R is of signature (1, 19),

Theorem 7.26 shows that β is the only root with |β| > 1 of G, and hence of F . Thus, it follows
from Lemma 13.8 that β or −β is a Salem number, and F can be expressed as F = SC, where
S is the minimal polynomial of β and C is a product of cyclotomic polynomials. It remains to
show that β is positive. Suppose that t preserves the positive cone C+, and let v ∈ H1,1

R be an
eigenvector of t corresponding to β. We have b(v, v) = 0 because b(v, v) = b(tv, tv) = β2b(v, v).
So we can assume that v lies on the closure C+ (in fact on the boundary) of C+ by considering
−v instead of v if necessary. Then β must be positive since t(C+) = C+. This completes the
proof. □

The submodule
T := P⊥ ⊂ Λ

is called the trancendental lattice of Λ. It can be degenerate as well as the Picard lattice P .

Lemma 13.10. The trancendental lattice T is the minimum primitive submodule in Λ such that
its C-span CT ⊂ ΛC contains H2,0.

Proof. Primitivity of T follows from Corollary 12.2. Since P ⊂ H1,1 we have

CT = C · P⊥ = (CP )⊥ ⊃ (H1,1)⊥ ⊃ H2,0.

Let T ′ be a primitive submodule in Λ such that H2,0 ⊂ CT ′. We show that (T ′)⊥ ⊂ P . Let
x ∈ Λ be orthogonal to T ′. Then x is orthogonal to H2,0, that is, b(x, ω) = 0. Furthermore
b(x, ω) = b(x, ω) = b(x, ω) = 0. Thus x belongs to (H2,0 ⊕H0,2)⊥ = H1,1, and to P = Λ∩H1,1.
This means that (T ′)⊥ ⊂ P . Therefore T = P⊥ ⊂ (T ′)⊥⊥ = T ′ (in Λ), where the last equality
follows from Proposition 12.2 since T ′ is primitive. This completes the proof. □

Lemma 13.11. Let t be a Hodge isometry of Λ and δ ∈ T the eigenvalue of t corresponding to
ω. Let g be the minimal polynomial of δ over Q. Then

RT ⊂ {x ∈ ΛR | g(t).x = 0}. (45)

Moreover, the equality holds if δ has multiplicity 1 as an eigenvalue of t.

Proof. Put T ′ = {x ∈ Λ | g(t).x = 0}. Since g is with coefficients in Q, for any subfield K of C
we have

KT ′ = {x ∈ ΛK | g(t).x = 0}. (∗)

We first show that T ⊂ T ′. Since T ′ can be expressed as T ′ = Λ ∩ QT ′ by (∗), it is primitive.
Moreover CT ′ = {x ∈ ΛC | g(t).x = 0}, and hence CT ′ contains the subspace Cω = H2,0 since
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ω is an eigenvector of t corresponding to the eigenvalue δ. Thus, it follows from Lemma 13.10
that T ⊂ T ′. Hence we obtain RT ⊂ RT ′ = {x ∈ ΛR | g(t).x = 0} by (∗).

Suppose then that δ has multiplicity 1 as an eigenvalue of t. Let L ⊂ C be the Galois
closure of Q(δ)/Q. Note that the Galois group Gal(L/Q) acts on ΛL ⊂ ΛC naturally. We have
LT ′ = {x ∈ ΛL | g(t).x = 0} =

∑
σ∈Gal(L/Q) Lσ(ω) by the assumption that δ has multiplicity

1. On the other hand, the vector ω belongs to CT by Lemma 13.10, and we can assume that
ω ∈ LT since δ ∈ L. Then σ(ω) ∈ σ(LT ) = Lσ(T ) = LT for any σ ∈ Gal(L/Q), which
implies that LT ′ =

∑
σ∈Gal(L/Q) Lσ(ω) ⊂ LT . Therefore T ′ = Λ ∩ LT ′ ⊂ Λ ∩ LT = T , and

{x ∈ ΛR | g(t).x = 0} = RT ′ ⊂ RT . This shows that the equality holds in (45). □

Proposition 13.12. Let t be a Hodge isometry of Λ that preserves the positive cone C+, and let
δ ∈ T be the eigenvalue of t corresponding to ω. Suppose that the spectral radius β of t is greater
than 1. Then β is a Salem number, and the characteristic polynomial F of t is the product of
the minimal polynomial S of β and a product C of cyclotomic polynomial by Proposition 13.9.

(i) If δ is a root of C then P is nondegenerate and has signature (1, rk(P )− 1).

(ii) If δ is a root of S then P is nondegenerate and has signature (0, 22 − deg(S)). Moreover
RT = {x ∈ ΛR | S(t).x = 0}.

