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1. Introduction

Left invariant Lorentzian metrics on the 3 dimensional Heisenberg group Nil3 are classified
isometrically by S. Rahmani [46], according to whether the center of the Lie algebra nil3 is
spacelike, timelike, or null. The non-flat two of them can be represented similarly to the
well-known left-invariant Riemannian metric on Nil3 and have the 4 dimensional isometry
groups. Then spacelike or timelike surfaces in Nil3 with a non-flat left-invariant Lorentzian
metric can be expected to have properties similar to surfaces in the Riemannian Heisenberg
group. In this thesis, we will introduce the results of papers [26] (reproduced with permission
from Springer Nature) and [27] about timelike minimal surfaces in a Lorentzian Heisenberg
group, containing a Weierstrass-type representation of non-vertical timelike minimal surfaces
and the characterization of timelike minimal surfaces that have no counterparts in definite
cases.

In 3 dimensional homogeneous spaces with Riemannian metrics, specifically the model
spaces of 3 dimensional Thurston geometry, the surface theory has been developed in recent
years. In particular, the discovery of a quadratic differential, which is called the general-
ized Hopf differential or Abresch-Rosenberg differential by U. Abresch and H. Rosenberg [2]
accelerated the research of constant mean curvature surfaces in the 3 dimensional homo-
geneous spaces. As is well known in classical surface theory, the Hopf differential is very
useful in studying constant mean curvature surfaces in space forms since the Hopf differen-
tial becomes holomorphic if and only if the mean curvature of a surface is constant. The
Abresch-Rosenberg differential in homogeneous 3-spaces is an analogy to the Hopf differen-
tial because in various classes of 3 dimensional homogeneous spaces, it becomes holomorphic
if a surface has a constant mean curvature.

On the other hand, D. A. Berdinskĭı and I. A. Tăımanov developed the integral represen-
tations of surfaces in 3 dimensional homogeneous spaces [4, 5]. In classical surface theory
in Euclidean space, the Kenmotsu-Weierstrass representation is well known as the integral
representation. Berdinskĭı and Tăımanov generalized the Kenmotsu formula by using the
generating spinors and the non-linear Dirac equations for surfaces.

In 3 dimensional Heisenberg group Nil3, J. Inoguchi and B. Daniel showed independently
that the normal Gauss map, which is naturally defined from the unit normal vector field for
surfaces by using the stereographic projections, defines a harmonic map into the hyperbolic
plane if and only if the surface is non-vertical and minimal. On the other hand, J. F.
Dorfmeister, J. Inoguchi, and S.-P. Kobayashi investigated minimal surfaces and established
the Weierstrass-type representation via loop group decompositions. The Weierstrass data of
non-vertical minimal surfaces is a holomorphic 1-form, called the normalized potential, which
is obtained through the loop group decomposition, the so-called Iwasawa decomposition. In
that study, they applied the Sym-Bobenko formula, known as an immersion formula of
constant mean curvature surfaces in space forms. Moreover, they gave the characterization
of the minimality of surfaces in Nil3 and the harmonicity of the normal Gauss map by using
a family of flat connections on a trivial principal bundle. The heart of the above study
is combining the Abresch-Rosenberg differential and the non-linear Dirac equation with
generating spinors. By doing so an integrable system that is equivalent to the non-linear
Dirac equation can be obtained, and then the tools in integrable systems become available.
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Therefore it is a natural problem to develop the spacelike and timelike surface theory
with generating spinors and to establish a representation formula of spacelike and timelike
surfaces of mean curvature 0 in Nil3 with Lorentzian metrics. The non-flat left-invariant
Lorentzian metrics are given in the following form:

g± = ∓dx21 + dx22 ±
(
dx3 +

1

2
(x2dx1 − x1dx2)

)2

.

The spacelike surface theory with respect to the metric g− is studied by D. Brander and S.-P.
Kobayashi [9]. They showed that the generic singularities of spacelike maximal surfaces are
cuspidal edge, swallow-tail, and cuspidal cross cap. Moreover they constructed these surfaces
via the loop group method. On the other hand, S.-P. Kobayashi and the author investigated
the timelike minimal surfaces with respect to the metric g+ in [26].

In Section 4, we will introduce the research of Weierstrass-type representation of non-
vertical timelike minimal surfaces which is constructed in [26]. Because of using a para-
complex coordinate system, the existence of generating spinors for timelike surfaces is guar-
anteed by the conformality of timelike surfaces. Therefore the non-linear Dirac equation of
the form {(

0 ∂
−∂ 0

)
+

(
U 0
0 U

)}(
ψ1

ψ2

)
=

(
0
0

)
.

can be obtained as similar to the Riemannian case. Defining the Abresch-Rosenberg differ-
ential for timelike surfaces (see Definition 4.2.1) and combining it with the above equations,
we can show the following theorem:

Theorem 4.2.3 ([26]). Let f be a conformal immersion from a simply connected domain
D ⊂ C′ into Nil3 for which the Dirac potential U satisfies (4.1.3). Then the generating

spinors ψ̃ = (ψ1, ψ2) satisfies the system of equations:

ψ̃z = ψ̃Ũ , ψ̃z̄ = ψ̃Ṽ ,

where

Ũ =

(
1
2
∂w + 1

2
ϵ̃e−w/2eu/2∂H −ϵ̃ew/2

Qϵ̃e−w/2 0

)
,

Ṽ =

(
0 −Qϵ̃e−w/2

ϵ̃ew/2 1
2
∂w + 1

2
ϵ̃e−w/2eu/2∂H

)
.

Here, Q is the coefficient of the Abresch-Rosenberg differential and ϵ̃ ∈ {±1,±i′} is the

number determined by (4.1.4). Conversely, every solution ψ̃ to the above equation with
(4.1.4) is a solution of the non-linear Dirac equation (4.1.1) with (4.1.2).

One of the main results in Section 4 is the characterization of the minimality of timelike
surfaces. The left translated unit normal vector field of a non-vertical timelike surface takes
values in the half part of the de-Sitter sphere

S̃2
1 =

{
x1e1 + x2e2 + x3e3 ∈ nil3

∣∣ −(x1)2 + (x2)
2 + (x3)

2 = 1
}
.

Thus the normal Gauss map for a timelike surface is defined as a map into the de-Sitter
sphere in the Minkowski 3-space L3

(+,−,+) by combining two stereographic projections of de-
Sitter spheres. Similarly to the Riemannian case, the following theorem will be proved. Here
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the family of connections αµ is parameterized by a hyperbola S1
1 = {µ | µµ = 1, Reµ > 0}

and derived from the equation in Theorem 4.2.3.

Theorem 4.4.1 ([26]). Let f : D→ Nil3 be a conformal immersion from a simply connected
domain D ⊂ C′ into Nil3 satisfying (4.1.3). Then the following conditions are mutually
equivalent:

(1) f is minimal.
(2) The Dirac potential has purely imaginary values.
(3) d+ αµ defines a family of flat connections on D× SU′

1,1.

(4) The normal Gauss map f−1N is a non-conformal Lorentz harmonic map into the
de-Sitter sphere S2

1 ⊂ L3
(+,−,+).

Because of the harmonicity of the normal Gauss map, timelike minimal surfaces in the
Lorentzian Heisenberg group (Nil3, g+) induce timelike surfaces of constant mean curvature
in the Minkowski 3-space. It has been known that in Minkowski 3-space, timelike surfaces
of constant mean curvature are characterized by Lorentz harmonic maps into the de-Sitter
sphere. J. F. Dorfmeister, J. Inoguchi, and M. Toda [17] gave the Sym-Bobenko type rep-
resentation of timelike constant mean curvature surfaces in the Minkowski 3-space, that is,
an immersion formula was given from the one parameter family of moving frames, the so-
called extended frame (see Definition 4.4.4 and Remark 4.4.5), of a non-conformal Lorentz
harmonic map into the de-Sitter sphere. In Section 4, we will also show the following the-
orem which gives the reformulation of Sym-Bobenko type representation in [17] in terms of
para-complex coordinate systems through the identification (4.3.1) of the Minkowski 3-space
and the Lie algebra su′1,1 as a vector space.

Theorem 4.5.2 ([26]). Let F µ be an extended frame of some Lorentz harmonic map φ from
a simply connected domain D ⊂ C′ into the de-Sitter sphere S2

1 ⊂ L3
(+,−,+). Assume that the

coefficient function a of (1, 2)-entry of αm
′ satisfies aa < 0 on D. Define two maps fL3

(+,−,+)

and NL3
(+,−,+)

by

fL3
(+,−,+)

= −i′µ
(
∂

∂µ
F µ

)
(F µ)−1 − 1

2
Ad(F µ)

(
i′ 0
0 −i′

)
, NL3

(+,−,+)
=

1

2
Ad(F µ)

(
i′ 0
0 −i′

)
.

Then by the identification (4.3.1), fL3
(+,−,+)

describes an associated family of timelike surfaces

of constant mean curvature 1/2 in L3
(+,−,+) with the first fundamental form I = −16aadzdz̄

and NL3
(+,−,+)

is the spacelike unit normal vector field of fL3
(+,−,+)

for each µ ∈ S1
1.

