

Title	Ca2RuO4エピタキシャル薄膜が示す量子相転移型非線形伝導現象の研究
Author(s)	椿, 啓司
Citation	北海道大学. 博士(工学) 甲第16007号
Issue Date	2024-03-25
DOI	10.14943/doctoral.k16007
Doc URL	http://hdl.handle.net/2115/92199
Туре	theses (doctoral)
File Information	Keiji_Tsubaki.pdf

博士論文

Ca₂RuO₄エピタキシャル薄膜が示す 量子相転移型非線形伝導現象の研究

Study on Nonlinear Transport Properties in Ca_2RuO_4 Epitaxial Thin Films Induced by the Quantum Phase Transitions

北海道大学大学院情報科学院

椿 啓司

目次

目次

第1章	序章	5
1.1	研究背景	5
1.2	強相関材料における金属絶縁体転移を応用したモット型デバイスとその課題....	6
1.3	電流/電場誘起型の金属絶縁体転移	8
1.4	層状ペロブスカイト Ca ₂ RuO ₄ における電流誘起型の金属絶縁体転移	10
	1.4.1 バルク Ca ₂ RuO ₄ の結晶構造とその電気輸送特性	10
	1.4.2 バルク Ca ₂ RuO ₄ の磁気輸送特性	11
	1.4.3 バルク Ca ₂ RuO ₄ における電流誘起型の金属絶縁体転移	11
	1.4.4 バルク Ca ₂ RuO ₄ が示す量子相転移型非線形伝導現象	15
	1.4.5 バルク Ca ₂ RuO ₄ で予想されている電流誘起型転移のメカニズム	16
1.5	研究目的	18
1.6	博士論文の構成...................................	18
第2章	固相エピタキシャル成長法を適用した Ca ₂ RuO ₄ エピタキシャル薄膜の作製	26
2.1	はじめに	26
2.2	固相エピタキシャル成長法を適用した Ca ₂ RuO ₄ エピタキシャル薄膜の作製	27
2.3		
	X 線回折による Ca ₂ RuO ₄ 薄膜の構造評価	30
2.4	X 線回折による Ca ₂ RuO ₄ 薄膜の構造評価	30
2.4	X 線回折による Ca ₂ RuO ₄ 薄膜の構造評価	30 33
2.4 2.5	X 線回折による Ca ₂ RuO ₄ 薄膜の構造評価	30 33 35
2.4 2.5 2.6	X 線回折による Ca ₂ RuO ₄ 薄膜の構造評価	30 33 35 35
2.4 2.5 2.6 第 3 章	X 線回折による Ca ₂ RuO ₄ 薄膜の構造評価	30 33 35 35 39

3.2	固相エピタキシャル成長法を適用した $\mathrm{Ca_2RuO_4}$ 薄膜の電気輸送特性評価.....	40
3.3	$Ca_2RuO_4/LaAlO_3(001)$ の磁気輸送特性評価	43
3.4	小括	45
3.5	実験方法	45
第4章	直流の電気測定による量子相転移型非線形伝導現象の評価	48
4.1	はじめに	48
4.2	$Ca_2RuO_4/LaAlO_3(001)$ の定電流、定電圧条件での抵抗–温度特性	49
4.3	Ca ₂ RuO ₄ /LaAlO ₃ (001) の直流の電流–電圧特性	53
4.4	Ca ₂ RuO ₄ /LaAlO ₃ (001) における抵抗スイッチングの安定性評価	55
4.5	小括	57
4.6	実験方法	58
第5章	量子相転移型非線形伝導現象に対するエピタキシャル応力の影響	62
5.1	はじめに	62
5.2	エピタキシャル応力による量子相転移型非線形伝導現象の抑制とその評価....	63
5.0	小圫	66
0.3		00
5.3	実験方法	66
5.3 5.4 第6章	実験方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66 70
5.3 5.4 第6章 6.1	実験方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66 70 70
5.3 5.4 第6章 6.1 6.2	実験方法	66 70 70 72
5.3 5.4 第6章 6.1 6.2 6.3	実験方法	 66 70 70 72 73
5.3 5.4 第6章 6.1 6.2 6.3 6.4	実験方法	66 70 70 72 73 79
5.3 5.4 第6章 6.1 6.2 6.3 6.4 6.5	実験方法	66 70 70 72 73 79 80
5.3 5.4 第6章 6.1 6.2 6.3 6.4 6.5 6.6	実験方法	66 70 70 72 73 79 80 84
5.3 5.4 第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7	実験方法	660 700 702 733 799 800 844 866
5.3 5.4 第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	実験方法 時間分解測定による量子相転移型非線形伝導現象の評価 はじめに 急峻な温度誘起型転移を示さない Ca2RuO4/LaAlO3 (001)の抵抗率温度特性 Ca2RuO4/LaAlO3 (001)が示す抵抗スイッチングの時間分解測定 Ca2RuO4/LaAlO3 (001) における抵抗スイッチングの時間分解測定 数値シミュレーションを通じたスイッチングモデルの議論 予想される金属相ドメインの形成過程 小括 実験方法	666 70 70 72 73 79 80 84 86 87
5.3 5.4 第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 第7章	実験方法	666 700 722 733 799 800 844 866 877 94
5.3 5.4 第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 第7章 7.1	実験方法	666 700 722 733 799 800 844 866 877 94
5.3 5.4 第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 第7章 7.1 7.2	実験方法	666 700 72 733 799 800 844 866 877 94 94

目次

7.3	研究業績目録																																					98
7.3	妍 氘 耒 禎 日 琢	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	·	9

1

第1章

序章

1.1 研究背景

バンド理論から理解される通常の絶縁体とは異なり、電子相関によって絶縁体相となるモット絶 縁体と呼ばれる材料がある。このモット絶縁体では、材料の温度や圧力印加によって電子の遍歴性 を回復することで、巨大抵抗変化が発現する。その代表が先に述べたモット転移であるが、近年で は材料ごとに相転移メカニズムが異なることから、広義に金属絶縁体転移と表現される。強相関材 料における金属絶縁体転移では、少数キャリアを発端にしてバンドフィリングを制御することで、 材料劣化を伴わずに巨大かつ、高速な抵抗変化が発現する [1]。この特性に着目して、相転移挙動 とメカニズムへの理解を通じることでエレクトロニクスへの応用が目指されてきた [2, 3]。金属絶 縁体転移材料では、材料が示す量子相転移型非線形伝導現象に基づいて、抵抗スイッチングや負性 抵抗挙動といった応用に重要な特性が発現する。長い間、量子相転移型非線形伝導現象を応用した モット型デバイスが提案されており、負性抵抗を応用したモット型発信器 [2, 4-8] や、抵抗スイッ チングを応用したモット型トランジスタ [9]、モット型メモリ [2, 3, 10] が提案されてきた。電子状 態を制御することで、非線形伝導特性の高度な制御が期待されるため、神経のシナプス動作 [2, 3, 5, 6] やニューロン動作 [2, 5, 6] を模倣する試みもなされている。また、外場に敏感に反応して巨大 抵抗変化が得られることから、光や温度、圧力によって転移を誘起することでセンサーの実現が提 案されてきた [9]。このように、1970 年代から広範なエレクトロニクス応用が模索されてきたが、 その多くは温度誘起型転移であるため、原理的な課題から実現には困難がある。温度誘起型転移で は意図しない熱的影響を受けるために、材料設計や素子設計の自由度には制約が存在する。また、 金属絶縁体転移に期待していた種々の特性を安定して得られなかったり、制御が困難であるという 問題を避けられない。これに対して、近年、実用的なモット型デバイスの開発を目指して、電流/電 場誘起型の転移材料が注目されている。電子状態を温度などの間接的な因子ではなく、電気的な刺 激によって直接的に制御できることが期待できる。そのため、抵抗変化挙動の安定かつ精密な電気 制御が可能になるだけでなく、温度誘起型の転移材料で避けられなかった熱的な影響が抑制される ことから、応用の幅に大きな自由度を与えることができる。本研究のルテニウム酸化物 CaっRuO4 は、電流誘起型転移の有力候補であり、そのバルク結晶において、材料中の電流密度の増大に依存 した巨大抵抗変化が観測されている [11–18]。材料に電流が流れ続けている非平衡条件で、抵抗変 化が起きる特異な挙動を示すため、応用に向けてはその新たな転移機構への理解が重要になる。

1.2 強相関材料における金属絶縁体転移を応用したモット型デバイ スとその課題

多体電子系に平均場近似を適用したバンド理論からの理解では、金属的な性質を持つと予想され るものの、電子相関の大きい材料ではこの近似は成り立たたず、クーロン反発力によって絶縁体的 性質を示す。このモット絶縁体へのハバードモデルからの理解では、電子の粒子性を司るクーロン 反発力よりも波動性を表現するトランスファー積分項が上回れば、電子の集団移動が起こることで 巨大抵抗変化が起こる。金属絶縁体転移では材料の劣化を伴わずに、少数キャリアを起点にして高 速かつ巨大な抵抗変化が発現するため、1970年代からその応用が目指されてきた [1]。そのエレク トロニクス応用には、電流-電圧測定で発現する非線形伝導現象が重要になる。モット絶縁体にお ける2端子法での電流掃引測定では、S型の NDR (negative differential resistance)を伴う非線 形伝導特性が発現する (Figure 1.1)[4-8, 10-17, 19-24]。この電流掃引測定においては、材料中の 電流の急激な増加を抑制しながら測定が行われるが、一方で、電圧掃引測定を行った場合は、急激 な電流の増加が許容される。そのため、S型 NDR に沿って転移が高速に進行した場合は、反時計

Figure 1.1 Schematic diagram of typical current–voltage characteristics of mott insulator under the application of two-terminal measurement. Red line: nonlinear transport property with S-type negative differential resistance (NDR) often observed under the current sweep condition. Blue dashed line: resistive switching characteristics observed under the voltage sweep condition. Since voltage sweep allows a rapid increase in current, the NDR is observed as a resistive switching phenomenon with hysteresis in the case of high-speed phase transitions progressing along the NDR.

回りのヒステリシスを伴う抵抗スイッチングとして観測される (Figure 1.1)[4-8, 10, 11, 14, 16, 24]。この 2 つの特性は応用に有用であることから、これまで負性微分抵抗を応用したモット型発 信器 [2, 4-8] やモット型ニューロン [2, 5, 6]、抵抗スイッチングを応用したモット型メモリスタ [2, 3, 10]、モット型シナプス [2, 3, 5, 6] が提案されてきた。さらには、これらの素子の特性を制御 することを目指して、抵抗スイッチングと NDR 挙動を制御することも試みられている [6, 8, 21, 23]。しかし、その多くがジュール加熱によって駆動されているため [6-8, 20-23]、原理的な課題か ら十分な制御はできていない。バナジウム酸化物 VO₂ のような明瞭な温度誘起型転移を示す材料 では、熱暴走メカニズムに基づいてフィラメント状の金属相ドメインが形成されることが報告され ている [7, 8, 20, 22, 23]。そのため、電場印加を行った領域に対して、本質的に不均一な温度、電 流密度分布が発生するために、不連続な電流-電圧特性が避けられない [4, 8, 25, 26]。また、熱暴 走を制御することは困難であることから、非線形伝導現象の制御は困難である [6, 8, 21, 23]。

転移速度によって特性が制御される素子の場合には、支配的な制御因子となる転移の動的特性 にも着目する必要がある。モット型ニューロモルフィック素子では、抵抗スイッチングの速度が ニューロン発火の速度 [5, 27–29] や、シナプス特性における増強/抑制速度と時間的可塑性 [5, 30] に直接関わることから、急峻かつ高速な抵抗スイッチングが求められている。そのため、温度誘起

7

型転移材料であるバナジウム酸化物 (VO₂, V₂O₃, V₃O₅)[5, 22, 28, 29, 31–35] および希土類ペロ ブスカイトマンガン酸化物 [36]、 ニッケル酸化物 [37] で転移速度評価が行われてきた。これらの 材料では、抵抗スイッチングの速度は温度誘起型転移の急峻性によって決まると考えられている [38–40]。この急峻性は TCR (temperature coefficient of resistivity) から見積もることができる (1.1 式)[41, 42]。

$$|\mathrm{TCR}| \coloneqq \left| \frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}T} \right|$$
 (1.1)

ここで ρ は材料の抵抗率、T は材料の温度である。モット型スイッチング素子 [34, 38–40, 43] や モット型ニューロン素子 [5, 28, 29, 35] に必要な高速な抵抗スイッチングの実現には、一般的に 100%/K 以上もの高い TCR が必要である。しかし、高い TCR を得るためには、材料の化学量論 的組成と結晶性を精密に制御する必要がある [41, 42, 44–46]。そのために、薄膜と基板材料の選択 肢が限られることで [41, 42, 44, 46]、素子設計の自由度には大きな制限があった。これらの課題か ら熱的なメカニズムではない、新たな駆動原理を持つ材料の開拓が求められてきた。

1.3 電流/電場誘起型の金属絶縁体転移

前節での温度誘起型転移の課題から、新たな駆動原理を持つ材料が求められている。この候補が 電流/電場誘起型の転移材料である。電流/電場誘起型の転移材料が存在することは 1990 年代から 議論されていたが [49, 50]、2010 年代になってようやく、いくつかの材料で有望視されるように なった [11, 12, 48, 51-53]。材料中の電子状態を電流/電場によって直接制御できるメカニズムを 持つために、ジュール熱を基にした温度誘起型転移 [20, 34] では避けられなかった、意図しない熱 的影響が抑制されることが予想される。そのため、素子設計や材料設計の自由度が大きく広がるだ けでなく、温度誘起型転移を超える動作安定性や制御性の実現が期待できる。このことに着目し て、電流/電場誘起型転移を応用したモット型メモリ [43, 51] やニューロモルフィック機能の開拓 [30, 54] などの研究がされている。スピネル構造を持つカルコゲナイド AM₄Q₈ (A =Ga, Ge; M = V, Nb, Ta, Mo; Q =S, Se) は、急峻な温度誘起型転移を示さない抵抗率–温度特性を持つ。しか し、材料への電場印加によって、電場誘起型転移に起因すると考えられる急峻かつ不可逆な抵抗率 の変化が観測される (Figure 1.2a)[47, 51]。抵抗スイッチングの速度評価も行われており [27, 30, 47, 51, 52, 54]、~400 ns の高速スイッチングが発現する [51]。転移機構については電気的暴走メ カニズムによって、フィラメント状の金属相ドメインが形成されるモデルが提唱されている [30, 47, 53, 54]。このドメインの成長過程に起因して、抵抗スイッチングが起こるまでに ~ 1–100 µs もの時間を要することが説明されている [30, 51–54]。2 次元物質である遷移金属ダイカルコゲナイ

Figure 1.2 (a) Temperature dependence of resistivity before and after the application of electrical pulses measured by the 4-terminal method, suggesting electric field-induced metal-insulator transition in spinel chalcogenides GaTa₄Se₈. Curve (1) shows the resistivity before the application of the electric pulse (BEP). Curve (2) was obtained after applying a current pulse of 100 ms/100 mA at 70 K (AEP resistivity).(3)–(7) were obtained after applying current pulses of (3) 1.4 mA, (4) 4.4 mA, (5) 6.3 mA, (6) 25 mA, and (7) 40 mA at 1 µs and 70 K. The inset in (a) shows the ρ – T^{-1} characteristics . (b,c) Temperature dependence of current–field characteristics suggesting electrically induced metal-insulator transition of 1T-TaS₂, a two-dimensional layered material. The current– field characteristics under (b) voltage sweep conditions and (c) current sweep conditions, where CCDW indicates the commensurate charge density wave phase. Figure 1.2a is reproduced with permission from ref. [47] \bigcirc (2008) Elsevier B.V., and figure 1.2b,c are reproduced with permission from ref. [48] \bigcirc (2015) American Chemical Society.

ド 1T-TaS₂ では、材料への電場印加によって、ヒステリシスを伴う急峻な抵抗スイッチングが起 こることが観測されている (Figure 1.2b,c)。微小時間の電圧パルスを印加した時間分解測定から は ~3 ns の高速スイッチングが発現する [43, 48]。これらの材料が非熱型転移材料として有望であ るが、温度誘起型の転移材料であるバナジウム酸化物においても、非熱型の転移機構が存在するこ とが近年議論されている。材料を1次元のナノワイヤに加工した測定から、材料中の欠陥に由来す る準位が存在することで、電場によるキャリア生成が容易になり、電流誘起型転移が起きることが 議論されている [55]。そして最後に紹介するのが、電流誘起型の転移材料として有望な本研究のル テニウム酸化物 Ca₂RuO₄ である。次節 1.4 でその基本特性から詳しく説明する。

Figure 1.3 (a) Schematic diagram of crystal structure of bulk Ca₂RuO₄, drawn with the VESTA software[57]. (b) The temperature dependency of the resistivity of bulk Ca₂RuO₄ for T = 70-600 K. Inset of (b) indicates the enlarged view of abrupt transition near the transition temperature of $T_{\rm MIT} = 357$ K. (c) Pressure dependence of resistivity– temperature characteristics from non-pressure to pressure condition of 3.2 GPa. (d) Top: changes in lattice constant and bottom: crystal volume with lattice deformation in the temperature-induced metal-insulator transition observed during temperature sweep[58]. Figure 1.3b is reproduced with permission from ref. [58] \bigcirc (1999) American Physical Society, and figures 1.3c,d are reproduced with permission from ref. [59] \bigcirc (2007) The Physical Society of Japan.

1.4 層状ペロブスカイト Ca₂RuO₄ における電流誘起型の金属絶縁 体転移

近年、一部の材料では電流誘起型の金属絶縁体転移の発現が期待されており、材料中の電流密度 が転移の制御パラメータとして機能する [56]。この電流誘起型の転移材料として有望であるのが、 本研究で扱うルテニウム酸化物 Ca₂RuO₄ である [11–18]。本節ではバルク Ca₂RuO₄ の結晶構造 や電気伝導特性、磁気輸送特性などの基本特性から、その発現が有望視されている電流誘起型転移 の挙動について説明する。

1.4.1 バルク Ca₂RuO₄ の結晶構造とその電気輸送特性

バルク Ca₂RuO₄ は Ruddlesden-Popper 相 (Ca_{n+1}Ru_nO_{3n+1}, n = 1)の層状ペロブスカイト 構造をもつルテニウム酸化物であり、空間群 *Pbca* の直方晶系を単位格子にもつ (Figure 1.3a)。 その抵抗率–温度特性では、転移温度 $T_{\rm MIT} = 357$ K において一次相転移に起因した不連続な温 度誘起型転移を示す (Figure 1.3b)[58]。T < 250 K の温度領域では、アレニウス型の伝導モデル $(\ln(\rho)-T^{-1})$ や一次のモット可変範囲ホッピング伝導 $(\ln(\rho)-T^{-1/2})$ と部分的に一致することが報告されている [12, 58, 60]。また、バルク Ca₂RuO₄ では、圧力印加による転移も報告されている [59]。圧力印加に伴って転移温度が低温側にシフトしていき、 ρ -T 曲線は正の傾きをもつ、金属的な伝導へ変化していく (Figure 1.3c)。これらの温度、圧力の外場に対して平衡状態の金属相が誘起される際には、強い電子格子相互作用によって結晶格子の巨大変化が見られる。絶縁体相である S-*Pbca* 構造 (a = 0.383 nm, b = 0.388 nm, c = 1.196 nm; at T = 295 K) から、金属相の L-*Pbca* 構造 (a = 0.379 nm, b = 0.378 nm, c = 1.226 nm; at T = 400 K) への変化が起こる [61, 62]。比較的変化の小さな a 軸長、 b 軸長に対して、c 軸方向には格子定数の顕著な変化が観 測され、RuO₆ 八面体は c 軸方向に大きく伸長する (Figure 1.3d)[58]。後述の 5 章では、この格子系の変化と転移の関係について評価と議論を行う。

1.4.2 バルク Ca₂RuO₄ の磁気輸送特性

バルク Ca₂RuO₄ は磁化率の温度依存性から、ネール温度 $T_{\rm N} = 110$ K において反強磁性転移 を示す (Figure 1.4a)[58, 59]。磁化率の温度依存性は圧力によっても影響を受け、常圧条件下で 見られていた $T_{\rm N} = 110$ K の転移温度は、圧力印加に伴い $T_{\rm N} = 150$ K にシフトする (Figure 1.4a)[59]。異なる 2 つの転移温度は、圧力印加によって異なる反強磁性秩序が発現することに起因 している [59, 63]。 $T_{\rm N} = 150$ K で発現した反強磁性秩序はさらなる圧力印加によって見られなく なるが、このとき磁化曲線にヒステリシスが観測されることから、強磁性秩序を形成していること が示される (Figure 1.4c)[59]。これらのことから、温度–圧力相図のように (Figure 1.4d)[59]、バ ルク Ca₂RuO₄ は温度や圧力の外場によって、その磁気秩序が大きく制御される材料である。

1.4.3 バルク Ca₂RuO₄ における電流誘起型の金属絶縁体転移

バルク Ca₂RuO₄ の特筆すべき点として、温度、圧力印加による転移だけでなく、電流誘起型転 移の発現が有望視されている。Figure 1.5a,b に示すように、材料中の電流密度の増加に伴い、電 流誘起型転移の発現に起因すると考えられる、4 桁以上の大きな抵抗率の減少が観測される [12]。 この電流誘起型転移では温度誘起型転移と異なり、高次相転移の発現が予想されるヒステリシスを 伴わない緩やかな抵抗率の減少を示す。また、電流密度に依存してその電気伝導モデルが変化する ことが報告されており [14]、低電流密度領域では、試料の冷却に伴って半導体的挙動からモット可 変範囲ホッピング伝導に変化する (inset of Figure 1.5b)[14]。電流密度が増大した際には、半導体

Figure 1.4 (a)Temperature dependence of the magnetic susceptibility (M/H) of the ab plane of bulk Ca₂RuO₄ under T = 2-400 K and H//ab = 0.5 T conditions. Inset: isothermal magnetization for magnetic field at 0–7 at T = 260 K. $T_{\rm N}$ indicates Néel temperature of 110 K. (b) Temperature dependence of the susceptibility of bulk Ca₂RuO₄ at various applied pressures from 0–1.5 GPa under $\mu_0 H = 1$ T, H//a conditions. (c) Magnetization curves of bulk Ca₂RuO₄ under pressure application of 1.5 GPa measured at T = 2 K, H//a. The inset shows hysteresis indicating ferromagnetic ordering. (d) Pressure–temperature phase diagram of bulk Ca₂RuO₄ with metal-insulator transition temperature of $T_{\rm MIT}$, Néel temperature of $T_{\rm N}$, and Curie temperature of $T_{\rm C}$ plotted against pressure. The mixed state refers to the coexistence of an antiferromagnetinsulator (AF-Ins.) and ferromagnet-metal (FM-Metal) phases coexist. The PM Q2DM refers to a paramagnetic quasi-two-dimensional metal. Figure 1.4a is reproduced with permission from ref. [58] \bigcirc (1999) American Physical Society, and figures 1.3b–d are reproduced with permission from ref. [59] \bigcirc (2007) The Physical Society of Japan.

Figure 1.5 (a) Current density dependency of ρ -T characteristic of bulk Ca₂RuO₄ at current densities J = 0.003-21 A cm⁻². (b) Current density dependency of ρ -T characteristic measured at $J_c = 0.0002-0.440$ A cm⁻². The blue triangles indicate points where irreversible changes occur in the electrical transport properties. The inset in (b) plots the ρ -T characteristics of bulk Ca₂RuO₄ (labeled a, b, c) with the corresponding fits for the various conducting regions (VRH: variable range hopping, SE: semiconducting and MS: metastable). (c) Current density-temperature phase diagram of the conduction model obtained from figures 1.5b and 1.7a. The blue triangle, black circle, and pink a-d refer to the same points as in the figures 1.5b and 1.7a. Figure 1.5a is reproduced with permission from ref. [12] \bigcirc (2013) The Physical Society of Japan, and figures 1.5b,c are reproduced with permission from ref. [14] \bigcirc (2019) American Physical Society.

的挙動から反強磁性秩序を持たない低抵抗率相に変化することが観測されている。これらを総括 した *J*-*T* 相図から (Figure 1.5c)[14]、Ca₂RuO₄ は平衡相 (Figure 1.3d)[58] だけでなく、非平衡 キャリアである電流をパラメータにして、新たな非平衡相の発現が期待できる。しかし、バルク結 晶ではその試料形状に起因して、100 mA もの大電流で駆動しても ~ 10¹ A cm⁻² 程度の電流密度 しか得られていないため、この非平衡相には未開拓領域が多い。そのため、今後は微細加工により 大きな電流密度が得られる、エピタキシャル薄膜の開拓が求められる。

温度、圧力で誘起された平衡状態の金属相では、結晶格子の変化が観測されていたが、非平衡定 常状態で安定化する金属相においても、転移の進行に伴った格子の変化が見られる。平衡相と同様 に、僅かな変化しか見られない *a*, *b* 軸長に対して、電流密度の増加によって *c* 軸長が大きく伸長す ることが観測されている (Figure 1.6)[18]。そのため、非平衡相と平衡相の金属相が同一であるか どうか議論がなされている。後述するように温度、圧力印加では金属相への転移後も *c* 軸長が伸長 し続けるのに対して、電場印加では転移後の *c* 軸長の伸長が比較的緩やかであることが報告されて

Figure 1.6 Temperature dependence of (a) a-, (b) b-, (c) c-axis length and (d) lattice volume measured at J = 0.03 (black), 9 (blue), and 18 A cm⁻² (red) for bulk Ca₂RuO₄. Open and closed squares are calibrated sample temperatures from (111) and (311) diffraction of gold used for sample temperature measurements. (e–h) Isothermal current density dependence of lattice parameters at sample temperature 300 K. J = 18 A cm⁻² data were estimated using linear extrapolation from low temperature. Figure 1.6 is reproduced with permission from ref. [18] © (2020) The Physical Society of Japan.