(iii) t is semisimple.

Proof. Put V = ΛR, and define V (f ; t) := {x ∈ V | f(t)N .x = 0 for some N ∈ Z≥0} for a factor
f of F . Then V = V (S; t)⊕V (C; t), which is an orthogonal direct sum decomposition, see §7.2.
Put dS = deg(S) and dC = deg(C). Since the signature of V is (3, 19), Proposition 7.24 implies
that those of the subspaces V (S; t) and V (C; t) are (1, dS − 1) and (2, dC − 2); or (3, dS − 3) and
(0, dC). Let g ∈ Z[X] be the minimal polynomial of δ over Q.

(i). Suppose that δ is a root of C. Then C is divisible by g, and Lemma 13.11 implies
that RT ⊂ V (C; t). In this case, the signature of V (C; t) is (2, dC − 2) since V (C; t) contains
V (X2 − (δ + δ−1)X + 1; t), the real part of H2,0 ⊕ H0,2. The inclusion RT ⊂ V (C; t) yields
RP = (RT )⊥ ⊃ V (C; t)⊥ = V (S; t), and the signature of V (S; t) is (1, dS − 1) since that of
V (C; t) is (2, dC − 2). This shows that P is nondegenerate and has signature (1, rk(P )− 1).

(ii). Suppose that δ is a root of S. Then g = S, and Lemma 13.11 implies that RT = {x ∈
V | S(t).x = 0} since δ is a simple root of F . In this case, the signature of V (S; t) is (3, dS − 3),
and that of the orthogonal complement (RT )⊥ = RP is (0, 22 − dS). This completes the proof
of the assertion (ii).

(iii). Note that any isometry of an inner product space over R of definite signature is
semisimple. Suppose first that δ is a root of S. Then the subspace V (C; t) is negative definite by
(ii). Thus t|V (C;t) is semisimple. Furthermore t|V (S;t) is also semisimple since S has multiplicity
1 in F . Therefore t : V → V is semisimple.

Suppose then that δ is a root of C. Then, the Picard lattice P is nondegenerate and has
signature (1, rk(P ) − 1) by (i), and V decomposes as V = RP ⊕ RT (orthogonal direct sum).
The subspace RP decomposes as RP = V (S; t)⊕ U , where U is the orthogonal complement of
V (S; t) in RP . Since V (S; t) is of signature (1, dS − 1), the complement U is negative define.
Thus φ|RP is semisimple as in the nonprojective case. Moreover t|RT is also semisimple because
Lemma 13.11 shows that RT is a subspace of the space {x ∈ V | g(t).x = 0}, on which t acts
semisimply. Therefore t : V → V is semisimple. The proof is complete. □

Proof of Theorem 13.7. Let φ be an automorphism of a K3 surface Σ with determinant δ ∈ T,
and suppose that the dynamical degree β of φ is greater than 1. Then φ∗ : H2(Σ,Z) → H2(Σ,Z)
is a Hodge isometry with respect to ωΣ ∈ H2(Σ,C) which preserves the positive cone C+

Σ (in
fact it preserves the Kähler cone KΣ). Thus Proposition 13.9 shows the assertion (i). Moreover,
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the assertion (ii) follows from Corollary 12.7 and Proposition 13.12 (i), (ii). The assertion (iii)
follows from Proposition 13.12 (iii). □

13.3 Nonprojective realizability

Definition 13.13. We use the following terminology focusing on the case of K3 surfaces.

(i) We refer to a polynomial F (X) ∈ Z[X] of degree 22 as a complemented Salem polynomial
if F can be expressed as F (X) = S(X)C(X), where S(X) is a Salem polynomial and
C(X) is a product of cyclotomic polynomials. In this case, S is called the Salem factor of
F .

(ii) A Salem number β is projectively (resp. nonprojectively) realizable if there exists an auto-
morphism of a projective (resp. nonprojective) K3 surface with dynamical degree β.

Theorem 13.7 (i) shows that a realizable Salem number has degree at most 22, and moreover,
Theorem 13.7 (ii) implies that if a Salem number β is projectively realizable then deg(β) ≤ 20;
and if β is nonprojectively realizable then deg(β) ≥ 4. This subsection is devoted to proving
the following theorem, which is the main theorem of this chapter.

Theorem 13.14. Let β be a Salem number of degree d with 4 ≤ d ≤ 22, and S its minimal
polynomial. Let C10 and C18 be the sets consisting of integers defined by

C10 := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 21, 22, 24, 28, 30, 36, 42},
C18 := {1, 2, 3, 4, 6, 12}.

(i) Suppose that d = 22. Then β is nonprojectively realizable if and only if |S(1)| and |S(−1)|
are squares.