Moreover by derivating the surface fL3
(+,−,+)

with respect to the spectral parameter µ and

using the linear isomorphism Ξ : su′1,1 → nil3 defined in (4.5.4), we give an immersion
formula of timelike minimal surfaces in Nil3 complying with the characterization in Theorem
4.4.1, that is, the timelike minimal surfaces which we will give have the normal Gauss map
NL3

(+,−,+)
:

Theorem 4.5.4 ([26]). Let F µ be an extended frame of some harmonic map from a simply
connected domain D into H2, and fL3

(+,−,+)
the associated family of constant mean curvature

1/2 surfaces defined in Theorem 4.5.2. Moreover define a map fµ : D→ Nil3 by

fµ = exp ◦Ξ ◦ f̂µ
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where the map f̂µ : D→ su′1,1 is a su′1,1-valued map defined by

f̂µ =
(
fL3

(+,−,+)

)o
− i′

2
µ

(
∂

∂µ
fL3

(+,−,+)

)d

Here the superscripts “o” and “d” denote the off-diagonal part and diagonal part, respec-
tively. Then the map fµ describes a family of timelike minimal surfaces in Nil3. Moreover
the normal Gauss map of fµ is NL3

(+,−,+)
.

Extended frames of Lorentz harmonic maps into the de-Sitter sphere are constructed in [17]
through the loop group method. The Weierstrass data of extended frames are two 1-forms
since null coordinate systems are adopted in [17]. On the other hand, the Weierstrass-type
representation of extended frames can be understood in a unified way in this thesis since
para-complex coordinate systems are utilized. More precisely, the Weierstrass data are just
a 2 by 2 matrix-valued para-holomorphic 1-form, which is called a normalized potential (see
Definition 4.6.4), and then an extended frame of non-conformal Lorentz harmonic map into
the de-Sitter sphere in the Minkowski 3-space can be derived as an Iwasawa decomposed
factor of the solution to a para-holomorphic differential equation as follows:

Theorem 4.6.5 ([26]). Let ξ be a normalized potential of a timelike minimal surface f in
Nil3 defined in (4.6.6), and F− be the solution of

∂F− = F−ξ

with the initial condition F−(z = 0) = id. Moreover let F µ ∈ Λ′SU′
1,1σ and F+ ∈ Λ′+SL2C′

σ

be the decomposed factors of F− with respect to the Iwasawa decomposition, that is F− =
F µF+. Then F

µk forms an extended frame of f up to the change of coordinate systems for
some k ∈ U′

1.

The normalized potential for a timelike minimal surface in Nil3 is determined by the Abresch-
Rosenberg differential Qdz2 and the support function h for the surface. Therefore we can
consider timelike minimal surfaces with the Abresch-Rosenberg differential Qdz2 which sat-
isfies the condition QQ = 0. The class satisfying the above condition includes timelike
minimal surfaces with Q = 0, called horizontal umbrellas. However, the condition QQ = 0
does not imply Q = 0 as a by-product of using the para-complex structure. It can be seen
that such a surface except for Q = 0 has no counterparts in definite cases. In Example
4.7.4, although we will show an example of such a surface, the normalized potential can not
computed explicitly.

As is well known, the word “null scrolls” is originally defined as ruled surfaces over null
curves with null director curves in the Minkowski 3-space. On geometry in the Minkowski
3-space, a point p of a surface is said to be quasi-umbilic if the Hopf differential Adz2 satisfies
A(p) ̸= 0 and A(p)A(p) = 0. J. Clelland [13] showed that totally quasi-umbilical timelike
surfaces are characterized as null scrolls. On the other hand, Z. M. Sipus, L. P. Gajčić, and I.
Protrka [49] gave the reparametrization of a non-degenerate null scroll as a B-scroll, that is
a ruled surface with a ruling corresponding to the binormal vectors of a base curve, with no
additional assumptions on parameters and curvatures. Other studies of reparametrization
of a null scroll as a B-scroll are presented by A. Fujioka and J. Inoguchi [21] and H. Liu [36].
The former authors started from a conformal parametrization of a timelike ruled surface,
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and the latter considered null scrolls which are parametrized by a distinguished parameter
with constant curvatures.

Section 5 treats the class of timelike minimal surfaces defined by the multiplication of a
null curve in Nil3 and the composition of the exponential map exp : nil3 → Nil3 and a curve
in the light cone in the Lie algebra nil3. Since the definition uses only the structure of Lie
groups, such a class can be considered in general Lie groups, and then they can be seen as
an analogy of ruled surfaces. We will call these surfaces null scrolls (see Definition 5.2.1).
The one of main results in Section 5 is to give an analogy of the results in the Minkowski
3-space, that is, we will give a characterization of minimal null scrolls in Nil3 as a surface
with the Abresch-Rosenberg differential Qdz2 satisfying the condition QQ = 0.

Theorem 5.3.10 ([27]). If a null scroll f is minimal, then the Abresch-Rosenberg differential
Qdz2 of f satisfies QQ = 0. Conversely, every timelike minimal surface with QQ = 0 is a
null scroll.

In particular, we construct a frame along null curves in Nil3 by utilizing the curve theory in
the Minkowski 3-space in the proof of the above theorem. Then we can obtain minimal null
scrolls in Nil3 from an arbitrary function.

Corollary 5.3.7 ([27]). For an arbitrary real valued function k1, there exists a minimal null
scroll such that the base curve has the first curvature k1 with respect to some null frame.

Furthermore, we can see another construction of minimal null scrolls by calculating the
minimality conditions. Because of the simplicity of minimality conditions, we should consider
only three cases (see Theorem 5.2.4). At the last of Section 5 we will show the following
theorem:

Theorem 5.4.13 ([27]). If a minimal null scroll is not a vertical plane then there exist a

null curve γ in Nil3 and a curve B̃ in the light cone in nil3 which satisfy

(1.0.1) γ−1dγ

ds
= −4(2g+(B′′, B′′)B +B′′)

and which define the map γ(s) · exp(tB̃(s)) describing the original minimal null scroll.

This theorem means non-vertical minimal null scrolls can be reconstructed as B-scroll type
minimal surfaces which are timelike minimal surfaces in Nil3 inducing B-scrolls.

Acknowledgement
First, I would like to thank Professor Hitoshi Furuhata for his guidance in my research. He
gave me numerous pieces of valuable advice including how to be a researcher. I would also
like to thank Professor Shimpei Kobayashi for insightful conversations. Finally, I am very
grateful to Professor Junichi Inoguchi for the instructive communication. They gave me a
lot of pieces of knowledge that I didn’t know and needed for writing this thesis.
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2. Preliminaries

We devote this section to explaining the basic knowledge and notations we use in the later
sections. Let us recall the surface theory in Lie groups developed by D. A. Berdinskĭı and
I. A. Tăımanov [5] in terms of the spinor representations.

2.1. Structure equations and spinor representations of surfaces in Lie groups.
The following theorem, which is a result of studies by A. Korn [30] and L. Lichtenstein [32],
is fundamental.

Theorem 2.1.1. Every 2 dimensional orientable Riemannian manifold (M, g) has a struc-
ture of Riemann surface, such that each coordinate (x, y) is an isothermal coordinate system
for g.

Let a coordinate system (x, y) of (M, g) be isothermal. Then the first fundamental form
I can be given in the form

I = eudzdz̄.

We call the complex coordinate system z = x + iy a conformal coordinate system and the
coefficient eu the conformal factor of a surface with respect to z. The notations ∂ and ∂
denote the partial differentiations with respect to the coordinates z = x+ iy and z̄ = x− iy:

∂ :=
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
, ∂ :=

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Because we consider surfaces only locally, surfaces immersed in a Riemannian manifold

M̃ can be considered as conformal immersions from a simply connected domain in C into M̃
and assume that a conformal coordinate system z is defined on the domain.

Let f : D → G be a conformal immersion from a simply connected domain D ⊂ C into
a Lie group G equipped with a left-invariant Riemannian metric g and eu be the conformal
factor with respect to the conformal coordinate system z defined on D.

First we expand the derivative Φ := f−1∂f in terms of an orthonormal basis {e1, e2, . . . , en}
of the Lie algebra g of G:

Φ =
n∑

j=1

ϕjej.

Here the notation f−1 denotes the left translation of vectors from the complexified tangent
space at each point to the complexification gC of g. Then the conformality g(Φ,Φ) = 0 and
g(Φ,Φ) > 0 of f can be represented as

(2.1.1)
n∑

j=1

(ϕj)2 = 0,
n∑

j=1

|ϕj|2 = 1

2
eu > 0.

Moreover f defines a g-valued 1-form

α := Φdz + Φdz̄.

Then α satisfies the Maurer-Cartan equation:

dα +
1

2
[α ∧ α] = 0.
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Thus we have the equation

(2.1.2) ∂Φ− ∂Φ− [Φ,Φ] = 0.

The following proposition is a basic result of the differential geometry of Lie groups.