いる [11]。また、電流密度の増加に伴って、キャリアの蓄積によるものと考えられる金属相の相分 離が、電流と反対方向である負極から進行していくことが、光学顕微鏡観察と赤外線吸収分光法か ら報告されている [13]。温度、圧力がスカラー量であることと反して、金属相のドメイン分離がベ クトル性を持っていることから、非平衡相と平衡相の金属相が同一でないことが示唆される。後述 の第6章で詳しく議論するが、このことは他の電流/電場駆動型の転移材料では見られていない特 異な挙動であることから、熱的転移機構の関与を議論する上で重要な事実となる。

Figure 1.7 (a) Double-log scale plot of current–voltage characteristics of bulk Ca₂RuO₄ from 137 K to 282 K. Black circles indicate the points where the current density and electric field are maximum in each plot. The upper left inset shows a linear plot of the negative differential resistance for clarity, and the curve that exhibited a particularly large NDR is labeled as d. The upper right inset shows the temperature dependence of the current density and the electric field maximum. The resistive switching characteristics of bulk Ca₂RuO₄ under (b) steady-state conditions with DC *I–V* measurements and (c) non-steady-state conditions with time-resolved measurements by current pulse application measurements. Top panel in (c): applied current pulses below the threshold current density (3 A cm⁻², blue) and above the threshold (red). Middle panel: transient resistivity change of bulk Ca₂RuO₄. Bottom panel: transient of the temperature change of the sample. Figure 1.7a is reproduced with permission from ref. [14] \bigcirc (2019) American Physical Society, figure 1.7b is reproduced with permission from ref. [11] \bigcirc (2013), and figure 1.7c is reproduced with permission from ref. [15] \bigcirc (2020) American Physical Society.

1.4.4 バルク Ca₂RuO₄ が示す量子相転移型非線形伝導現象

バルク Ca₂RuO₄ では、その 2 端子測定での電流-電圧特性で、量子相転移型非線形伝導現象が 観測される (Figure 1.7a)[14]。電流掃引測定では非線形伝導特性が見られ、低温領域では電流密度 の増加によって NDR 挙動が発現する [12–16]。一方で、電圧掃引測定では、40 V cm⁻¹ という非 常に小さな電場で急峻な電流増加が発現する (Figure 1.7b)[11, 30, 53, 54]。電場誘起型転移で提 唱されている降伏メカニズム [50, 52] を、バルク Ca₂RuO₄ に当てはめると ~4 MV cm⁻¹ もの大

Figure 1.8 Schematic diagram of suggested mechanism for the current-induced metalinsulator transition in bulk Ca₂RuO₄ in which the d_{xy} and d_{xz} , d_{yz} of the 4d t_{2g} orbitals split[65] and the gap gradually narrows as nonequillibrium current carriers are injected[12, 18].

きな閾値電場が予測される [11]。しかし、それよりも遥かに小さな閾値電場 (40 V cm⁻¹) を持つ ことから、他の転移材料と異なる転移メカニズムが期待される。バルク Ca₂RuO₄ に電流パルスを 流した時間分解測定では、閾値電流密度を超えると抵抗変化挙動に変化が現れる [15]。閾値電流密 度を超えたとき金属相への遷移過程に、温度の上昇速度よりも一桁高速な時定数が存在しているこ とから [15]、電流による高速な転移が予想される (Figure 1.7c)。前節でも温度、圧力誘起の平衡状 態の金属相とは異なる、非平衡相の金属相が電流によって現れる可能性について言及した。バルク Ca₂RuO₄ での時間分解測定では不明瞭であるために、ポンプ・プローブ分光測定 [64] や、エピタ キシャル薄膜を適用した抵抗スイッチングの速度評価が今後求められる。

1.4.5 バルク Ca₂RuO₄ で予想されている電流誘起型転移のメカニズム

4d 電子系材料は広いバンド幅を持つが、一部の材料ではクーロン反発力から見てスピン軌道相 互作用が比較的大きく働くことで、ナローギャップモット絶縁体となる。これによりわずかな外場 に対しても敏感に反応することで、種々の新規物性が発現すると考えられている [56]。Ca₂RuO₄ はスピン軌道相互作用の関与からナローギャップモット絶縁体 (0.2–0.65 eV)[66] となるが、加え て電流誘起型転移に際して格子が変化することによって、わずかな電気刺激でも電子状態の変化が 起きることが提唱されている [56]。バルク Ca₂RuO₄ での電流密度の増加に依存した、緩やかな抵

Figure 1.9 DC transport characterization and optical images of bulk Ca₂RuO₄. (a) DC I-V curves including optical images in the visible light range taken by a CCD camera. The inset shows the progression of domain separation of the L phase (dark region) at each stage of the phase transition. The white dashed line in the inset shows the contour of the electrode. (b) and (c) show the difference in the growth direction of the metallic phase domains at the reversal of the polarity of the two electrodes. The L phase is the metallic phase, the S phase is the insulating phase, and the S' phase is the non-equilibrium intermediate phase. Figure 1.9 is reproduced with permission from ref. [13] \bigcirc (2019) American Physical Society.

抗減少のメカニズムについては未解明であるが、電流密度の増加に依存したエネルギーギャップの 狭窄が提案されている (1.2 式)[12, 18]。

$$\rho(J,T) = \rho_0(T) \exp\left[\frac{\Delta(J,T)}{2k_B T}\right]$$
(1.2)

ここで、 $\rho_0(T)$ は抵抗率の温度依存係数、 $\Delta(J,T)$ はエネルギーギャップの電流密度依存項を示す。 バルク Ca₂RuO₄ に非平衡の電流キャリアが注入されることで、4*d* t_{2g} 軌道における d_{xy} 軌道と d_{xz}, d_{yz} 軌道が分裂して [65] 徐々にエネルギーギャップの狭窄が起こり、その電流密度依存の緩や かな抵抗減少が起きることが提唱されている (Figure 1.8)[12, 18]。この金属相の空間的な広がり については、バルク Ca₂RuO₄ で電流と逆方向の負極から、非平衡定常状態の金属相が成長してい く様子が観察されている (Figure 1.9)[13]。このことから、温度、圧力に誘起された平衡状態の金 属相と異なる、非平衡な金属相が発現していると考えられている。他の熱型、非熱型転移材料では 熱暴走や電気的暴走によって、フィラメント状の金属相ドメインが形成されることが議論されてお り [25, 26, 67, 68]、非熱型転移であってもジュール熱由来の金属相との区別はできていない。しか し、バルク Ca₂RuO₄ では、ジュール加熱では説明できない金属相ドメインの形成過程が見られて いることから、その非平衡ダイナミクスについて理解を深める必要がある。

1.5 研究目的

ここまで述べてきたように、Ca₂RuO₄ は電流誘起型の金属絶縁体転移を示す有望な材料であ り、その原理から期待される応用の展望は広い。しかし、転移メカニズムの理解は発展途上にある ため、エピタキシャル薄膜化することで従来できなかった詳細な測定をすることが有効である。本 研究の目的は 1) 長年困難であった電流誘起型転移を示す Ca₂RuO₄ のエピタキシャル薄膜の作製 を実現すること、2) 作製した Ca₂RuO₄ のエピタキシャル薄膜によって、量子相転移型非線形伝 導現象への理解を深めることで、エレクトロニクス応用の可能性を見出すことである。

1.6 博士論文の構成

第1章"序章"では、当該研究領域と近年のエレクトロニクスにおける背景と課題から、本論文 のテーマである"Ca₂RuO₄エピタキシャル薄膜が示す量子相転移型非線形伝導現象の研究"の目 的を俯瞰し、その意義を位置づける。金属絶縁体転移のエレクトロニクス応用が長年試みられてき たが、その多くが温度誘起型転移であるために、原理的な課題から実現は困難である。この課題に 対して電流/電場誘起型転移が解決策となることを提示し、本研究材料の Ca₂RuO₄ が示す電流誘 起型転移について迫っていく。しかし、Ca₂RuO₄ の転移メカニズムの理解と素子応用には、エピ タキシャル薄膜が不可欠である。そのため、本研究の目的を 1)電流誘起型転移を示す Ca₂RuO₄ エピタキシャル薄膜の作製を実現すること、2)作製した Ca₂RuO₄ 薄膜を通じて転移挙動を理解 することで、転移メカニズムの理解への重要な知見を得るとともに、デバイス応用の可能性を探る こととして位置付けていく。

第2章 "固相エピタキシャル成長法を適用した電流誘起型転移を示す Ca₂RuO₄ エピタキシャ ル薄膜の作製"では、さまざまな基板上での Ca₂RuO₄ 薄膜の作製とその構造評価を行う。非真空 条件での結晶成長を適用した、本研究の Ca₂RuO₄ エピタキシャル薄膜について、格子状態や結 晶成長様式、膜中のルテニウム欠損量の影響について議論を行う。Ca₂RuO₄ エピタキシャル薄膜 は、真空製膜法では Ru 欠損による材料組成のずれや結晶欠陥が生じることで、金属絶縁体転移を しないことが大きな問題となっていた。本研究では、非真空条件での結晶成長を可能とする、固相 エピタキシャル成長法を Ru 酸化物に独自に適用することで、電流誘起型転移を示す Ca₂RuO₄ エ ピタキシャル薄膜の作製を目指した。

第3章 "固相エピタキシャル成長法を適用した Ca₂RuO₄ エピタキシャル薄膜の輸送特性評価" では、本研究で Ru 酸化物薄膜に独自に適用した、非真空条件での結晶成長が輸送特性に与える 影響を評価する。電流誘起型転移の発現に起因すると考えられる、明瞭な抵抗変化が観測された Ca₂RuO₄/LaAlO₃ (001) については、抵抗率–温度特性における伝導モデルと磁気輸送特性につ いても議論する。

第4章 "直流の電気測定による量子相転移型非線形伝導現象の評価"では、本研究の Ca₂RuO₄/LaAlO₃ (001) において電流誘起型転移の観測を目指す。さらには、観測すること ができた電流密度依存の抵抗減少について、直流の電気測定から評価を行う。定電流条件での温度 掃引測定で観測された平滑な抵抗転移と、それと対照に定電圧条件で観測された、急峻な一次相転 移的挙動について議論する。また、電流掃引条件の電流-電圧測定で観測された平滑な NDR 挙動 は、電圧掃引測定では抵抗スイッチングとして観測されたことから、Ca₂RuO₄/LaAlO₃ (001) の 電流誘起型転移が高速である可能性に迫っていく。

第5章 "量子相転移型非線形伝導現象に対するエピタキシャル応力の影響"では、Ca₂RuO₄ 薄 膜の電流誘起型転移と、エピタキシャル応力の関係について調べる。Ca₂RuO₄ の電流誘起型転移 には、強い電子格子相互作用によって結晶格子の変化が大きく関係している。このことから、エピ タキシャル薄膜に加工することができれば、材料の歪み状態によって非線形伝導現象の制御が可能 であることが期待される。このような背景から、エピタキシャル応力の異なる基板上に作製した、 Ca₂RuO₄ 薄膜の非線形伝導特性を比較することで、エピタキシャル応力と非線形伝導現象の関係 を調べる。膜配向の異なる薄膜で非線形伝導特性が抑制されたことから、結晶格子の *c* 軸長変化に 着目して、エピタキシャル応力の影響を議論していく。

第6章 "時間分解測定による量子相転移型非線形伝導現象の評価"では、Ca₂RuO₄/LaAlO₃ (001)の抵抗スイッチングの挙動について、時間分解測定から詳しく調べる。従来の温度誘起型転 移の理解からは、急峻な抵抗スイッチングを得るには急峻な温度誘起型転移が不可欠であった。し かし、Ca₂RuO₄ では温度、圧力で誘起される金属相と、電流で誘起される非平衡状態の金属相が 異なると考えられており、電流-電圧特性は抵抗率-温度特性とは独立している可能性がある。純電 子的な転移メカニズムが予想される Ca₂RuO₄/LaAlO₃ (001)において、急峻な温度誘起型転移を 示さないにも関わらず、急峻な抵抗スイッチングが観測されたことから、その非平衡ダイナミクス について議論する。

第7章 総括では本博士論文の意義について以下の事柄を総括する。

1) 電流誘起型転移を示す Ca₂RuO₄ のエピタキシャル薄膜の作製を実現させた。このことにより、

相転移挙動を理解するための詳細な測定を可能にし、エレクトロニクスに応用できるかを評価でき るようになった。物性物理分野においても、エピタキシャル薄膜を使った微細加工試料を適用する ことで、高電流密度領域における新規量子相の探索が可能になった。

2) Ca₂RuO₄ 薄膜の電流誘起型転移では、抵抗率–温度特性とは独立して、電気的に抵抗スイッチ ングが発現することを観測した。このことは、Ca₂RuO₄ 薄膜の電流誘起型転移が、温度誘起型転 移のダイナミクスとは独立していることを意味しており、その非平衡ダイナミクスを理解する上で 重要な知見をもたらすものである。このことにより、金属絶縁体転移のエレクトロニクス応用を目 指して、材料設計および、素子設計の自由度が大きく広がったと言える。

3) Ca₂RuO₄ 薄膜が示す量子相転移型非線形伝導現象には、エピタキシャル応力が明瞭な影響を与 えることを明らかにした。このことから応用上重要な非線形伝導現象が、基板からのエピタキシャ ル応力によって制御可能であることを見出し、モット型デバイスの可能性と転移メカニズムへの理 解を深めることができた。

References

- Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. *Reviews of Modern Physics* 70, 1039 (1998).
- Zhou, Y. & Ramanathan, S. Mott memory and neuromorphic devices. Proceedings of the IEEE 103, 1289–1310 (2015).
- 3. Wang, Y. et al. Mott-transition-based RRAM. Materials Today 28, 63–80 (2019).
- Lee, Y. W. et al. Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film. Applied Physics Letters 92 (2008).
- 5. Yi, W. *et al.* Biological plausibility and stochasticity in scalable VO₂ active memristor neurons. *Nature Communications* **9**, 4661 (2018).
- Schofield, P. et al. Harnessing the Metal–Insulator Transition of VO₂ in Neuromorphic Computing. Advanced Materials, 2205294 (2022).
- Das, S. K. et al. Physical Origin of Negative Differential Resistance in V₃O₅ and Its Application as a Solid-State Oscillator. Advanced Materials 35, 2208477 (2023).
- Bohaichuk, S. M. et al. Intrinsic and Extrinsic Factors Influencing the Dynamics of VO₂ Mott Oscillators. Physical Review Applied 19, 044028 (2023).
- Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annual Review of Materials Research 41, 337–367 (2011).
- Peronaci, F., Ameli, S., Takayoshi, S., Landsman, A. S. & Oka, T. Mott memristors based on field-induced carrier avalanche multiplication. *Physical Review B* 107, 075154 (2023).
- Nakamura, F. *et al.* Electric-field-induced metal maintained by current of the Mott insulator Ca₂RuO₄. *Scientific Reports* 3, 2536 (2013).
- Okazaki, R. et al. Current-induced gap suppression in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 82, 103702 (2013).
- Zhang, J. et al. Nano-resolved current-induced insulator-metal transition in the Mott insulator Ca₂RuO₄. Physical Review X 9, 011032 (2019).
- Cirillo, C. *et al.* Emergence of a metallic metastable phase induced by electrical current in Ca₂RuO₄. *Physical Review B* 100, 235142 (2019).

- Jenni, K. et al. Evidence for current-induced phase coexistence in Ca₂RuO₄ and its influence on magnetic order. *Physical Review Materials* 4, 085001 (2020).
- Mattoni, G., Yonezawa, S., Nakamura, F. & Maeno, Y. Role of local temperature in the current-driven metal-insulator transition of Ca₂RuO₄. *Physical Review Materials* 4, 114414 (2020).
- 17. Avallone, G. *et al.* Universal size-dependent nonlinear charge transport in single crystals of the Mott insulator Ca₂RuO₄. *npj Quantum Materials* **6**, 91 (2021).
- Okazaki, R. et al. Current-induced giant lattice deformation in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 89, 044710 (2020).
- Nakano, T. & Terasaki, I. Giant nonlinear conduction and thyristor-like negative differential resistance in BaIrO₃ single crystals. *Physical Review B* 73, 195106 (2006).
- 20. Kumar, S. *et al.* Local temperature redistribution and structural transition during jouleheating-driven conductance switching in VO₂. *Advanced Materials* **25**, 6128–6132 (2013).
- Rana, A., Li, C., Koster, G. & Hilgenkamp, H. Resistive switching studies in VO₂ thin films. *Scientific Reports* 10, 3293 (2020).
- Adda, C. et al. Direct observation of the electrically triggered insulator-metal transition in V₃O₅ far below the transition temperature. *Physical Review X* 12, 011025 (2022).
- Luibrand, T. et al. Characteristic length scales of the electrically induced insulator-tometal transition. Physical Review Research 5, 013108 (2023).
- Nakamura, S. Nonequilibrium Phase Transitions and a Nonequilibrium Critical Point from Anti-de Sitter Space and Conformal Field Theory Correspondence. *Physical Review Letters* 109, 120602 (2012).
- Li, S., Liu, X., Nandi, S. K., Nath, S. K. & Elliman, R. G. Origin of current-controlled negative differential resistance modes and the emergence of composite characteristics with high complexity. *Advanced Functional Materials* 29, 1905060 (2019).
- Nandi, S. K. et al. High Spatial Resolution Thermal Mapping of Volatile Switching in NbO_x-Based Memristor Using In Situ Scanning Thermal Microscopy. ACS Applied Materials & Interfaces 14, 29025–29031 (2022).
- 27. Tesler, F. et al. Relaxation of a spiking Mott artificial neuron. Physical Review Applied 10, 054001 (2018).
- 28. Del Valle, J. et al. Subthreshold firing in Mott nanodevices. Nature 569, 388–392 (2019).

- Rocco, R. et al. Exponential escape rate of filamentary incubation in Mott spiking neurons. Physical Review Applied 17, 024028 (2022).
- Tranchant, J. et al. Control of resistive switching in AM₄Q₈ narrow gap Mott insulators: A first step towards neuromorphic applications. *Physica Status Solidi* (a) **212**, 239–244 (2015).
- Giorgianni, F., Sakai, J. & Lupi, S. Overcoming the thermal regime for the electricfield driven Mott transition in vanadium sesquioxide. *Nature Communications* 10, 1159 (2019).
- Sood, A. *et al.* Universal phase dynamics in VO₂ switches revealed by ultrafast operando diffraction. *Science* **373**, 352–355 (2021).
- Del Valle, J. et al. Spatiotemporal characterization of the field-induced insulator-to-metal transition. Science 373, 907–911 (2021).
- Li, D. et al. Joule heating-induced metal-insulator transition in epitaxial VO₂/TiO₂ devices. ACS Applied Materials & Interfaces 8, 12908–12914 (2016).
- Del Valle, J. et al. Generation of tunable stochastic sequences using the insulator-metal transition. Nano Letters 22, 1251–1256 (2022).
- Salev, P. et al. Transverse barrier formation by electrical triggering of a metal-to-insulator transition. Nature Communications 12, 5499 (2021).
- 37. Del Valle, J. *et al.* Dynamics of the electrically induced insulator-to-metal transition in rare-earth nickelates. *Physical Review B* **104**, 165141 (2021).
- Pellegrino, L. *et al.* Multistate memory devices based on free-standing VO₂/TiO₂ microstructures driven by joule self-heating. *Advanced Materials* 24, 2929–2934 (2012).
- Zhou, Y. et al. Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Letters 34, 220–222 (2013).
- Zhang, J. et al. Evolution of structural and electrical properties of oxygen-deficient VO₂ under low temperature heating process. ACS Applied Materials & Interfaces 9, 27135– 27141 (2017).
- Miyazaki, K., Shibuya, K., Suzuki, M., Wado, H. & Sawa, A. Correlation between thermal hysteresis width and broadening of metal-insulator transition in Cr-and Nb-doped VO₂ films. *Japanese Journal of Applied Physics* 53, 071102 (2014).

- Miyazaki, K., Shibuya, K., Suzuki, M., Wado, H. & Sawa, A. High temperature coefficient of resistance of low-temperature-grown VO₂ films on TiO₂-buffered SiO₂/Si (100) substrates. *Journal of Applied Physics* **118** (2015).
- Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS₂ crystals. *Science Advances* 1, e1500606 (2015).
- 44. Muraoka, Y. & Hiroi, Z. Metal-insulator transition of VO₂ thin films grown on TiO₂ (001) and (110) substrates. *Applied Physics Letters* 80, 583–585 (2002).
- Fan, L. *et al.* Strain dynamics of ultrathin VO₂ film grown on TiO₂ (001) and the associated phase transition modulation. *Nano Letters* 14, 4036–4043 (2014).
- Lee, D. et al. Sharpened VO₂ phase transition via controlled release of epitaxial strain. Nano Letters 17, 5614–5619 (2017).
- 47. Vaju, C. *et al.* Electric-pulse-induced resistive switching and possible superconductivity in the Mott insulator GaTa₄Se₈. *Microelectronic Engineering* **85**, 2430–2433 (2008).
- Hollander, M. J. *et al.* Electrically driven reversible insulator-metal phase transition in 1T-TaS₂. *Nano Letters* 15, 1861–1866 (2015).
- Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. *Nature* 388, 50–52 (1997).
- Oka, T., Arita, R. & Aoki, H. Breakdown of a Mott insulator: a nonadiabatic tunneling mechanism. *Physical Review Letters* **91**, 066406 (2003).
- Cario, L., Vaju, C., Corraze, B., Guiot, V. & Janod, E. Electric-field-induced resistive switching in a family of Mott insulators: Towards a new class of RRAM memories. *Ad*vanced Materials 22, 5193–5197 (2010).
- Guiot, V. et al. Avalanche breakdown in GaTa₄Se_{8-x}Te_x narrow-gap Mott insulators. Nature Communications 4, 1722 (2013).
- Stoliar, P. et al. Universal Electric-Field-Driven Resistive Transition in Narrow-Gap Mott Insulators. Advanced Materials 25, 3222–3226 (2013).
- Stoliar, P. et al. A leaky-integrate-and-fire neuron analog realized with a Mott insulator. Advanced Functional Materials 27, 1604740 (2017).
- Kalcheim, Y. et al. Non-thermal resistive switching in Mott insulator nanowires. Nature Communications 11, 2985 (2020).

- Cao, G. Towards electrical-current control of quantum states in spin-orbit-coupled matter. Journal of Physics: Condensed Matter 32, 423001 (2020).
- 57. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *Journal of Applied Crystallography* **44**, 1272–1276 (2011).
- Alexander, C. *et al.* Destruction of the Mott insulating ground state of Ca₂RuO₄ by a structural transition. *Physical Review B* 60, R8422 (1999).
- Nakamura, F. Pressure-induced Mott transition and related novel quantum phenomena in Ca₂RuO₄. Journal of the Physical Society of Japan 76 (Supplement A), 96–99 (2007).
- Nakatsuji, S. et al. Mechanism of hopping transport in disordered Mott insulators. Physical Review Letters 93, 146401 (2004).
- Braden, M., André, G., Nakatsuji, S. & Maeno, Y. Crystal and magnetic structure of Ca₂RuO₄: Magnetoelastic coupling and the metal-insulator transition. *Physical Review* B 58, 847 (1998).
- 62. Friedt, O. *et al.* Structural and magnetic aspects of the metal-insulator transition in $Ca_{2-x}Sr_xRuO_4$. *Physical Review B* 63, 174432 (2001).
- Steffens, P. et al. High-pressure diffraction studies on Ca₂RuO₄. Physical Review B 72, 094104 (2005).
- Vitalone, R. A. et al. Nanoscale Femtosecond Dynamics of Mott Insulator (Ca_{0.99}Sr_{0.01})₂RuO₄.
 Nano Letters 22, 5689–5697 (2022).
- Anisimov, V., Nekrasov, I., Kondakov, D., Rice, T. & Sigrist, M. Orbital-selective Mottinsulator transition in Ca_{2-x}Sr_xRuO₄. The European Physical Journal B-Condensed Matter and Complex Systems 25, 191–201 (2002).
- Uchida, K. et al. High-Order Harmonic Generation and Its Unconventional Scaling Law in the Mott-Insulating Ca₂RuO₄. Physical Review Letters **128**, 127401 (2022).
- Ridley, B. Specific negative resistance in solids. Proceedings of the Physical Society 82, 954 (1963).
- Kumar, S. & Williams, R. S. Separation of current density and electric field domains caused by nonlinear electronic instabilities. *Nature Communications* 9, 2030 (2018).