(ii) Suppose that d = 4, 6, 8, 12, 14, 16, or 20. Then β is nonprojectively realizable.

(iii) Suppose that d = 10 or 18. Then β is nonprojectively realizable if and only if there exists
l ∈ Cd such that Π(S,Φl) 6= ∅. Here Φl is the l-th cyclotomic polynomial and the set
Π(S,Φl) is defined in Notation 10.2.

Remark 13.15. The question of which Salem number is realizable has been considered since the
appearance of the paper [18] by B.H. Gross and C.T. McMullen. They proved in [18] that a
Salem number of degree 22 is nonprojectively realizable if |S(1)| = |S(−1)| = 1, where S is
the corresponding Salem polynomial, and speculated that the assertion (i) of Theorem 13.14
holds. The proof of (i) was given by E. Bayer-Fluckiger and L. Taelman in [3] for the first time.
The assertion (ii) was proved by Bayer-Fluckiger [6, 7] for d = 4, 6, 8, 12, 14, and 16 and by the
author [45] for d = 20, see also Remark 9.26. In this thesis, we give the proof of Theorem 13.14
in a consistent way.

In order to prove Theorem 13.14, we use results established in Chapter III, in particular §§9,
10, and 11. Note that every complemented Salem polynomial is ∗-symmetric and satisfies the
condition (Sign)3,19. Let F = SC be a complemented Salem polynomial with Salem factor S.
For a root δ of S with |δ| = 1, we define the index map iδ ∈ Idx(3, 19;F ) by

iδ =

{
2 if f(X) = X2 − (δ + δ−1)X + 1

− deg(fmf ) if f(X) 6= X2 − (δ + δ−1)X + 1
for f ∈ I(F ;R).

The following proposition is a reason why the nonprojective case is more tractable than the
projective case. Roughly speaking, in the nonprojective case, we do not need to take care of the
condition of preserving the Kähler cone in Theorem 12.13 when considering only the dynamical
degree.
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Proposition 13.16. Let β be a Salem number with 4 ≤ deg β ≤ 22, and S its minimal polyno-
mial. The following are equivalent:

(i) β is nonprojectively realizable.

(ii) There exists a conjugate δ of β with |δ| = 1 and a complemented Salem polynomial F with
Salem factor S such that a K3 lattice admits a semisimple (F, iδ)-isometry.

(iii) There exists a conjugate δ of β with |δ| = 1 and a complemented Salem polynomial F with
Salem factor S such that it satisfies (Square) and the obstruction map for (F, iδ) vanishes.

(iv) For any conjugate δ of β with |δ| = 1, there exists a complemented Salem polynomial F
with Salem factor S such that it satisfies (Square) and the obstruction map for (F, iδ)
vanishes.

(v) For any conjugate δ of β with |δ| = 1, there exists a complemented Salem polynomial F
with Salem factor S such that a K3 lattice admits a semisimple (F, iδ)-isometry.

Proof. Let us prove that

(i) ⇔ (ii) and (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (ii).

(i) ⇒ (ii). Suppose that β is nonprojectively realizable, and let φ be an automorphism of a
nonprojective K3 surface Σ with dynamical degree β. Then, the induced homomorphism φ∗ is
is an isometry of the K3 lattice H2(Σ,Z). Let δ ∈ T be the determinant of φ. Theorem 13.7
implies that the characteristic polynomial of φ∗, say F , is a complemented Salem polynomial
with Salem factor S; δ is a conjugate of β since Σ is nonprojective; and φ∗ : H2(Σ,Z) → H2(Σ,Z)
is a semisimple (F, iδ)-isometry. This means that (ii) holds.

(ii) ⇒ (i). Let δ be a conjugate of β with |δ| = 1, and F a complemented Salem polynomial
F with Salem factor S. Suppose that a K3 lattice Λ admits a semisimple (F, iδ)-isometry t. Let
ω ∈ ΛC := Λ ⊗ C be an eigenvector of t corresponding to β. Since the index of t is iδ, we have
b(ω, ω) = 0 and b(ω, ω) > 0, where b is extended on ΛC linearly. This means that ω is a Hodge
vector, and t is an Hodge isometry with respect to ω. Let us fix a positive cone C+ and Kähler
cone K for Λ. Then t(C+) = C+ or t(C+) = −C+ since t is an isometry, and we have the
former case because an eigenvector of t corresponding to the positive real eigenvalue β lies on
the boundary of C+. Thus t sends the Kähler cone K to another chamber K ′ in C+. let W be
the Weyl group determined by ω. Then, there exists w ∈ W such that w(K ′) = K by Theorem
12.3. Put t̃ = w ◦ t. Then t̃ is a Hodge isometry of Λ with respect to ω that preserves K as in
the discussion above Theorem 12.13.