Proposition 2.1.2 ([16]). Let G ⊂ GLmR be a linear Lie group of dimension n equipped
with a left-invariant Riemannian metric and g be the Lie algebra of G. Moreover let
{e1, e2, . . . , en} be an orthonormal basis of g and Φ =

∑n
j=1 ϕ

jej be a non-zero function

defined on a simply connected domain D ⊂ C, which takes values in gC. If the equations

(2.1.3)
n∑

j=1

(ϕj)2 = 0,

(2.1.4) ∂Φ− ∂Φ− [Φ,Φ] = 0

hold, then, for any initial condition in G at some base point in D, there exists a conformal
immersion f : D→ G which satisfies f−1∂f = Φ, and it is unique up to translations.

Secondly, let us consider the condition with respect to the mean curvature of surfaces.

Typically, a smooth map φ : (M, g) → (M̃, g̃) from a Riemannian n-manifold M into a

Riemannian ñ-manifold M̃ defines a section ∇dφ of TM∗ ⊗ TM∗ ⊗ φ−1TM̃ :

∇dφ(X, Y ) := ∇M̃
X dφ(Y )− dφ(∇M

X Y ).

Here, ∇M denotes the Levi-Civita connections of g and ∇M̃ denotes the induced connection

on the pull-backed bundle φ−1TM̃ . In particular, when the map φ is an isometric immersion
the section ∇dφ is exactly the second fundamental form of φ. The tension field τ(φ) of φ is
defined as the trace of ∇dφ:

τ(φ) := Traceg∇dφ =
n∑

j=1

∇dφ(ej, ej),

where {e1, e2, . . . , en} is an orthonormal frame on M with respect to g. The definition of the
tension field is independent of the choice of an orthonormal frame on M . As is well known,
the mean curvature field H is related to the tension field:

(2.1.5) τ(φ) = nH .

In particular, we now consider surfaces immersed in a Lie group equipped with a left-invariant
Riemannian metric. Then by left translating (2.1.5) to the Lie algebra, we have

(2.1.6) ∂Φ + ∂Φ +∇ΦΦ +∇ΦΦ = euf−1H

where ∇ is the Levi-Civita connection for the left-invariant Riemannian metric on the am-
bient Lie group.

Theorem 2.1.3 ([16]). Let G ⊂ GLmR be a linear Lie group of dimension n equipped
with a left-invariant Riemannian metric and g be the Lie algebra of G. Moreover let
{e1, e2, . . . , en} be an orthonormal basis of g and Φ =

∑n
j=1 ϕ

jej be a non-zero function

defined on a simply connected domain D ⊂ C, which takes values in gC. Assume that Φ
satisfies (2.1.3), (2.1.4), and

(2.1.7) ∂Φ + ∂Φ + {Φ,Φ} = 0.
8



Here {·, ·} : g× g→ g denotes the bilinear symmetric map defined by

{X, Y } := ∇XY +∇YX.

The notation ∇ denotes the Levi-Civita connection of the left-invariant Riemannian metric of
G. Then there exists a conformal minimal immersion f : D→ G which satisfies f−1∂f = Φ,
and it is unique up to translations.

Proof. Since Φ satisfies the conditions (2.1.3) and (2.1.4) there exists a conformal immer-
sion f : D → G satisfying f−1∂f = Φ up to translations by Proposition 2.1.2. The above
discussion shows that the condition (2.1.7) means the mean curvature field for f vanishes. □

From now on, we consider immersed surfaces in a Lie group G of dimension 3. Because of
the conformality (2.1.1) of surfaces, ϕj satisfy

(ϕ3)2 = (−ϕ1 − iϕ2)(ϕ1 − iϕ2).

By taking complex functions ψ1 and ψ2 as

(ψ1)
2 :=

−ϕ1 − iϕ2

2
, (ψ2)

2 :=
ϕ1 − iϕ2

2
,

ϕj can be rephrased as

(2.1.8) ϕ1 = (ψ2)
2 − (ψ1)

2, ϕ2 = i
(
(ψ2)

2 + (ψ1)
2
)
, ϕ3 = 2ψ1ψ2.

Definition 2.1.4 ([5]). The pair (ψ1, ψ2) of complex functions defined by (2.1.8) is said
to be the generating spinors of a surface immersed in a Lie group of dimension 3.

Remark 2.1.5. Since the derivative f−1∂f =
∑3

j=1 ϕ
jej can be written as (2.1.8), the

conformal factor eu is computed as

eu/2 = 2
(
|ψ1|2 + |ψ2|2

)
.

2.2. Structure equations and spinor representations of timelike surfaces in Lie
groups. The spinor representation of surfaces can be extended to timelike surfaces in Lie
groups with a left-invariant Lorentzian metric. To explain this fact, we introduce the Lorentz
surface and the para-complex structures.

Lorentz surfaces are orientable manifolds of dimension 2 with a Lorentz conformal struc-
ture, which is an equivalence class of a Lorentzian metric on the manifold. The global
studies of Lorentz conformal structure were started by Kulkarni [31], and a lot of results on
Lorentz surfaces have been reported by many geometers, such as Weinstein (T. K. Milnor)
[29, 33, 34, 39, 40, 41, 50, 51]. The fundamental properties of Lorentz surfaces are sum-
marized in [57]. Just as a Riemann surface has an isothermal coordinate system, a Lorentz
surface has a special coordinate system, called a null coordinate system.

Theorem 2.2.1 ([57]). Let (M, g) be a Lorentz surface. Then there exists a coordinate
system (x, y) such that the metric g can be represented as

g = eudxdy

for some function u.
9



In this thesis to investigate timelike surfaces, we use the coordinate system that is rewrit-
ten from a null coordinate system, so-called para-complex coordinate system. Para-complex
number C′ is a real algebra spanned by 1 and the para-complex unit i′ which satisfy the
conditions:

i′
2
= 1, 1 · i′ = i′ · 1 = i′.

We call the elements of C′ also para-complex numbers. Similarly to complex number C,
every z ∈ C′ can be decomposed uniquely into the real part and the imaginary part, that is,

z = x+ i′y.

Moreover, the para-complex conjugate is also defined as well as the complex conjugate:

z̄ = x− i′y.

However, the para-complex number is not a field. In fact, there exist numbers that do not
have inverse elements. This fact is explained in the following proposition.

Proposition 2.2.2. For a para-complex number z = x + i′y ∈ C′, following statements
hold.

(1) There exists a root w ∈ C′, that is, z = w2 if and only if

x+ y ≥ 0, x− y ≥ 0.

(2) There exists a para-complex number w such that z = ew if and only if

x+ y > 0, x− y > 0.

Here the exponential is defined as an infinite series

ew =
∞∑
k=0

wk

k!
= eRew (cosh(Imw) + i′ sinh(Imw)) .

(3) There exists an inverse number w, that is, z · w = 1 if and only if

x2 − y2 ̸= 0.

Proof. By representing w2 and ew using the real part and the imaginary part of w, and
comparing them with z, we can obtain the statements (1) and (2). If z has a inverse number
w = u+ i′v, we have a system

xu+ yv = 1, yu+ xv = 0.

Then removing u or v, we obtain x2 − y2 ̸= 0. Conversely, if x2 − y2 ̸= 0 holds, multiplying
ϵ ∈ {±1,±i′} appropriately results in case of x+ y > 0 and x− y > 0. When x+ y > 0 and
x− y > 0, by (2), z can be represented into ew̃ for some para-complex number w̃. The proof
is completed by taking w = e−w̃. □

The following proposition explains a fundamental property of the square root of para-
complex numbers.

Proposition 2.2.3. If a product xy of two para-complex numbers x, y ∈ C′ has the square
root, then there exists ϵ ∈ {±1,±i′} such that ϵx and ϵy have the square roots.

10



Proof. By the assumption,

Re(xy)± Im(xy) ≥ 0

holds, and a simple computation shows that it is equivalent to

(Re(x)± Im(x))(Re(y)± Im(y)) ≥ 0.

Then the claim follows. □

Let (x, y) be a null coordinate on a Lorentz surface (M, g). Then the Lorentzian metric g
on M can be written in the form

g = eudzdz̄

by putting the para-complex coordinate z as z = ℓx + ℓ̄y with ℓ = (1 + i′)/2. The para-
complex coordinate system z is called a conformal coordinate system and the coefficient eu

the conformal factor as in the Riemannian case. In this thesis, we use the notations ∂ and
∂ as the partial differentiations with respect to the coordinates z and z̄, defined formally by

∂ =
∂

∂z
= ℓ

∂

∂x
+ ℓ̄

∂

∂y
, ∂ =

∂

∂z̄
= ℓ̄

∂

∂x
+ ℓ

∂

∂y
.

Because we consider timelike surfaces only locally, a timelike surface immersed in a

Lorentzian manifold M̃ can be considered as a conformal immersion from a simply con-

nected domain D in C′ into M̃ .

Let f : D → G be a conformal immersion from a simply connected domain D ⊂ C′ into
a Lie group G equipped with a left-invariant Lorentzian metric g and eu be the conformal
factor with respect to the conformal coordinate system z defined on D.

Expanding the derivative Φ := f−1∂f in terms of an orthonormal basis {e1, e2, . . . , en} of
the Lie algebra g of G with a timelike vector e1:

Φ =
n∑

j=1

ϕjej,

we can represent the conformality of f as

(2.2.1)
n∑

j=1

ϵj(ϕ
j)2 = 0,

n∑
j=1

ϵjϕ
jϕj =

1

2
eu > 0

where ϵ1 = −1 and ϵj = 1 for j ̸= 1. Moreover, f defines a g-valued 1-form

α := Φdz + Φdz̄.