第2章 固相エピタキシャル成長法を適用した Ca2RuO4 エピタキシャル薄膜の作製

第2章

固相エピタキシャル成長法を適用した Ca₂RuO₄ エピタキシャル薄膜の作製

2.1 はじめに

1章 序章から本研究材料 Ca₂RuO₄ のバルク結晶では、材料中の電流密度の増大に伴った抵抗 率の大きな減少が報告されている [1–8]。相転移挙動の理解を通じて応用の可能性を評価すること と、新規物性探索には、エピタキシャル薄膜を使った高電流密度測定や、微小時間での時間分解 測定、エピタキシャル応力による格子系の制御などが有効である。しかし、真空製膜法で作製し た Ca₂RuO₄ エピタキシャル薄膜では、(2.1) 式 [9] に従って膜中の Ru が欠損することで、金属絶 縁体転移をしないことが大きな課題となっていた [10–13]。このことから、電流誘起型転移を示す Ca₂RuO₄ 薄膜を作製することは、著しく困難であることが知られていた。

$$Ca_2 RuO_4 \longrightarrow Ca_2 Ru_{1-\delta}O_{4-4\delta} + \delta RuO_4(g) \uparrow$$
(2.1)

従来の真空製膜法で作製された Ca₂RuO₄ 薄膜では、温度誘起型転移ですら不明瞭であった。抵抗 率についても、PLD 法で作製した Ca₂RuO₄/LaAlO₃ (001) では 10⁻³ Ω cm[10–12]、MBE 法で 作製した薄膜では 10⁻¹ Ω cm[13] と、製膜法によって抵抗率のばらつきが大きい。Ru 酸化物薄膜 では、輸送特性に結晶欠陥が大きな影響を及ぼすことが知られており [14–18]、超伝導物質として 知られている Sr₂RuO₄ においても、近年、結晶欠陥を抑制することによって超伝導を示すエピタ キシャル薄膜の作製に成功している [16–18]。このことから、Ca₂RuO₄ 薄膜における製膜法に依 存した抵抗率のばらつきは、結晶欠陥によるものと予想される。そこで、本研究では、真空製膜法 で作製した薄膜が金属絶縁体転移をしない原因が、真空条件での結晶成長の際に膜中の Ru が欠損 することによって、材料組成のずれや結晶欠陥が生じるためであると予想した。このことから、非 真空条件での結晶成長が、膜中の Ru 欠損の抑制に有効であると考えた。本研究では、非真空条件 での結晶成長が適用できる固相エピタキシャル成長法によって、Ru 欠損と結晶欠陥が低減された Ca₂RuO₄ エピタキシャル薄膜を作製することで、電流誘起型転移を観測することを目指した。

2章では、6 つの異なる基板上に固相エピタキシャル成長法で作製した Ca_2RuO_4 薄膜について、 その構造評価から作製条件について議論する。Ru 欠損を抑制するために、1.0 atm の非真空条件 において $T \ge 1200^{\circ}C$ の高温での結晶成長を行った。この高温条件に起因して、 Ca_2RuO_4 のエピ タキシャル成長は基板との格子不整合だけでなく、基板材料の化学的安定性にも影響を受けた。ほ ぼ単相のコヒーレント成長は、化学的安定性の高い Al 酸化物基板でのみ得られた。基板の安定性 に起因して不純物と格子不整合を含むものの、一部の Ga 酸化物基板でもほぼ単相の Ca_2RuO_4 エ ピタキシャル薄膜が得られている。[001] 配向膜の $Ca_2RuO_4/LaAlO_3$ (001), $Ca_2RuO_4/NdGaO_3$ (110) に対して、[110] 配向膜の $Ca_2RuO_4/NdCaAlO_4$ (100) が得られたことを X 線回折から確 認した。 $Ca_2RuO_4/LaAlO_3$ (001) については、真空製膜法よりも短い c 軸長から Ru 欠損の抑制 が示唆されるほか、これまで避けられなかった結晶欠陥の形成が顕著に抑制されていることがわ かった。

2.2 固相エピタキシャル成長法を適用した Ca₂RuO₄ エピタキシャ ル薄膜の作製

本研究では格子定数の異なる、6 種類の単結晶基板 YAlO₃ (001) および LaAlO₃ (001), NdCaAlO₄ (100), LaSrGaO₄ (001), NdGaO₃ (110), LSAT (100) の上に、Ca₂RuO₄ エピタキ

Figure 2.1 Schematic diagram of the fabrication of Ca_2RuO_4 epitaxial thin film by solid phase epitaxy. A $Ca_2RuO_{4+\delta}$ precursor film is deposited by pulsed laser deposition at room temperature. The precursor film is capped with substrate material and annealed under atmospheric pressure at $T \geq 1200^{\circ}C$ to grow Ca_2RuO_4 (100 nm) epitaxial thin films.

シャル薄膜を作製することを試みた。はじめに、パルスレーザー堆積によってアモルファス性の Ca₂RuO_{4+δ} 前駆体膜を基板上に堆積させた。その後、外部炉において Ar(99%) + O₂(1%) の非 真空条件で 1200–1400 °C、1.0 時間アニールすることで、Ca₂RuO₄ (100 nm) エピタキシャル薄 膜を得た (Figure 2.1)。LaAlO₃ (001),YAlO₃ (001) 基板については、高温条件でも表面状態の粗 雑化と組成分離が見られないことを確認した上で、前駆体膜の製膜前に HCl エッチング処理を行 うことで、基板表面を選択的に AlO₂ 終端している [19]。その他の基板材料についてはフラットア ンドテラス構造を持つ原子平坦面を形成するために、薄膜の成長条件と同一の条件でオーバーレイ ドアニーリングを行った [20, 21]。PLD ターゲットには、CaCO₃ と RuO₂ を混合して焼結するこ とで組成比 Ca₂RuO_{4+δ} のものを作製した。前駆体膜の堆積は、酸素分圧 (P_{O_2}) ≤ 10 Pa の室温 条件の真空チャンバー内において、フルエンス ~ 2 J cm⁻¹ の KrF エキシマレーザ (λ = 248 nm) を周期 10 Hz でターゲットに照射することで Ca₂RuO_{4+δ} 前駆体膜を製膜した。

バルク Ca₂RuO₄ と、単結晶基板の格子定数および格子不整合度、エピタキシャル成長の結果を Table 2.1 にまとめる。格子不整合度は 2.2 式に従って、バルク Ca₂RuO₄ 絶縁体相と基板材料の 面内格子定数から導出した。

$$Mismatch [\%] \coloneqq (d_{CRO} - d_{sub})/d_{CRO} \times 100$$
(2.2)

ここで、 d_{CRO} と d_{sub} は、バルク Ca_2RuO_4 の絶縁体相 (T = 295 K)と基板の面内格子定数

Table 2.1 Lattice constants of bulk $Ca_2RuO_4[22, 23]$ and the substrate materials applied the solid phase epitaxial growth method in this study, the lattice mismatch between them, and the results of the epitaxial growth of Ca_2RuO_4 . In the lattice mismatch calculations, [110]-oriented growth of Ca_2RuO_4 thin films was assumed for the NdCaAlO₄ (100) substrate, while [001]-oriented growth was assumed for the other substrates. For direct comparison of lattice constants, the lattice constants of bulk Ca_2RuO_4 were converted to the pseudo- K_2NiF_4 structure, and those of LaAlO₃ (001), YAlO₃ (001), and NdGaO₃ (110) to the pseudo-cubic structure.

Materials	$a \; [nm]$	$b \; [nm]$	$c \; [\mathrm{nm}]$	Mismatch [%]	Results
Bulk Ca_2RuO_4 at 295 K	0.383	0.388	1.196		
Bulk Ca_2RuO_4 at 400 K	0.379	0.378	1.226	_	
$YAlO_3$ (001)	0.366	0.376	0.369	+3.1 to +4.4	$Ca_2RuO_4 + Impurities$
$LaAlO_3$ (001)	0.379	0.379	0.379	+1.0 to $+2.3$	$\mathrm{Ca}_{2}\mathrm{RuO}_{4}$
$LaSrGaO_4$ (001)	0.384	0.384	1.268	-0.3 to $+1.1$	Impurities (interfacial)
$NdGaO_3$ (110)	0.385	0.386	0.386	-0.5 to $+0.5$	$\mathrm{Ca}_{2}\mathrm{RuO}_{4}$
LSAT (100)	0.387	0.387	0.387	-1.0 to $+0.3$	Impurities
$NdCaAlO_4$ (100)	0.368	0.368	1.212	-1.3 to $+5.2$	$\mathrm{Ca_2RuO_4}$

を指す。格子定数の直接的な比較を行うために、直方晶系のバルク Ca₂RuO₄ は *ab* 面に対して $d_{\text{CRO}}/\sqrt{2}$ 式を適用することで、擬 K₂NiF₄ 構造へ変換している。LaAlO₃ (001) および YAlO₃ (001), NdGaO₃ (110) は擬立方晶系で格子定数をとっている。Table 2.1 に示すように、高温条 件での結晶成長条件に起因して Ca₂RuO₄ 薄膜のエピタキシャル成長は、格子不整合度だけで なく、基板の化学的安定性にも大きな影響を受けた。この安定性について、6 つの基板での実 験から以下のような 2 つの傾向が見られる。1 つ目に、基板と薄膜材料の界面反応の観点から、 Ga 酸化物基板 (LaSrGaO₄, NdGaO₃)、 Ta 酸化物基板 (LSAT) よりも Al 酸化物基板 (LaAlO₃, YAlO₃, NdCaAlO₄) の方が界面反応が起こりにくい。2 つ目に、K₂NiF₄ 構造の基板 (LaSrGaO₄, NdCaAlO₄) よりも擬立方晶基板 (LaAlO₃, YAlO₃, NdGaO₃) の方が化学的に安定である。この 傾向から、LaSrGaO₄ (001), LSAT (100) では、高温条件での結晶成長の際に界面反応層ができて しまうことで、不純物を含まない Ca₂RuO₄ 薄膜は得られなかった (Table 2.1)。一方で、LaAlO₃ (001) では単相の Ca₂RuO₄ 薄膜が得られているにもかかわらず、同等の化学的安定性を有してい る YAlO₃ (001) では単相薄膜は得られていない。このことは YAlO₃ とCa₂RuO₄ との格子不整 合度の大きさ (+3.1 to +4.4%) に起因すると考えられる。これらのことから、本研究では固相エ ピタキシャル成長によって LaAlO₃ (001) および NdGaO₃ (110), NdCaAlO₄ (100) の 3 つの基板

Figure 2.2 Out-of-plane XRD patterns of (a) $Ca_2RuO_4/LaAlO_3$ (001), (b) $Ca_2RuO_4/NdGaO_3$ (110), and (c) $Ca_2RuO_4/NdCaAlO_4$ (100) epitaxial films measured by θ -2 θ scan. The asterisks in (a-c) indicate diffraction peaks from the substrate. The reflection peaks of non-stoichiometric compositional materials observed in $Ca_2RuO_4/NdGaO_3$ (110) are indicated by open circles. (d) In-plane orientation of $Ca_2RuO_4/LaAlO_3$ (001) and (e) $Ca_2RuO_4/NdCaAlO_4$ (100) thin films measured by out-of-plane ϕ -scan, for Ca_2RuO_4 109, $LaAlO_3$ 303 and Ca_2RuO_4 333, $NdCaAlO_4$ 303, respectively.

でのみほぼ単相の薄膜が得られた。

2.3 X 線回折による Ca₂RuO₄ 薄膜の構造評価

 θ -2 θ 法での面外 XRD 測定から、固相エピタキシャル成長法を適用した Ca₂RuO₄ エピタキ シャル薄膜の構造評価を行った (Figure 2.2a-e)。Ca₂RuO₄/LaAlO₃ (001) では *c* 軸配向のピー クのみが見られており (Figure 2.2a)、面外 ϕ スキャンから基板の 4 回対象と一致していることか ら (Figure 2.2d)、ほぼ単相の [001] 配向膜が得られていることを確認した。Ca₂RuO₄/NdGaO₃ (110) においても、比較的単相の [001] 配向膜が得られているが (Figure 2.2b)、 作製した多くの 試料において高角側に Ca₂RuO₄, NdGaO₃ どちらでもない不純物ピークが見られている。後ほど

Figure 2.3 Reciprocal space maps obtained from the XRD measurements for the $Ca_2RuO_4/LaAlO_3$ (001), $Ca_2RuO_4/NdGaO_3$ (110), and $Ca_2RuO_4/NdCaAlO_4$ (100) thin films around the (a) Ca_2RuO_4 119 and $LaAlO_3$ 103, (b) Ca_2RuO_4 119 and $NdGaO_3$ 332, (c) Ca_2RuO_4 333 and $NdCaAlO_4$ 303, and (d) Ca_2RuO_4 420 and $NdCaAlO_4$ 310 reflections. The orientation of the axes are based on the orthorhombic unit cell, which is the original unit cell of bulk Ca_2RuO_4 . Schematic illustration of the epitaxial growth relationship and strain state of (e) $Ca_2RuO_4/LaAlO_3$ (001) and (f) $Ca_2RuO_4/NdCaAlO_4$ (100) thin films. The figure depicts the insulating phase of bulk Ca_2RuO_4 at RT.

逆格子空間マッピングからも議論するが、この不純物ピークは NdGaO₃ の化学的安定性に起因し て発生してしまう、界面反応層と関係すると考えられる。 $Ca_2RuO_4/NdCaAlO_4$ (100) では、ほ ぼ単相の薄膜が得られているが (Figure 2.2c)、面外 ϕ スキャンから基板の 2 回対象と一致した Ca_2RuO_4 薄膜のピークが見られている (Figure 2.2e)。このことから、他 2 つの試料とは異なり [110] 配向膜が得られている。基板の面内方向に薄膜の *c* 軸が位置してエピタキシャル成長が進む ことは、PLD 法で作製した [100] 配向膜である Ca₂RuO₄/NdCaAlO₄ (110) でも報告されている [12]。

逆格子空間マッピングから試料の構造評価を行った (Figure 2.3a-d)。Ca₂RuO₄/LaAlO₃ (001) では、薄膜の面内格子定数が基板と一致していることを確認した (a = b = 0.536 nm,c =1.216 nm)(Figure 2.3a)。バルク Ca₂RuO₄(a = 0.541 nm, b = 0.549 nm, c = 1.196 nm; at T = 295 K)[22] よりも c 軸長が伸長していることから、LaAlO₃ 基板からの面内圧縮応力 (+1.0 to +2.3%)の影響が考えられる (Figure 2.3e)。また、本研究の薄膜の c 軸長は、PLD 法 (c =1.224 nm)[11, 12] よりも有意に短い。Ru 酸化物の薄膜では、膜中の Ru 欠損量に依存して c 軸 長が伸長する傾向にあるため [24]、真空製膜法よりも Ru 欠損量が低減されていることが示唆さ れる。一方で、Ca₂RuO₄/NdGaO₃ (110) では、Ca₂RuO₄ 119 ピークが面内の [110], [1–10] 方 向に大きく広がっていることが観測された (Figure 2.3b)。Ca₂RuO₄ は NdGaO₃ (110) 基板上で コヒーレント成長しておらず、面内格子定数は一致していない。また、薄膜の c 軸長 (1.208 nm) はバルク Ca₂RuO₄ (c =1.196 nm) とも一致していないことから、エピタキシャル応力は均一に 加わっていない。この格子不整合の原因として、基板の化学的安定性に起因した界面反応層の形 成が考えられる。θ-2θ 測定で観測されていた不純物ピークは界面反応層と対応していると考えら れ (Figure 2.2b)、NdGaO₃ (110) 基板の化学量論組成から外れた成分であると考えることができ る。Ga 酸化物基板を使用した Ca₂RuO₄/LaSrGaO₄ (100) においても、同様の界面反応層を確 認している。Ca₂RuO₄/NdCaAlO₄ (100) では、逆格子空間マッピングから [001] 方向へ選択的 に面内格子定数が一致していることを確認した (Figure 2.3c)。 Ca_2RuO_4 と NdCaAlO₄ の c 軸 長 (1.212 nm) は一致しており、Ca₂RuO₄/LaAlO₃ (001) より短い c 軸長が得られている。しか し、面内の [1 – 10], [-110] 方向では薄膜のピークが広がっており、Ca2RuO4 薄膜の格子定数 (a = 0.532 nm, b = 0.534 nm)は、NdCaAlO₄の格子定数 ($\sqrt{2}a = 0.521 \text{ nm}$)とは一致していな い (Figure 2.3d)。[001] 方向への選択的な格子定数の一致は、格子不整合度に起因しており、[001] 方向の不整合度 (-1.3%) よりも [1-10], [-110] 方向の不整合度 (+3.7 to +5.2%) の方が大きい ためであると考えられる。このことから、Ca₂RuO₄/NdCaAlO₄ (100) では [001] 方向へ異方的に エピタキシャル応力が加わっていると理解できる (Figure 2.3f)。このような格子不整合によるエ ピタキシャル応力の異方性は、PLD 法で作製した Ca₂RuO₄/NdCaAlO₄ (110) の報告とも一致す る [12]。

Figure 2.4 (a) Cross-sectional images of $Ca_2RuO_4/LaAlO_3$ (001), left: high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM); right: annular bright-field scanning transmission electron microscopy (ABF-STEM). The inset in the top is a schematic of the RuO₆ octahedron and Ca positions. (b) High-magnification HAADF-STEM image of the Ca_2RuO_4 film around a single-unit-cell-height step on the LaAlO₃ substrate. Solid red and dashed red lines indicate the RuO₂ surface of Ca_2RuO_4 and the $Ca_2RuO_4/LaAlO_3$ interface, respectively. (c) Atomic force microscopy (AFM) image of the surface morphology of the Ca_2RuO_4 thin film on the LaAlO₃ (001) substrate. The lower panel shows the surface topography along the horizontal red line in the image.

2.4 ABF-STEM および HAADF-STEM, AFM による Ca₂RuO₄/LaAlO₃ (001) の構造評価

後述の第4章で、電流誘起型転移に起因すると考えられる、明瞭な抵抗減少が観測された Ca₂RuO₄/LaAlO₃ (001) について、原子間力顕微鏡 (AFM) および ABF-STEM, HAADF-STEM による構造評価を行った (Figure 2.4a–c)。ABF-STEM と HAADF-STEM による結晶断面の観 察から、Ca₂RuO₄ は基板に対してコヒーレント成長しており、基板との明瞭な界面を確認した (Figure 2.4a,b)。真空製膜法による Ca₂RuO₄, Sr₂RuO₄ エピタキシャル薄膜の先行研究から、 ~ 0.4 nm の高さのステップアンドテラス構造を持つ基板では、OPB (out-of phase boundary) の 形成が避けられないと考えられてきた [12, 17, 26] (Figure 2.5a,b)。しかし、高温条件で作製した 本研究の Ca₂RuO₄/LaAlO₃ (001) では、そのようなステップアンドテラス構造を持つ基板におい ても OPB の形成が抑制されている。Figure 2.4b からも、薄膜と基板の面外方向の格子不整合に 起因した構造不安定性は、Ca₂RuO₄ の結晶格子の積層が変化することによって緩和されている。 本研究の AlO₂ 終端した LaAlO₃ 基板は、その単位格子の大きさに起因して幅 ~ 100 nm、高さ

Figure 2.5 (a) Surface morphology of the LaAlO₃ (001) substrate after etching with concentrated HCl solution by AFM image. The lower panel shows the surface topography along the solid red line in the AFM image. (b) Schematic of Ca₂RuO₄ thin film grown on LaAlO₃ (001) substrate, where (left) steric-type OPB is formed and (right) structural offset is accommodated by the Ca₂RuO₄ lattice, drawn with the VESTA software[25]. (c) Cross-sectional HAADF-STEM image of the Ca₂RuO₄ thin film on LaAlO₃ (001) substrate. Arrows indicate steric-type OPBs formed in the Ca₂RuO₄ thin film, only clearly observed in the 300 nm wide-range observation.

~ 0.4 nm のステップアンドテラス構造が形成されており (Figure 2.5a)、Ca₂RuO₄ の面外方向の 格子定数 (c = 1.224 nm) との不整合から OPB の形成は避けられないはずである (left panel of Figure 2.5b)。しかし、Ca₂RuO₄ 薄膜の RuO₂ 層と CaO 層の積層の仕方が変化して 2 次元成長 膜が得られることにより、OPB の形成が著しく抑制されている (right panel of Figure 2.5b and Figure 2.4b)。広範囲での HAADF-STEM 観察でも OPB はほとんど観測されず、~ 300 nm の広 範囲でステリック型 [26] の OPB が一つ観測されたのみであった (Figure 2.5c)。また、Ca₂RuO₄ 薄膜表面の原子間力顕微鏡 (AFM) 像からは、高さ 0.4 nm の周期的なステップアンドテラス構造 と、平坦な平面を有していることを観察している (Figure 2.4c)。このテラス幅は LaAlO₃ よりも 長い ~ 300 nm の間隔で形成されていることから、HAADF-STEM 観察で唯一観測された OPB と対応していると考えられる (Figure 2.5c)。

2.5 小括

本博士論文でははじめに、従来の真空製膜法で作製した Ca₂RuO₄ エピタキシャル薄膜で問題と なっていた、膜中の Ru 欠損の抑制を目指して、Ru 酸化物薄膜に非真空の結晶成長を適用した。 本章では 6 つの基板上での Ca₂RuO₄ エピタキシャル薄膜の作製を目指し、その構造評価を行っ た。基板の安定性と格子整合に起因して、ほぼ単相の薄膜は [001] 配向膜の Ca₂RuO₄/LaAlO₃ (001) および [001] 配向膜の Ca₂RuO₄/NdGaO₃ (110)、[110] 配向膜の Ca₂RuO₄/NdCaAlO₄ (100) でのみ得られた。Ca₂RuO₄/LaAlO₃ (001) の c 軸長が PLD 法の報告より短いことから、 膜中の Ru 欠損の抑制が示唆される。従来の Ru 酸化物薄膜では、積層方向の格子不整合によっ て結晶欠陥が形成されることが避けられなかったが、STEM 法での結晶断面観察から本研究の Ca₂RuO₄/LaAlO₃ (001) では、結晶欠陥が顕著に抑えられていることがわかった。次の 3 章で は、これらほぼ単相薄膜が得られた 3 つの試料について、輸送特性と Ru 欠損量の抑制について議 論していく。

2.6 実験方法

Ca₂RuO₄ 薄膜の結晶成長には、2.2 節で述べた非真空条件の固相エピタキシャル成長法を適用した。薄膜の構造評価には、SmartLab (リガク) および D8 Discover (Bruker AXS Inc.)を使用した、 Cu Kα 線源による XRD 測定を行った。試料断面の STEM 観察には Quanta 3D 200i (Thermo Fisher Scientific.)を用いて、試料の集束イオンビームミリング加工をした後、JEM-ARM200F (JEOL) にて観察を行った。薄膜の表面形態観察には NanoCute (日立ハイテク)を用いて AFM 観察を行った。

Acknowledgement

This chapter is reprinted with permission from [Keiji Tsubaki, Masashi Arita, Takayoshi Katase, Toshio Kamiya, Atsushi Tsurumaki-Fukuchi, and Yasuo Takahashi, *Japanese Journal of Applied Physics.* **63**, 01SP03 (2024)]. ©(2024) Japan Society of Applied Physics. https://doi.org/10.35848/1347-4065/acf2a3

It is also reprinted with permission from [Atsushi Tsurumaki-Fukuchi, Keiji Tsubaki, Takayoshi Katase, Toshio Kamiya, Masashi Arita, and Yasuo Takahashi, ACS Applied Materials & In-
terfaces.12, 28368–28374 (2020)]. ©(2020) American Chemical Society. https://pubs.acs.org/doi/10.1021/acsami.0c05181

References

- Nakamura, F. et al. Electric-field-induced metal maintained by current of the Mott insulator Ca₂RuO₄. Scientific Reports 3, 2536 (2013).
- Okazaki, R. et al. Current-induced gap suppression in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 82, 103702 (2013).
- 3. Zhang, J. *et al.* Nano-resolved current-induced insulator-metal transition in the Mott insulator Ca₂RuO₄. *Physical Review X* **9**, 011032 (2019).
- Cirillo, C. *et al.* Emergence of a metallic metastable phase induced by electrical current in Ca₂RuO₄. *Physical Review B* 100, 235142 (2019).
- Jenni, K. et al. Evidence for current-induced phase coexistence in Ca₂RuO₄ and its influence on magnetic order. *Physical Review Materials* 4, 085001 (2020).
- Mattoni, G., Yonezawa, S., Nakamura, F. & Maeno, Y. Role of local temperature in the current-driven metal-insulator transition of Ca₂RuO₄. *Physical Review Materials* 4, 114414 (2020).
- Avallone, G. *et al.* Universal size-dependent nonlinear charge transport in single crystals of the Mott insulator Ca₂RuO₄. *npj Quantum Materials* 6, 91 (2021).
- Okazaki, R. et al. Current-induced giant lattice deformation in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 89, 044710 (2020).
- Shin, J. et al. Surface stability of epitaxial SrRuO₃ films. Surface Science 581, 118–132 (2005).
- Wang, X., Xin, Y., Stampe, P., Kennedy, R. & Zheng, J. Epitaxial thin film growth of Ca₂RuO_{4+δ} by pulsed laser deposition. *Applied Physics Letters* 85, 6146–6148 (2004).
- Miao, L. et al. Itinerant ferromagnetism and geometrically suppressed metal-insulator transition in epitaxial thin films of Ca₂RuO₄. Applied Physics Letters 100 (2012).
- Dietl, C. et al. Tailoring the electronic properties of Ca₂RuO₄ via epitaxial strain. Applied Physics Letters **112** (2018).
- Chang, C. S. *et al.* Direct Imaging of Tilt Relaxation from the Interface in Epitaxially Strained Ca₂RuO₄ Thin Films using ABF-STEM. *Microscopy and Microanalysis* 24, 64– 65 (2018).

- Zurbuchen, M. A. et al. Suppression of superconductivity by crystallographic defects in epitaxial Sr₂RuO₄ films. Applied Physics Letters 78, 2351–2353 (2001).
- Zurbuchen, M. A. et al. Defect generation by preferred nucleation in epitaxial Sr₂RuO₄/LaAlO₃. Applied Physics Letters 83, 3891–3893 (2003).
- Krockenberger, Y. et al. Growth of superconducting Sr₂RuO₄ thin films. Applied Physics Letters 97 (2010).
- Uchida, M. et al. Molecular beam epitaxy growth of superconducting Sr₂RuO₄ films. APL Materials 5 (2017).
- Nair, H. P. et al. Demystifying the growth of superconducting Sr₂RuO₄ thin films. APL Materials 6 (2018).
- Ohnishi, T. et al. A-site layer terminated perovskite substrate: NdGaO₃. Applied Physics Letters 74, 2531–2533 (1999).
- Biswas, A. et al. Selective A-or B-site single termination on surfaces of layered oxide SrLaAlO₄. Applied Physics Letters 102 (2013).
- Kim, J. et al. Defect Engineering in A2BO4 Thin Films via Surface-Reconstructed LaSrAlO₄ Substrates. Small Methods 6, 2200880 (2022).
- Braden, M., André, G., Nakatsuji, S. & Maeno, Y. Crystal and magnetic structure of Ca₂RuO₄: Magnetoelastic coupling and the metal-insulator transition. *Physical Review* B 58, 847 (1998).
- 23. Friedt, O. *et al.* Structural and magnetic aspects of the metal-insulator transition in $Ca_{2-x}Sr_xRuO_4$. *Physical Review B* **63**, 174432 (2001).
- Ohnishi, T. & Takada, K. Epitaxial thin-film growth of SrRuO₃, Sr₃Ru₂O₇, and Sr₂RuO₄ from a SrRuO₃ target by pulsed laser deposition. *Applied Physics Express* 4, 025501 (2011).
- Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *Journal of Applied Crystallography* 44, 1272–1276 (2011).
- Zurbuchen, M. et al. Morphology, structure, and nucleation of out-of-phase boundaries (OPBs) in epitaxial films of layered oxides. Journal of Materials Research 22, 1439–1471 (2007).