So, by Theorem 12.13, it is sufficient to show that the spectral radius of t̃ remains β. Let
P and T be the Picard lattice and trancendental lattice of Λ (with respect to ω). Since t is
a Hodge isometry preserving C+, the Picard lattice P is nondegenerate and negative definite
by Proposition 13.12 (ii). In particular, we have the orthogonal direct sum decomposition
ΛR = RP ⊕ RT . Since any isometry in W acts on RT as identity, we can write t̃|ΛR = (t|RP ◦
w|RP ) ⊕ t|RT . The characteristic polynomial of t|RT is S because RT = {x ∈ ΛR | S(t).x = 0}
by Proposition 13.12 (ii). On the other hand, that of t|RP ◦ w|RP is a product of cyclotomic
polynomial polynomial since P is negative definite. Therefore, the characteristic polynomial of
t̃ is a complemented Salem polynomial with Salem factor S, and the spectral radius of t̃ is equal
to β. This completes the proof of (ii) ⇒ (i).

The implications (ii) ⇒ (iii) and (iv) ⇒ (v) follow from Theorem 9.25. Furthermore (v) ⇒
(ii) is obvious. So it remains to prove (iii) ⇒ (iv). Let δ′ be a conjugate of β with |δ′| = 1, and
suppose that there exists a complemented Salem polynomial F with Salem factor S such that
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it satisfies (Square) and the obstruction map for (F, iδ′) vanishes. Let δ be another conjugate
of β with |δ| = 1. Then, Theorem 10.15 shows that the obstruction map for (F, iδ) is also zero
because η∞(iδ) = η∞(iδ′). This completes the proof. □

In the following, β is a Salem number of degree d with 4 ≤ d ≤ 22, and S is its minimal
polynomial. Furthermore, we fix a conjugate δ of β with |δ| = 1. Let us begin with the case
d = 22.

Theorem 13.17. Suppose that d = 22. Then β is nonprojectively realizable if and only if |S(1)|
and |S(−1)| are squares.

Proof. Suppose that β is nonprojectively realizable, and let φ be an automorphism of a nonpro-
jective K3 surface Σ with dynamical degree β. Then S is the characteristic polynomial of the
semisimple isometry φ∗ on the K3 lattice H2(Σ,Z). Hence S satisfies the condition (Square) by
Proposition 9.1, and in particular |S(1)| and |S(−1)| are squares. Suppose conversely that |S(1)|
and |S(−1)| are squares. Then S satisfies (Square) by Lemma 13.4 (ii). Since S is irreducible,
Theorem 9.27 implies that a K3 lattice admits a semisimple (F, iδ)-isometry. Therefore β is
nonprojectively realizable by Proposition 13.16. □

The case d = 20 is as follows.

Theorem 13.18. If d = 20 then β is nonprojectively realizable.

Proof. Put F (X) = (X − 1)(X + 1)S(X). Then F is a complemented Salem polynomial with
the condition (Square) clearly, and the obstruction map for (F, iδ) vanishes by Theorem 9.28.
Hence β is nonprojectively realizable by Proposition 13.16. □

We proceed to the case d ≤ 18.

Theorem 13.19. Suppose that d ≤ 18. If S does not satisfy the condition (Square) then β is
nonprojectively realizable. In particular, if d = 4, 8, 12, or 16 then β is nonprojectively realizable.

Proof. Suppose first that |S(1)| is not a square. Put F (X) = (X − 1)21−d(X + 1)S(X). Then
F is a complemented Salem polynomial with the condition (Square). Since the multiplicity of
X−1 in F , 21−d, is greater than 3, Proposition 10.5 (i) implies that ΠF

iδ
(S,X−1) is not empty.

Thus, the obstruction group for (F, iδ) is generated by 1{S,X−1} and 1{X+1}. Now, let {bv}v∈V
be a family in Biδ , where Biδ is defined in Notation 9.4. Since the multiplicity of X + 1 in F is
1, we have

η({bv}v) · 1{X+1} = η({bv}v)(X + 1) =
∑
v∈V

hwv(bv|M−
v
) = 0

where we use notation in §9. Moreover

η({bv}v) · 1{S,X−1} = η({bv}v) · 1{S,X−1} + η({bv}v) · 1{X+1} = η({bv}v) · 1{S,X−1,X+1} = 0,

where the last equation is by Proposition 9.23. These mean that the obstruction map for (F, iδ)
vanishes. Hence β is nonprojectively realizable by Proposition 13.16. Similarly, if |S(−1)| is
not a square then it can be checked that β is nonprojectively realizable by putting F (X) =
(X − 1)(X + 1)21−dS(X).