Then the 1-form α fulfills the Maurer-Cartan equation:

dα +
1

2
[α ∧ α] = 0,

that is equivalent to

(2.2.2) ∂Φ− ∂Φ− [Φ,Φ] = 0.

Therefore the analogue of Proposition 2.1.2 can be proved.
11



Proposition 2.2.4. Let G ⊂ GLmR be a linear Lie group of dimension n equipped with a
left-invariant Lorentzian metric and g be the Lie algebra of G. Moreover let {e1, e2, . . . , en} be
an orthonormal basis of g with a timelike vector e1 and Φ =

∑n
j=1 ϕ

jej be a non-zero function
defined on a simply connected domain D ⊂ C′ which takes values in the para-complexification
gC

′
= g ⊗ C′ of g. If the equations (2.2.1) and (2.2.2) hold, then there exists a conformal

immersion f : D → G that satisfies f−1∂f = Φ for any initial condition in G at some base
point in D, and it is unique up to translations.

Proof. Since Φ satisfies the Maurer-Cartan equation, there exists a unique map f : D →
GC′

such that f−1∂f = Φ up to translations. A straightforward computation shows ff
−1

is constant. Therefore the initial condition in G induces the G-valued map f . By the
assumption, obviously, f is a conformal immersion. □

Next we consider the condition in terms of the mean curvature. For a smooth map

φ : (M, g)→ (M̃, g̃) from a Lorentzian n-manifold into a Lorentzian ñ-manifold, the tension
field τ(φ) can be defined similarly to the Riemannian case:

τ(φ) := Traceg∇dφ =
n∑

j=1

ϵj

(
∇M̃

ej
dφ(ej)− dφ(∇M

ej
ej)
)
,

where {e1, e2, . . . , en} is an orthonormal frame on M with a timelike vector field e1 with
respect to g and ϵ1 = −1 and ϵj = 1 for j ̸= 1. In particular, since we now consider
timelike surfaces immersed in a Lie group equipped with a left-invariant Lorentzian metric,
the computation same with in the Riemannian case derives the following condition:

(2.2.3) ∂Φ + ∂Φ +∇ΦΦ +∇ΦΦ = euf−1H

where ∇ denotes the Levi-Civita connection of the Lorentzian metric on the ambient Lie
group. Therefore we can prove the following theorem in the same way to Theorem 2.1.3.

Theorem 2.2.5. Let G ⊂ GLmR be a linear Lie group of dimension n equipped with a
left-invariant Lorentzian metric and g be the Lie algebra of G. Moreover let {e1, e2, . . . , en}
be an orthonormal basis of g with a timelike vector e1 and Φ =

∑n
j=1 ϕ

jej be a non-zero

function defined on a simply connected domain D ⊂ C′, which takes values in gC
′
. Assume

that Φ satisfies (2.2.1) and (2.2.2), and

∂Φ + ∂Φ + {Φ,Φ} = 0.

Here {·, ·} : g× g→ g denotes the bilinear symmetric map defined by

{X, Y } := ∇XY +∇YX.

The notation ∇ denotes the Levi-Civita connection of the left-invariant Lorentzian metric of
G. Then there exists a conformal minimal immersion f : D→ G which satisfies f−1∂f = Φ,
and it is unique up to translations.

From now on we consider timelike surfaces immersed in a Lie group of dimension 3 with
a left-invariant Lorentzian metric.

Proposition 2.2.6. Let f : D → G be a conformal immersion from a simply connected
domain of C′ into a 3-dimensional Lie group G with a left-invariant Lorentzian metric and

12



expand the derivative f−1∂f in terms of an orthonormal basis {e1, e2, e3} with a timelike
vector e1:

Φ =
3∑

j=1

ϕjej.

Then there exist a para-complex number ϵ ∈ {±i′} and a pair (ψ1, ψ2) of para-complex
functions ψ1 and ψ2 such that

(2.2.4) ϕ1 = ϵ
(
(ψ2)

2 + (ψ1)
2
)
, ϕ2 = ϵi′

(
(ψ2)

2 − (ψ1)
2
)
, ϕ3 = 2ψ1ψ2.

Proof. Since the first equation of the conformality condition (2.2.1) can be rephrased as

(ϕ3)2 = (ϕ1 + i′ϕ2)(ϕ1 − i′ϕ2),

and Proposition 2.2.3 shows that there exists a para-complex number ϵ ∈ {±1,±i′} such
that ϵ(ϕ1 + i′ϕ2) and ϵ(ϕ1 − i′ϕ2) have the square roots. Thus ϕ1 + i′ϕ2 and ϕ1− i′ϕ2 can be
represented as

ϕ1 + i′ϕ2 = 2ϵ(ψ2)
2, ϕ1 − i′ϕ2 = 2ϵ(ψ1)

2

for some para-complex functions ψ1 and ψ2. Then ϕ
3 can be rephrased as ϕ3 = 2ψ1ψ2, and

we obtain the representation in the form of (2.2.4). To complete the proof, we have to show
ϵ takes values in {±i′}. A direct computation shows

(2.2.5) −ϕ1ϕ1 + ϕ2ϕ2 + ϕ3ϕ3 = −2ϵϵ
(
ψ1ψ1 − ϵϵψ2ψ2

)2
.

Since we assume that the left hand side of (2.2.5) takes positive values on D, ϵ must be i′ or
−i′. □

Remark 2.2.7. The unit normal vector field N = −2i′∂f × ∂f/2|g(∂f, ∂f)|1/2 and the con-
formal factor eu for f can be rephrased in terms of (ψ1, ψ2) as follows:

f−1N =
1

ψ2ψ2 + ψ1ψ1

(
−2ϵi′ Im(ψ1ψ2)e1 + 2ϵi′ Re(ψ1ψ2)e2 − (ψ2ψ2 − ψ1ψ1)e3

)
,

eu = 4(ψ2ψ2 + ψ1ψ1)
2.

Without loss of generality, we can take ψ2ψ2+ψ1ψ1 as positive value, if necessary by replacing
(ψ1, ψ2) into (−i′ψ1, i

′ψ2). Then we can assume that

(2.2.6) eu/2 = 2(ψ2ψ2 + ψ1ψ1)

holds. Such a pair (ψ1, ψ2) for f is unique up to sign.

Definition 2.2.8. The pair (ψ1, ψ2) satisfying (2.2.4) and (2.2.6) is called the generating
spinors for conformal immersion f : D→ Nil3.

2.3. 3 dimensional Heisenberg group Nil3. The 3 dimensional Heisenberg Lie algebra
nil3 is a real algebra spanned by the matrices:

e1 =

0 1 0
0 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 0 0

 , e3 =

0 0 1
0 0 0
0 0 0


13



with the usual commutator of matrices. The 3 dimensional Heisenberg group Nil3 is a simply
connected linear Lie group corresponding to nil3. It consists of 3×3 upper-triangular matrices
which have the diagonal components 1. Since the exponential map exp : nil3 → Nil3 gives

exp

(
3∑

j=1

xjej

)
=

1 x1 x3 +
1
2
x1x2

0 1 x2
0 0 1

 ,

we obtain the exponential coordinate (x1, x2, x3) of Nil3, and then Nil3 can be naturally
considered as (R3(x1, x2, x3), ·) where the notation · denotes the group multiplication:

(x1, x2, x3) · (x̃1, x̃2, x̃3) =
(
x1 + x̃1, x2 + x̃2, x3 + x̃3 +

1

2
(x1x̃2 − x2x̃1)

)
.

By the natural identification of nil3 and the space of left-invariant tangent vector fields (or
the tangent space at the origin) of Nil3, we obtain

e1 =
∂

∂x1
− x2

2

∂

∂x3
, e2 =

∂

∂x2
+
x1
2

∂

∂x3
, e3 =

∂

∂x3
.

2.4. Left-invariant Riemannian and Lorentzian metrics on Nil3. For 3 dimensional
Lie groups G with a left-invariant Riemannian metric, Milnor showed that the Lie bracket
[·, ·] of the Lie algebra g can be represented by a uniquely defined linear transformation
L : g→ g and the cross product × determined by the metric:

[u, v] = L(u× v),
and that G is unimodular if and only if L is self adjoint (see section 4 in [38]). Furthermore,
for 3 dimensional unimodular Lie groups, Milnor showed a basis (ẽ1, ẽ2, ẽ3) of g can be chosen
so that they are orthonormal with respect to the metric and satisfies

[ẽ1, ẽ2] = λ3ẽ3, [ẽ2, ẽ3] = λ1ẽ1, [ẽ3, ẽ1] = λ2ẽ2.

In particular, in the case of 3 dimensional Heisenberg group, we can choose the orthonormal
basis (ẽ1, ẽ2, ẽ3) and λj as ẽj = ej and λ1 = λ2 = 0, λ3 = 1 without loss of generality.
Therefore the left-invariant Riemannian metric gR is given by

gR = dx1 ⊗ dx1 + dx2 ⊗ dx2 + ω ⊗ ω, ω = dx3 +
1

2
(x2dx1 − x1dx2).

