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Abstract:  

A machine leaning-based approach is proposed for the inverse analysis of the anisotropy 

parameters of solid-liquid interfacial free energy. The interface shape distribution (ISD) 

map, which characterizes the details of the dendrite morphology, was selected as the input 

of a convolutional neural network (CNN). The ISD maps for a free-growing dendrite 

during the isothermal solidification of a model alloy system were obtained by quantitative 

phase-field simulations and used as the training and test data for the CNN. Two anisotropy 

parameters were estimated with errors of less than 5 %, which can be further improved 

by increasing the size of the training dataset.  
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1. Introduction  

A dendrite is a typical shape of crystals growing in an undercooled melt. Its 

morphology is largely determined by the anisotropy of the solid-liquid interfacial free 

energy in most metallic systems because of negligible interfacial attachment kinetics. The 

anisotropy is essential information required for understanding and controlling the 

solidification microstructures [1]. Experimental determination of the anisotropy with high 

accuracy is one of an important and long-standing concern in the field of solidification 

science and engineering.  

For crystals with cubic symmetry, the interfacial free energy is expressed as 

follows [2]: 

 𝛾 𝒏 𝛾 1 𝜀 𝑄 3/5 𝜀 3𝑄 66𝑄 17/7  (1) 

where 𝛾  is the average solid-liquid interfacial free energy, 𝒏 is the unit vector normal 

to the crystal plane of the interface, 𝑄 𝑛 𝑛 𝑛 , 𝑄 𝑛 𝑛 𝑛 , and 𝑛  are the 

Cartesian components of 𝒏. The anisotropic property of 𝛾 𝒏  is characterized by two 

anisotropy parameters, 𝜖  and 𝜖 , which are the main concern in this study. Considering 

that the values of 𝜖  and 𝜖  determine the preferential growth orientation of the crystal, 

the dendrite structure largely depends on these values. To be specific, the crystal 

preferentially grows in the <100> orientation when 𝜖   is dominant, whereas it 

preferentially grows in the <110> orientation when 𝜖  is dominant. The values of 𝜖  

and 𝜖   vary from element to element [3]. Furthermore, 𝜖   and 𝜖   in an Al-rich fcc 

solid solution were found to change with the Zn concentration in Al-Zn alloys [4]. The 

growth mode of the fcc dendrite changed from <100> to the hyperbranched and <110> 

growth mode as the Zn concentration increased. A similar behavior was also observed in 

Al-Sm alloys [5]. In addition, computational work based on molecular dynamics (MD) 

simulations showed that the anisotropy strength of 𝛾 𝒏  is temperature dependent [6]. 

Therefore, the values of 𝜖  and 𝜖  are required for different solidification conditions 

and alloy concentrations to predict and control the dendrite structure.  

To experimentally determine 𝛾 𝒏 , an equilibrium shape of the solid under well-

controlled solidification conditions must be first realized, and then the solid-liquid 

interface region should be imaged with enough accuracy to elucidate a few percent 

difference of 𝛾 𝒏  in metallic systems [7]. The experimental measurement of 𝛾 𝒏  has 

been seldomly reported owing to these difficulties. Atomistic simulations, such as MD 

simulations, are effective in determining 𝛾 𝒏  [3]. The capillary fluctuation method [8] 

and cleaving technique [9] were developed for computing 𝛾 𝒏  from MD simulations. 

These methods have been successfully applied to several types of materials. Moreover, a 
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new approach for computing 𝛾 𝒏  based on MD simulation was recently developed by 

the present authors’ group using a data assimilation technique [6, 10]. These approaches 

are considered powerful and effective. However, the accuracy of MD simulations largely 

depends on the accuracy of the atomic potential, which is not always sufficiently high to 

produce reliable results especially in alloy systems. Hence, the development of new 

experimental techniques that could resolve the above-mentioned difficulties is in high 

demand.   

X-ray imaging techniques have enabled the in-situ observation of dendritic 

growth in thin samples, and have made significant progress [1115]. Moreover, X-ray 

tomographic microscopy recently revealed the time evolution of the three-dimensional 

(3D) morphology of solidification microstructures in bulk samples [1619]. One can 

expect that the in-situ observation techniques can be applied to the estimation of 𝛾 𝒏 . 