第3章 固相エピタキシャル成長法を適用した Ca2RuO4 エピタキシャル薄膜の輸送特性評価

第3章

固相エピタキシャル成長法を適用した Ca₂RuO₄ エピタキシャル薄膜の輸送特 性評価

3.1 はじめに

前章では Ru 欠損を抑制するために、1.0 atm の非真空条件において $T \ge 1200^{\circ}$ C の高温での 結晶成長を行った。Ca₂RuO₄/LaAlO₃ (001) の c 軸長が真空製膜法よりも短いことから、膜中の Ru 欠損量が低減されていることが示唆される。ルテニウム酸化物系超伝導物質 Sr₂RuO₄ のエピ タキシャル薄膜においても、結晶欠陥が伝導特性の発現に大きな影響を与えていると言われており [1–3]、輸送特性に与える Ru 欠損量の議論をすることには大きな意義がある。また、結晶格子に加 わるエピタキシャル応力は Ca₂RuO₄ の電子状態に大きな影響を与えるため、その電気伝導特性と の関係を詳しく調べる必要がある。これらのことから、本章ではほぼ単相の Ca₂RuO₄ 薄膜が得ら れた、Ca₂RuO₄/LaAlO₃ (001) および Ca₂RuO₄/NdGaO₃ (110), Ca₂RuO₄/NdCaAlO₄ (100) の 3 つの試料について、その輸送特性を議論する。

本章の Ca₂RuO₄/LaAlO₃ (001) と Ca₂RuO₄/NdGaO₃ (110), Ca₂RuO₄/NdCaAlO₄ (100) とでは 2 桁以上の抵抗率の違いが観測されたことから、面内エピタキシャル応力の影響が考えられ る。固相エピタキシャル成長を適用した薄膜は、いずれも真空製膜法よりも高い抵抗率を示し、膜 中の Ru 欠損量の抑制が示唆される。バルク Ca₂RuO₄ ではアレニウス型の伝導モデルにある程度 従っていたが、Ca₂RuO₄/LaAlO₃ (001) はそれに従わない非アレニウス型の伝導機構を持つこと が確認された。エピタキシャル応力により Ca₂RuO₄/LaAlO₃ (001) の転移点は広がっていること が考えられ、Ca₂RuO₄/NdGaO₃ (110), Ca₂RuO₄/LaAlO₃ (001) の転移点は広がっていること が考えられ、Ca₂RuO₄/NdGaO₃ (110), Ca₂RuO₄/NdCaAlO₄ (100) では、その抵抗率の高さか らT > 400 K もの転移温度の上昇が示唆される。Ca₂RuO₄/LaAlO₃ (001) は、面内圧縮応力に よりバルクよりも高いキャリア濃度を持ち、基底状態が強磁性相であることが示唆される大きな負 の磁気抵抗が観測された。Sr₂RuO₄ エピタキシャル薄膜の報告でも、高温での結晶成長が Ru 欠 損と結晶欠陥の抑制に有効であったことからも [2, 3]、本研究の高温、非真空条件での固相エピタ キシャル成長法が、高品質の Ca₂RuO₄ 薄膜の作製に有効であることが示された。

3.2 固相エピタキシャル成長法を適用した Ca₂RuO₄ 薄膜の電気輸 送特性評価

Ca₂RuO₄/LaAlO₃ (001) および Ca₂RuO₄/NdGaO₃ (110), Ca₂RuO₄/NdCaAlO₄ (100) の 3 つの試料について、T = 4-400 K での 4 端子抵抗率を評価した (Figure 3.1a)。 Ca₂RuO₄/NdGaO₃ (110) と Ca₂RuO₄/NdCaAlO₄ (100) については、測定に用いた PPMS(Quantum Design) の 電圧リミットによって、それぞれ 290-400 K と 395-400 K でのみ有効な測定ができている。 Ca₂RuO₄/LaAlO₃ (001) と Ca₂RuO₄/NdGaO₃ (110), Ca₂RuO₄/NdCaAlO₄ (100) とでは抵抗 率が 2 桁以上異なるが、いずれの試料も 100-400 K で負の TCR(1.1 式) を示している (Figure 3.1b)。Ca₂RuO₄/LaAlO₃ (001) の抵抗率は、バルク Ca₂RuO₄(Figure 1.3b)[4] より数桁も低い が、LaAlO₃ 基板からの面内圧縮応力 (Figure 2.2e) によって金属相が安定化されることで説明さ れる。エピタキシャル応力によって 4d t_{2g} 軌道の d_{xy} 軌道と d_{xz} , d_{yz} 軌道の分裂が進行するこ とで (Figure 1.8) [5]、金属相が安定化する機構が MBE, PLD 法で作製した Ca₂RuO₄/LaAlO₃ (001) で提案されている [6-8]。一方で、Ca₂RuO₄/NdGaO₃ (110) は高い抵抗率を示している。

Figure 3.1 (a) Temperature dependence of resistivity measured by the fourprobe method for $Ca_2RuO_4/LaAlO_3$ (001), $Ca_2RuO_4/NdGaO_3$ (110) and $Ca_2RuO_4/NdCaAlO_4$ (100) epitaxial thin films ([1-10] current direction). Note that the resistivity of the $Ca_2RuO_4/NdCaAlO_4$ (100) thin film in the [001] direction was beyond the measurement range of the voltage limit (95 mV) set by PPMS (Quantum Design) due to the resistivity anisotropy of Ca_2RuO_4 . (b) Absolute values of TCR obtained for $Ca_2RuO_4/LaAlO_3$ (001) thin film. For comparison, the absolute values of TCR obtained from the DC current–voltage characteristics of $Ca_2RuO_4/NdCaAlO_4$ (100) thin film (Figure 5.1b,c) are also shown.

この理由として、薄膜に加わっているエピタキシャル応力は均一ではないものの (Figure 2.3b)、 Ca₂RuO₄ 金属相と NdGaO₃ では大きな面内引張り応力が生じるためであると考えられる (Table 2.1)。Ca₂RuO₄/NdCaAlO₄ (100) については、格子が緩和した [1 – 10] 方向と整合している [001] 方向とで異方性があるために (Figure 2.3c,d)、エピタキシャル応力の影響について異方性を考慮に 入れながら議論しなければならない。Ca₂RuO₄/NdCaAlO₄ (110) での報告と同じように [6, 7]、 [001] 方向のエピタキシャル応力が主として働くことで、Ca₂RuO₄ 金属相 (c > 1.225 nm)[9] の成

Figure 3.2 Temperature dependence of the resistivity of Ca₂RuO₄/LaAlO₃ (001) plotted for the Arrhenius plot (ln(ρ)- T^{-1}) and (b-d) the one-three dimensional Mott variablerange hopping (VRH) model (ln(ρ)- $T^{-1/(n+1)}$, n is the number of dimensions), respectively.

長が抑制され、金属相よりも高い抵抗率を示したと考えられる。 Ca_2RuO_4 金属相と NdCaAlO₄ の比較では [001] 方向の面内圧縮応力が働くために、> $10^2 \Omega cm$ もの高い抵抗率を示したことを 説明できる。

本研究の Ca₂RuO₄/LaAlO₃ (001) は、真空製膜法 [6–8, 10, 11] よりも 2–4 桁高い抵抗率を示 している。Ru 欠損によるホールドープや、酸素欠損による電子ドープの影響も考えられるが、 Ru 欠損量などの結晶欠陥によって生じる結晶構造の変化から理解できる。本研究の薄膜の *c* 軸長 (1.216 nm) は PLD 法 (*c* = 1.224 nm) よりも短いことから、膜中の欠陥による格子の膨張 [12] が 抑制されることで、面内圧縮応力が減少していると考えられる。これにより、金属絶縁体転移に 作用する面内の異方的圧力 [13] が減少することによって、抵抗率の増加を説明することができる。 同様の機構は figure 3.1a から、Ca₂RuO₄/NdGaO₃ (110) と Ca₂RuO₄/NdCaAlO₄ (100) におい ても適用することができる。MBE 法で作製した Ca₂RuO₄/NdGaO₃ (110) の抵抗率が 0.6 Ω cm (at 300 K)[8]、PLD 法での Ca₂RuO₄/NdCaAlO₄ (100) が 3.0 m Ω cm (at 400 K)[7] と、どち らも本研究 (Figure 3.1a) よりもはるかに抵抗率が小さい。本研究の Ca₂RuO₄/NdGaO₃ (110), Ca₂RuO₄/NdCaAlO₄ (100) いずれの抵抗率–温度特性も、膜中の Ru 欠損量に大きな影響を受け ており、真空製膜法よりも高い抵抗率は膜中の Ru 欠損量の抑制に起因していると考えられる。

バルク Ca₂RuO₄ の抵抗率–温度特性は、T < 250 K でアレニウス型の伝導モデル (ln(ρ)– T^{-1}) や一次のモット可変範囲ホッピング伝導 (ln(ρ)– $T^{-1/2}$) などと部分的に一致することが報告 されている [4, 14, 15]。転移温度 ($T_{\rm MIT} = 357$ K) 付近ではこれらの伝導モデルから外れるが、エ ネルギーギャップと有効質量の変化によって説明されている [14]。Ca₂RuO₄/LaAlO₃ (001) につ いては伝導モデルの解析を行っており、T = 4–400 K の測定範囲全てでアレニウス型の伝導モデ ルや、モット可変範囲ホッピング伝導に従わないことを確認した (Figure 3.2)。このことから、エ ピタキシャル薄膜化した Ca₂RuO₄/LaAlO₃ (001) の輸送特性は、バンド半導体の伝導モデルから 説明することはできないため、その抵抗率の変化は金属絶縁体転移に起因すると考えられる。

PLD 法での報告 [6, 11] と同様に、Ca₂RuO₄/LaAlO₃ (001) では温度誘起型転移の一次相転移に起因した不連続ジャンプが観測されていない。LaAlO₃ (001) 基板からのエピタキシャル応力によって転移点が広がったためであると考えられる。後述の第4章で詳しく議論するが、 $T_{\rm M} = 240 \text{ K}$ 以下で電流密度の増加に依存した抵抗減少が観測されていることから、T < 240 K では転移が完全に進行していない準安定状態である可能性がある。一方で、Ca₂RuO₄/NdGaO₃ (110) と Ca₂RuO₄/NdCaAlO₄ (100) においては、抵抗率がバルク Ca₂RuO₄ 金属相よりもはるかに高く、絶縁体相と同等かそれ以上の値であることから [4]、figure 3.1a の測定範囲では高抵抗率相になっていると考えられる。このことから、エピタキシャル応力によって > 400 K もの高い転移温度になっていることが予想される。

3.3 Ca₂RuO₄/LaAlO₃(001) の磁気輸送特性評価

後述の第4章で電流誘起型転移が観測された、Ca₂RuO₄/LaAlO₃ (001) について磁気輸送特 性の評価を行った。Ca₂RuO₄/LaAlO₃ (001) のホール抵抗率 (ρ_{xy}) は、0–9 T の印加磁場でほぼ 線形の輸送特性を示した (Figure 3.3a)。 $\rho_{xy}-\mu_0H$ 特性の傾きを基に導出されたホール係数 ($R_{\rm H}$) から、輸送キャリアは正孔である (inset of Figure 3.3a)。また、 $R_{\rm H}$ から求めたキャリア濃度は $4.3 \times 10^{22} {\rm cm}^{-3}$ (at 50 K) および $1.7 \times 10^{23} {\rm cm}^{-3}$ (at 200 K) と、バルク Ca₂RuO₄ のキャリア濃

Figure 3.3 (a) Magnetic field dependence of the Hall resistivity ρ_{xy} and (b) in-plane magnetoresistance for Ca₂RuO₄/LaAlO₃ (001) measured at (a) T = 50-350 K and (b) T = 10-100 K. The inset in (a) shows the temperature dependence of the $R_{\rm H}$ derived from the ρ_{xy} measurements.

度 3.5×10^{16} cm⁻³ (at 200 K)[16] よりも遥かに高い値を示した。LaAlO₃ (001) 基板からの面内 圧縮応力 (+1.0 to +2.3%)(Table 2.1) によってキャリア濃度が高まっていることが考えられ、バ ルク Ca₂RuO₄ での一軸圧力下や [13]、化学的圧力 [5] で金属相が安定化するのと同様に、面内圧 縮応力による 4*d* 軌道の分裂 [5] から説明することができる。しかし、本研究の Ca₂RuO₄/LaAlO₃ (001) の非常に小さい $R_{\rm H}$ を説明するには、少数キャリアである電子の影響も考慮に入れる必要が あり、正孔と電子が混在して薄膜の輸送特性に影響を与えている可能性がある。Ca_{2-x}Sr_xRuO₄ は $R_{\rm H}$ が温度に大きく影響を受けることが報告されており [17]、その伝導キャリアが変化しやすい 材料である。しかしながら、本研究の Ca₂RuO₄/LaAlO₃ (001) では伝導キャリアは変化せず正孔 であった (inset of Figure 3.3a)。

バルク $Ca_2 RuO_4$ では、圧力印加によって強磁性秩序の形成による負の磁気抵抗を示すが [18]、 本研究の薄膜では、試料に大きな電流を流す前から大きな負の磁気抵抗が観測された。T < 50 K の低温領域で、顕著な負の磁気抵抗特性が観測されており、T = 10 K, $\mu_0 H = 7$ T で -9% の磁 気抵抗を観測している (Figure 3.3b)。この挙動は $Ca_2 RuO_4/LaAlO_3$ (001) の基底状態が強磁性 相であることを示唆しており、大きな負の磁気抵抗は異方圧力下のバルク $Ca_2 RuO_4$ で提唱されて いるスピンゆらぎ [18] から説明することができる。

3.4 小括

本章では膜中の Ru 欠損の抑制を目指して、非真空条件を適用した Ca₂RuO₄/LaAlO₃ (001) お よび Ca₂RuO₄/NdGaO₃ (110), Ca₂RuO₄/NdCaAlO₄ (100) において、電気輸送特性と磁気輸 送特性の評価を行った。いずれの薄膜においても、真空製膜法の報告よりも数桁高い抵抗率が観測 されたことから、膜中の Ru 欠損が抑制されていることが示唆される。また、Ca₂RuO₄/LaAlO₃ (001) の電気輸送特性は、アレニウス型の伝導モデルに従わず、一般的な半導体とは異なる伝導機 構をもつ。Ca₂RuO₄/LaAlO₃ (001) の磁気輸送特性評価からは、バルクよりも数桁大きなキャリ ア密度を確認し、基底状態が強磁性相であることが示唆される。次章では、膜中の Ru 欠損の抑制 が示唆される Ca₂RuO₄/LaAlO₃ (001) において、直流の電気伝導特性評価を行うことで電流誘起 型転移の挙動を議論する。

3.5 実験方法

抵抗率–温度特性およびホール効果、磁気抵抗の測定は、物理物性測定システム PPMS(Quantum Design)を用いて測定した。2.0 mm×5.0 mm に加工した試料に、抵抗加熱蒸着で Au (100 nm)/Cr (5 nm)の電極を Ca₂RuO₄ 薄膜上に作製することで、4 端子測定を行った。

Acknowledgement

This chapter is reprinted with permission from [Keiji Tsubaki, Masashi Arita, Takayoshi Katase, Toshio Kamiya, Atsushi Tsurumaki-Fukuchi, and Yasuo Takahashi, *Japanese Journal of Applied Physics.* **63**, 01SP03 (2024)]. ©(2024) Japan Society of Applied Physics. https://doi.org/10.35848/1347-4065/acf2a3

It is also reprinted with permission from [Atsushi Tsurumaki-Fukuchi, Keiji Tsubaki, Takayoshi Katase, Toshio Kamiya, Masashi Arita, and Yasuo Takahashi, *ACS Applied Materials & Interfaces.* **12**, 28368–28374 (2020)]. ©(2020) American Chemical Society. https://pubs.acs.org/doi/10.1021/acsami.0c05181

References

- Krockenberger, Y. et al. Growth of superconducting Sr₂RuO₄ thin films. Applied Physics Letters 97 (2010).
- Uchida, M. et al. Molecular beam epitaxy growth of superconducting Sr₂RuO₄ films. APL Materials 5 (2017).
- Nair, H. P. et al. Demystifying the growth of superconducting Sr₂RuO₄ thin films. APL Materials 6 (2018).
- Alexander, C. *et al.* Destruction of the Mott insulating ground state of Ca₂RuO₄ by a structural transition. *Physical Review B* 60, R8422 (1999).
- Anisimov, V., Nekrasov, I., Kondakov, D., Rice, T. & Sigrist, M. Orbital-selective Mottinsulator transition in Ca_{2-x}Sr_xRuO₄. The European Physical Journal B-Condensed Matter and Complex Systems 25, 191–201 (2002).
- Dietl, C. et al. Tailoring the electronic properties of Ca₂RuO₄ via epitaxial strain. Applied Physics Letters **112** (2018).
- Dietl, C. J. Synthesis and electronic ordering phenomena of calcium ruthenate thin films (2018).
- Chang, C. S. *et al.* Direct Imaging of Tilt Relaxation from the Interface in Epitaxially Strained Ca₂RuO₄ Thin Films using ABF-STEM. *Microscopy and Microanalysis* 24, 64– 65 (2018).
- Friedt, O. et al. Structural and magnetic aspects of the metal-insulator transition in Ca_{2-x}Sr_xRuO₄. Physical Review B 63, 174432 (2001).
- Wang, X., Xin, Y., Stampe, P., Kennedy, R. & Zheng, J. Epitaxial thin film growth of Ca₂RuO_{4+δ} by pulsed laser deposition. *Applied Physics Letters* 85, 6146–6148 (2004).
- 11. Miao, L. *et al.* Itinerant ferromagnetism and geometrically suppressed metal-insulator transition in epitaxial thin films of Ca₂RuO₄. *Applied Physics Letters* **100** (2012).
- Ohnishi, T. & Takada, K. Epitaxial thin-film growth of SrRuO₃, Sr₃Ru₂O₇, and Sr₂RuO₄ from a SrRuO₃ target by pulsed laser deposition. *Applied Physics Express* 4, 025501 (2011).

- Taniguchi, H. et al. Anisotropic uniaxial pressure response of the Mott insulator Ca₂RuO₄. Physical Review B 88, 205111 (2013).
- Okazaki, R. et al. Current-induced gap suppression in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 82, 103702 (2013).
- Nakatsuji, S. et al. Mechanism of hopping transport in disordered Mott insulators. Physical Review Letters 93, 146401 (2004).
- Nishina, Y., Okazaki, R., Yasui, Y., Nakamura, F. & Terasaki, I. Anomalous thermoelectric response in an orbital-ordered oxide near and far from equilibrium. *Journal of the Physical Society of Japan* 86, 093707 (2017).
- Galvin, L. et al. Hall effect in single crystal Ca_{2-x}Sr_xRuO₄. Physical Review B 63, 161102 (2001).
- Nakamura, F. et al. Anisotropic giant magnetoresistance near the Mott transition in pressurized Ca₂RuO₄. Physical Review B 80, 193103 (2009).

4

第4章

直流の電気測定による量子相転移型非 線形伝導現象の評価

4.1 **はじめに**

2章、3章では膜中の Ru 欠損の抑制を目指して、非真空条件での結晶成長を適用した Ca₂RuO₄ 薄膜の構造と輸送特性の評価を行ってきた。本研究の Ca₂RuO₄ エピタキシャル薄膜では、STEM 観察から結晶欠陥の低減が観察されたことや、真空製膜法よりも短い *c* 軸長、さらに MBE, PLD 法よりも高い抵抗率を示したことから、膜中の Ru 欠損量の低減が示唆される。本章ではこのよ うにして作製した Ca₂RuO₄/LaAlO₃ (001) において、直流の 2 端子測定から抵抗–温度特性の電 流密度依存性と、電流–電圧特性を評価することで、電流誘起型転移の観測とその挙動の評価を目 指す。

本章では Ca₂RuO₄/LaAlO₃ (001) の定電流条件での抵抗-温度特性において、電流誘起型転

Figure 4.1 (a) Optical microscope image of an Au (35 or 100 nm)/Cr (5 nm) in-plane two-terminal lateral electrode fabricated on Ca_2RuO_4 thin film for DC electrical measurements. In (b) is an enlarged view around the gap.

移の発現が期待される、電流密度依存の抵抗減少を観測した。一方で、定電圧条件の抵抗-温度 特性では、一次相転移的なヒステリシスを伴う挙動が見られ、転移点が印加電圧によって鋭敏 に変化した。直流の電流-電圧測定において、電流掃引条件下では平滑な NDR が観測された一 方、電圧掃引条件下では NDR 領域は抵抗スイッチングとして観測された。転移の繰り返し安定 性評価からは、バルク Ca₂RuO₄ では避けられなかった結晶破壊は抑制され、少なくとも 15 回 の繰り返し安定性を持つことを確認した。ジュール熱の影響が現れる掃引速度の変化に対して も、Ca₂RuO₄/LaAlO₃ (001) の電流-電場特性はほとんど変化しなかった。本研究によって、電 流誘起型転移を示す Ca₂RuO₄ エピタキシャル薄膜が得られたことで、相転移挙動を理解するた めの詳細な測定が可能になり、エレクトロニクス応用の可能性を評価することができるように なった。物性物理分野の観点からも、エピタキシャル薄膜を使った微細加工試料により、これま で調べられなかった高電流密度領域における、新たな非平衡量子相の探索が期待できる。なお、 Ca₂RuO₄/NdCaAlO₄ (100), Ca₂RuO₄/NdGaO₃ (110) については、Ca₂RuO₄ が持つ強い電子 格子相互作用によって特異な挙動が見られたため、次の5章で議論する。

4.2 Ca₂RuO₄/LaAlO₃ (001) の定電流、定電圧条件での抵抗–温度 特性

Ca₂RuO₄ 薄膜上に、20 μm のギャップ間隔を有する Au (35 nm)/Cr (5 nm) の面内対向電極を 作製した (Figure 4.1)。なお、後述の 4.3 節では、酸素の侵入長を考慮して Au (100 nm)/Cr (5 nm) へ Au の厚みに変更を加えている。本研究ではこの 2 端子電極を用いて、Ca₂RuO₄/LaAlO₃ (001) おける定電流、定電圧条件での抵抗–温度特性を評価した (Figures 4.2 and 4.3)。1.0 μA–10 mA

Figure 4.2 Temperature dependence of the resistance of Ca_2RuO_4 (100 nm)/LaAlO₃ (001), measured by the two-terminal method with continuous constant currents from 1.0 µA–10 mA at T = 8–300 K. The inset shows a schematic of the two-terminal electrode with a lateral gap of 20 µm used for the measurements. T_M of about 240 K refers to the temperature below which the resistance decrease with increasing current density in the thin film is observed.

の定電流を流し続けながら行った測定から、電流誘起型転移の発現に起因すると考えられる、電 流密度に依存した緩やかな抵抗減少を観測した (Figure 4.2)。この抵抗変化挙動は可逆的であり、 10 mA での測定後に低電流領域の *R*-*T* 特性が再現することを確認している。電流密度依存の抵抗 変化は *T* > 240 K ではほとんど見られなくなることから (Figures 4.2 and 4.4)、 $T_{\rm M}$ = 240 K が エピタキシャル応力によって広がった転移点に対応すると考えられる。この値は MBE 法で作製し た Ca₂RuO₄/LaAlO₃ (001) の報告 ($T_{\rm M}$ = 230 K) とも近いが [1]、MBE 法とは抵抗率が数桁異 なっている。この抵抗率の差は、 $T_{\rm M}$ の大きなシフトを引き起こさない程度の面内圧縮応力の違い [2] によって生じたと考えられる。

一方で、電圧掃引条件下での抵抗率–温度特性においては、急峻な抵抗転移が発現することを観測 した (Figure 4.3a–d)。この急峻な抵抗転移は、金属絶縁体転移の一次相転移で典型的に見られる、 温度掃引時のヒステリシスを示す (Figure 4.3a)。このとき昇温過程では試料中の電流が 2.9 mA から 9.3 mA へ急激に増加しており、定電流条件での抵抗–温度特性 (Figure 4.2) から予想できる 電流の増加量と一致する。しかしながら、定電流条件ではヒステリシスを示さないため、定電圧条 件下のヒステリシスについては figure 4.2 の値からは説明できない。この一次相転移的挙動につい ては、抵抗の温度に対する傾き (d(log(R))/dT) から、大きなポテンシャルバリア ($\Delta T = 33.5$ K) を持っていることが示された (Figure 4.2c)。また、この温度掃引時の転移温度は印加する電場に

Figure 4.3 (a) Temperature dependence of the resistance of Ca_2RuO_4 (100 nm)/LaAlO₃ (001) measured under continuous constant voltage of 6.0 V, and (b) its voltage-amplitude dependence. The current values shown in (a) are for the two representative current value before/after the rapid change in the resistance was observed. (c) and (d) are temperature derivatives of the resistances (d(log(R))/dT) of (a) and (b), respectively, to evaluate potential barrier and voltage-dependent transition point shifts. The gray dashed lines are eye guidelines for peak positions.

よって大きくシフトすること観測しており (Figure 4.2b)、 $\sim 15 \text{ K V}^{-1}$ もの電場に対する敏感なシフトが起きることを確認した (Figure 4.2d)。

次にこの転移挙動について詳しく追っていく。Ca₂RuO₄/LaAlO₃ (001) において、 $T_{\rm M} = 240$ K を横切るようにして①から④の方向に温度掃引を行ったときには (top pannel of Figure 4.4a)、昇 温過程 (②) よりも冷却過程 (④) の方が高い抵抗を示すことを確認した。試料台の温度が最大にな る③では、試料の抵抗が最も小さくなることで、最大のジュール加熱が発生しているはずである。 Figure 4.4 の横軸は試料台の温度であるため、実際の試料温度との違いを考慮する必要はあるが、 ④はジュール加熱が最も大きくなる③を経由しているため、④の試料温度が②よりも低いことは 考えにくい。しかし、④の方が②よりも有意に抵抗が高くなっている。このことから、②の抵抗が

Figure 4.4 Top panel: temperature dependence of the resistance of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) measured under continuous constant voltage conditions with V = 6.0-8.0 V across $T_{\rm M} = 240$ K. The arrows indicate the directions of the temperature sweeping. Bottom panel: possible domain structures in the Ca₂RuO₄ thin film at each step of the temperature sweeping shown in the figure (1-4).