Suppose then that |S(1)| and |S(−1)| are squares but (−1)d/2S(1)S(−1) is not a square. In
this case, we put F (X) = (X−1)22−dS(X). This is a complemented Salem polynomial with the
condition (Square). Since (−1)d/2S(1)S(−1) = −1 in Q×/Q×2 and 22− d ≥ 3, Proposition 10.5
(iii) implies that ΠF

iδ
(S,X − 1) contains 2 and is not empty. This means that the equivalence
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Table 13.1: Integers l with ϕ(l) ≤ 12
ϕ(l) l

1 1, 2
2 3, 4, 6
4 5, 8, 10, 12
6 7, 9, 14, 18
8 15, 16, 20, 24, 30
10 11, 22
12 21, 28, 36, 42

relation on I(F ;Q) = {X−1, S} defined by (F, iδ) is weakest. So β is nonprojectively realizable
by Theorem 9.27 and Proposition 13.16.

Therefore, if S does not satisfy the condition (Square) then β is nonprojectively realizable.
In particular, if d = 4, 8, 12, or 16 then S does not satisfy (Square) by Lemma 13.4 (i), and β is
nonprojectively realizable. □

Remark 13.20. In the proof of Theorem 13.19, the complemented Salem polynomial F can be
chosen in a different way. For example, put F (X) = (X − 1)(22−d)/2(X − 1)(22−d)/2S(X). If
d ≤ 16 then one can show that the equivalence relation on I(F ;Q) = {X − 1, X + 1, S} defined
by (F, iδ) is weakest, and conclude that β is nonprojectively realizable.

Theorem 13.21. If d = 6 or 14, then β is nonprojectively realizable.

Proof. If S does not satisfy (Square) then we are done by Theorem 13.19. Suppose that S
satisfies (Square), and let ΛS and ΛC denote even unimodular lattices of signature (3, d−3) and
(0, 22 − d) respectively. Such lattices exist by Theorem 5.25. Note that S satisfies (Sign)3,d−3.
We define the index map jδ ∈ Idx(3, d− 3;S) by

jδ(f) =

{
2 if f(X) = X2 − (δ + δ−1)X + 1

−2 if f(X) 6= X2 − (δ + δ−1)X + 1
for f ∈ I(S;R).

Since S is irreducible, Theorem 9.27 implies that ΛS has a semisimple (S, jδ)-isometry tS . Let
t be the isometry of the K3 lattice ΛS ⊕ ΛC defined by t := tS ⊕ idΛC

. Then t is a semisimple
(S(X)(X − 1)22−d, iδ)-isometry by its construction. Therefore β is nonprojectively realizable by
Proposition 13.16. □

The cases d = 10 and 18 are more complicated. For d = 10 or 18, let C̃d denote the set of
integers l ≥ 1 such that ϕ(l) < 22−d, or ϕ(l) = 22−d and Φl satisfies (Square). Integers l with
ϕ(l) ≤ 12 are listed in Table 13.1.

Lemma 13.22. Suppose that d = 10 or 18, and let F = SC be a complemented Salem polynomial
with Salem factor S. Suppose that F and S satisfies the condition (Square). Then C is also
satisfies (Square), and any irreducible factor of C can be written as Φl for some l ∈ C̃d.

Proof. It follows from Lemma 9.2 (i) that C is satisfies (Square). Let Φl be an irreducible factor
of C, where l ∈ Z>0. Then ϕ(l) = deg(Φl) ≤ deg(C) = 22− d. Moreover, if ϕ(l) = 22− d then
Φl = C, and it satisfies (Square). This completes the proof. □

Put C10 = C̃10 \ {20} and C18 = C̃18. These sets can be expressed explicitly as

C10 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 21, 22, 24, 28, 30, 36, 42},
C18 = {1, 2, 3, 4, 6, 12},
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as defined in Theorem 13.14.

Proposition 13.23. Suppose that d = 10 or 18. If β is nonprojectively realizable then there
exists l ∈ Cd such that Π(S,Φl) 6= ∅.

Proof. If S does not satisfy (Square), then Π(S,Φ1) 6= ∅ or Π(S,Φ2) 6= ∅ by Proposition 10.5,
and we are done. So we assume that S satisfies (Square). Suppose that β is nonprojectively
realizable. Then, by Proposition 13.16, there exists a complemented Salem polynomial F = SC
with the condition (Square) such that the obstruction map obiδ for (F, iδ) is zero. We remark

that C satisfies (Square), and any irreducible factor of C can be written as Φl for some l ∈ C̃d
by Lemma 13.22.