Note that 𝛾 𝒏  cannot be directly elucidated from the growing shape observed in the in-

situ observation because it is not an equilibrium shape. One way to determine 𝛾 𝒏  from 

the in-situ observation is to compare the 3D dendrite structures obtained from the 

experiment and simulation with the assumed values of 𝜖  and 𝜖 , which are estimated 

in a trial-and-error manner. However, in this method, all information, such as the 

crystallographic orientation of the solid and initial concentration field, except for 𝜖  and 

𝜖 , must be provided in the simulation, which is generally a demanding task. In this study, 

we focused on the inverse analysis of 𝜖   and 𝜖   using easy-to-handle information 

closely associated with the anisotropy of 𝛾 𝒏   instead of the direct use of the 3D 

microstructure. An interface shape distribution (ISD) map [18, 20] was considered 

suitable for this purpose. The 3D dendrite morphology can be characterized by the local 

morphology of the interface and its statistical properties. The ISD map shows the existing 

probability or frequency of the local morphology of the interface, described by the shape 

factor and curvedness [18], which will be explained later. Considering that the ISD map 

contains essential information of the 3D dendrite morphology, one may expect a unique 

relationship between the ISD map and a set of 𝜖  and 𝜖 . In this case, 𝜖  and 𝜖  can 

be estimated from the ISD map obtained in the in-situ observation or other experimental 

techniques, such as serial sectioning of the quenched sample.  

In this study, we investigated the feasibility of the aforementioned inverse 

analysis approach. First, the ISD maps for dendrite morphologies associated with 

different values of 𝜖   and 𝜖   were obtained from the quantitative phase-field 

simulations. Then, machine learning was applied to describe the relationship between the 

ISD map and a set of 𝜖  and 𝜖 . The machine learning model allow the 𝜖  and 𝜖  set 

to be estimated from a given ISD map. Details of the phase-field simulations, 
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computational conditions for dendrite growth, and machine learning are explained in the 

following section. The results and discussion are presented in Section 3, followed by the 

conclusions in the final section. 

 

2. Methods 

2.1. Quantitative phase-field model 

The phase-field model is a diffuse-interface approach in which explicit tracking 

of the position of moving interface can be avoided and, also, the shape of the curved 

interface can be smoothly and precisely expressed [2123]. Importantly, the quantitative 

phase-field model developed based on the thin-interface asymptotics exactly recovers the 

free-boundary problem within the framework of the diffuse-interface [2329], thereby 

serving as an effective and reliable tool of numerical experiment for investigating 

solidification microstructures [30]. In this study, we performed quantitative phase-field 

simulations for a free-growing 3D dendrite during isothermal solidification of a dilute 

binary alloy.  

The phase-field variable 𝜙 takes +1 in the solid and 1 in the liquid and it varies 

between these values continuously inside the solid-liquid interface. Instead of directly 

solving the time evolution of 𝜙, we solved the following time evolution equation of 𝜓

√2 tanh 𝜙 according to the preconditioning technique [31]:  

 

𝛼𝜂 𝑎 𝒏 1 1 𝑘 𝑢
𝜕𝜓
𝜕𝑡

𝜂 ∇ 𝑎 𝒏 ∙ ∇𝜓 𝜂 𝑎 𝒏 ∇𝜓 √2𝜙|∇𝜓|

𝜂 𝜕 |∇𝜓| 𝑎 𝒏
𝜕𝑎 𝒏
𝜕𝜓

, ,

√2𝜂 𝜙𝑎 𝒏 |∇𝜓| 𝜓
𝜕𝑎 𝒏
𝜕𝜓

, ,

√2𝜙

√2𝜆 1 𝜙 𝑢 

(2) 

where 𝜂 𝑊 𝑑⁄  , with 𝑑   denoting the chemical capillary length and 𝑊   the 

interface thickness, and 𝛼 𝐷 𝜏 𝑊⁄  with 𝐷  denoting the liquid diffusivity, and the 