低い原因は、ジュール加熱による試料温度の上昇では説明できない。この②, ④間の抵抗差が生じた原因としては、試料中の電流密度分布の違いが考えられる (bottom panel of Figure 4.4)。試料抵抗が最も大きい最低温度 8 K のとき (①)、 $1.0 \times 1.0 \text{ cm}^2$ で作製した Ca₂RuO₄ 薄膜のほぼ全ての領域が高抵抗率相になっていると予想できる (bottom panel of Figure 4.4 ①)。試料台の温度を上昇させていくと、電流誘起型転移によって抵抗が急峻に減少する。このとき、Au/Cr 電極間の領域において、局所的に抵抗率の低い高電流密度領域が形成されるが、薄膜の多くは高抵抗率相であることが予想される (②)。その後、 $T_{\rm M}$ よりも試料温度が上昇することで薄膜全体が低抵抗率相

になる (③)。これにより、伝導面積が増加するため、Ca₂RuO₄ 薄膜中の電流密度は大きく減少す る。冷却過程 (④) では、このようにして減少した電流密度によって、電流誘起型転移は大きく抑 制されることになる。そのため、低抵抗率相の成長は、温度誘起型転移によって起きるだろうと考 えられる。④は②よりも高い抵抗状態を示したが、温度誘起型転移で一般的に見られる、不均一な 金属相ドメインの形成 [3, 4] によって説明することができる。

4.3 Ca₂RuO₄/LaAlO₃(001)の直流の電流-電圧特性

Ca₂RuO₄/LaAlO₃ (001) において、2 端子電極 (Figure 4.1) を用いて直流の電流–電圧測定を 行った (Figure 4.5)。電流掃引測定から、試料の冷却に伴い Ca₂RuO₄/LaAlO₃ (001) は顕著な非 線形伝導特性を示した。特に、試料台の温度 $(T_{
m s}) \leq 80~{
m K}$ の低温領域では、明確な NDR (negative differential resistance) が観測された (top pannel of Figure 4.5)。これはバルク Ca₂RuO₄ と同 様の挙動であるが [5–9]、バルクよりもはるかに平滑な NDR 曲線が得られている。T_s ≤ 80 K に おける低電流密度領域では、電流密度の増加に依存して抵抗は徐々に減少していく。しかし、さら に電流密度が増加した際には NDR 挙動が発現した。このようにして、電流掃引条件の電流–電圧 特性では、NDR を伴う非線形伝導特性が観測された。一方で、電圧掃引条件では、この NDR 領 域で電流が急峻に増加することで、抵抗スイッチングとして観測される (middle pannel of Figure 4.5)。このような緩やかに抵抗減少と、急峻な抵抗スイッチングからなる2段階の抵抗転移は、近 年、非熱型の金属絶縁体転移で観測されていることから [5–15]、非熱型の転移での普遍的な挙動で あると考えられている。電流密度の増大に伴って緩やかに抵抗が減少していくメカニズムについて は議論がなされており、カルコゲナイド AM₄Q₈ では金属相ドメインが徐々に成長していくこと によって [10-14]、バナジウム酸化物のナノワイヤでは電場に誘起されてキャリアが徐々に生成さ れることで説明されている [15]。バルク Ca₂RuO₄ ではキャリア生成メカニズムに加えて、電流密 度の増加に依存したエネルギーギャップの狭窄が、緩やかに減少する抵抗への説明として提示さ れている (1 章 1.2 式)[5, 16]。一方で、急峻なスイッチングについては、バナジウム酸化物のナノ ワイヤでの非熱型転移では、NDR に基づいて発生すると考えられている [15]。バルク Ca2RuO4 においても NDR 領域で、非平衡相な高抵抗率相 (S* 相) から低抵抗率相 (L* 相) へ電流駆動の一 次相転移が起きることが、電流–電圧測定時の光学顕微鏡観察 (Figure 1.9)[6] や構造評価で観測 されている [7, 8, 17]。最後に、電流掃引条件での NDR 領域と、電圧掃引条件での抵抗スイッチ ングとの対応を説明する (bottom pannel of Figure 4.5)。電圧掃引条件では、測定に用いた半導 体パラメータアナライザ (Keysight 4156C) が、コンプライアンス電流 (CC) に達した際に電圧

Figure 4.5 DC current–voltage characteristics of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) measured using in-plane two-terminal electrode under (top) current- and (middle) voltagesweeping conditions for stage temperature $T_{\rm s} = 40-200$ K and at RT, and (bottom) correspondence of the current- and voltage-sweeping characteristics. The setting and actual values of the applied voltages (controlled by a Keysight 4156C analyzer) are used for plotting the middle and bottom panels, respectively. The arrows indicate the currentand voltage-sweeping sequences.

フィードバック動作を行っている。これにより、CC に達した際には試料に流れる電流が、NDR の最大電流の地点まで急速にジャンプしている。このことに基づいて考えると、本研究では電流 の急激な増加が可能な電圧掃引測定で、NDR 領域が抵抗スイッチングとして観測されたことか ら、Ca₂RuO₄/LaAlO₃ (001) の電流誘起型転移が高速であることが予想される。このことについ ては、後述の6章で時間分解測定を適用することで転移の速度評価を詳細に行う。

Figure 4.6 Current–electric field characteristics of Ca_2RuO_4 (100 nm)/LaAlO₃ (001) measured at T = 8 K for (a) 15 field sweeping cycles, (b) two cycles with different voltage polarities, and (c) three cycles with different sweeping rates controlled by measurement waiting time t_w . Note that two different samples were used for the measurements shown in (a,b) and (c), respectively. The arrows in the figures indicate the directions of the electric field sweeping. The horizontal lines at 20 mA show the current compliance set by a Keysight 4156C analyzer. The $I_{\rm th}$ and $E_{\rm th}$ in the figure indicate the threshold current and threshold electric field, respectively.

4.4 Ca₂RuO₄/LaAlO₃ (001) における抵抗スイッチングの安定性 評価

バルク Ca₂RuO₄ では電流誘起型転移の際に、結晶構造の大きな変化によって結晶の破壊が 発生する [18]。このことに起因して、バルクでは詳細にその挙動を調べることが困難であったこ とから、Sr, Ti などをドープすることで結晶構造の変化を緩和する試みがなされてきた [8, 19]。 しかし、本研究の Ca₂RuO₄/LaAlO₃ (001) では、結晶破壊は大幅に抑制され、電流誘起型転移 の安定した繰り返し特性が得られた (Figure 4.6a-c)。Figure 4.6a は、電圧掃引条件での電流– 電場特性の 15 回の繰り返し安定性評価である。15 回繰り返しても特性はほとんど変化せず、 $E_{\rm th} = 9.6$ –9.7 kV cm⁻¹ のほぼ同じ閾値電場で抵抗スイッチングが発現した。また、この *I*–*E* 特 性は、電場印加の方向を変えてもほとんど変化しない (Figure 4.6b)。温度誘起型転移では、ジュー ル加熱と熱拡散により、抵抗スイッチングの閾値電流 *I*_{th}、閾値電場 *E*_{th} に > 10% のばらつきが生 じるが [20, 21]、Ca₂RuO₄/LaAlO₃ (001) ではそれよりも大幅に小さい。このことを議論するた めに、電場掃引の速度を変化させることで Ca₂RuO₄/LaAlO₃ (001) の *I*–*E* 特性と熱拡散の影響

Figure 4.7 (a) I-E characteristics of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) measured at T = 80 K with different field sweeping rates controlled by measurement waiting time t_w . The higher current region is enlarged in (b). A sample different from that used in figures 4.5 and 4.6 was used for the measurements with the same electrode configuration.

を評価した。Figure 4.6c は、10 point/kV cm⁻¹ の測定周期に対して、1 point ごとに $t_{\rm w} = 0$ -10 s の測定待ち時間を設定することで、掃引速度を変化させたものである。ジュール加熱とその熱拡散 には時間依存性があるため、温度誘起型転移における Eth は電場掃引の速度に強く依存する [20]。 Figure 4.7 は、測定の熱平衡状態を評価するために、T = 80 K での I-E 特性の掃引速度依存性を 調べたものである。 $t_{
m w}=0~{
m s}$ のとき、試料に流れる電流には、 ${
m Ca_2RuO_4}$ 薄膜の局所温度の変化に 起因するヒステリシスが見られる。局所温度の上昇によって、電場上昇過程"1" よりも電場降下過 程"2"の方が、試料に流れる電流が大きくなっている (Figure 4.7a)。一方で、 $t_{\rm w}=10~{
m s}$ ではヒス テリシスを持たない (Figure 4.7b)。このヒステリシスについては、 $Ca_2RuO_4/LaAlO_3$ (001) が $t_{\rm w} = 0 \, {\rm s}$ では熱非平衡状態に、 $t_{\rm w} = 10 \, {\rm s}$ ではほぼ熱平衡状態にあることで説明することができる。 ジュール加熱による局所温度の上昇について、電場上昇過程での掃引速度が速すぎる場合、熱平衡 状態に達することができないので、試料加熱による電流の増加が抑制される。一方で、電場降下過 程では速すぎる掃引速度によって冷却が不十分になるために、熱平衡状態よりも抵抗が小さくなっ てしまう。このことから一次相転移が発生せずとも、熱非平衡状態では電場上昇、降下過程でヒス テリシスを持つことを説明できる。今回の測定系では $t_w = 0 s c_w = 10 s c_w$ 熱非平衡からほ ぼ熱平衡状態に遷移していることから、熱平衡まで数秒程度の tw を要すると考えることができる。 これらのことを踏まえて、I-E 特性と熱拡散の議論に移ると (Figure 4.6c)、熱非平衡状態にある $t_{\rm w}=0~{
m s}$ とほぼ熱平衡状態にある $t_{\rm w}=10,30~{
m s}$ では局所温度分布は異なるにも関わらず、 $I_{
m th},E_{
m th}$ は掃引速度によって変化せずに安定している。

本研究での直流測定における電流密度は大きいため (~ 0.1 MA cm⁻²)、ジュール加熱による

影響を考慮する必要がある。後述の 6 章で詳細に議論するが、温度誘起型転移からの理解では、 Ca₂RuO₄/LaAlO₃ (001) で観測されたような急峻な抵抗スイッチングを得るには、急峻な温度誘 |起型転移が不可欠である [22-24]。しかし、figure 3.1 から、Ca₂RuO₄/LaAlO₃ (001) は急峻な温 度誘起型転移を示さないために、試料の局所的な加熱から抵抗スイッチングを説明することは難し い。このジュール加熱の影響については、本章の定電圧条件での抵抗–温度特性においてもジュー ル熱では説明できないことを議論した (Figure 4.4)。非熱型の金属絶縁体転移においては、その 転移メカニズムについてモット・ハバードギャップのツェナー降伏 [25]、アバランシェ降伏 [13] が提案されている。しかし、このようなメカニズムでは高抵抗状態と低抵抗状態間の2値的な転 移を引き起こすために、Ca₂RuO₄/LaAlO₃ (001) で観測された緩やかな抵抗転移を説明するこ とができない。バルク Ca₂RuO₄ における電流密度の増加に依存した緩やかな抵抗減少について は、電流密度増加に伴って 4d_{xz}, 4d_{vz} 軌道の占有率が増加することで、エネルギーギャップが緩や かに狭窄するというメカニズムが提案されている (Figure 1.8)(1.2 式)[5, 16]。また、金属相の空 間的広がりに関しては光学顕微鏡像と対応させた電流-電圧特性から、負極にキャリアが蓄積する ことで金属相ドメインが成長していく過程が観測されている (Figure 1.9)[6]。Ca₂RuO₄/LaAlO₃ (001) においても、これらを基にして電流密度の増加に依存したその緩やかな抵抗減少を説明す ることができる。しかし、バルク Ca₂RuO₄ の閾値電場 ($E_{\rm th} = 40 \ {\rm V \ cm^{-1}}$)[18]、キャリア濃度 (3.5×10¹⁶ cm⁻³ at 200 K)[26] に対して、Ca₂RuO₄/LaAlO₃ (001) の閾値電場 (10 kV cm⁻¹) が 遥かに大きいことと、キャリア濃度 (1.7×10²³ cm⁻³ at 200 K) も数桁大きいことを説明するため には、今後、エピタキシャル応力と電流密度の影響について詳細に議論する必要がある。

4.5 小括

非真空条件での結晶成長を適用した Ca₂RuO₄/LaAlO₃ (001) において、電流誘起型転移の発現 が期待される、電流密度の増加に依存した緩やかな抵抗減少を観測した。電流掃引条件下での電 流-電圧測定では、NDR を伴う平滑な非線形伝導特性が観測された。一方で、電圧掃引条件ではこ の NDR 領域は抵抗スイッチングとして観測された。このことから、Ca₂RuO₄/LaAlO₃ (001) で は高速な抵抗転移が発現している可能性がある。金属絶縁体転移の物理的な理解のみならず、抵抗 スイッチングを応用したニューロモルフィック機能の開拓には、転移速度が直接関与するために、 抵抗スイッチングの速度評価が重要である。直流測定から高速な抵抗転移が起きている可能性があ るため、後述の6章で時間分解測定から詳細な速度評価を行うこととする。電流誘起型転移では、 電子状態を電気的に直接制御できるメカニズムを持つため、熱型転移を超える動作安定性と動作制

Figure 4.8 (a) Schematic of the photolithography process used to fabricate the Au/Cr and Pt in-plane 2-terminal lateral electrode patterns in this study. (b) A two-layer OFPR-800LB/PMGI-SF6 photo resist was spin-coated on the Ca_2RuO_4 thin film to dissolve the PMGI layer more faster, helping to suppress burring at the edge of the electrode and to inhibit electrode peeling during the Pt electrode lift-off process.

御性が期待されていた。本研究の直流測定において、バルク Ca₂RuO₄ を超える少なくとも 15 回 もの安定した抵抗スイッチングと、掃引速度の変化に影響されない *I-E* 特性を観測した。しかし、 さらなる繰り返し安定性や継時変化の評価をする必要があるため、これについても 6 章にて評価 を行う。続く 5 章では、ほぼ単相の Ca₂RuO₄ エピタキシャル薄膜が得られた Ca₂RuO₄/LaAlO₃ (001), Ca₂RuO₄/NdCaAlO₄ (100) において、エピタキシャル応力と量子相転移型非線形伝導現 象の関係について評価と議論をする。

4.6 実験方法

Au/Cr の 2 端子電極パターンの形成は、水銀 h 線にて OFPR-800LB/PMGI-SF6 の 2 層レジ ストを露光後、現像液 NMD-3 での現像を経て作製した。得られた電極パターンに対して抵抗加 熱蒸着で Au/Cr を真空蒸着したのち、N,N-ジメチルホルムアミドに浸漬することでレジストの除 去およびリフトオフを行った。この 2 層レジストは電極パターンのエッジ部をなだらかに形成す ることと、レジストと電極材料を物理的に切り離すことで、リフトオフの際に電極の剥離を防ぐ効 果が期待される (Figure 4.8)。特に後述の 6 章において、酸素の影響を受ける接着層の Cr を用い ずに Pt 電極を形成する際には、リフトオフ時の電極の剥離を防ぐために 2 層レジストは重要に なる。抵抗–温度特性の電流依存性はマルチメーター (Keithley 2002) および直流電源 (Yokogawa 7651)、クライオクーラで構成したシステムで測定した。電流–電圧特性は、半導体パラメータアナ ライザ (Keysight 4156C) と極低温プローブステーション (Nagase GRAIL-20-305-6-LV) を使用 して測定した。

Acknowledgement

This chapter is reprinted with permission from [Keiji Tsubaki, Atsushi Tsurumaki-Fukuchi, Takayoshi Katase, Toshio Kamiya, Masashi Arita, and Yasuo Takahashi, Advanced Electronic Materials. 9, 2201303 (2023)]. ©(2023) Wiley-VCH GmbH. https://onlinelibrary.wiley.com/doi/full/10.1002/aelm.202201303 It is also reprinted with permission from [Atsushi Tsurumaki-Fukuchi, Keiji Tsubaki, Takayoshi Katase, Toshio Kamiya, Masashi Arita, and Yasuo Takahashi, ACS Applied Materials & Interfaces. 12, 28368–28374 (2020)]. ©(2020) American Chemical Society. https://pubs.acs.org/doi/10.1021/acsami.0c05181

References

- Chang, C. S. *et al.* Direct Imaging of Tilt Relaxation from the Interface in Epitaxially Strained Ca₂RuO₄ Thin Films using ABF-STEM. *Microscopy and Microanalysis* 24, 64– 65 (2018).
- Taniguchi, H. et al. Anisotropic uniaxial pressure response of the Mott insulator Ca₂RuO₄. Physical Review B 88, 205111 (2013).
- Qazilbash, M. M. et al. Mott transition in VO₂ revealed by infrared spectroscopy and nano-imaging. Science **318**, 1750–1753 (2007).
- Preziosi, D. *et al.* Direct mapping of phase separation across the metal-insulator transition of NdNiO₃. *Nano Letters* 18, 2226–2232 (2018).
- Okazaki, R. et al. Current-induced gap suppression in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 82, 103702 (2013).
- Zhang, J. et al. Nano-resolved current-induced insulator-metal transition in the Mott insulator Ca₂RuO₄. Physical Review X 9, 011032 (2019).
- Cirillo, C. *et al.* Emergence of a metallic metastable phase induced by electrical current in Ca₂RuO₄. *Physical Review B* 100, 235142 (2019).
- Jenni, K. et al. Evidence for current-induced phase coexistence in Ca₂RuO₄ and its influence on magnetic order. *Physical Review Materials* 4, 085001 (2020).
- Mattoni, G., Yonezawa, S., Nakamura, F. & Maeno, Y. Role of local temperature in the current-driven metal-insulator transition of Ca₂RuO₄. *Physical Review Materials* 4, 114414 (2020).
- Stoliar, P. et al. A leaky-integrate-and-fire neuron analog realized with a Mott insulator. Advanced Functional Materials 27, 1604740 (2017).
- Tesler, F. et al. Relaxation of a spiking Mott artificial neuron. Physical Review Applied 10, 054001 (2018).
- Tranchant, J. et al. Control of resistive switching in AM₄Q₈ narrow gap Mott insulators: A first step towards neuromorphic applications. *Physica Status Solidi* (a) **212**, 239–244 (2015).

- Guiot, V. et al. Avalanche breakdown in GaTa₄Se_{8-x}Te_x narrow-gap Mott insulators. Nature Communications 4, 1722 (2013).
- Stoliar, P. et al. Universal Electric-Field-Driven Resistive Transition in Narrow-Gap Mott Insulators. Advanced Materials 25, 3222–3226 (2013).
- Kalcheim, Y. et al. Non-thermal resistive switching in Mott insulator nanowires. Nature Communications 11, 2985 (2020).
- Okazaki, R. et al. Current-induced giant lattice deformation in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 89, 044710 (2020).
- Bertinshaw, J. et al. Unique crystal structure of Ca₂RuO₄ in the current stabilized semimetallic state. *Physical Review Letters* 123, 137204 (2019).
- Nakamura, F. et al. Electric-field-induced metal maintained by current of the Mott insulator Ca₂RuO₄. Scientific Reports 3, 2536 (2013).
- Vitalone, R. A. et al. Nanoscale Femtosecond Dynamics of Mott Insulator (Ca_{0.99}Sr_{0.01})₂RuO₄.
 Nano Letters 22, 5689–5697 (2022).
- Lee, S. B., Kim, K., Oh, J. S., Kahng, B. & Lee, J. S. Origin of variation in switching voltages in threshold-switching phenomena of VO₂ thin films. *Applied Physics Letters* 102 (2013).
- Beaumont, A., Leroy, J., Orlianges, J.-C. & Crunteanu, A. Current-induced electrical self-oscillations across out-of-plane threshold switches based on VO₂ layers integrated in crossbars geometry. *Journal of Applied Physics* 115 (2014).
- 22. Kumar, S. *et al.* Local temperature redistribution and structural transition during jouleheating-driven conductance switching in VO₂. *Advanced Materials* **25**, 6128–6132 (2013).
- Li, D. et al. Joule heating-induced metal-insulator transition in epitaxial VO₂/TiO₂ devices. ACS Applied Materials & Interfaces 8, 12908–12914 (2016).
- Yamasaki, S. *et al.* Metal-insulator transition in free-standing VO₂/TiO₂ microstructures through low-power Joule heating. *Applied Physics Express* 7, 023201 (2014).
- Oka, T., Arita, R. & Aoki, H. Breakdown of a Mott insulator: a nonadiabatic tunneling mechanism. *Physical Review Letters* **91**, 066406 (2003).
- Nishina, Y., Okazaki, R., Yasui, Y., Nakamura, F. & Terasaki, I. Anomalous thermoelectric response in an orbital-ordered oxide near and far from equilibrium. *Journal of the Physical Society of Japan* 86, 093707 (2017).

5

第5章

量子相転移型非線形伝導現象に対する エピタキシャル応力の影響

5.1 はじめに

前章では、Ca₂RuO₄/LaAlO₃ (001) において直流の電気伝導特性評価を行うことで、エピタ キシャル薄膜系での電流誘起型転移の発現を観測した。本章では、エピタキシャル応力の異なる Ca₂RuO₄/LaAlO₃ (001), Ca₂RuO₄/NdCaAlO₄ (100) を通して、エピタキシャル応力が与える 電流誘起型転移への影響を調べる。バルク Ca₂RuO₄ の非線形伝導現象 (抵抗スイッチング、NDR 挙動)[1–7] の際には、強い電子格子相互作用によって、結晶格子が段階的かつ連続的に変化するこ とが知られている [4, 8, 9]。このことから、Ca₂RuO₄ をエピタキシャル薄膜に加工することがで きれば、材料の歪み状態によって非線形伝導現象を制御できる可能性がある。しかし、これまでそ のエピタキシャル薄膜の作製は困難であったため、エピタキシャル応力と非線形伝導現象の関係を 調べることはできなかった。

近年、急峻な抵抗スイッチング [1, 4, 6, 10–16] と NDR 挙動 [1–7, 10–21] を応用したモット型 メモリスタ [16, 22, 23] およびモット型人工ニューロン [11, 12, 22]、モット型発振器 [10–14, 22] の実現が期待されている。素子の特性制御を目指して、非線形伝導現象を制御する試みが盛んに 行われているが [12, 14, 19, 21]、多くの材料がジュール熱由来の転移機構を持つために [12–14, 18–21]、原理的な問題から十分な制御ができていない。温度誘起型転移を示すバナジウム酸化物で は、ジュール加熱によってフィラメント状の金属相ドメインが形成されることで、非線形伝導現象 が発現する [13, 14, 18, 20, 21]。この金属相ドメインの形成プロセスにおいては、熱暴走が発生し てしまうため、非線形伝導現象を制御することは困難である。さらには、金属相ドメインの空間的 な不均一性によって、電流-電圧特性は一般的に不連続になる。一方で、本研究の Ca₂RuO₄ では、 エピタキシャル応力によって発生した材料の歪み状態によって、非線形伝導現象を安定して制御で きる可能性がある。このことから、Ca₂RuO₄ の電流誘起型転移では、温度誘起型転移よりも高い 動作制御性を持つことが期待される。本章では、エピタキシャル応力の異なる単結晶基板上に作製 した Ca₂RuO₄ エピタキシャル薄膜において、その電流-電圧特性を比較することで、量子相転移 型非線形伝導現象に対するエピタキシャル応力の影響を調べる。

本章では、[001] 配向膜の Ca₂RuO₄/LaAlO₃ (001) において、NDR 挙動を伴う明瞭な非線形伝 導特性を観測した。それに対して、[110] 配向膜の Ca₂RuO₄/NdCaAlO₄ (100) では、*c* 軸長の変 化の抑制に起因すると考えられる、非線形伝導特性のほぼ完全な消失が観測された。このことによ り、Ca₂RuO₄ の非線形伝導現象には、エピタキシャル応力による明確な影響が現れることが示さ れ、将来のモット型コンピューティング素子への重要な知見が得られた。

5.2 エピタキシャル応力による量子相転移型非線形伝導現象の抑制 とその評価

本節では [001] 配向膜の Ca₂RuO₄/LaAlO₃ (001) と、[110] 配向膜の Ca₂RuO₄/NdCaAlO₄ (100) において直流の電流-電圧測定を行うことで、非線形伝導現象とエピタキシャル応力の関係を 調べる。Au (100 nm)/Cr (5 nm) の面内 2 端子電極 (Figure 4.1) を用いて、20–590 K の範囲で 直流の電流-電圧測定を行った (Figure 5.1)。Ca₂RuO₄/NdGaO₃ (110) においてもほぼ単相のエ ピタキシャル薄膜が得られているが、本節の高電圧条件での電流-電圧測定では、界面反応層の寄 与による漏れ電流の影響が見られた。そのため、本質的な議論を行うために Ca₂RuO₄/NdGaO₃ (110) の結果を除いて議論する。Figure 4.5 の試料と同様に、本章で作製した Ca₂RuO₄/LaAlO₃

Figure 5.1 DC current-voltage characteristics of the (a) Ca_2RuO_4 (100 nm)/LaAlO₃ (001), (b) Ca_2RuO_4 (100 nm)/NdCaAlO₄ (100) in the [1 - 10] direction, and (c) in the [001] direction, measured under current-sweeping conditions at stage temperatures of 20–590 K using Au (100 nm)/Cr (5 nm) two-terminal in-plane electrodes. The black arrows in the figures indicate the current-sweeping directions.