Let ΛS and ΛC be even unimodular lattices of signature (d/2, d/2) and ((22−d)/2, (22−d)/2)
respectively. Let jS ∈ Idx(d/2, d/2;S) be an index map. Then ΛS admits a semisimple (S, jS)-
isometry tS by Theorem 9.27 since S is irreducible. On the other hand, Theorem 11.10 shows
that there exists jC ∈ Idx((22− d)/2, (22− d)/2;F ) with

jC(X − 1) ≡ iδ(X − 1) and jC(X + 1) ≡ iδ(X + 1) mod 4 (∗)

such that ΛC admits a semisimple (C, jC)-isometry tC . Then t := tS ⊕ tC is a semisimple
(F, j)-isometry on the even unimodular lattice ΛS ⊕ ΛC , where j := jS ⊕ jC ∈ Idx(11, 11;F ). In
particular, the obstruction map obj for (F, j) vanishes. Note that the equivalence relation on
I(F ;Q) defined by (F, j) is the same as the one defined by (F, iδ) because of the relation (∗).
Let ∼ denote the equivalence relation on I(F ;Q), and Ω the obstruction group.

Now, suppose that Π(S,Φl) were empty for all l ∈ C̃d. Then {S} ⊂ I(F ;Q) forms an
equivalence class with respect to ∼, since any irreducible factor of C can be written as Φl for
some l ∈ C̃d. This would mean that 1{S} belongs to Ω. On the other hand, a calculation yields

(η∞(iδ)− η∞(j)) · 1{S} = 1− 0 = 1 (in Z/2Z).

This contradicts Theorem 10.15 since obiδ and obj are zero. Therefore, there exists l ∈ C̃d such

that Π(S,Φl) 6= ∅. This complete the proof of the case d = 18 since C18 = C̃18.
Suppose that d = 10. It remains to prove that the following case does not occur: 20 is the

only integer in C̃10 such that Π(S,Φ20) 6= ∅. Suppose that this case occurred. Then C must be
divisible by Φ20 by the same reason as above, and F can be expressed as F = SΦ20C

′, where
C ′ is the remaining factor of C. Note that Φ20(X) = X8 −X6 +X4 −X2 +1 satisfies (Square),
and we may assume that j(Φ20) = 0. Because SΦ20 has degree 18 and satisfies (Square), any
factor of C ′ can be written as Φl for some l ∈ C18 by the same reason as Lemma 13.22. By
using Theorem 10.9, it can be checked that Π(Φ20,Φl) = ∅ for all l ∈ C18. This would mean
that {S,Φ20} ⊂ I(F ;Q) forms an equivalence class with respect to ∼, and 1{S,Φ20} ∈ Ω. On the
other hand, we have

(η∞(iδ)− η∞(j)) · 1{S,Φ20} = η∞(iδ)(S)− η∞(j)(S) + η∞(iδ)(Φ20)− η∞(j)(Φ20)

= 1− 0 + 0− 0

= 1.

However, this contradicts Theorem 10.15. Hence, there exists l ∈ C10 = C̃10 \ {20} such that
Π(S,Φl) 6= ∅. This completes the proof. □

Proposition 13.24. Suppose that d = 10 or 18. If there exists l ∈ Cd such that Π(S,Φl) 6= ∅
then β is nonprojectively realizable.
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Proof. If S does not satisfy (Square) then β is nonprojectively realizable by Theorem 13.19. So
we assume that S satisfies (Square). Suppose that there exists l ∈ Cd such that Π(S,Φl) 6= ∅.
Case d = 18. We define a complemented Salem polynomial F as

F (X) =


S(X)Φl(X)4 if l = 1, 2

S(X)Φl(X)2 if l = 3, 4, 6

S(X)Φl(X) if l = 12.

Then F satisfies (Square), and ΠF
iδ
(S,Φl) = Π(S,Φl) 6= ∅. Thus, the equivalence relation on

I(F ;Q) = {S,Φl} defined by (F, iδ) is weakest, and hence β is nonprojectively realizable by
Theorem 9.27 and Proposition 13.16.

Case d = 10. We define a complemented Salem polynomial F as

F (X) =



S(X)Φl(X)12/φ(l) if ϕ(l) = 1, 2, 6, 12

S(X)Φl(X)(X − 1)4(X + 1)4 if ϕ(l) = 4 but l 6= 12, i.e., l = 5, 8, 10

S(X)Φ12(X)3 if l = 12

S(X)Φl(X)Φ3(X)2 if l = 15, 24

S(X)Φ16(X)(X − 1)4 if l = 16

S(X)Φ30(X)Φ6(X)2 if l = 30

S(X)Φ11(X)(X − 1)2 if l = 11

S(X)Φ22(X)(X + 1)2 if l = 22.