Remark 2.4.1. The 1-form ω is a contact form of Nil3, and then the pair (Nil3, ω) is a
contact manifold. The Reeb vector field is e3 and the contact structure is the plane field
generated by e1 and e2.

On the other hand, left-invariant Lorentzian metrics on Nil3 are not unique. Using a
similar consideration, S. Rahmani [46] classified Lorentzian Heisenberg groups. Let g be a
left-invariant Lorentzian metric on Nil3 and (ẽ1, ẽ2, ẽ3) an orthonormal basis of nil3 with the
timelike vector ẽ1:

−g(ẽ1, ẽ1) = g(ẽ2, ẽ2) = g(ẽ3, ẽ3) = 1.

There are three structures of Lie algebras in terms of the direction of the center:

(1) [ẽ1, ẽ2] = λẽ3, [ẽ2, ẽ3] = [ẽ3, ẽ1] = 0,
(2) [ẽ3, ẽ2] = λẽ1, [ẽ1, ẽ2] = [ẽ3, ẽ1] = 0,
(3) [ẽ1, ẽ3] = [ẽ2, ẽ3] = ẽ1 − ẽ2, [ẽ1, ẽ2] = 0.
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The center is generated in (1) by spacelike vector ẽ3, in (2) by timelike vector ẽ1, and in (3)
by null vector ẽ1 − ẽ2. Since the center of nil3 is spanned by e3, we have λẽ3 = e3, λẽ1 = e3,
and ẽ1− ẽ2 = e3, respectively. Let denote the left-invariant Lorentzian metrics corresponding
to them as g+, g−, and g0, respectively. In particular, the metrics g± with λ = 1 is given by

g± = ∓dx1 ⊗ dx1 + dx2 ⊗ dx2 ± ω ⊗ ω.
The orthonormal basis can be taken as

(1) ẽ1 = e1, ẽ2 = e2, ẽ3 = e3,
(2) ẽ1 = e3, ẽ2 = e2, ẽ3 = e1.

The isometry groups with respect to gR, g+, and g− have dimension 4, though only with
respect to g0 has dimension 6. The volume element with respect to the metric gR, g+ or g− is
given by ±dx1∧dx2∧dx3. We then orientate Nil3 for the volume form to be dx1∧dx2∧dx3.
Moreover, we define the vector product × as

g(X × Y, Z) = dx1 ∧ dx2 ∧ dx3(X, Y, Z), X, Y, Z ∈ nil3

where g = gR, g+ or g−.

Let ∇ denote the Levi-Civita connection for the left invariant metric g = gR, g+, or g−,
and then the connection ∇ is defined as

∇e1e1 = 0, ∇e1e2 =
1
2
e3, ∇e1e3 = −ϵ− 1

2
e2,

∇e2e1 = −1
2
e3, ∇e2e2 = 0, ∇e2e3 = ϵ+ϵ−

1
2
e1,

∇e3e1 = −ϵ− 1
2
e2, ∇e3e2 = ϵ+ϵ−

1
2
e1, ∇e3e3 = 0.

where ϵ± are signature defined by

ϵ+ =

{
1 if g ̸= g+
−1 if g = g+

, ϵ− =

{
1 if g ̸= g−
−1 if g = g−

.
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3. Surface theory in Riemannian Heisenberg group

In this section, we introduce the Weierstrass-type representation of non-vertical minimal
surfaces in Nil3 studied by J. F. Dorfmeister, J. Inoguchi, and S.-P. Kobayashi [16]. They
used a Weierstrass-type representation of harmonic maps into symmetric spaces via loop
group decompositions [18]. This method is constructed by J. F. Dorfmeister, F. Pedit, and
H. Wu, and called the DPW method by taking the initials of the authors.

3.1. Non-linear Dirac equation for surfaces. D. A. Berdinskĭı and A. I. Tăımanov in-
vestigated the integral representation of surfaces in 3 dimensional homogeneous spaces, in
particular the model spaces of Thurston geometry, by using the generating spinors. For
surfaces immersed in such a space, the system of the structure equations (2.1.2) and (2.1.6)
are rewritten in the form of the non-linear Dirac equation [55]:

(3.1.1)

{(
0 ∂
−∂ 0

)
+

(
U 0
0 V

)}(
ψ1

ψ2

)
=

(
0
0

)
.

The complex functions U and V are called the Dirac potentials for surfaces. The potentials
for surfaces in R3, S3, Nil3, SL2R, and Sol are given explicitly in [5, 53, 54]. I would like to
refer to [47, 56] for the Thurston’s geometrization conjecture for manifolds of 3 dimensional.
Moreover, because the conformality of immersion guarantees the existence of the generating
spinors, spacelike surfaces immersed in a pseudo-Riemannian manifold also have generating
spinors.

Theorem 3.1.1 ([55]). For surfaces immersed in Nil3, the Dirac potentials are

(3.1.2) U = V = −H
2
eu/2 +

i

4
h.

Here the function h is defined by

h = 2(|ψ1|2 − |ψ2|2),

and called the support function of surfaces.

Remark 3.1.2. Let us consider the natural projection π from Nil3 to the plane R2:

π : Nil3 ∋ (x1, x2, x3) 7→ (x1, x2) ∈ R2.

From the definition of h and the spinor representation of the unit normal vector field N :

N =
1

|ψ1|2 + |ψ2|2
(
2Re(ψ1ψ2)e1 + 2 Im(ψ1ψ2)e2 + (|ψ1|2 − |ψ2|2)e3

)
,

we have

h = eu/2gR(N, e3).

Hence the vector e3 is tangent to a surface when the support function vanishes. This means
that a surface that has a vanishing support function is the inverse image of a plane curve by
π. Such a surface is called a Hopf cylinder. The mean curvature of Hopf cylinders is half of
the curvature of corresponding plane curves. Therefore the minimal Hopf cylinders are the
plane, called vertical planes.
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3.2. Lax type representation for surfaces in Nil3. The main targets of this section are
minimal surfaces in Nil3 other than vertical planes. Thus we assume that surfaces have the
support functions vanishing nowhere if necessary limiting its domain D and defining D anew
as the limited domain. Such a surface is called non-vertical. Then a new complex function
w can be defined on D by

(3.2.1) ew/2 = U = V = −H
2
eu/2 +

i

4
h

since the Dirac potential vanishes nowhere on the domain. Berdinskĭı [4] showed that the
non-linear Dirac equation (3.1.1) with (3.1.2) is equivalent to another system of partial
differential equations for the generating spinors (ψ1, ψ2) of a surface in Nil3.

Definition 3.2.1 ([2, 20, 55]). For a conformal immersion f : D→ Nil3, define a complex-
valued function Q by

(3.2.2) Q =
2H + i

4
gR(∇∂∂f,N) +

(ϕ3)2

4
.

Here N is the unit normal vector field, H is the mean curvature, and ϕ3 is the e3-component
of ∂f . The quadratic differential Qdz2 is well-defined, and then we call it the Abresch-
Rosenberg differential for f .

Remark 3.2.2. U. Abresch named the non-vertical minimal surfaces of which the Abresch-
Rosenberg differential vanishes the horizontal umbrellas. The minimal surfaces with the
Abresch-Rosenberg differential vanishing anywhere are vertical planes or horizontal umbrel-
las.

Theorem 3.2.3 ([4]). The non-linear Dirac equation (3.1.1) with (3.1.2) is equivalent to
the following system of partial differential equations:

(3.2.3) ∂(ψ1, ψ2) = (ψ1, ψ2)Ũ , ∂(ψ1, ψ2) = (ψ1, ψ2)Ṽ

where the 2× 2 matrices Ũ and Ṽ are given by

Ũ =

(
1
2
∂w + 1

2
e−w/2eu/2∂H −ew/2

Qe−w/2 0

)
, Ṽ =

(
0 −Qe−w/2

ew/2 1
2
∂w + 1

2
e−w/2eu/2∂H

)
.

Here Q is the function given by (3.2.2). Then Qdz2 becomes the Abresch-Rosenberg differ-
ential for a surface which can be obtained from the Dirac equation (3.1.1) with (3.1.2).

The compatibility condition for the system of partial differential equations (3.2.3), that is

∂Ũ − ∂Ṽ − [Ũ , Ṽ ] = 0, gives four equations:

1

2
∂∂w + ew − |Q|2e−w +

1

2

(
∂∂H + ∂H∂

−w + u

2

)
e−w/2eu/2 = 0,

1

2
∂∂w + ew − |Q|2e−w +

1

2

(
∂∂H + ∂H∂

−w + u

2

)
e−w/2eu/2 = 0,

(3.2.4)

∂Q = −1

2
Q∂He−w/2eu/2 − 1

2
∂Hew/2eu/2,

∂Q = −1

2
Q∂He−w/2eu/2 − 1

2
∂Hew/2eu/2.

(3.2.5)

From (3.2.5), we immediately obtain the following result.
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Theorem 3.2.4 ([2]). For constant mean curvature surfaces in Nil3, the Abresch-Rosenberg
differential is holomorphic.