phase-field relaxation time 𝜏 𝑎 𝜆𝑊 𝐷⁄ . Here, 𝜆 𝑎 𝜂 is the coupling constant, 

𝑎 0.8839 , and 𝑎 0.6267 . 𝑎 𝒏   is given as 𝑎 𝒏 1 𝜀 𝑄 3/5

𝜀 3𝑄 66𝑄 17/7  . The dimensionless supersaturation is defined by 𝑢

𝑐 𝑐 𝑐 𝑐⁄   where 𝑐   is the liquid concentration, and 𝑐   and 𝑐   represent 

the equilibrium concentrations of the liquid and solid, respectively. The time evolution 
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equation of 𝑢 is given as:  

 

1 𝑘 1 𝑘 𝜙
2

𝜕𝑢
𝜕𝑡
∇

∙ 𝑞 𝜙 ∇𝑢 𝑎 𝜂 1 1 𝑘 𝑢
1 𝜙

√2

𝜕𝜓
𝜕𝑡

∇𝜓
|∇𝜓|

1

2√2
1 1 𝑘 𝑢 1 𝜙

𝜕𝜓
𝜕𝑡

∇ ⋅ 𝐽  

(3) 

where 𝑘  is the equilibrium partition coefficient, 𝑎 1 𝑞 2√2⁄   with 𝑞
𝑘𝐷 𝐷⁄ , and 𝑞 𝜙 1 𝜙 𝑞 1 𝜙 2⁄ . 𝐽  represents the fluctuation of the 

solute flux.  

By solving Eqs. (2) and (3), one can reproduce the free-boundary problem for 

isothermal solidification in a dilute binary alloy, that is, solute diffusion in the bulks, 

solute conservation at the moving interface, and the Gibbs-Thomson effect [26]. Note that 

the length and time scales in Eqs. (2) and (3) were normalized by 𝑑   and 𝑑 𝐷⁄  , 

respectively. Thus, except for the two anisotropy parameters 𝜖   and 𝜖  , the growth 

problem in this system depends only on three parameters, namely 𝑘 , 𝑞  , and initial 

supersaturation of 𝑢.  

 

2.2 Computational conditions 

Equations (2) and (3) were discretized using a second-order finite-difference 

scheme for space. Time integration was performed using the first-order Euler scheme. To 

reduce the computational cost, only one-eighth of the system was considered by applying 

mirror boundary conditions to the x-y plane at z = 0, y-z plane at x = 0, and z-x plane at y 

= 0 of the computational domain. The zero-flux boundary condition was employed on the 

x-y plane at z = Lsys, y-z plane at x = Lsys, and z-x plane at y = Lsys, where Lsys represents 

the system size. An initial solid seed was placed at the origin of the 3D computational 

domain occupied by the liquid phase to simulate a free-growing dendrite under isothermal 

conditions.  

In this study, we focused on a model alloy system with 𝑘 0.1 and 𝑞 10 . 

The computational domain was discretized into 5123 grid points. The normalized grid 

spacing Δ𝑥 was set to 13 and 𝜂 was set as 1.2Δ𝑥. The initial supersaturation was set 

as 𝑢 0.3 . The step size of the normalized time was set as Δ𝑡 24.14 , and all 

simulations were performed until 𝑡 50,000Δ𝑡. These values were selected to achieve 

a balance between the accuracy and computational cost in the preliminary simulations. 

The free growth without interaction with the boundaries of the domain was realized for 
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all values of 𝜖  and 𝜖  examined in this study until 𝑡 50,000Δ𝑡. All computations 

were accelerated using graphics processing units. 

 

2.3 Interface shape distribution (ISD)  

The morphology of the entire dendrite can be characterized by the statistical 

nature of the local interface morphology described in terms of curvedness 𝐶  (called 

curvature in Ref. [18]) and shape factor 𝑆[32]. 𝐶 is the root mean square of the principal 

curvatures, expressing the degree to which the interface is curved, and is defined as 

follows: 

 𝐶
𝜅 𝜅

2
 (4) 

where 𝜅  and 𝜅  are the maximum and minimum curvatures, respectively, of the local 

interface. 𝑆 represents the shape of the interface as follows:  

 𝑆
2
𝜋

tan
𝜅 𝜅
𝜅 𝜅

 (5) 

The interfaces with 𝑆 1,  0.5 and 0 correspond to the spherical, cylindrical, and 

saddle point shapes, respectively, and the sign of 𝑆 indicates the convex direction of the 

interface. The principal curvatures were obtained from the mean and Gaussian curvature, 

and the calculation procedure of the mean and Gaussian curvature is described in 

Appendix.  