.

Then F satisfies (Square), and it can be checked that the equivalence relation on I(F ;Q) defined
by (F, iδ) is weakest by using Theorem 10.9. Hence, we conclude that β is nonprojectively
realizable by Theorem 9.27 and Proposition 13.16. □

Proof of Theorem 13.14. Assertion (i) is proved in Theorem 13.17. Assertion (ii) follows from
Theorem 13.18 if d = 20, Theorem 13.19 if d = 4, 8, 12, 16, and Theorem 13.21 if d = 6, 14.
Assertion (iii) is a consequence of Propositions 13.23 and 13.24. □

Example 13.25. Let β10 ≈ 1.17628 be the smallest Salem number of degree 10, that is, Lehmer’s
number. Its minimal polynomial S is given by

S(X) = 1 +X −X3 −X4 −X5 −X6 −X7 +X9 +X10.

Let us check that β10 is nonprojectively realizable. The factorizations S(X) and Φ4(X) into
irreducible factors modulo 3 are given as

S(X) mod 3 = (1 +X2)(1 +X + 2X2 +X3 +X5 + 2X6 +X7 +X8),

Φ4(X) mod 3 = 1 +X2

in F3[X]. In particular Φ4(X) = 1 + X2 over Q3, and I(Φ4;Q3) = {1 + X2}. Moreover,
Hensel’s lemma (Theorem 1.33) implies that there is an irreducible factor f ∈ Z3[X] of S over
Q3 such that f(X) mod 3 = 1 + X2. This factor f must be ∗-symmetric, because otherwise
f(X)f∗(X) mod 3 = (1 + X2)2 would divide S mod 3 in F3[X]. This means that 1 + X2 ∈
I(S;Q3), and 3 ∈ Π(S,Φ4). Hence β10 is nonprojectively realizable by Theorem 13.14 (iii). The
proof of this fact was given by McMullen [27] for the first time, and it is different from the proof
here.
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Example 13.26 ([7, Example 22.3]). Let β18 ≈ 1.18837 be the smallest Salem number of degree
18. Its minimal polynomial S is given by

S(X) = 1−X +X2 −X3 −X6 +X7 −X8 +X9

−X10 +X11 −X12 −X15 +X16 −X17 +X18.

By direct computation, we get

Res(S,Φ1) = −1, Res(S,Φ2) = 1, Res(S,Φ3) = 1,

Res(S,Φ4) = 1, Res(S,Φ6) = 1, Res(S,Φ12) = 169 = 132.

Hence, it follows from Proposition 10.3 that Π(S18,Φl) = ∅ for l = 1, 2, 3, 4, 6. Moreover,
Proposition 10.13 implies that I(Φ12;Q13) = ∅, and Π(S18,Φ12) = ∅ (the fact I(Φ12;Q13) = ∅
can also be seen from the factorization (Φ12(X) mod 13) = (X − 2)(X − 7)(X + 2)(X + 7) in
F13[X]). Therefore, the Salem number β18 is not nonprojective realizable by Theorem 13.14
(iii). On the other hand, it is shown by McMullen [28] that β18 is projectively realizable.

Bayer-Fluckiger gives an example of a Salem number of degree 18 that is not realizable as
the dynamical degree of an automorphism of a K3 surface, projective or not, see [7, §26]. As for
the case of degree 10, there is no known Salem number that is not nonprojectively realizable.
A Salem number of degree 10 is not nonprojectively realizable if and only if Π(S,Φl) = ∅ for all
l ∈ C10 by Theorem 13.14 (iii), where S is the corresponding Salem polynomial. This condition
is so strong that there seems to be no number satisfying it.

13.4 Other results

This subsection gives a survey of dynamical degrees, in particular greater than 1, of automor-
phisms of compact complex surfaces. As mentioned in Remark 13.6, if a compact complex
surface Σ admits an automorphism with dynamical degree greater than 1 then Σ is a torus, a
rational surface, a K3 surface, or an Enriques surface.

We begin with tori. If φ is an automorphism of a 2-dimensional complex torus then its
dynamical dynamical degree d(φ) is 1 or a Salem number of degree at most 6. P. Reschke
proved:

Theorem 13.27 ([36, Theorem 1.1]). Let β be a Salem number of degree at most 6, and S
its minimal polynomial. The number β is realizable as the dynamical degree of a 2-dimensional
complex torus if and only if one of the following conditions holds:

(i) deg(β) = 6, and both |S(1)| and |S(−1)| are squares.