Remark 3.2.5. In general, the converse statement does not hold, that is, a surface with a
holomorphic Abresch-Rosenberg differential does not always have a constant mean curvature.
A surface with a holomorphic Abresch-Rosenberg differential is a constant mean curvature
surface or a Hopf cylinder (see [16, Appendix A]).

For non-vertical minimal surfaces in Nil3, the compatibility conditions (3.2.4) and (3.2.5)
are more simple as follows:

1

2
∂∂w + ew − |Q|2e−w = 0,

∂Q = 0.

In particular, the function w is determined by the support function h by (3.2.1). Thus
minimal surfaces in Nil3 with some initial condition is determined by the support function
and the Abresch-Rosenberg differential. Moreover, these equations coincide with the Gauss-
Codazzi equations for a spacelike constant mean curvature 1/2 surface in Minkowski 3-space
which has the first fundamental form h2dzdz̄ and the Hopf differential 4Qdz2. Therefore we
immediately obtain the following theorem.

Theorem 3.2.6. For a non-vertical minimal surface in Nil3 with the support function h
and the Abresch-Rosenberg differential Qdz2, there exists a spacelike constant mean curvature
1/2 surface in Minkowski 3-space which has the conformal factor h2 and the Hopf differential
4Qdz2.

This correspondence will be explained in subsection 3.5.

3.3. Normal Gauss map of surfaces in Nil3. To obtain a characterization of minimal
surfaces in Nil3, we will introduce the normal Gauss map of surfaces in Nil3. It is naturally
defined from the unit normal vector field and becomes a harmonic map into the hyperbolic
plane if the surface has the mean curvature 0.

As is well known, the hyperbolic plane is a Riemannian symmetric space. Let us recall
a Riemannian symmetric space representation of the hyperbolic plane. Let L3

(+,+,−) denote

the Minkowski 3-space (R3, ⟨, ⟩) where ⟨, ⟩ is an indefinite inner product:

⟨(x1, x2, x3), (x̃1, x̃2, x̃3)⟩ = x1x̃1 + x2x̃2 − x3x̃3.
The hyperbolic plane H2 is a spacelike surface embedded in L3

(+,+,−) defined by

H2 =
{
(x1, x2, x3) ∈ L3

(+,+,−)

∣∣(x1)2 + (x2)
2 − (x3)

2 = −1, x3 > 0
}
.

Minkowski 3-space L3
(+,+,−) can be identified as an indefinite scalar product space with the

special unitary Lie algebra su1,1 of index (1, 1) defined by

su1,1 =

{(
ia b̄
b −ia

)
∈ sl2C

∣∣∣∣a ∈ R, b ∈ C
}

which is equipped with the following Lorentz scalar product ⟨, ⟩m1:

⟨X, Y ⟩m1 = 2Trace(XY ), X, Y ∈ su1,1.
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The correspondence between su1,1 and L3
(+,+,−) is given by

(3.3.1) su1,1 ∋
1

2

(
ir −p− iq

−p+ iq −ir

)
←→ (p, q, r) ∈ L3

(+,+,−).

Then the hyperbolic plane H2 can be realized in su1,1 as

H2 =

{
X ∈ su1,1

∣∣∣∣⟨X,X⟩m1 = −1,
〈
X,

1

2

(
i 0
0 −i

)〉
m1

< 0

}
.

The special unitary Lie group SU1,1 of index (1, 1) corresponding to the Lie algebra su1,1 is
given by

SU1,1 =

{(
a b̄
b ā

)
∈ SL2C

∣∣∣∣a, b ∈ C, |a|2 − |b|2 = 1

}
,

and acts transitively and isometrically on H2:

SU1,1 ×H2 ∋ (F,X) 7→ Ad(F )X ∈ H2.

The isotropy subgroup with respect to this action at

(
i/2 0
0 −i/2

)
is the subgroup U1 of

SU1,1 consisting of diagonal matrices:

U1 =

{(
eiθ 0
0 e−iθ

)
∈ SU1,1

∣∣∣∣θ ∈ R
}
.

Therefore the hyperbolic plane H2 has the homogeneous Riemannian space representation
SU1,1/U1. Since the pair (SU1,1,U1) defines a Riemannian symmetric pair with the involution

σ : SU1,1 ∋ X 7→ Ad

(
1

2

(
i 0
0 −i

))
X ∈ SU1,1,

H2 = SU1,1/U1 becomes a Riemannian symmetric space.

Although the left translated unit normal vector field for a surface in Nil3 takes values in
the sphere in nil3:

S̃2 =
{
x1e1 + x2e2 + x3e3 ∈ nil3

∣∣(x1)2 + (x2)
2 + (x3)

2 = 1
}
,

it can be considered as a map into the hyperbolic plane H2 ⊂ L3
(+,+,−) through the stereo-

graphic projections (FIGURE 1). For simplicity, we assume that the support function of a
surface takes positive values. This means that the left translated unit normal vector field

maps into the upper half of sphere S̃2. The composition of the left translated unit nor-

mal vector field f−1N : D → S̃2 ⊂ nil3 and the stereographic projections with base points
(0, 0,−1) ∈ L3 and −e3 ∈ nil3:

πL3 : H2 ∋ (x1, x2, x3) 7→
x1

1 + x3
+ i

x2
1 + x3

∈ C,

πnil3 : S̃2 ∋ x1e1 + x2e2 + x3e3 7→
x1

1 + x3
+ i

x2
1 + x3

∈ C

defines a H2-valued map

(3.3.2) πL3
−1 ◦ πnil3 ◦ f−1N : D→ H2 ⊂ L3

(+,+,−).
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Figure 1. Left translated normal vector field takes values in a unit sphere
(left). Stereographic projections map the hyperbolic plane (right) and sphere
to the same disk.

Since the composition πL3
−1 ◦ πnil3 : S̃2 → H2 is computed as

πL3
−1 ◦ πnil3(x1e1 + x2e2 + x3e3) =

(
x1
x3
,
x2
x3
,

1

x3

)
,

the map (3.3.2) is given explicitly in terms of the generating spinors as

(3.3.3) πL3
−1 ◦ πnil3 ◦ f−1N =

1

|ψ1|2 − |ψ2|2
(
2Re(ψ1ψ2), 2 Im(ψ1ψ2), |ψ1|2 + |ψ2|2

)
.

Definition 3.3.1. For a surface in Nil3, the map πL3
−1 ◦ πnil3 ◦ f−1N defined by (3.3.3) is

called the normal Gauss map of the surface, and denoted by the same letter f−1N with the
left translated unit normal vector field.

Via the identification (3.3.1), the normal Gauss map f−1N of a surface f : D → Nil3 is
represented as

(3.3.4) f−1N =
1

2
Ad(F )

(
i 0
0 −i

)
where F is a SU1,1-valued map defined by

(3.3.5) F =
1√

|ψ1|2 − |ψ2|2

(
ψ1 ψ2

ψ2 ψ1

)
.

Definition 3.3.2. A SU1,1-valued map F which gives the normal Gauss map by the form
(3.3.4) is called a frame of the normal Gauss map f−1N .

Remark 3.3.3. We would like to note that a frame of the normal Gauss map is not unique.
In fact, there is a freedom of SU1,1-valued initial condition F0 and U1-valued map k, that
is, a frame F and a frame F0Fk are different in general. Therefore in this paper, we use
the particular frame (3.3.5) since the different frames do not always define the same normal
Gauss map.

3.4. Characterization of minimal surfaces in Nil3. J. Inoguchi [25] and B. Daniel [15]
showed that a conformal immersion in Nil3 is a minimal surface other than a vertical plane
if and only if its normal Gauss map is a non-conformal harmonic map into the hyperbolic
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plane. On the other hand, Dorfmeister, Inoguchi, and Kobayashi characterize the minimality
of surfaces with a family of flat connections on a trivial principal bundle in [16].

Let F̃ be a fundamental system of solutions to the system of partial differential equations
(3.2.3). Then we have the matrix differential equations:

(3.4.1) ∂F̃ = F̃ Ũ , ∂F̃ = F̃ Ṽ .

Proposition 3.4.1. Define a GL2C-valued map F by

F := F̃

(
e−w/4 0
0 e−w/4

)
.

Then F satisfies the matrix differential equations

(3.4.2) ∂F = FU, ∂F = FV

where

U =

(
1
4
∂w + 1

2
e−w/2eu/2∂H −ew/2

Qe−w/2 −1
4
∂w

)
, V =

(
−1

4
∂w −Qe−w/2

ew/2 1
4
∂w + 1

2
e−w/2eu/2∂H

)
.

Proof. The partial derivative of F with respect to z can be computed as

∂(F̃G) = (∂F̃ )G+ F̃ (∂G)

= F̃GG−1ŨG+ F̃GG−1(∂G)

where G =

(
e−w/4 0
0 e−w/4

)
. Therefore we obtain the first equation of (3.4.2) by putting

U := G−1ŨG + G−1(∂G). The second equation can be obtained by computing the partial
derivative with respect to z̄. □

Remark 3.4.2. It can be checked that the particular frame (3.3.5) of the normal Gauss
map for a minimal surface is a solution of the equations (3.4.1) since the Dirac potential
takes purely imaginary values. Moreover, the map F defined in Proposition 3.4.1 becomes a
frame of the normal Gauss map of minimal surface.