Fig. 1 shows an example of the dendrite at 𝑡 40,000Δ𝑡  simulated for 

𝜖 , 𝜖 0.1,0 . The local interface of the dendrite is colored according to the values 

of (a) 𝐶 〈𝐶〉⁄  and (b) 𝑆. Here, 〈𝐶〉 represents the average curvedness at a given time. 

𝐶 exhibits high values at the tip and edges of the primary and secondary arms. 𝑆 takes 

+1, + 0.5, and 0.5 at the tip of the arms, edges of the secondary arms, and primary arm 

trunks (or roots of the secondary arm), respectively. The existing probability of the local 

morphology of the interface is summarized in the ISD map (Fig. 1(c)). As will be 

explained later, the details of the 3D dendrite morphology are represented by this 2D map. 

The relation between the morphology of local interface and the values of 𝐶 and 𝑆 in 

the ISD map can be found in Fig. 1 of Ref. [20]. In this study, the ISD map was calculated 

from the spatial distribution of 𝜓 every 500Δ𝑡. Hence, 100 ISD maps were obtained 

from the phase-field simulation for each set of 𝜖  and 𝜖 . Because more than 99% of 

the interface area was included in the range of 𝐶 〈𝐶〉⁄ 0, 4  and 𝑆 1, 1 , all ISD 

maps will be presented in this range. 
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2.4 Deep learning by convolutional neural network (CNN) 

Deep learning was utilized in this study to develop an approach for the inverse 

analysis of 𝜖   and 𝜖   from the ISD map. We employed a CNN, an artificial neural 

network variant suitable for processing data, which has a grid topology structure, and has 

been applied to image recognition, classification, segmentation etc. The CNN typically 

consists of three layers, namely, convolutional, pooling, and fully connected layers. The 

convolution layer performs a sliding dot product of the convolution kernel with the input 

matrix of the layer. The convolutional kernel is a matrix consisting of learnable 

parameters, and the convolution operation produces feature maps that are utilized as the 

input of the next layer. The learnable parameters are trained to decrease the loss function, 

such as the mean squared error (MSE) between the training data and predicted values. A 

pooling layer is used to reduce the dimensions of the matrix. The most common layer is 

the max-pooling layer, which selects the maximum value from each local components of 

the matrix. The fully connected layer connects every input value to each output value in 

the next layer, similar to a multi-layer perception neural network. The prediction accuracy 

of the CNN depends on how these layers are stacked and should generally increase with 

increasing depth of the model, i.e., the number of layers. Further details on CNNs can be 

found in [3335].  

The CNN architecture is presented in Fig. 2. The input image is the ISD map with 

a size of 128 128 1 , followed by three operations, each consisting of two 

convolution layers with a 3, 3   kernel size, a zero-padding and 1 stride and 1 max-

pooling layer of 2, 2 , one fully connected layer, and the output layer for continuous 

values of 𝜖  and 𝜖 . Here, 3,3  and 2.2  represents the size of matrix employed for 

convolution and max-pooling, respectively. These sizes and the number of layers, etc. are 

called hyperparameters that affect the accuracy of machine learning model. These 

hyperparameters were tuned using the validation dataset as described later. We employed 

a machine learning framework known as PyTorch 1.7.0. Adam and MSE were selected as 

the optimizer and loss function, respectively. The learning rate was set to 10-5 and the 

training was performed for 1000 epochs that was determined based on a balance between 

the reduction of MSE and overfitting. A typical curve of MSE vs. epochs is shown in the 

Supplemental data.  