(ii) deg(β) = 4, and one of the following three conditions holds: |S(1)| is a square; |S(−1)|
are square; or both 2|S(1)| and 2|S(−1)| are squares.

(iii) deg(β) = 2.

Partial results of this theorem are also given in [25], [27]. Reschke also gives a more detail
theorem in [37], for example, taking projectivity into account.

Next, we explain the case of rational surfaces. We refer to [26] and [46] for more detail.
Let N be the integer at least 3, and let Z1,N denote the lattice 〈1,−1, . . . ,−1〉Z over Z of
signature (1, N). Let e0, e1, . . . , eN be the standard basis of Z1,N , and put z0 = e0− e1− e2− e3
and zi = ei − ei+1 for i = 1, . . . , N − 1. The subgroup of O(Z1,N ) generated by reflections
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σz0 , σz1 , . . . , σzN orthogonal to z0, z1, . . . , zN is called the Weyl group of Z1,N , and denoted by
WN . We define

S := {the special radius of w | w ∈ WN , N ≥ 3}.

Let φ be an automorphism of a rational surface Σ. If d(φ) > 1 then there exists an integer
N ≥ 10, an isometry τ : Z1,N → H2(Σ,Z), and an element w ∈ WN such that the diagram

Z1,N w //

τ
��

Z1,N

τ
��

H2(Σ,Z) ϕ∗ // H2(Σ,Z)

(46)

commutes. In particular d(φ) ∈ S. In the situation of (46), we say that w is realized by φ.
McMullen [26] showed that for any N ≥ 10, every Coxeter element, that is, the product of
σz0 , σz1 , . . . , σzN taken one a time any order, is realized by a rational surface automorphism.
The case d = 10 yields a rational surface automorphism whose dynamical degree is Lehmer’s
number. He also proved that the dynamical degree of any automorphism of a compact complex
surface is greater than or equal to Lehmer’s number unless it is 1. T. Uehara gave the following
decisive result.

Theorem 13.28 ([46, Theorem 1.1]). We have

{d(φ) | φ is a rational surface automorphism} = S.

Finally, the cases of K3 surfaces and of Enriques surfaces. It is known that the second
cohomology group modulo torsion of any Enriques surface is an even unimodular lattice of
signature (1, 9), with respect to the intersection form. As a consequence, the dynamical degree
of any automorphism of an Enriques surface is 1 or a Salem number of degree at most 10. The
study of dynamical degrees greater than 1 began by determining the minimum value. K. Oguiso
[33] showed that the smallest Salem number of degree 14, which is the third smallest known
Salem number, is realizable as the dynamical degree of an automorphism of a nonprojective K3
surface. He also showed that Lehmer’s number cannot be realized as the dynamical degree of any
automorphism of an Enriques surface. Afterwards, by McMullen, it was proved that Lehmer’s
number is realizable as the dynamical degree of a nonprojective K3 surface automorphism in
[27], and of a projective K3 surface automorphism in [28], see also [8]. S. Brandhorst and
N.D. Elkies [10] gave an explicit equation for a projective K3 surface having an automorphism
whose dynamical degree is Lehmer’s number. As for Enriques surfaces, after several works,
e.g. [13], [24], [42], Oguiso and X. Yu determined the minimum value of dynamical degrees of
Enriques surface automorphisms.

Theorem 13.29 ([34, Theorem 1.1]). Let β ≈ 1.58234 be the fourth smallest Salem number of
degree 6 (its minimal polynomial is 1−X2 − 2X3 −X4 +X6). Then β is the minimum Salem
number which is realized as the dynamical degree of an Enriques surface automorphism.

For projective K3 surfaces or Enriques surfaces, works cited above enable us to determine
the realizability of a given Salem number (in a computer-aided way), but a characterization,
such as Theorem 13.14, 13.27, or 13.28, has not yet been obtained. However, there is a result of
another type by Brandhorst.

Theorem 13.30 ([9, Theorem 1.2]). Let β be a Salem number of degree d, and S its minimal
polynomial. There exists a positive integer N ∈ Z>0 such that the power βN is realized as the
dynamical degree of an automorphism of a K3 surface (resp. Enriques surface, 2-dimensional
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torus) if and only if d < 22 (resp. 10, 6); or d = 22 (resp. 10, 6) and (−1)d/2S(1)S(−1) is a
square. If additionally d ≤ 20 (resp. 10, 4) then there exists N ′ ∈ Z>0 such that βN

′
is realized

as the dynamical degree of an automorphism of a projective K3 surface (resp. Enriques surface,
2-dimensional torus).

Although the topics are restricted to those related to dynamical degrees here, we remark
that other interesting results of dynamical systems are also contained in papers cited above.
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