Let us define a family of Maurer-Cartan forms αλ parametrized by λ ∈ S1 = {λ ∈ C||λ| = 1}
from the GL2C-valued map F defined in Proposition 3.4.1 as

αλ = Uλdz + V λdz̄

where

Uλ =

(
1
4
∂w + 1

2
e−w/2eu/2∂H −λ−1ew/2

λ−1Qe−w/2 −1
4
∂w

)
, V λ =

(
−1

4
∂w −λQe−w/2

λew/2 1
4
∂w + 1

2
e−w/2eu/2∂H

)
.

The 1-form αλ takes values in su1,1 for each λ ∈ S1 when the mean curvature is 0. Then
minimality of surfaces in Nil3 is characterized by a family of flat connections on the trivial
bundle D× SU1,1.

Theorem 3.4.3 ([16]). Let f : D → Nil3 be a non-vertical conformal immersion from a
simply connected domain into Nil3. The following statements are mutually equivalent:

(1) The mean curvature of f is 0.
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(2) The Dirac potential for f has purely imaginary values.
(3) d+αλ defines a family of flat connections on the trivial principal bundle D× SU1,1.
(4) The normal Gauss map of f is a non-conformal harmonic map into the hyperbolic

plane H2 ⊂ L3
(+,+,−).

Proof. The equivalence between (1) and (2) is trivial from the definition of the Dirac
potentials for surfaces in Nil3.

We first consider the condition for d+ αλ to be a family of flat connections on D× SU1,1.
A straightforward computation shows that the following conditions are the necessary and
sufficient conditions:

(3.4.3) ∂Uλ − ∂V λ − [Uλ, V λ] = 0, αλ ∈ su1,1.

By paying attention to the coefficients of λ−1, λ0, and λ for each entry, we obtain the following
equations

(3.4.4)
1

2
eu/2∂H = 0, ∂Q+

1

2
Qe−w/2eu/2∂H = 0,

1

2
∂∂w + ew − |Q|2e−w +

1

2

(
∂∂H + ∂H∂

−w + u

2

)
e−w/2eu/2 = 0,

1

2
∂∂w + ew − |Q|2e−w +

1

2

(
∂∂H + ∂H∂

−w + u

2

)
e−w/2eu/2 = 0,

(3.4.5)

(3.4.6)
1

2
eu/2∂H = 0, ∂Q+

1

2
Qe−w/2eu/2∂H = 0.

Equations (3.4.4), (3.4.5), and (3.4.6) are the coefficient of λ−1, λ0, and λ, respectively. The
equations (3.4.5) coincide the compatibility conditions (3.2.4) for non-linear Dirac equation,
and then they always hold.

When the surface f : D → Nil3 is minimal, the conditions (3.4.4) and (3.4.6) are repre-
sented as

∂Q = 0.

Hence from Theorem 3.2.4, the first condition of (3.4.3) holds. Moreover, when H = 0 the
matrices Uλ and V λ have a particularly simple form:

Uλ =

(
1
4
∂w −λ−1ew/2

λ−1Qe−w/2 −1
4
∂w

)
, V λ =

(
−1

4
∂w −λQe−w/2

λew/2 1
4
∂w

)
.

Then a direct computation shows αλ takes values in su1,1 for each λ ∈ S1. Hence the
statement (3) holds when the statement (1) holds. Conversely, we assume that the condition
(3) holds. Since the equations (3.4.4), (3.4.5), and (3.4.6) are satisfied, it can be seen that
H is constant. Moreover, since αλ is valued in su1,1, comparing (2, 1)-entry with (1, 2)-entry
derives that H must be 0. Therefore we obtain the equivalence between (1) and (3).

Next, we show the equivalence between (3) and (4). For a map φ : D→ H2 into the
hyperbolic plane H2 = SU1,1/U1, take a frame F , that is,

φ =
1

2
Ad(F )

(
i 0
0 −i

)
.
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It is known that φ is harmonic if and only if the Maurer-Cartan form α := F−1dF satisfies
the condition (see [18, proposition 3.3], [16, Appendix D]):

(3.4.7) d(∗α1) + [α0 ∧ ∗α1] = 0.

Here the symbol ∗ denotes the Hodge star operator of D and α0 = α′
kdz + α′′

k dz̄ and α1 =
α′
mdz+α

′′
mdz̄ are given by the decomposition α = α0+α1 following the Cartan decomposition

su1,1 = k⊕m where

k =

{(
ir 0
0 −ir

)∣∣∣∣ r ∈ R
}
, m =

{(
0 −p− qi

−p+ qi 0

)∣∣∣∣ p, q ∈ R
}
.

By defining a family of 1-forms αλ with parameter λ ∈ S1 as

(3.4.8) αλ = α0 + λ−1α′
mdz + λα′′

mdz̄,

it can be seen that the harmonicity condition (3.4.7) is equivalent to the condition, so-called
zero-curvature representation

dαλ +
1

2
[αλ ∧ αλ] = 0

for each λ ∈ S1. The proof of this fact is given by decomposing the left hand side of the
zero-curvature representation into λ−1-part, λ0-part, and λ-part. Since the condition (3) can
be rephrased as

dαλ +
1

2
[αλ ∧ αλ] = 0,

we know the map, for a solution F λ of the system of equations ∂F λ = F λUλ, ∂F λ = F λV λ,

1

2
Ad(F λ)

(
i 0
0 −i

)
defines a family of harmonic maps into the hyperbolic plane for each λ ∈ S1. In particular
from Remark 3.4.2, F λ|λ=1 gives the normal Gauss map of f . Moreover, since the (1, 0)-part
of the upper right entry of αλ|λ=1 is non-degenerate, the normal Gauss map is non-conformal.
Therefore the condition (3) derives (4).

Conversely, if we assume that the normal Gauss map (3.3.4) of f is harmonic, then we
can construct a minimal surface in Nil3 by using the representation formula introduced in
the next subsection. That minimal surface has the generating spinors (ψ1, ψ2) same as the
original surface f . Therefore Theorem 2.1.3 shows the minimal surface is the same to f up
to translations. Hence f is minimal, that is, the condition (3) holds. □

Definition 3.4.4. For a harmonic map φ into H2 ⊂ L3
(+,+,−), a SU1,1-valued solution F λ

of the equation (F λ)−1dF λ = αλ, where αλ is the su1,1-valued 1-form defined in (3.4.8), is
called an extended frame of φ.

Remark 3.4.5. For a minimal surface in Nil3, a SU1,1-valued solution F λ of the matrix
differential equation (F λ)−1dF λ = αλ with the initial condition F λ|λ=1 = F is an extended
frame of the normal Gauss map of the surface.
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3.5. Sym-Bobenko formula. As mentioned in Remark 3.2.6, a minimal surface induces a

spacelike surface of constant mean curvature H̃ = 1/2. Redefining the generating spinors

(ψ1, ψ2) of a surface f̃ : D→ L3
(+,+,−) as

(3.5.1) ϕ̃1 = (ψ2)
2 − (ψ1)

2, ϕ̃2 = i
(
(ψ2)

2 + (ψ1)
2
)
, ϕ̃3 = 2iψ1ψ2

where the functions ϕj are defined by ∂f̃ = (ϕ̃1, ϕ̃2, ϕ̃3), we can derive the non-linear Dirac

equation (3.1.1) with the Dirac potentials U = V = iH̃eũ/2/2. Here the function eũ de-

notes the conformal factor of f̃ and is rephrased in terms of the generating spinors as
eũ = 4 (|ψ1|2 − |ψ2|2)2. Since the Dirac potentials for minimal surfaces in Nil3 and sur-
faces in L3

(+,+,−) of constant mean curvature 1/2 coincide, these surfaces can be described by
the common generating spinors.

Proposition 3.5.1. The Gauss map of the induced surface f̃ in L3
(+,+,−) coincides with

the normal Gauss map of the original minimal surface f in Nil3.

Proof. The unit normal vector field Ñ of f̃ is given in terms of the generating spinors as

Ñ =
1

|ψ1|2 − |ψ2|2
(
2Re(ψ1ψ2), 2 Im(ψ1ψ2), |ψ1|2 + |ψ2|2

)
.

Then we can see that Ñ is the normal Gauss map of the minimal surface f by (3.3.3) since

f and f̃ have the same generating spinors. □

A. Sym [52] discovered a representation formula of negative constant Gaussian curvature
surfaces in the Euclidean space in the sight of integrable systems, and A. I. Bobenko [7]
extended it to a representation formula of constant mean curvature surfaces in space forms.
These immersion formulas are called Sym-Bobenko formulas, and they are investigated in
various situations. We now introduce the Sym-Bobenko formula of spacelike surfaces in
L3

(+,+,−) of constant mean curvature 1/2.

Theorem 3.5.2 ([23]). Let F λ be an extended frame of some harmonic map φ from a
simply connected domain D ⊂ C into H2. Define the map fL3

(+,+,−)
by

fL3
(+,+,−)

= −iλ
(
∂F λ

∂λ

)(
F λ
)−1 −NL3

(+,+,−)
, NL3

(+,+,−)
=

1

2
Ad
(
F λ
)(i 0

0 −i

)
.