For the training, we used four datasets consisting of 49, 100, 196 and 400 sets of 

𝜖  and 𝜖 , which were uniformly sampled from the range of 𝜖 0, 0.1  and 𝜖

0.01,0 , as shown in Fig. 3. As described in the preceding sections, the quantitative 

phase-field simulation of the free growth of a single dendrite under isothermal conditions 

was performed for each set of 𝜖  and 𝜖  until 𝑡 50,000Δ𝑡 and the ISD maps were 
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calculated every 500Δ𝑡. Namely, 100 ISD maps were obtained for each set of 𝜖  and 

𝜖 . Hence, the training datasets used in this study consisted of 4900, 10000, 19600, 40000 

ISD maps. We split the training dataset into two subsets; one was used for training and 

the other was used for tuning the hyperparameters. The latter set is called the validation 

dataset. We used 80 % of the training data for training and 20 % for validation. The test 

dataset was obtained by randomly sampling 100 sets of 𝜖  and 𝜖  as shown in Fig. 3. 

Note that the region of 𝜖  0.01 or 𝜖 0.001 was avoided when sampling the test 

data. This is because the preliminary tests showed that estimations in this region involve 

large errors, and these values of 𝜖   and 𝜖   are not commonly observed in metallic 

systems [3]. Because the ISD maps of the test data were obtained every 500Δ𝑡 for each 

set of 𝜖  and 𝜖 , the test dataset consisted of a total of 10000 ISD maps. Since the test 

data were not employed to construct the CNN model including the hyperparameters, the 

generalization error can be estimated using the test dataset.  

 

3. Results and discussion 

3.1 Growth morphologies and ISD maps 

The time evolution of the dendrite structure and corresponding ISD map are 

shown in Fig. 4. These are the results for 𝜖 , 𝜖 0.1, 0 . Starting from the initial 

spherical shape, the solid exhibits a dendritic structure with well-developed primary arms 

at 𝑡 10,000Δ𝑡. In the ISD map at 𝑡 10,000Δ𝑡, several peaks appear at 𝑆 ≅ 0.5, 

which mainly originate from the interfaces at the edges of the primary arms. The high 

probabilities at 𝐶 〈𝐶〉 ≅ 0⁄   and 𝑆 ≅ 0.5  are associated with the side surface of the 

primary arms. In addition, the secondary arms begin to appear at 𝑡 10,000Δ𝑡  and 

were well developed at 𝑡 40,000Δ𝑡, with a dominant contribution in the ISD map.  

As reported in early studies [4, 36], different growth modes arise depending on 

the values of 𝜖   and 𝜖  . The dendrite structures via different growth modes and the 

corresponding ISD maps at 𝑡 40,000Δ𝑡 are shown in Fig. 5, where the <100> growth 

simulated for 𝜖 , 𝜖 0.1, 0 , hyperbranched growth for 𝜖 , 𝜖 0.05, 0.005 , 

and <110> growth for 𝜖 , 𝜖 0, 0.01  are compared. The growth morphology is 

very different owing to the values of 𝜖  and 𝜖 . Importantly, there are clear differences 

between the ISD maps, indicating that the different values of 𝜖   and 𝜖   yield the 

difference in the ISD map. Fig. 6 shows the ISD maps at 𝑡 40,000Δ𝑡 for different 

values of 𝜖   and 𝜖   indicated in the orientation selection map (center), where the 

regions of <100> growth, <100>-like hyperbranched growth, <110>-like hyperbranched 

growth, and <110> growth are specified according to the previous work [36]. Although 

the difference is not always salient, the ISD maps differ according to the values of 𝜖  
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and 𝜖 . This result supports the feasibility of the proposed approach.   

 

3.2 Estimation of anisotropy parameters  

Fig. 7 shows the estimation results for 𝜖   and 𝜖  . In all the figures, the 

horizontal and the vertical axes represent the true value and that estimated by the machine 

learning model, respectively. The dashed (diagonal) line is shown for a visual aid to 

indicate the agreement between them. When the amount of training data is small, the 

accuracy is not high. However, the accuracy is improved by increasing the amount of 

training data. Table 1 shows the averages of the relative and absolute errors. The error for 

𝜖  is always larger than that for 𝜖 . Importantly, both 𝜖  and 𝜖  can be estimated with 

errors of less than 5 % when employing the training dataset with 40000 maps. The 

accuracy is expected to further increase by increasing the size of the training dataset. 