(001)においても、T < 240 K で NDR 挙動を伴う非線形伝導特性を観測した (Figure 5.1a)。し かし、この明瞭な非線形伝導特性は、[110] 配向膜の Ca₂RuO₄/NdCaAlO₄ (100) では大きく抑制 される。Figure 5.1b,c はそれぞれ、[1 – 10] 方向と [001] 方向で測定した Ca₂RuO₄/NdCaAlO₄ (100) の電流-電圧特性である。Ca₂RuO₄/LaAlO₃ (001) とは大きく異なり、ほぼ線形の伝導 特性を示し、300–590 K の測定範囲では NDR 挙動を示す可能性は低い。この非線形性を評価 するために、Ca₂RuO₄/LaAlO₃ (001) と Ca₂RuO₄/NdCaAlO₄ (100) における、電流-電圧特 性の両対数プロットを行った (Figure 5.2)。両対数プロットから、Ca₂RuO₄/LaAlO₃ (001) が 非線形伝導特性を示している領域においても、Ca₂RuO₄/NdCaAlO₄ (100) はほぼ線形である。 Ca₂RuO₄/NdCaAlO₄ (100) は、30 mV-30 V の測定範囲でほぼ完全に線形 ($I \propto V^1$) である一方、 Ca₂RuO₄/LaAlO₃ (001) は > 10 nA(T = 8 K) の低電流密度領域からすでに非線形伝導特性が発 現しており、測定範囲で線形伝導を示す領域は非常に少ない。このことから、Ca₂RuO₄/LaAlO₃ (001) と Ca₂RuO₄/NdCaAlO₄ (100) の間の非線形性の違いは、エピタキシャル応力の違いによ るものであると考えられる。

ここで、ジュール加熱の影響について考慮すると、 $Ca_2RuO_4/NdCaAlO_4$ (100)の TCR (1.1 式)が $Ca_2RuO_4/LaAlO_3$ (001)よりもはるかに小さい場合、ジュール加熱の影響によって非線形 性の違いが生じていると考えることができる。バンド半導体では TCR がはるかに小さい場合、電 流誘起型転移を考慮せずとも、ジュール加熱による抵抗減少が小さいことで非線形伝導特性の抑制 を説明できる。Figure 5.1b,cの1 µA の値から、 $Ca_2RuO_4/NdCaAlO_4$ (100)の TCR を導出し

Figure 5.2 Double logarithmic plots of the DC current-voltage characteristics of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) and Ca₂RuO₄ (100 nm)/NdCaAlO₄ (100) with [001] current direction, measured at 8–80 K and 300–590 K, respectively. The gray broken lines indicate the results of linear ($I \propto V^1$) fitting for the profiles of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) (at T = 8 K) and Ca₂RuO₄/NdCaAlO₄ (100) (at T = 300 K)

た (Figure 3.1b)。400–590 K の範囲でその TCR はおよそ 0.5–4% K⁻¹ と、Ca₂RuO₄/LaAlO₃ (001) と大差ない。このことから、伝導特性の違いはジュール加熱由来の抵抗変化によるものでは なく、電流誘起型転移によって引き起こされる抵抗変化の違いによって生じたと考えられる。

この非線形伝導の違いを起こしたメカニズムとして、膜配向の違いが考えられる。バルク Ca₂RuO₄が非線形伝導現象を示す際には、a, b軸長に比べてc軸長が大きく伸長する [4, 9]。このよ うな結晶格子の変化が、Ca₂RuO₄ エピタキシャル薄膜でも起きると仮定する。Ca₂RuO₄/LaAlO₃ (001) は面外方向にc軸が位置しているため、面外の [001] 方向には基板からの拘束を受けてお らず、c軸長が変化することができる (Figures 2.2e and 5.3a)。一方で、Ca₂RuO₄/NdCaAlO₄ (100) は、基板と面内の [001] 方向で格子定数が一致しているため、c軸長の変化とそれによるエネ ルギーギャップの狭窄 [2] は大きく抑制される (Figures 2.2f and 5.3b)。よって、バルク Ca₂RuO₄ で提唱されている転移メカニズムに基づいて考察すると、[110] 配向膜の Ca₂RuO₄/NdCaAlO₄ (100) では、エピタキシャル応力によって電流誘起型転移の進行が大幅に抑制されることで、非線 形伝導現象が抑制されたと考えることができる。

Figure 5.3 Predicted mechanism for suppression of the nonlinear transport properties. (a) In $Ca_2RuO_4/LaAlO_3$ (001), the lattice length along the *c*-axis direction is not suppressed, while in (b) $Ca_2RuO_4/NdCaAlO_4$ (100), the chemical bonding with the substrate suppresses the lattice change along the *c*-axis direction, possibly resulting in the disappearance of the nonlinear transport property.

5.3 小括

エピタキシャル応力の異なる Ca₂RuO₄/LaAlO₃ (001), Ca₂RuO₄/NdCaAlO₄ (100) で直流 の電流-電圧測定を行い、エピタキシャル応力が非線形伝導現象に及ぼす影響を明らかにした。 Ca₂RuO₄/LaAlO₃ (001) で観測された NDR を伴う顕著な非線形伝導特性は、[110] 配向膜の Ca₂RuO₄/NdCaAlO₄ (100) では大幅に抑制され、ほぼ完全な線形伝導特性を示した。このことか ら、応用上重要な非線形伝導現象がエピタキシャル応力によって制御できることが示唆され、モッ ト型コンピューティング素子への可能性が広がったと言える。

5.4 実験方法

Ca₂RuO₄ 薄膜の電流-電圧測定は、半導体パラメータアナライザ (Keysight 4156C) および極 低温プローブステーションシステム (Nagase GRAIL-20-305-6-LV)、高温プローブステーション システムを用いて試料台温度 8–590 K の範囲で行った。Au (100 nm)/Cr (5 nm) の面内 2 端子電 極の作製は、4.6 節と同様にフォトリソグラフィと抵抗加熱蒸着によって行った (Figure 4.8)。

Acknowledgement

This chapter is reprinted with permission from [Keiji Tsubaki, Masashi Arita, Takayoshi Katase, Toshio Kamiya, Atsushi Tsurumaki-Fukuchi, and Yasuo Takahashi, *Japanese Journal of Applied Physics.* **63**, 01SP03 (2024)]. ©(2024) Japan Society of Applied Physics. https://doi.org/10.35848/1347-4065/acf2a3

References

- Nakamura, F. *et al.* Electric-field-induced metal maintained by current of the Mott insulator Ca₂RuO₄. *Scientific Reports* 3, 2536 (2013).
- Okazaki, R. et al. Current-induced gap suppression in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 82, 103702 (2013).
- Zhang, J. et al. Nano-resolved current-induced insulator-metal transition in the Mott insulator Ca₂RuO₄. Physical Review X 9, 011032 (2019).
- Cirillo, C. *et al.* Emergence of a metallic metastable phase induced by electrical current in Ca₂RuO₄. *Physical Review B* 100, 235142 (2019).
- Jenni, K. et al. Evidence for current-induced phase coexistence in Ca₂RuO₄ and its influence on magnetic order. *Physical Review Materials* 4, 085001 (2020).
- Mattoni, G., Yonezawa, S., Nakamura, F. & Maeno, Y. Role of local temperature in the current-driven metal-insulator transition of Ca₂RuO₄. *Physical Review Materials* 4, 114414 (2020).
- Avallone, G. et al. Universal size-dependent nonlinear charge transport in single crystals of the Mott insulator Ca₂RuO₄. npj Quantum Materials 6, 91 (2021).
- 8. Cao, G. Towards electrical-current control of quantum states in spin–orbit-coupled matter. *Journal of Physics: Condensed Matter* **32**, 423001 (2020).
- Okazaki, R. et al. Current-induced giant lattice deformation in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 89, 044710 (2020).
- Lee, Y. W. *et al.* Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film. *Applied Physics Letters* **92** (2008).
- Yi, W. et al. Biological plausibility and stochasticity in scalable VO₂ active memristor neurons. Nature Communications 9, 4661 (2018).
- Schofield, P. et al. Harnessing the Metal–Insulator Transition of VO₂ in Neuromorphic Computing. Advanced Materials, 2205294 (2022).
- Das, S. K. et al. Physical Origin of Negative Differential Resistance in V₃O₅ and Its Application as a Solid-State Oscillator. Advanced Materials 35, 2208477 (2023).

- Bohaichuk, S. M. et al. Intrinsic and Extrinsic Factors Influencing the Dynamics of VO₂ Mott Oscillators. Physical Review Applied 19, 044028 (2023).
- Nakamura, S. Nonequilibrium Phase Transitions and a Nonequilibrium Critical Point from Anti-de Sitter Space and Conformal Field Theory Correspondence. *Physical Review Letters* 109, 120602 (2012).
- Peronaci, F., Ameli, S., Takayoshi, S., Landsman, A. S. & Oka, T. Mott memristors based on field-induced carrier avalanche multiplication. *Physical Review B* 107, 075154 (2023).
- 17. Nakano, T. & Terasaki, I. Giant nonlinear conduction and thyristor-like negative differential resistance in BaIrO₃ single crystals. *Physical Review B* **73**, 195106 (2006).
- Kumar, S. et al. Local temperature redistribution and structural transition during jouleheating-driven conductance switching in VO₂. Advanced Materials 25, 6128–6132 (2013).
- Rana, A., Li, C., Koster, G. & Hilgenkamp, H. Resistive switching studies in VO₂ thin films. *Scientific Reports* 10, 3293 (2020).
- Adda, C. et al. Direct observation of the electrically triggered insulator-metal transition in V₃O₅ far below the transition temperature. *Physical Review X* 12, 011025 (2022).
- Luibrand, T. et al. Characteristic length scales of the electrically induced insulator-tometal transition. Physical Review Research 5, 013108 (2023).
- Zhou, Y. & Ramanathan, S. Mott memory and neuromorphic devices. Proceedings of the IEEE 103, 1289–1310 (2015).
- 23. Wang, Y. et al. Mott-transition-based RRAM. Materials Today 28, 63–80 (2019).

第6章

時間分解測定による量子相転移型非線 形伝導現象の評価

6.1 **はじめに**

第4章では、Ca₂RuO₄ (100 nm)/LaAlO₃ (001) において直流の2端子測定を行った。電流掃 引条件下での電流-電圧特性では NDR 挙動の発現を観測した。一方で、電圧掃引条件では、この NDR 挙動が抵抗スイッチングとして観測されたことから、高速な転移が発現している可能性があ る。また、バルク Ca₂RuO₄ では、温度、圧力に誘起された平衡相の金属相とは異なる、非平衡な 金属相が電流によって誘起されることが提唱されている [1–4]。このことから、Ca₂RuO₄ の抵抗 スイッチングが、温度誘起型転移のダイナミクスと独立している可能性があるため、非平衡ダイナ ミクスの理解のために転移速度の評価が求められる。本章では試料にパルス電圧を印加した時間分 解測定を行うことで、Ca₂RuO₄ (100 nm)/LaAlO₃ (001) が示す抵抗スイッチングの挙動につい て調べる。

モット型ニューロンの発火速度 [5-9] やモット型シナプスの増強/抑制速度と時間的可塑性 [7, 10] など、転移速度に依存している素子の特性は、金属相の形成時間と保持時間によって決められ る。さらには、金属相の形成時間と保持時間は、相転移の空間的広がり方 [11-15] とも関わること から、相転移メカニズムへの理解のためにその評価が重要である。このような背景から近年、バ ナジウム酸化物 (VO₂, V₂O₃, V₃O₅)[7-9, 11-13, 15-17] およびカルコゲナイド AM₄Q₈[5, 6, 10, 18-21]、Ni(S,Se)₂[21]、1T-TaS₂[22, 23]、希土類ペロブスカイトマンガン酸化物 [24]、ニッケル 酸化物 [14] などで抵抗スイッチングの速度評価が重要視されている。これまで多くの材料で、電 気的に誘起された抵抗スイッチングの発現が期待されてきたが、近年の研究からは、そのメカニズ ムがジュール加熱であったとの味方が強い [12–16]。しかしながら依然として、一部の材料では電 気的な転移メカニズムの存在が有望視されている。バナジウム酸化物のナノワイヤでは、材料中に 欠陥が存在することで、電場印加によるキャリア生成が起こりやすくなる機構が提唱されている [25]。カルコゲナイド AM4Q8 でも、電場印加によってツェナー降伏、アバランシェ降伏が起こる 機構が提唱されている [19-22]。しかし、このような材料においても、電気的に誘起された金属相 と、温度に誘起された金属相との違いを区別することはできていない。このことから、どちらも同 じ平衡状態の金属相が誘起されている可能性があり、温度誘起型転移の影響が予想される。そのた め、非熱型転移であっても温度誘起型転移の急峻性が、抵抗スイッチングの挙動を決める重要なパ ラメータになると考えられている [26-28]。モット型のスイッチング素子 [16, 23-28] やモット型 ニューロンの発火 [7-9, 17] に求められている、急峻な抵抗スイッチングを得るには、抵抗率-温度 '特性における > 100% K^{−1} の高い TCR(1.1 式)[29, 30] が必要である。しかし、高い TCR には化 学量論的組成と結晶性を精密に制御した、高品質な試料が必要であるため [29–33]、これまでエレ クトロニクス応用の自由度が大きく制限されていた [29-31, 33]。一方で、 バルク Ca₂RuO₄ では 構造評価 [2-4] とラマン分光法 [34] から、> 4 A cm⁻² の電流密度下で非平衡な金属相が発現する ことが報告されている。このような非平衡相をもつ材料では、急峻な抵抗スイッチングが電気的に 誘起されることが予想される。そのため、急峻な抵抗スイッチングには、温度誘起型転移の急峻性 が必要ではない可能性がある。このことは、近年、2 次の温度誘起型転移を示す V₃O₅[13, 15] お よび SmNiO₃[14]、カルコゲナイド AM₄Q₈[18, 19] が、温度誘起型転移の急峻性が低いにも関わ らず、電気的に急峻な抵抗スイッチングを発現することからも示唆される。非熱型転移材料の抵抗 スイッチングには、抵抗率–温度特性の急峻性を必要としないことが予想され、エレクトロニクス 応用を目指して相転移ダイナミクスの解明が求められている。

本章では、Ca₂RuO₄/LaAlO₃ (001) が急峻な温度誘起型転移を示さないにも関わらず、その電

71

Figure 6.1 (top) Temperature dependence of the resistivity for Ca_2RuO_4 (100 nm)/LaAlO₃ (001) by the four-probe method, and (bottom) TCR derived from the characteristics. The arrows indicate the direction of the temperature sweep.

流誘起型転移に基づいて、急峻な抵抗スイッチングが発現することを観測した。このことは、電流 誘起型転移の抵抗スイッチングには、温度誘起型転移のダイナミクスが関与しないことを示す。パ ルス電圧を印加した時間分解測定から、140 ns の高速な抵抗スイッチングが起こることを観測し た。また、その繰り返し安定性を評価することで、抵抗スイッチングが少なくとも 10⁶ 回もの高い 繰り返し耐久性を持つことを確認した。これらのことは、熱型転移材料で不可欠だった材料最適化 による制限が、非熱型転移にはないことを示しており、非平衡ダイナミクスの理解に重要な知見が 得られた。

6.2 急峻な温度誘起型転移を示さない Ca₂RuO₄/LaAlO₃ (001) の抵 抗率–温度特性

2 章で Ca₂RuO₄/LaAlO₃ (001) の輸送特性の評価を行い、その抵抗率–温度特性から急峻な温 度誘起型転移を示さないことを確認した (Figure 3.1)。本章で作製した Ca₂RuO₄/LaAlO₃ (001) についても、figure 3.1 と同様の挙動を示しており (top pannel of Figure 6.1)、TCR からも急 峻な温度誘起型転移は見られない (bottom pannel of Figure 6.1)。不連続性の見られない平滑 な抵抗率–温度特性は、LaAlO₃ (001) からの面内圧縮応力によって、転移点が広がったためで

Figure 6.2 Stage temperature (T_s) dependence of the resistance measured for Ca₂RuO₄ (100 nm)/LaAlO₃ (001) thin film with electrode A under constant currents of 100 µA and 5.0 mA. In the measurements, the characteristics under 100 µA (dark blue line) were measured first, and then, the measurement under 5.0 mA (red line) was conducted. After the measurement at 5.0 mA, the characteristics under 100 µA (light blue line) were measured again for the same sample.

あると考えられる [31–33]。このように Ca₂RuO₄ 薄膜では急峻な温度誘起型転移が見られない ため、これまでのバナジウム酸化物 [8, 9, 13, 15, 16, 26] やペロブスカイトニッケル酸化物 [14] などの温度誘起型転移からの理解では、急峻な抵抗スイッチングが起こることは予想できない。 Ca₂RuO₄/LaAlO₃ (001) の電流誘起型転移では、 $T_{\rm M} = 240$ K 以下の領域で電流注入による抵抗 減少が観測される (Figures 4.2 and 6.2)。この平滑で連続的な抵抗減少は、非平衡定常状態 [35] である定電流を流し続けた状態でのみ、低抵抗率相が安定化されることで生じる (Figure 6.2)。そ のため、電場印加によって平衡状態の金属相が誘起されるカルコゲナイド AM₄Q₈ と異なり [18, 19]、Ca₂RuO₄/LaAlO₃ (001) の連続的な抵抗率–温度特性からは、急峻な抵抗スイッチングが起 きることは予想できない。

6.3 Ca₂RuO₄/LaAlO₃ (001) が示す抵抗スイッチングの時間分解 測定

4 章の Ca₂RuO₄/LaAlO₃ (001) において、Au (100 nm)/Cr (5 nm) 面内 2 端子電極 (Figure 6.3a,b, 電極 A) を用いた直流の電流-電圧測定を行った (Figure 4.5)。電流掃引条件では低温領域 で顕著な非線形伝導特性が現れ、平滑な NDR 挙動を示すことを観測した (Figure 4.5a)。一方で、 電圧掃引条件では NDR 領域で試料中の電流が急激に増加することで、抵抗スイッチングとして観

Figure 6.3 (a) Schematic diagram and (b, c) optical microscope images of the metal electrode used for DC current–voltage measurements and pulse voltage application measurements of Ca_2RuO_4 thin film. The right images of (b) and (c) are enlarged views of the electrode gap region.

測された (Figure 4.5b)。このことから、本研究の薄膜の電流誘起型転移は高速であることが予想 される。バルク Ca₂RuO₄ では、温度によって誘起される平衡状態の金属相とは異なる、非平衡定 常状態での金属相が電流によって安定化することが提唱されている [1–4]。温度誘起型転移のダイ ナミクスと独立している可能性があることから、本節ではその非平衡ダイナミクスについて調べる ために、時間分解測定から転移速度評価を行う。

時間分解測定を行うために、より大きな電流密度が得られる 3 µm の電極ギャップを持つ Pt (65 nm) 面内 2 端子電極を、Ca₂RuO₄ (100 nm) 薄膜上に作製した (Figure 6.3a,c, 電極 B)。ファ ンクションジェネレータ (Tektronix AFG 3102) を使って試料にパルス電圧を印加し、オシロス コープの内部抵抗 (50 Ω) から印加電圧と試料電流の時間変化を読み出すことで、電流誘起型転 移の時間分解測定を行った (Figure 6.4)。微小時間での電圧掃引測定を行うために、ステージ温 度 $T_{\rm s} = 70$ K において、試料への三角波および矩形波電圧 (upper panel of Figure 6.4a-c) の印 加を行っている。この測定系では、最大電圧 $V_{\rm max} = 9,10$ V のときに印加電圧に電圧降下が見ら れる (upper panel of Figure 6.4b)。ファンクションジェネレータによって電圧掃引測定を行った 際に、Ca₂RuO₄ 薄膜の低抵抗率相と近いオシロスコープの内部抵抗 (50 Ω) が存在することで、 電圧フィードバックが発生するためである。この電圧フィードバックによって電流の急激な増大 が抑制されることで、電流掃引測定 [22, 36] と近い状態になっている。時間幅 5.0 ms の三角波パ ルス電圧を印加した測定では、 $V_{\rm max} = 2$ -8 V のとき $V_{\rm max}$ の増加とともに電流が緩やかに増加

Figure 6.4 Current-time characteristics of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) measured at $T_{\rm s} = 70$ K by pulsed voltage application using electrode B for maximum voltage ($V_{\rm max}$) = (a) 2–8 V under a triangular waveform, (b) 8–10 V under a triangular waveform, and (c) 2–9 V under a rectangular waveform. The waveforms of the applied voltages (monitored by an additional oscilloscope) are shown in the top panels. In (c), a reading voltage ($V_{\rm read}$) of 1.5 V was also applied to the film before and after the application of pulsed voltages to measure the relaxation characteristics. Enlarged views of the currenttime characteristics measured under the rectangular-waveform voltage with $V_{\rm max} = 9$ V around the (d) abrupt switching and (e) resistive relaxation periods. $t_{\rm sw}$ and $t_{\rm re}$ indicate the switching time and retention time, respectively.

していく (Figure 6.4a)。大きな印加電圧 ($V_{\text{max}} \ge 9$ V) では、試料に流れる電流が急激に増加す ることで、急峻な抵抗スイッチングが観測された (Figure 6.4b)。ここで、電圧上昇過程から見た 抵抗スイッチングの開始点を I_{th1} 、終了点を I_{th2} と定義する。 $V_{\text{max}} = 9,10$ V では、閾値電流 ($I_{\text{th1}} = 6.0$ mA) に達した際に電流が不連続に増加し、 $I_{\text{th2}} = 9.2$ mA まで急激な電流増加が続く。 この挙動は電圧降下過程でも同様で、 I_{th1} , I_{th2} で急峻な抵抗スイッチングが観測される。このよ うに、Ca₂RuO₄ 薄膜は抵抗率–温度特性に不連続性がないにも関わらず、その時間–電流特性で不 連続な抵抗スイッチングが起きることが示された。パルス電圧印加では緩やかな抵抗変化と、電流 が急激に増加した急峻な抵抗スイッチングの 2 段階転移が観測されたが、この特性は定常状態での 緩やかな抵抗減少と、急峻な抵抗スイッチングの 2 段階転移 (Figure 4.5) と対応していると考えら れる。

この抵抗スイッチングの速度評価を行うために、試料に矩形波電圧を印加した時間分解測定を行なった (Figure 6.4c)。 $V_{\text{max}} \leq 8$ V では、三角波電圧のときと同様に電圧増加に従った緩やかな抵抗減少が観測される。一方で、 $V_{\text{max}} = 9$ V では試料に流れる電流が不連続に増加することで、

Figure 6.5 (a) Current-time characteristics of another sample from figure 6.4 measured by pulsed voltage application using electrode B for $V_{\text{max}} = 8.6-9.2$ V under the rectangular waveform at $T_{\text{s}} = 80$ K. (b) Enlarged view of the region around the abrupt switching.

 $t_{sw} = 140 \text{ ns}$ の高速スイッチングが見られた (Figure 6.4c,d)。このスイッチングまでの挙動につ いて見ていくと、2.57 µs の電圧を印加し続ける前駆時間 (tinc) が存在している。このことは複数 の試料で再現的に確認しており、有限の tinc のあとに閾値電流 Ith を超えることで、急峻な抵抗 スイッチングが発現する (Figure 6.5)。このような有限時間の t_{inc} は熱型 [9, 12-14, 16], 非熱型 [4-6, 10, 19-21, 35] の転移材料どちらにおいても観測されている。しかし、非熱型転移機構が予想 される Ca₂RuO₄ 薄膜では、酸化バナジウム [12, 13, 16] やペロブスカイトニッケル酸化物 [14] で 提唱されているような、内部温度の緩やかな上昇によって tinc を説明することはできないと考えら れる。バルク Ca₂RuO₄ では、10-100 ms の抵抗スイッチング速度 t_{inc}, t_{sw} が報告されており [4, 35]。本研究の薄膜ではそれよりも 10^4 – 10^5 倍高速である。 $t_{\rm inc}, t_{\rm sw}$ の起源は、バルク ${\rm Ca_2RuO_4}$ では格子再構成が起きるのに必要な時間であると考えられており、電流注入によるエネルギーが 格子系に伝達されるまでの時間に対応する [35]。本研究の薄膜では、バルク Ca₂RuO₄(1 A cm⁻²) よりも大きな電流密度 (~ 10⁶ A cm⁻²) が得られており、その桁がおよそ一致していることから、 高速なスイッチングは電子系から格子系への高速なエネルギー伝達によるものと予想される。し かしながら、この電流密度の影響を詳細に議論するには、Ca2RuO4 薄膜の抵抗スイッチング挙動 へのさらなる理解が必要である。最後に、低抵抗状態から高抵抗状態への遷移過程に着目すると、 $t_{\rm re} = 1.85 \ \mu s \ (V_{\rm max} = 9 \ V)$ の低抵抗状態の保持時間があることを観測した (Figure 6.4e)。この $t_{\rm re}$ は、数値シミュレーションからは ${
m Ca_2RuO_4/LaAlO_3}$ (001)の熱緩和時間よりも短いことを見 積もっている (後述の 6.5 節)。

 $T_{
m s}=70~{
m K}$ では抵抗スイッチングは単一ステップで観測されたが、 $\leq 50~{
m K}$ では複数のステッ

Figure 6.6 Current-time characteristics of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) measured by pulsed voltage application with $V_{\rm max} = 10$ V for (a) 50 cycles at $t_{\rm p} = 5.0$ ms, $T_{\rm s} =$ 70 K and (b) $t_{\rm p} = 5.0$ µs-500 ms (at $T_{\rm s} = 30$ K). Times normalized by $t_{\rm p}$ were used for plotting (b). The waveforms of the applied voltages (monitored by an additional oscilloscope) are shown in the top panels.