Moreover, as a first attempt, we sampled the values of 𝜖 , 𝜖  uniformly from the range 

of 𝜖 0, 0.1   and 𝜖 0.01,0   to obtain the training dataset. However, higher 

accuracy can be probably achieved by biased sampling of 𝜖 , 𝜖 . This point should be 

further investigated in a future work.   

In the present approach, the ISD maps for different timesteps were utilized as the 

training data for each set of 𝜖  and 𝜖 . Hence, 𝜖  and 𝜖  can be inversely estimated 

from the ISD map at any given time step. However, the accuracy of the estimation 

depends on the time at which the ISD map is obtained. The mean relative errors between 

the test data and estimated values were calculated every 500Δ𝑡 for all sets of 𝜖  and 

𝜖 , which is given as: 

  Δ𝐸 𝑡
1
𝑚

𝜖 , 𝑡 𝜖 ,

𝜖 ,  (6) 

where Δ𝐸 𝑡  is the mean relative error of 𝜖  at t, 𝜖 , 𝑡  is the estimated value of 

𝜖   from the ISD map at t associated with jth data in the test dataset, 𝜖 ,   is the 

corresponding true value and m is the total number of ISD maps at each time step. Fig. 

8(a) shows the dependence of the relative errors on time for the training dataset with 

40000 maps. Both errors are relatively low in the period between approximately 5000Δ𝑡 

and 15000Δ𝑡, as indicated by the vertical dashed lines. As is understood from Fig. 4, the 

ISD map is mainly determined by the growing shape of the primary arms during this 

period. The snapshots of microstructure and ISD maps during this period are provided in 

the Supplemental data. Note that the value of 𝜖 , 𝜖  determines the preferential growth 

direction (PGD) of dendrite, and the primary arms of free-growing dendrite exactly grow 

in the PGD. However, the growth direction of secondary arms may deviate from the PGD 
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due to the overlapping of solute diffusion layer of neighboring secondary arms. Therefore, 

the ISD maps related to the growth of primary arms are more sensitive to the change of 

𝜖 , 𝜖   than those related to the growth of both primary and secondary arms. 

Accordingly, the former ISD maps are more suitable for estimation of 𝜖 , 𝜖  than the 

latter ISD maps.  

The values of 5000Δ𝑡  and 15000Δ𝑡  discussed above must depend on the 

initial supersaturation and alloy systems. Hence, it should be desirable to employ a 

different measure indicating the condition for accurate estimation. Since the present 

discussion is closely related to the morphology of dendrite, we chose the surface area per 

unit volume of solid 𝑆  which has often been employed as a measure characterizing the 

whole morphology of dendrites in a general way. Fig. 8(b) shows the time change of the 

reciprocal of 𝑆  calculated for 𝜖 , 𝜖 0.1, 0 , 0, 0.01  and 0.05, 0.005 . In 

all cases, 𝑆  is lower than 300 during the period for accurate estimation. This value can 

be used as an approximate guide to obtain an accurate estimation using the proposed 

approach, though its validity and accuracy must be investigated in a future work.   

Realizing the free growth of a dendrite during in-situ observations for long 

period of time is generally complicated because the effects of other dendrites and mold 

walls become non-negligible. Therefore, the results shown in Fig. 8 are favorable in terms 

of the actual application of the proposed approach. We emphasize that the application of 

the present approach is not limited to this time period. As shown in Fig. 8(a), a relative 

error of less than 10% can be expected for the ISD map in any time period tested. The 

error of less than 10 % is considered low because errors of 10-50 % are often involved in 

conventional approaches for estimation of anisotropy parameters [7]. More importantly, 

the accuracy of the present approach can be further improved by increasing the amount 

of training data.  

In this study, the training data were limited to 𝑢 0.3 . Because the 

orientation selection map shown in Fig. 5 is affected by the value of 𝑢  [36], further 

studies should be aimed at including the data for different initial supersaturations. The 

present approach should also be applied to different solidification conditions, such as 

continuous cooling and directional solidification. In addition, the estimation accuracy for 

different alloys, with different values of 𝑘 and 𝑞  and multicomponent alloys, need to 

be examined. Above all, the validity and efficacy of the present approach using real ISD 

map obtained by in-situ observation or other experimental techniques remain to be 

investigated in a future work.  

 

4. Conclusions 
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In this study, we proposed a machine learning-based approach for the inverse 

analysis of anisotropy parameters of solid-liquid interfacial free energy. The ISD map, 

which characterizes the details of the dendrite morphology, was selected as the input for 

machine learning. We tested the feasibility of this approach by performing quantitative 

phase-field simulations for a free-growing 3D dendrite during isothermal solidification 

of a model alloy system to obtain training and test data. Both 𝜖  and 𝜖  were estimated 

with reasonable accuracy, which can be further improved by increasing the size of the 

training dataset.  

The ISD map provides important information representing the details of the 3D 

dendrite morphology in a 2D space. The features of this map, such as the existence of a 

steady-state distribution, are currently an important research topic. The proposed inverse 

analysis approach fully exploits this 2D information and simultaneously extends its utility. 

We believe that the proposed approach will be helpful for advancing both numerical and 

experimental techniques to elucidate the formation processes of solidification 

microstructures.   
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Appendix. Calculation of curvatures from phase-field profile 

As described in Section 2.3, 𝐶  and 𝑆  were computed from the principal 

curvatures, 𝜅  and 𝜅 . These principal curvatures are related to the mean curvature 𝐻 

and Gaussian curvatures 𝐺 as: 

 𝐻
𝜅 𝜅

2
 (A1) 

 𝐺 𝜅 𝜅  (A2) 

𝐻 and 𝐺 can be calculated from the signed distance function 𝜑 as [37]: 

 
𝐻

1
2|∇𝜑|

𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 

2𝜑 𝜑 𝜑 2𝜑 𝜑 𝜑 2𝜑 𝜑 𝜑     

(A3) 

and 

 

𝐺
1

|∇𝜑|
𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑

𝜑 𝜑 𝜑 𝜑 2𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 

2𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 

2𝜑 𝜑 𝜑 𝜑 𝜑 𝜑   

(A4) 

where 𝜑 was computed from 𝜙 in this study as follows: 

 𝜑 √2𝜂 log
1 𝜙
1 𝜙

 (A2) 

In Eqs. (A3) and (A4), 𝜑   and 𝜑   represent the first and second derivatives of 𝜑 , 

respectively, with respect to the direction(s) denoted by the subscript.  
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Table 1. Relative and absolute errors for 𝜖  and 𝜖 .  
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Fig. 1. (a,b) 3D dendrite structure and (c) the corresponding ISD map at 𝑡 40,000Δ𝑡 

simulated for 𝜖 , 𝜖 0.1,0 . The local interface of the dendrite is colored according 

to the values of (a) 𝐶 〈𝐶〉⁄  and (b) 𝑆. 
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Fig. 2. CNN architecture used in this study. All convolution operations were performed 

with zero-padding and 1 stride and max-pooling was performed with 1 stride.  
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Fig. 3. Illustration of sampling the training and test datasets in the 𝜖 𝜖  space.  
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Fig. 4. Time evolution processes of the dendrite structure (upper) and corresponding ISD 

map (lower) for 𝜖 , 𝜖 0.1, 0 .  
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Fig. 5. Dendrite structures (upper) and ISD maps (lower) at 𝑡 40,000Δ𝑡 in (a) <100>, 

(b) hyperbranched, and (c) <110> growth modes.  
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Fig. 6. ISD maps at 𝑡 40,000Δ𝑡 for different values of 𝜖  and 𝜖  indicated in the 

orientation selection map.  
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Fig. 7. Results of estimations of 𝜖  and 𝜖  obtained for different training datasets.  

 

  



23 

 

 

 

Fig. 8. Time changes of the (a) mean relative errors of 𝜖  and 𝜖  for the training dataset 

with 40000 maps and (b) reciprocal of the surface area per unit volume of the solid phase 

for different anisotropy parameters.   

 

 