プに分かれて観測される (Figures 6.6 and 6.7)。 $T_{\rm s} = 50$ K のとき、電圧上昇過程では $I_{\rm th1} = 6.54$ mA から $I_{\rm th2} = 9.52$ mA までと、 $I_{\rm th1}' = 11.0$ mA から $I_{\rm th2}' = 12.4$ mA までの 2 回の抵抗スイッチングが観測された (Figure 6.6a)($I_{\rm th2}$, $I_{\rm th2}'$ は図中に明示せず)。電圧降下過程では、電圧上昇過程とはスイッチング挙動が変わり、 $I_{\rm th2}* = 7.04$ mA から $I_{\rm th1}* = 2.06$ mA までの単一ステップでスイッチングが観測された ($I_{\rm th1}*$ は図中に明示せず)。このように複数ステップで抵抗スイッチングが観測された ($I_{\rm th1}*$ は図中に明示せず)。このように複数ステップで抵抗スイッチングが発生するものの、50 回の繰り返しでも $I_{\rm th1}$ および $I_{\rm th2}$, $I_{\rm th1}'$, $I_{\rm th2}'$, $I_{\rm th1}*$, $I_{\rm th2}*$ はほとんど変化しないことから、安定したスイッチング機構を持っていることを示している (Figure 6.6a)。また、この $I_{\rm th1}$ は測定時間に影響を受けなかった。Figure 6.6b は $T_{\rm s} = 30$ K において、 $t_{\rm p} = 5.0$ µs-500 ms の時間幅をもった、三角波電圧を印加した際の電流-時間特性である。その測定時間は 4 桁も異なるが、測定時間に依存せずに $I_{\rm th1} = 2.40$ ms で抵抗スイッチングが発現する。

Figure 6.7 は、電極 B の構成の Ca₂RuO₄/LaAlO₃ (001) に対して、 $T_{\rm s} = 20$ -40 K で $V_{\rm max} = 10.6$ V, $t_{\rm p} = 5.0$ ms の三角波パルスを印加したときの、電流-時間特性の温度依存性を示している。 $T_{\rm s} = 40$ K のとき、電圧上昇過程では $I_{\rm th1} = 3.4$ mA, $I_{\rm th2} = 13.0$ mA の間で急峻な抵抗スイッチングが 1 回観測されたが、電圧降下過程では緩やかな抵抗変化を示した。 $T_{\rm s} = 30$ K への冷却で

Figure 6.7 Current-time characteristics of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) measured by pulsed voltage application using electrode B under the triangular waveform with V_{max} = 10.6 V and $t_{\rm p}$ = 5.0 ms at $T_{\rm s}$ = (left) 40 K, (middle) 30 K, and (right) 20 K. The waveforms of the applied voltages (monitored by an additional oscilloscope) are shown in the top panels. The arrows in the figures denote the gradual resistance changes observed in the intervals between abrupt switching.

は、この抵抗スイッチングは電圧上昇過程で3つのステップに分かれ、 $I_{\text{th1}} = 1.86 \text{ mA}, I_{\text{th1}}' = 8.62 \text{ mA}, I_{\text{th1}}'' = 14.3 \text{ mA} でそれぞれ急峻な抵抗スイッチングが観測された。このとき figure 6.7 に矢印で示すように、多段階ステップのスイッチングの合間には、緩やかな抵抗変化が見られる。$ $一方で、電圧降下過程では、電圧上昇過程で観測されていた <math>I_{\text{th2}} = 3.78 \text{ mA}, I_{\text{th2}}' = 10.2 \text{ mA}, I_{\text{th2}}'' = 17.7 \text{ mA} での三回の抵抗スイッチングとは異なり、<math>I_{\text{th2}}* = 10.1 \text{ mA}$ で単一の抵抗スイッ チングが観測された。最後に $T_{\text{s}} = 20 \text{ K}$ へのさらなる冷却では、電圧上昇過程で $I_{\text{th1}} = 2.20 \text{ mA}, I_{\text{th1}}' = 9.54 \text{ mA}$ の 2 回、電圧降下過程では $I_{\text{th2}}* = 3.68 \text{ mA}$ で 1 回の抵抗スイッチングが観測 された。本研究では、低温領域で多段階ステップでの抵抗スイッチングが起こることを、複数試料 で確認している。抵抗スイッチングには温度依存性が見られたことから、低抵抗率相の形成プロセ スでは、試料の温度が電流誘起型転移に影響を及ぼすことが示唆される。バルク Ca₂RuO₄ での観 察をもとに考えると [7, 8]、多段階の抵抗スイッチングが発現している際には、電流密度と低抵抗 率相ドメインの空間分布が均一ではないことが予想される。

Figure 6.8 Current-time characteristics of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) measured for 10⁶ cycles at $T_{\rm s} = 50$ K by pulsed voltage application with $V_{\rm max} =$ (a) 6.2 V and (b) 10 V. The waveforms of the applied voltages (monitored by an additional oscilloscope) are shown in the top panels. (c) Cycle number dependences of $I_{\rm th1}$ and maximum current ($I_{\rm max}$) extracted from (a) and (b).

6.4 Ca₂RuO₄/LaAlO₃ (001) における抵抗スイッチングの繰り返し 安定性評価

Figure 6.6 での抵抗スイッチングの 50 回の繰り返し評価では、安定した繰り返し再現性が見られ ていたが、さらに大きな繰り返し回数では、試料に流れる電流に系統的な変化が現れる。 $T_{\rm s} = 50$ K, $V_{\rm max} = 6.2$ V の三角波電圧を印加した、緩やかな抵抗減少が見られる領域で、Ca₂RuO₄/LaAlO₃ (001) の電流-時間特性の変化を 10⁶ 回評価した (Figure 6.8a)。このように緩やかな抵抗変化が 見られる領域では、10⁶ 回抵抗スイッチングを繰り返しても顕著な変化は見られなかった。しか し、 $V_{\rm max} = 10$ V の抵抗スイッチングが発現する領域では、繰り返し回数の増加に伴って、薄膜 に流れる電流が減少していく様子が見られる (Figure 6.8b)。このことを定量的に評価するために、 figure 6.8a,b における閾値電流 I_{th1} と最大電流 I_{max} の変化を、繰り返し回数に対してプロットした (Figure 6.8c)。緩やかな抵抗変化が見られる領域 ($V_{\text{max}} = 6.2$ V) では I_{max} は非常に安定している一方で、抵抗スイッチングが発現する領域 ($V_{\text{max}} = 10$ V) では系統的に I_{th1} , I_{max} が減少していく様子が見られる。

6.5 数値シミュレーションを通じたスイッチングモデルの議論

Ca₂RuO₄/LaAlO₃ (001) は急峻な温度誘起型転移を示さないにも関わらず (Figure 3.1)、急峻 な抵抗スイッチングが発現したことから、電流に誘起された転移機構を持つことが予想される。 Ca₂RuO₄ 薄膜での緩やかな抵抗変化と、急峻な抵抗スイッチングからなる 2 段階転移は、VO₂ ナ ノワイヤ [25] やバルク Ca₂RuO₄[1, 3, 4, 36, 37] でも見られる現象である。さらには、Ca₂RuO₄ 薄膜が、抵抗スイッチングの高い繰り返し安定性を持っていたことからも (Figure 6.6)、電流誘 起型の転移機構が支持される。この抵抗スイッチングと電流誘起型転移の関係を議論するために、 $Ca_2 RuO_4$ 薄膜の局所温度分布を有限要素解析から求めた (Figure 6.9)。本研究では $T_s = 30$ K の とき、 $t_{\rm p} = 5.0 \,\mu {\rm s}, V_{\rm max} = 10 \, {\rm V}$ の三角波電圧を印加することで、figure 6.6b に示すような 2 段階 |転移が見られている (Figure 6.9a)。この電圧–時間特性、電流–時間特性の実験結果をもとに、試 料の温度分布を数値解析から求めた。はじめに、電圧印加の際に相転移が起きないと過程してシ ミュレーションを行った (Figure 6.9b,c)。このモデルから、ジュール加熱によって Ca₂RuO₄ 薄 膜の最も温度が高い地点 (T_{max}) は、抵抗スイッチングの開始点 (2.20 μs) では T_s より 10.2 K 高 い $T_{\text{max}} = 40.2 \text{ K}$ 、最大温度は $T_{\text{max}} = 66.7 \text{ K}$ に達することがわかった (Figure 6.9c)。しかし、 Ca₂RuO₄ 薄膜の抵抗率–温度特性では、30.0–66.7 K の範囲に不連続性は見られないため (Figures 3.1 and 6.1)、従来の温度誘起型転移からの理解では、急峻な抵抗スイッチングが起きることは予 想できない。

次のモデルでは急峻な抵抗スイッチングを説明するために、相分離が起きることを考慮した。 バルク Ca₂RuO₄ での電流誘起型転移では、負極へのキャリアの蓄積によって、非平衡な L* 相 が電流と反対方向ヘドメイン分離していく様子が観察されている [1, 35]。この転移は電子状態と 結晶構造の急激な変化を伴う一次相転移である [2, 3]。さらなる実験的理解を必要とするものの、 本研究の薄膜がバルク Ca₂RuO₄ と同様の一次相転移メカニズムを持つと考えると、急峻な抵抗 スイッチングは一次相転移から説明することができる。Figure 6.8b,c では、抵抗スイッチングの 繰り返しに伴って系統的な特性の変化が見られていたが、一次相転移によって結晶性や組成の緩

Figure 6.9 (a) Current-time characteristics of Ca_2RuO_4 (100 nm)/LaAlO₃ (001) applied to thermal analysis by finite element analysis shown in (b-g) (replotted from Figure 6.6b). The triangular waveform pulse voltage of $t_{\rm p}\,=\,5.0~\mu{\rm s}$ and $V_{\rm max}\,=\,10~{\rm V}$ was applied to electrode B for the measurement at $T_{\rm s} = 30$ K. (b) Internal temperature distributions of the film at (top) 2.22 µs (in the abrupt switching process) and (bottom) 2.27 µs (immediately after the abrupt switching) obtained by assuming no phase transition in the film, and (c) time dependence of T_{max} . (d) Internal temperature distributions of the film at (top) 2.22 µs and (bottom) 2.27 µs obtained by assuming the occurrence of a current-induced metal-insulator transition in the abrupt switching, and (e) time dependence of $T_{\rm max}$. (f) Internal temperature distributions of the film at (top) 2.22 µs and (bottom) 2.27 µs obtained by assuming the occurrence of current confinement in the film, and (g) time dependence of T_{max} . The red ellipses in (d) denote low-resistivity regions formed by the current-induced transition, and the red solid lines in (f) denote the current confinement regions. The time period of 2.20–2.86 µs, in which the formation of the low-resistivity domain and the occurrence of current confinement are assumed in (d–g), are highlighted by the purple backgrounds in (a, e, g).

やかな変化が起こることで説明できる。このような相分離を伴う電流誘起型転移を仮定したとき の、 Ca_2RuO_4 薄膜の局所的温度分布と T_{max} の時間変化を示す (Figure 6.9d,e)。このモデルで は 0.04 Ω cm の抵抗率をもつ金属相ドメインが、 I_{th1} に達した 2.20 μ s で成長を開始し、 I_{th2} に 達した 2.25 µs までドメインサイズが増加するとした。ドメインの境界は figure 6.9d の赤楕円 で示すように、バルク Ca₂RuO₄[1, 36] と同様に、電流と逆方向に成長していくと仮定した。電 圧降下過程では、figure 6.9a,e での紫色の領域のように、*I*_{th2} に達した 2.86 μs のときに金属相 ドメインが消失すると仮定している。このような相分離を考慮した解析から、Ca₂RuO₄ 薄膜の $T_{
m max}$ が相分離を考慮しないモデル (Figure 6.9b,c) とほぼ同じであり、 $m Pt/Ca_2RuO_4/Pt$ の面内 接合で均一な温度分布が生じることが示された (Figure 6.9d,e)。バルク Ca₂RuO₄ では、電流誘 起型転移の安定性が、温度や電流密度の空間的均一性に大きな影響を受けることが知られている [36]。そのため、Ca₂RuO₄/LaAlO₃ (001) の平滑な NDR 特性と (Figures 4.5 and 5.1a)、電流-時間特性の高い繰り返し安定性から (Figure 6.6)、Ca₂RuO₄ 薄膜における均一な温度分布が示唆 される。このような均一な温度分布は、Ca2RuO4 薄膜のバルクよりも小さい伝導領域 (電極 A 20 µm × 70 µm × 100 nm, 電極 B 3.0 µm × 10 µm × 100 nm) に起因していると考えられる。な お、このモデルでは、Ca2RuO4 (100 nm) 薄膜の面外方向にはドメイン分離が起きないことを仮 定している。面外方向の相分離はバルク Ca₂RuO₄ では見られているが [1]、薄膜では LaAlO₃ 基 板の面外方向への熱伝導が、試料の温度上昇に支配的な役割を果たす。そのため相分離を考慮せず とも、温度分布の解析に影響しないことを別のシミュレーションから確認している。

電子相転移をしないバンド半導体では、NDR 挙動と抵抗スイッチングは材料の電気的暴走、熱 暴走に基づいて、電流閉じ込めが起きることによって発現する [38–41]。Ca₂RuO₄/LaAlO₃ (001) の抵抗率–温度特性はバンド半導体の特性と定量的に同等であるため、その抵抗スイッチングは電 流閉じ込めによっても起きうる可能性がある。このことを議論するために、電流閉じ込めを考慮に 入れることで、Ca₂RuO₄ 薄膜の温度分布と T_{max} の時間変化を見積もった (Figure 6.9f,g)。他の 半導体材料で NDR 特性が発現した際の観察をもとに [39, 41]、このモデルでは赤線で示した領域 に 2.20–2.86 µs の間、電流閉じ込めが起きると仮定した。Figure 6.9f,g に示すように、このとき 電圧印加によって 435 K もの温度上昇が起きることが示され、さらに長時間の t_p を仮定したとき には (Figure 6.10)、 T_{max} はRu 酸化物の化学分解が起こる温度 (~ 950 K) [42] に達することがわ かった。そのため、電流閉じ込めの仮定からは、抵抗スイッチングの高い安定性と耐久性 (Figures 6.6 and 6.8) が得られる可能性は低い。また、電気的暴走、熱暴走メカニズムは段階的に進行しな いため、Ca₂RuO₄ 薄膜での多段階ステップの抵抗スイッチング (Figures 6.6a and 6.7) を説明す ることはできない。

Figure 6.10 (a) Time dependence of $T_{\rm max}$ (red line) numerically simulated for Ca₂RuO₄ (100 nm)/LaAlO₃ (001) with electrode B at $T_{\rm s} = 70$ K under pulsed voltage application with the triangular waveform, $V_{\rm max} = 10$ V, and $t_{\rm p} = 5.0$ ms, assuming the occurrence of current confinement. The current-time characteristics applied to the simulations are plotted as the gray line (replotted from Figure 6.4b). From 2.04 ms to 3.00 ms (between the starting times of the abrupt resistive switching in the voltage-increasing and -decreasing sweeps), the occurrence of current confinement was assumed in the simulations of the film simulated at 2.51 ms (the time when the current reaches the maximum current $I_{\rm max}$ in the measurement).

この数値解析モデルを、そのほかの実験結果にも適用することで議論を深める。Figure 6.9f,g と 同様の電流閉じ込めを仮定して、figure 6.4b での局所温度分布と T_{max} の時間変化を求めた (Figure 6.10)。Figure 6.10a の灰色線はこのシミュレーションに適用した実験結果である。Figure 6.10b の赤線の領域内部に、2.04 ms から 3.00 ms まで電流閉じ込めが起きると仮定している。3.0 µm という比較的広い領域での電流閉じ込めを仮定したものの、 T_{max} は 1040 K もの高温に達してい ることがわかった (Figure 6.10a,b)。このような高温では Ca₂RuO₄ の化学分解が起きる可能性が あるため [42]、Ca₂RuO₄ 薄膜内部で電流閉じ込めが起きるメカニズムでは、その抵抗スイッチン グを説明することは難しい。

つぎに、figure 6.9d,e と同様の相分離を考慮して、figure 6.4c での薄膜の温度分布と T_{max} の時 間変化を見積もった (Figure 6.11)。抵抗スイッチングの開始点 (2.57 µs) から、抵抗が初期値に

Figure 6.11 (a) Time dependence of $T_{\rm max}$ (red line) numerically simulated for Ca₂RuO₄ (100 nm)/LaAlO₃ (001) with electrode B under pulsed voltage application with triangular waveform, $V_{\rm max} = 9$ V, and $t_{\rm p} = 5.0$ µs at $T_{\rm s} = 70$ K. The current-time characteristics applied to the thermal simulations are plotted as the gray line in the figure (replotted from Figure 6.4c). From 2.57 µs (the starting time of the abrupt resistive switching) to 7.00 µs, the formation of a low-resistivity phase was assumed in the simulations in the same method as in figure 6.9d,e. (b) Internal temperature distribution of the film simulated at 7.00 µs (after completion of the resistance relaxation).

戻って 0.15 µs 後 (7.00 µs) まで低抵抗率相が存在すると仮定した。この数値解析から Ca_2RuO_4 薄膜の熱緩和時間は、電圧降下過程での低抵抗状態の保持時間 (t_{re}) よりも有意に長いことがわ かった。7.00 µs の地点で抵抗は既に初期値に戻っているにも関わらず、熱緩和が遅いために 23 K の温度上昇が見られる (Figure 6.11b)。このことから Ca_2RuO_4 薄膜での有限の t_{re} は、薄膜の熱 緩和時間ではなく、低抵抗率相の保持時間に起因しているものと考えられる。

6.6 予想される金属相ドメインの形成過程

本節では、バルク Ca₂RuO₄ で提唱されている電流誘起型転移のメカニズムに基づいて [1–3, 37]、Ca₂RuO₄ 薄膜で予想される金属相ドメインの形成プロセスを議論する (Figure 6.12)。バル ク Ca₂RuO₄ での理解から、本研究の薄膜での緩やかな抵抗減少は (Figure 6.12 ステップ i)、電 流キャリアの注入による動的キャリア生成 [2] と、キャリア駆動によるエネルギーギャップの狭窄

Figure 6.12 (a) DC current–voltage characteristics of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) measured using electrode A under current-sweeping condition at $T_{\rm s} = 40$ K (replotted from Figure 4.5). (b) Current–time characteristics of Ca₂RuO₄ (100 nm)/LaAlO₃ (001) measured at $T_{\rm s} = 70$ K by pulsed voltage application using electrode B under the triangular waveform with $V_{\rm max} = 10$ V (replotted from Figure 6.4b). (c) Schematic diagrams of the formation processes of the metallic phase in the Ca₂RuO₄ thin films when the occurrence of the current–induced phase transition with the same mechanism as bulk Ca₂RuO₄ is hypothesized in the resistive switching. The i–v numbers in (a) and (b) indicate the measurement step where the phase separation state of i–v in (c) is predicted in the measurement, respectively.

[37] に起因すると考えられる。NDR 挙動や急峻な抵抗スイッチングについては、電流増加によっ て動的キャリアの濃度が増大することで、バンドフィリング制御型の転移が起こることで理解でき る。このような理解に基づいて、本研究の薄膜の挙動について理解を深める。バルク Ca2RuO4 で は、負極へのキャリア蓄積によって、金属相ドメインの相分離が起きることが報告されている [1]。 一方で、Ca₂RuO₄/LaAlO₃ (001) の主な輸送キャリアは正孔であるため (Figure 3.3a)、負極へ正 孔が蓄積することで、低抵抗率相ドメインへの相分離が始まると予想される (Figure 6.12 ステッ プ ii)。このようにして、相分離が始まった低抵抗率相は、電圧印加にしたがってドメインサイズ が増大していき、そのドメイン境界は正極まで到達する。この正極に到達した点が NDR 挙動や抵 抗スイッチングの終了点に対応すると考えられ、電極間を結ぶ低抵抗率相ドメインは、高電流密度 によって安定化していると考えられる (Figure 6.12 ステップ iii)。パルス電圧測定での電圧降下過 程では、動的キャリアの濃度が減少するため、低抵抗率相は抵抗スイッチングの開始点から終了点 までの間に消失すると考えられる。この低抵抗率相の消失挙動についてはバルク Ca₂RuO₄ におい ても理解が不十分ではあるが、低抵抗率相の形成過程と同様にキャリア濃度の空間的非対称性があ るとすれば、低抵抗率相の消失は正極側から発生する可能性が高い (Figure 6.12 ステップ iv)。本 節では、Ca₂RuO₄ 薄膜での電気測定と有限要素解析から、バルク Ca₂RuO₄ のような相分離を伴 う転移が起きている可能性を示し、これに基づいて金属相ドメインの形成過程について考察した。 Figure 6.12 の確証を得るためには、バルク Ca₂RuO₄ や他の金属絶縁体転移材料で行われている ように、光学顕微鏡や走査型電子顕微鏡観察 [1, 43] を、抵抗スイッチング時の Ca₂RuO₄ 薄膜の 平面接合部に対して行うことが今後重要である。このことにより、抵抗スイッチング挙動やドメイ ン成長過程に関する理解が深まると期待できる。

6.7 小括

バルク Ca₂RuO₄ では、電流駆動の非平衡な金属相の発現が期待されており、抵抗率–温度特性 と独立して急峻な抵抗スイッチングが発現する可能性がある。本章では、このような背景から、 Ca₂RuO₄/LaAlO₃ (001) の動的な電気特性を調べた。パルス電圧を印加した時間分解測定から、 Ca₂RuO₄ 薄膜は、急峻な温度誘起型転移を示さないにも関わらず、電流誘起型転移に基づいて急 峻な抵抗スイッチングが発現した。このことは、電流誘起型転移のダイナミクスが、熱型転移機構 とは独立していることを意味する。また、本研究の薄膜の抵抗スイッチングでは、140 ns の高速 な *t*_{sw} と 1.85 µs の有限の *t*_{re} が観測された。このことは、急峻な転移を発現する他の電流/電場誘 起型の転移材料と同様に、高速な転移と有限の低抵抗率相の保持時間を持つことを示している。ま た、10⁶回もの安定した抵抗スイッチングが観測されたことから、本質的に安定した転移機構を持 つことが示された。本研究によって、非熱型転移機構では、モット型メモリやニューロン素子で重 要視されている急峻な抵抗スイッチングが、温度誘起型転移の急峻性 (TCR)と独立して得られる ことが示された。このことは、金属絶縁体転移のエレクトロニクス応用の幅を広げ、非平衡ダイナ ミクスを理解するのに重要な知見をもたらすものである。

6.8 実験方法

Ca₂RuO₄/LaAlO₃ (001) の4端子抵抗率は、2.3 mm×1.0 cm に加工した試料を物理物性測定シ ステム PPMS(Quantum Design) を用いて測定した。このとき読み取り電流は 100 µA の持続時間 0.06s に、電圧制限は 95 mV に設定した。抵抗スイッチングの測定には、Ca₂RuO₄ 薄膜上にフォ トリソグラフィで電極パターンを作製し (Figure 4.8)、真空蒸着によって Au (100 nm)/Cr(5 nm) (電極 A) と Pt (65 nm) (電極 B) の 2 種類の面内対向電極を作製した。Ca₂RuO₄/LaAlO₃ (001) の直流の電流-電圧特性およびパルス電流-時間、電圧-時間特性は半導体パラメータアナライ ザ (Keysight 4156C)、ファンクションジェネレータ (Tektronix AFG 3102)、オシロスコープ (Yokogawa DLM2022) を使って極低温プローブステーションシステム (Nagase GRAIL-20-305-6-LV) にて測定した。定電流条件での 2 端子抵抗-温度特性 (Figure 6.2) は、マルチメーター (Keithley 2002) および直流電源 (Yokogawa 7651)、クライオクーラで構成されたシステムで測 定した。試料内部の局所温度分布の有限要素解析には、Pt (65 nm)/Ca₂RuO₄ (100 nm)/LaAlO₃ (001) の面内接合に対して、電流-時間特性の本実験データと Ca₂RuO₄ [35] および LaAlO₃[44] の熱伝導率-温度特性、比熱-温度特性の文献値を適用することで、COMSOL Multiphysics ソフ トウェアを使った数値解析を行った。このシミュレーションの精度は figure 4.7 での熱時定数 (~ 10⁰ s) から校正した。

COMSOL Multiphysics ソフトウェアを使ったシミュレーション方法について詳しく述べる。 膜厚 100 nm の微細試料への 100 mW の注入電力に起因して、局所温度を評価するためのモデル は簡略化することができる。Figure 6.9b,c のように均一な電流分布の空間的広がりが仮定される とき、熱平衡状態での T_{max} と熱非平衡状態での T_{max} の変化率である $\partial T_{\text{max}}/\partial t$ は、ほぼ LaAlO₃ の熱伝導率 k と比熱 c_p にのみ依存する。熱平衡状態では、 T_{max} が Ca₂RuO₄ 表面で得られると仮 定したとき、注入電力 (P) によるジュール加熱の速度は、恒温状態にある測定ステージへの熱伝導 速度と釣り合う (Figure 6.13)。そのため、熱平衡状態での T_{max} は、6.1a 式のように書くことが

Figure 6.13 Schematic diagram of the measurement system for $Ca_2RuO_4/LaAlO_3$ (001) considered in the finite element thermal analysis using COMSOL Multiphysics and the relationship between the energy P from electrical input, the maximum temperature (T_{max}) in the temperature distribution of Ca_2RuO_4 thin film, the temperature at the $CaRuO_4/LaAlO_3$ interface (T_i) and the temperature of the sample stage used for measurement (T_s) .

できる。

$$P = -k_{\rm CRO}A\frac{T_{\rm i} - T_{\rm max}}{t_{\rm CRO}} = -k_{\rm LAO}A\frac{T_{\rm s} - T_{\rm i}}{t_{\rm LAO}}$$
(6.1a)

ここで T_i は Ca₂RuO₄/LaAlO₃ の界面の温度、 A は材料内の有効熱伝導面積、 k_{CRO} , k_{LAO} は Ca₂RuO₄ と LaAlO₃ の熱伝導率、 t_{CRO} , t_{LAO} は Ca₂RuO₄ 薄膜と LaAlO₃ 基板の厚さを示す。 真空条件での測定では、熱対流の寄与は無視できるほど小さく、熱放射もジュール熱が大きいた めに無視することができる。また、 t_{CRO} (100 nm) は t_{LAO} (0.5 mm) よりもかなり小さいため、 6.1a 式では $|T_i - T_{max}| \ll |T_s - T_i|$ となることで、 T_i は T_{max} とほぼ等しくなる。このことは、 Ca₂RuO₄ 薄膜の k_{CRO} と A が、熱平衡状態で数値解析した T_{max} にほとんど影響を与えないこと を示すため、実際の実験条件では 6.1a 式は 6.1b 式のように簡略化することができる。

$$P = -k_{\rm LAO} A \frac{T_{\rm s} - T_{\rm max}}{t_{\rm LAO}}$$
(6.1b)

 $P \ge T_{\rm s}$ は実験値から直接決定され、LaAlO₃ の A は数値計算から明確に求めることができるため、6.1b 式は $k_{\rm LAO}$ に大きな誤差がない限り、数値解析によって熱平衡状態の $T_{\rm max}$ を適切に評価できることを示している。

熱非平衡状態では、バルク Ca₂RuO₄ の室温での $c_p \ge k_{CRO}$ の文献値 [35] を適用した計算から、 電極 B の構成での Ca₂RuO₄ 薄膜の熱時定数 $\tau_{th} = R_{th}C_{th} = c_p dt_{CRO} V/Ak_{CRO}$ (R_{th}, C_{th} は熱 抵抗および熱容量、d, V は質量密度と体積) は、面外方向で 14 ns と見積もることができる。この 時定数から 6 章での測定はほぼ常に熱平衡状態にあり、試料全体の体積をほぼ占めている LaAlO₃ 基板では、有限の温度上昇が常に引き起こされることになる。熱対流と熱放射の影響は無視できる ため、本研究の測定では熱非平衡条件での温度変化率 $\partial T / \partial t$ の大部分は、6.2 式の熱方程式によっ て書くことができる。

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{P}{V} = c_{\rm p} d \frac{\partial T}{\partial t} \tag{6.2}$$

LaAlO₃ 基板の体積は Ca₂RuO₄ 薄膜よりもはるかに大きいため、温度シミュレーションの際に は 6.2 式の k, c_p は LaAlO₃ のものを適用した。そのため、LaAlO₃ の c_p と k_{LAO} の値に大き な誤りがない限り、 $\partial T_{max}/\partial t$ の解析に大きな誤差は生じない。本研究では LaAlO₃ の温度依存 性を考慮に入れた c_p と k_{LAO} の実験値 [44] を適用しているため、 c_p と k_{LAO} に大きな誤りが ある可能性は低い。また、実験では薄膜試料の破壊が起きていないため、 T_{max} は Ca₂RuO₄ の 化学分解温度 ~ 950 K を超えていないと考えられる。本研究では電極 A の構成での Ca₂RuO₄ (100 nm)/LaAlO₃ (001) の測定結果において (Figure 4.7)、熱時定数 $\tau_{th} = ~ 10^0$ s であったこと から、 T_{max} と $\partial T_{max}/\partial t$ を校正している。このようにして、数値解析結果と実験値を比較するこ とによって、 T_{max} と $\partial T_{max}/\partial t$ の誤差は最大でも 30% であると考えられる。また、本研究の数値 解析の結果は、~ 150 mW の入力で~ 400 K の T_{max} を見積もっている、絶縁体基板上の同様の 薄膜材料での数値解析とも一致している [40, 45]。

Acknowledgement

This chapter is reprinted with permission from [Keiji Tsubaki, Atsushi Tsurumaki-Fukuchi, Takayoshi Katase, Toshio Kamiya, Masashi Arita, and Yasuo Takahashi, *Advanced Electronic Materials.* **9**, 2201303 (2023)]. ©(2023) Wiley-VCH GmbH. https://onlinelibrary.wiley.com/doi/full/10.1002/aelm.202201303

References

- Zhang, J. et al. Nano-resolved current-induced insulator-metal transition in the Mott insulator Ca₂RuO₄. Physical Review X 9, 011032 (2019).
- Bertinshaw, J. et al. Unique crystal structure of Ca₂RuO₄ in the current stabilized semimetallic state. Physical Review Letters 123, 137204 (2019).
- Cirillo, C. et al. Emergence of a metallic metastable phase induced by electrical current in Ca₂RuO₄. Physical Review B 100, 235142 (2019).
- 4. Jenni, K. *et al.* Evidence for current-induced phase coexistence in Ca₂RuO₄ and its influence on magnetic order. *Physical Review Materials* **4**, 085001 (2020).
- Stoliar, P. et al. A leaky-integrate-and-fire neuron analog realized with a Mott insulator. Advanced Functional Materials 27, 1604740 (2017).
- Tesler, F. et al. Relaxation of a spiking Mott artificial neuron. Physical Review Applied 10, 054001 (2018).
- Yi, W. et al. Biological plausibility and stochasticity in scalable VO₂ active memristor neurons. Nature Communications 9, 4661 (2018).
- 8. Del Valle, J. et al. Subthreshold firing in Mott nanodevices. Nature 569, 388–392 (2019).
- 9. Rocco, R. *et al.* Exponential escape rate of filamentary incubation in Mott spiking neurons. *Physical Review Applied* **17**, 024028 (2022).
- Tranchant, J. et al. Control of resistive switching in AM₄Q₈ narrow gap Mott insulators: A first step towards neuromorphic applications. *Physica Status Solidi* (a) **212**, 239–244 (2015).
- Giorgianni, F., Sakai, J. & Lupi, S. Overcoming the thermal regime for the electricfield driven Mott transition in vanadium sesquioxide. *Nature Communications* 10, 1159 (2019).
- Sood, A. et al. Universal phase dynamics in VO₂ switches revealed by ultrafast operando diffraction. Science **373**, 352–355 (2021).
- Del Valle, J. et al. Spatiotemporal characterization of the field-induced insulator-to-metal transition. Science 373, 907–911 (2021).

- 14. Del Valle, J. *et al.* Dynamics of the electrically induced insulator-to-metal transition in rare-earth nickelates. *Physical Review B* **104**, 165141 (2021).
- Adda, C. *et al.* Direct observation of the electrically triggered insulator-metal transition in V₃O₅ far below the transition temperature. *Physical Review X* **12**, 011025 (2022).
- Li, D. et al. Joule heating-induced metal-insulator transition in epitaxial VO₂/TiO₂ devices. ACS Applied Materials & Interfaces 8, 12908–12914 (2016).
- Del Valle, J. et al. Generation of tunable stochastic sequences using the insulator-metal transition. Nano Letters 22, 1251–1256 (2022).
- 18. Vaju, C. *et al.* Electric-pulse-induced resistive switching and possible superconductivity in the Mott insulator GaTa₄Se₈. *Microelectronic Engineering* **85**, 2430–2433 (2008).
- Cario, L., Vaju, C., Corraze, B., Guiot, V. & Janod, E. Electric-field-induced resistive switching in a family of Mott insulators: Towards a new class of RRAM memories. *Advanced Materials* 22, 5193–5197 (2010).
- Guiot, V. et al. Avalanche breakdown in GaTa₄Se_{8-x}Te_x narrow-gap Mott insulators. Nature Communications 4, 1722 (2013).
- Stoliar, P. et al. Universal Electric-Field-Driven Resistive Transition in Narrow-Gap Mott Insulators. Advanced Materials 25, 3222–3226 (2013).
- Hollander, M. J. et al. Electrically driven reversible insulator-metal phase transition in 1T-TaS₂. Nano Letters 15, 1861–1866 (2015).
- Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS₂ crystals. *Science Advances* 1, e1500606 (2015).
- Salev, P. et al. Transverse barrier formation by electrical triggering of a metal-to-insulator transition. Nature Communications 12, 5499 (2021).
- Kalcheim, Y. et al. Non-thermal resistive switching in Mott insulator nanowires. Nature Communications 11, 2985 (2020).
- Pellegrino, L. *et al.* Multistate memory devices based on free-standing VO₂/TiO₂ microstructures driven by joule self-heating. *Advanced Materials* 24, 2929–2934 (2012).
- Zhou, Y. et al. Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Letters 34, 220–222 (2013).

- Zhang, J. et al. Evolution of structural and electrical properties of oxygen-deficient VO₂ under low temperature heating process. ACS Applied Materials & Interfaces 9, 27135– 27141 (2017).
- Miyazaki, K., Shibuya, K., Suzuki, M., Wado, H. & Sawa, A. Correlation between thermal hysteresis width and broadening of metal-insulator transition in Cr-and Nb-doped VO₂ films. Japanese Journal of Applied Physics 53, 071102 (2014).
- Miyazaki, K., Shibuya, K., Suzuki, M., Wado, H. & Sawa, A. High temperature coefficient of resistance of low-temperature-grown VO₂ films on TiO₂-buffered SiO₂/Si (100) substrates. *Journal of Applied Physics* **118** (2015).
- Muraoka, Y. & Hiroi, Z. Metal-insulator transition of VO₂ thin films grown on TiO₂ (001) and (110) substrates. *Applied Physics Letters* 80, 583–585 (2002).
- Fan, L. et al. Strain dynamics of ultrathin VO₂ film grown on TiO₂ (001) and the associated phase transition modulation. Nano Letters 14, 4036–4043 (2014).
- Lee, D. et al. Sharpened VO₂ phase transition via controlled release of epitaxial strain. Nano Letters 17, 5614–5619 (2017).
- Fürsich, K. et al. Raman scattering from current-stabilized nonequilibrium phases in Ca₂RuO₄. Physical Review B 100, 081101 (2019).
- Terasaki, I. et al. Non-equilibrium steady state in the Mott insulator Ca₂RuO₄. Journal of the Physical Society of Japan 89, 093707 (2020).
- Mattoni, G., Yonezawa, S., Nakamura, F. & Maeno, Y. Role of local temperature in the current-driven metal-insulator transition of Ca₂RuO₄. *Physical Review Materials* 4, 114414 (2020).
- Okazaki, R. et al. Current-induced gap suppression in the Mott insulator Ca₂RuO₄.
 Journal of the Physical Society of Japan 82, 103702 (2013).
- Ridley, B. Specific negative resistance in solids. Proceedings of the Physical Society 82, 954 (1963).
- Kumar, S. & Williams, R. S. Separation of current density and electric field domains caused by nonlinear electronic instabilities. *Nature Communications* 9, 2030 (2018).
- Li, S., Liu, X., Nandi, S. K., Nath, S. K. & Elliman, R. G. Origin of current-controlled negative differential resistance modes and the emergence of composite characteristics with high complexity. *Advanced Functional Materials* 29, 1905060 (2019).

- Nandi, S. K. et al. High Spatial Resolution Thermal Mapping of Volatile Switching in NbO_x-Based Memristor Using In Situ Scanning Thermal Microscopy. ACS Applied Materials & Interfaces 14, 29025–29031 (2022).
- Shin, J. et al. Surface stability of epitaxial SrRuO₃ films. Surface Science 581, 118–132 (2005).
- Lange, M. et al. Imaging of electrothermal filament formation in a mott insulator. Physical Review Applied 16, 054027 (2021).
- Schnelle, W., Fischer, R. & Gmelin, E. Specific heat capacity and thermal conductivity of NdGaO₃ and LaAlO₃ single crystals at low temperatures. *Journal of Physics D: Applied Physics* 34, 846 (2001).
- 45. Kumar, S. *et al.* Local temperature redistribution and structural transition during jouleheating-driven conductance switching in VO₂. *Advanced Materials* **25**, 6128–6132 (2013).

7

第7章

総括

7.1 総括

本博士論文では、Ca₂RuO₄ エピタキシャル薄膜が示す電流誘起型の金属絶縁体転移について、 その転移挙動への理解を深めることで素子応用の可能性を評価した。Ca₂RuO₄ の転移メカニズ ムを理解すること素子応用には、エピタキシャル薄膜が必要不可欠であったが、一般的な真空製 膜法では膜中の Ru 欠損によって結晶欠陥や材料組成のずれが発生することで、温度誘起型転移 すら不明瞭であった。本研究では、はじめに第 2 章から 4 章において、非真空条件での結晶成 長が膜中の Ru 欠損と結晶欠陥の抑制に有効であると予測し、固相エピタキシャル成長法を適用 することで、電流誘起型転移を示す Ca₂RuO₄ エピタキシャル薄膜の作製を試みた。4 章では、 Ca₂RuO₄/LaAlO₃ (001) において電流誘起型転移の発現に起因すると考えられる、電流密度の増 大に依存した明瞭な抵抗減少を観測することができた。このことにより、Ca₂RuO₄ 薄膜を使った、 転移挙動の理解に向けた詳細な測定ができるようになった。また、エピタキシャル薄膜を用いた微 細加工試料によって、バルクでは調べることができなかった高電流密度領域での新規量子相の探索 を可能とした。

次に、5章では Ca₂RuO₄ 薄膜の電流誘起型転移とエピタキシャル応力の関係を調べた。バルク Ca₂RuO₄ では強い電子格子相互作用に起因して、材料の歪み状態によって非線形伝導現象を制御 できる可能性が示されていた。このことからエピタキシャル薄膜に加工することができれば、その エピタキシャル応力によって非線形伝導現象を制御できる可能性がある。5章ではこのような背景 から、異なる基板上に作製した Ca₂RuO₄ において非線形伝導特性の比較を行った。その結果、電 流注入時の *c* 軸長の変化が抑制されることが予想される [110] 配向の薄膜では、非線形伝導特性が 顕著に抑制されることがわかった。このことにより、Ca₂RuO₄ の電流誘起型転移には、エピタキ シャル応力が大きな影響を与えることを明らかにした。本研究によって、格子系が及ぼす相転移へ の寄与について重要な知見が得られ、温度誘起型の転移材料では困難であった非線形伝導現象の制 御が、Ca₂RuO₄ では可能であることを見出した。

最後に、バルク Ca₂RuO₄ では、温度、圧力印加によって誘起される金属相とは異なり、電流に よって新たな非平衡状態の金属相が発現することが示唆されていた。材料の抵抗率–温度特性と電 流–電圧特性とが独立している可能性があり、他材料とは異なる純電子的なメカニズムで、抵抗ス イッチングが発現することが予想される。6章では、Ca₂RuO₄/LaAlO₃ (001)の抵抗スイッチン グの挙動を、材料へのパルス電圧印加による時間分解測定から調べた。その結果、Ca₂RuO₄ 薄膜 は、温度誘起型転移からの理解では抵抗スイッチングの発現が期待できない緩やかな抵抗率–温度 特性を持つにも関わらず、急峻な抵抗スイッチングが発現することを観測した。このことは、非熱 型の転移機構では温度誘起型転移のダイナミクスとは独立して、抵抗スイッチングが得られること を意味する。本研究によって、非平衡ダイナミクスの理解に重要な知見を得られ、モット型デバイ スの自由度を大きく広げることができたと言える。

95

7.2 謝辞

本博士論文の執筆にあたり、これまで私の指導をしてくださった先生方と研究室の皆様に感謝申 し上げます。私は高橋先生と指導教官の有田先生が主宰する、ナノ物性工学研究室としては最後の 卒業生となりました。先生方からは、研究者として重要な実験結果への着眼点や研究の進め方、問 題の原因を基本的な原理に立ち返って考察し、そこからさらに起こるであろう次の結果を予想する 科学的な考え方など多くのことを学びました。私のテーマを担当する福地先生からは、"Ca₂RuO₄ エピタキシャル薄膜が示す量子相転移型非線形伝導現象の研究"という長い研究活動を通して、応 用物理学とは何か、このような基礎研究からどのようにしてエレクトロニクスという応用に視野を 広げていくのかといった、研究者としての本質的なあり方を教えていただきました。

私の研究活動は多くの方に支えられています。博士後期課程3年から指導教官をしていただきま した、ナノ電子デバイス学研究室の植村先生と同研究室の山ノ内先生から、多くのご助力をいただ きました。不安定な立ち位置となっていた私ですが、このような困難な時期にナノ電子デバイス学 研究室の皆様といられたことは、大きな心の支えとなりました。先生方にはご心労をおかけしたか と思いますが、皆様の助けを借りてここまでやってくることができました。現ナノ物性工学研究室 の竹井先生には、新たな環境で多くの学生と交流する機会をいただけただけでなく、博士後期課程 3年の一年間、先進的な研究室と接することで多くの学術的な刺激を受けました。このような貴重 な機会をいただけましたことに感謝申し上げます。本研究の推進にあたり、共同研究を通してご指 導をしていただきました東京工業大学元素戦略 MDX 研究センターの片瀬先生、試料作製への核心 的なご助言と研究へのご指導をいただきました副指導教官の太田先生、TEM 観察にご助力いただ きました本研究室の卒業生でもあります、九州大学の工藤博士に感謝申し上げます。クロサワ育成 財団 黒澤厚 理事長様には、財団の奨学生として4年間もの長きにわたってご支援いただきまして、 私の未来への好奇心と挑戦に多大なる応援をいただけましたことに大変感謝申し上げます。

本研究の実験に際しては、多くの方からのご支援とご協力をいただきました。本学理学院の井原 先生と日高先生には PPMS 装置についてご助言とご指導をいただきました。ナノテク連携室の松 尾先生と大西さん、中村さんには PLD 装置について親身に相談に乗っていただきました。本博士 論文の執筆にあたり、副指導教官としてご指導をいただきましたナノエレクトロニクス研究室の末 岡先生には、微細加工環境とそのプロセス工程についてご協力とご指導をいただきました。同研究 室のアグス先生と纐纈さんからも、フォトリソグラフィのプロセスについて大変お世話になりまし た。これまで、長い間私の研究を支えていただきました皆様に、この場をお借りして感謝の言葉を

96

述べさせていただきます。

最後に9年間にもわたる長い大学生活を支えてくださった家族と、婚約者に深く感謝して、ささ やかながら謝辞とさせていただきます。

7.3 研究業績目録

1. 論文 (学位論文関係)

1.1 查読付学会誌等

- 1) <u>K. Tsubaki</u>, M. Arita, T. Katase, T. Kamiya, A. Tsurumaki-Fukuchi, and Y. Takahashi: "Significant effects of epitaxial strain on the nonlinear transport properties in Ca_2RuO_4 thin films with the current-driven transition", *Japanese Journal of Applied Physics*, **63**, 01SP03 (2024) (IF = 1.5).
- <u>K. Tsubaki</u>, A. Tsurumaki-Fukuchi, T. Katase, T. Kamiya, M. Arita, and Y. Takahashi: "Dynamics of an Electrically Driven Phase Transition in Ca₂RuO₄ Thin Films: Nonequilibrium High-Speed Resistive Switching in the Absence of an Abrupt Thermal Transition", *Advanced Electronic Materials*, 9, 2201303 (2023) (IF = 6.2).
- A. Tsurumaki-Fukuchi, <u>K. Tsubaki</u>, T. Katase, T. Kamiya, M. Arita, and Y. Takahashi:
 "Stable and Tunable Current-Induced Phase Transition in Epitaxial Thin Films of Ca₂RuO₄", ACS Applied Materials & Interfaces, **12**, 28368–28374 (2020) (IF = 9.229).
- 1.2 査読付国際学会プロシーディングス
- <u>K. Tsubaki</u>, A. Tsurumaki-Fukuchi, Y. Takahashi, T. Katase, T. Kamiya, and M. Arita: "Fast and Reliable Resistance Switching in Ca₂RuO₄ Thin Films Driven by the Current- Induced Phase Transitions", Proc. 2021 International Conference on Solid State Devices and Materials (SSDM 2021), pp.494–495 (2021).
- 2) <u>K. Tsubaki</u>, T. Ishida, Y. Takahashi, T. Katase, T. Kamiya, A. Tsurumaki-Fukuchi, and M. Arita: "Current-induced insulator-to-metal transition of Ca₂RuO₄ thin films observed in local electrical measurements", 33rd International Microprocesses and Nanotechnology Conference (MNC 2020), pp.2020-24-4_1-2 (2020).
- 2. 論文 (その他)

なし

3. 講演 (学位論文関係)

- <u>K. Tsubaki</u>, A. Tsurumaki-Fukuchi, Y. Takahashi, T. Katase, T. Kamiya, and M. Arita: "Solid phase epitaxial growth of Ca₂RuO₄ thin films on various epitaxial stain conditions", The 9th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies (EM-NANO 2023), PA46 (Ishikawa, 2023).
- 2) <u>K. Tsubaki</u>, A. Tsurumaki-Fukuchi, Y. Takahashi, T. Katase, T. Kamiya, and M. Arita: "Two-Step Current-Induced Transition in Ca₂RuO₄ Thin Films Observed in the Time-Resolved Resistive Switching Characteristics", Materials Research Meeting 2021 (MRM2021), D2-O12-02 (Yokohama and online, 2021).
- 3) <u>K. Tsubaki</u>, T. Ishida, Y. Takahashi, T. Katase, T. Kamiya, A. Tsurumaki-Fukuchi, and M. Arita: "Current-driven metal-insulator transition observed in epitaxial thin films of the Mott Semiconductor Ca₂RuO₄", The Twelfth International Conference on the Science and Technology for Advanced Ceramics (STAC12), P1-20 (online, 2021).
- 4) <u>K. Tsubaki</u>, T. Ishida, Y. Takahashi, T. Katase, T. Kamiya, A. Tsurumaki-Fukuchi, and M. Arita: "Solid-phase epitaxial growth of Ca₂RuO₄ thin films with current-induced metalinsulator transition", The 8th Asian Conference on Crystal Growth and Crystal Technology (CGCT-8), C05-01-03 (online, 2021).
- 5) <u>K. Tsubaki</u>, A. Tsurumaki-Fukuchi, T. Katase, T. Kamiya, M. Arita, and Y. Takahashi: "Metal-Insulator Transition in Ca₂RuO₄ Thin Films with a High Sensitivity to Electrical Stimuli", the 3rd Workshop on Functional Materials Science (FMS 2019), P21 (Sapporo 2019).
- 6) 椿 啓司, 福地 厚, 有田 正志, 片瀬 貴義, 神谷 利夫, 高橋 庸夫:「Ca₂RuO₄ 薄膜が示す電流誘起 転移型の非線形伝導現象に対する基板エピタキシャル応力の影響」, 第 84 回応用物理学会秋季 学術講演会, 20a-P02-2 (熊本, 2023).
- 7) 椿 啓司, 福地 厚, 片瀬 貴義, 神谷 利夫, 有田 正志, 高橋 庸夫:「急峻な温度誘起金属絶縁体転移 を持たない Ca₂RuO₄ 薄膜で観測された高速・不連続的な抵抗スイッチング現象」, 第 58 回応 用物理学会北海道支部/第 19 回日本光学会北海道支部合同学術講演会, C-II-7 (室蘭, 2023)
- 8) <u>椿</u> 啓司, 福地 厚, 高橋 庸夫, 片瀬 貴義, 神谷 利夫, 有田 正志:「Ca₂RuO₄ エピタキシャル薄膜 における電流誘起非線形伝導現象の高速化」, 第 82 回応用物理学会秋季学術講演会, 12p-S203-9 (愛知&オンライン, 2021).
- 9) 椿 啓司,石田 典輝,福地 厚,片瀬 貴義,神谷 利夫,有田 正志,高橋 庸夫:「電流誘起型金属 絶縁体物質 Ca₂RuO₄ 薄膜が示す高い安定性を持った抵抗スイッチング動作」,第 81 回応用物

理学会秋季学術講演会, 8a-Z07-6 (オンライン, 2020).

- 10) 椿 啓司,福地 厚,石田典輝,片瀬 貴義,神谷 利夫,有田 正志,高橋 庸夫:「電流誘起金属絶縁体転移を示す Ca₂RuO₄ 薄膜の電流-電圧特性の評価」,第 67 回応用物理学会春季学術講演会,13p-D411-12 (東京, 2020).
- 11) 椿 啓司,福地 厚,片瀬 貴義,神谷 利夫,有田 正志,高橋 庸夫:「固相エピタキシャル成長 Ca₂RuO₄ 薄膜における電流依存金属絶縁体転移の観測」,第 80 回応用物理学会秋季学術講演 会,18p-E311-3 (札幌, 2021).
- 4. 講演 (その他)
- A. Tsurumaki-Fukuchi, <u>K. Tsubaki</u>, T. Katase, T. Kamiya: "Nonthermal Mott Resistive Switching in Ca₂RuO₄ Thin Films with Independence from the Temperature-Driven Transition Characteristics", Advanced Materials Research Grand Meeting (MRM 2023, IUMRS-ICA2023), D1-P304-25 (Kyoto, 2023).
- A. Tsurumaki-Fukuchi, <u>K. Tsubaki</u>, T. Katase, T. Kamiya, M. Arita and Y. Takahashi: "Observation of Field-Induced Resistive Phase Transition in Ca₂RuO₄ Thin Films", the 26th International Workshop on Oxide Electronics (iWOE 2019), A28 (Kyoto, 2019).
- 3) 福地 厚, <u>椿</u> 啓司, 片瀬 貴義, 神谷 利夫, 有田 正志, 高橋 庸夫:「Ca₂RuO₄ 薄膜が示す温度誘起 金属--絶縁体転移に依存しないモット型抵抗スイッチング現象」, 第 70 回応用物理学会春季学 術講演会, 18a-A302-2 (東京&オンライン, 2023).
- 福地 厚, <u>椿 啓司</u>, 高橋 庸夫, 片瀬 貴義, 神谷 利夫, 有田 正志:「Ca₂RuO₄ 薄膜における非線形 伝導現象の高速化と不連続転移の観測」, 日本物理学会 2021 年秋季大会, 21aH3-8 (オンライン, 2021).
- 5) 福地 厚, <u>椿</u> 啓司, 石田 典輝, 片瀬 貴義, 神谷 利夫, 有田 正志, 高橋 庸夫:「Ca₂RuO₄ 薄膜にお ける電流誘起抵抗転移の Ru 欠損量依存性」, 第 68 回 応用物理学会春季学術講演会, 16p-Z33-2 (オンライン, 2021).
- 6) 福地 厚, <u>椿 啓司</u>,石田 典輝,高橋 庸夫,片瀬 貴義,神谷 利夫,有田 正志:「Ca₂RuO₄ エピ タキシャル薄膜における非線形伝導現象」,日本物理学会 2020 年秋季大会,11pH1-8 (オンライン, 2020).
- 7) 福地 厚, <u>椿 啓司</u>,石田 典輝,有田 正志,片瀬 貴義,神谷 利夫,高橋 庸夫:「Ca₂RuO₄ 薄膜 における電流/電場誘起金属絶縁体転移の観測」,日本物理学会第 75 回年次大会, 17aB31-3 (名 古屋, 2020)

8) 福地 厚, <u>椿</u> 啓司, 石田 典輝, 片瀬 貴義, 神谷 利夫, 高橋 庸夫, 有田 正志:「Ca₂RuO₄ エピタキ シャル薄膜が示す電流誘起絶縁体-金属転移とその抵抗変化特性」, 第 40 回電子材料研究討論 会, 1C01 (オンライン, 2020).

5. 特許

なし

6. 受賞

- <u>K. Tsubaki</u>: "Student Award in the 9th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnology (EM-NANO2023)", EM-NANO2023, Jun. 7, 2023.
- 7. 競争的資金の獲得

椿 啓司: 令和3年度-5年度 北海道大学アンビシャス博士人材フェローシップ (情報・AI)

以上