Then fL3
(+,+,−)

describes an associated family of surfaces of constant mean curvature 1/2 and

NL3
(+,+,−)

is the Gauss map of fL3
(+,+,−)

for each λ ∈ S1.

Proof. After gauging the extended frame, the coefficient a of the upper right entry of α′
m

takes values in purely imaginary. Therefore we assume that a takes purely imaginary values
from the beginning. Define a function h by h = 4ia, and ψ1 and ψ2 by putting

F11 =
√
2ψ1h

−1/2, F12 =
√
2ψ2h

−1/2,

respectively. Then a frame F = F λ|λ=1 of φ is written as

F =
√
2h−1/2

(
ψ1 ψ2

ψ2 ψ1

)
.
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Since detF = 1, we have h = 2 (|ψ1|2 − |ψ2|2). Thus we have

F =
1√

|ψ1|2 − |ψ2|2

(
ψ1 ψ2

ψ2 ψ1

)
.

From the continuity of extended frames with respect to the parameter λ, F λ can be repre-
sented in the form of

F λ =
1√

|ψ1(λ)|2 − |ψ2(λ)|2

(
ψ1(λ) ψ2(λ)

ψ2(λ) ψ1(λ)

)
for some complex functions ψ1(λ) and ψ2(λ) with ψk(1) = ψk for k = 1, 2. Moreover,

−iλ
(

∂Fλ

∂λ

) (
F λ
)−1

and NL3
(+,+,−)

take velues in su1,1. Hence fL3
(+,+,−)

is a su1,1-valued map.

Since F λ satisfies ∂F λ = F λUλ and ∂F λ = F λV λ where

Uλ = α′
k + λ−1α′

m, V λ = α′′
k + λα′′

m

it is straightforward to be

∂fL3
(+,+,−)

= ∂

(
−iλ

(
∂F λ

∂λ

)(
F λ
)−1 − 1

2
Ad
(
F λ
)(i 0

0 −i

))
= −Ad(F λ)

(
iλ

(
∂

∂λ
Uλ

)
+

1

2

[
Uλ,

(
i 0
0 −i

)])
= 2iλ−1

(
− i
4
h

)
Ad(F λ)

(
0 1
0 0

)
=

(
−λ−1ψ1(λ)ψ2(λ) λ−1 (ψ1(λ))

2

−λ−1
(
ψ2(λ)

)2
λ−1ψ1(λ)ψ2(λ)

)
.

(3.5.2)

Here the notation [, ] is the usual bracket of matrices. By the identification (3.3.1), ∂fL3
(+,+,−)

is written as

∂fL3
(+,+,−)

=
(
ϕ1(λ), ϕ2(λ), iϕ3(λ)

)
with

ϕ1(λ) :=λ−1

((
ψ2(λ)

)2
− (ψ1(λ))

2

)
,

ϕ2(λ) :=λ−1i

((
ψ2(λ)

)2
+ (ψ1(λ))

2

)
,

ϕ3(λ) :=λ−12ψ1(λ)ψ2(λ).

(3.5.3)

A direct computation shows that fL3
(+,+,−)

is a conformal immersion of constant mean curva-

ture 1/2 with the first fundamental form h(λ)2dzdz̄, and NL3
(+,+,−)

is the unit normal vector

field of fL3
(+,+,−)

for each λ ∈ S1.

By the gauge transformation

F λ 7→ F̂ λ := F λ

(
λ−1/2 0
0 λ1/2

)
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the differential equations ∂F λ = F λUλ and ∂F λ = F λV λ are rewritten into

(3.5.4) ∂F̂ λ = F̂ λÛλ, ∂F̂ λ = F̂ λV̂ λ

where

Ûλ =

(
U11 U12

λ−2U21 U22

)
, V̂ λ =

(
V11 λ2V12
V21 V22

)
for Uλ|λ=1 = (Uij) and V

λ|λ=1 = (Vij). Since (1, 2)-entry −U12 = ih/4 of −Ûλ denotes the
Dirac potential ih(λ)/4 for fL3

(+,+,−)
, the conformal factor h2 is independent of λ. Hence the

deformation of fL3
(+,+,−)

with respect to λ preserves the metric and the mean curvature. □

Remark 3.5.3. The parametrized frame F λ obtained from the particular frame (3.3.5) is
an extended frame of the Gauss map of a spacelike surface of constant mean curvature 1/2
by Remark 3.4.5. Therefore by Theorem 3.5.2 an associated family of spacelike surfaces of
constant mean curvature 1/2 can be obtained from a spacelike surface of constant mean
curvature 1/2 [16].

Let us identify the Lie algebra nil3 with the Lie algebra su1,1 as a real vector space. In
su1,1, we choose an orthonormal basis (E1, E2, E3) as

(3.5.5) E1 =
1

2

(
0 −1
−1 0

)
, E2 =

1

2

(
0 −i
i 0

)
, E3 =

1

2

(
i 0
0 −i

)
.

It is easy to check that the vector E3 is timelike. Then the identification is given by a linear
isomorphism Ξ : su1,1 → nil3, not a Lie algebra isomorphism, which is defined by

Ξ(x1E1 + x2E2 + x3E3) = x1e1 + x2e2 − x3e3.

We know by the definition of the generating spinors (2.1.8) and (3.5.1) that the induced

surface f̃ in L3
(+,+,−) has the derivative ∂f̃ = (ϕ1, ϕ2, iϕ3) when the derivative of a minimal

surface f in Nil3 is given by f−1∂f = ϕ1e1 + ϕ2e2 + ϕ3e3. Therefore minimal surfaces in Nil3
can be constructed by using Theorem 3.5.2.

Theorem 3.5.4 ([16]). Let F λ be an extended frame of some harmonic map from a simply
connected domain D → H2, and fL3

(+,+,−)
the associated family of constant mean curvature

1/2 surfaces defined by Theorem 3.5.2. Moreover define a map fλ : D→ Nil3 by

fλ := exp ◦Ξ ◦ f̂λ

where f̂λ : D→ su1,1 is a su1,1-valued map defined by

f̂λ :=
(
fL3

(+,+,−)

)o
− i

2
λ

(
∂

∂λ
fL3

(+,+,−)

)d

.

Here the superscripts “o” and “d” denote the off-diagonal part and diagonal part, respectively.
Then fλ describes a family of minimal surfaces in Nil3.
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Proof. A direct computation shows iλ∂(fL3
(+,+,−)

)d/∂λ takes values in su1,1 and then f̂λ

also takes values in su1,1. By using (3.5.2), we have

∂

(
i

2
λ

(
∂

∂λ
fL3

(+,+,−)

))
=
i

2
λ
∂

∂λ

(
λ−11

2
hAd(F λ)

(
0 1
0 0

))
= − i

2
∂fL3

(+,+,−)
+

1

2

[
−fL3

(+,+,−)
−NL3

(+,+,−)
, ∂fL3

(+,+,−)

]
.

(3.5.6)

Then the diagonal part of (3.5.6) is given by

∂

(
i

2
λ

(
∂

∂λ
fL3

(+,+,−)

))d

= − i
2

(
∂fL3

(+,+,−)

)d
−1

2

[
fL3

(+,+,−)
, ∂fL3

(+,+,−)

]d
−1

2

[
NL3

(+,+,−)
, ∂fL3

(+,+,−)

]d
.

By using (3.5.2) again and (3.5.3), each term on the right hand side can be computed as

− i
2

(
∂fL3

(+,+,−)

)d
= − i

2

(
−ϕ3(λ) −ϕ1(λ)− iϕ2(λ)

−ϕ1(λ) + iϕ2(λ) ϕ3(λ)

)d

=
1

2
ϕ3(λ)E3,

−1

2

[
fL3

(+,+,−)
, ∂fL3

(+,+,−)

]d
= −1

2

[∫
ϕ1(λ)dzE1 +

∫
ϕ2(λ)dzE2, ϕ

1(λ)E1 + ϕ2(λ)E2

]
=

1

2

(
ϕ2(λ)

∫
ϕ1(λ)dz − ϕ1(λ)

∫
ϕ2(λ)dz

)
E3,

−1

2

[
NL3

(+,+,−)
, ∂fL3

(+,+,−)

]d
= −1

2

[
1

2
Ad(F λ)

(
i 0
0 −i

)
, −λ−11

2
hAd(F λ)

(
0 1
0 0

)]d
= −1

2
λ−11

4
hAd(F λ)

[(
i 0
0 −i

)
,

(
0 1
0 0

)]d
= − i

2

(
∂fL3

(+,+,−)

)d
=

1

2
ϕ3(λ)E3.

Thus by combining (3.5.2) and the above results we obtain the derivative of f̂λ with respect
to z

∂f̂λ = ϕ1(λ)E1 + ϕ2(λ)E2 −
(
ϕ3(λ) +

1

2

(
ϕ2(λ)

∫
ϕ1(λ)dz − ϕ1(λ)

∫
ϕ2(λ)dz

))
E3.

By the identification (3.5.5) and a left translation, we obtain the derivative of fλ with respect
to z

(fλ)−1∂fλ = ϕ1(λ)e1 + ϕ2(λ)e2 + ϕ3(λ)e3.

Since the conformality of fλ is derived from

gR
(
(fλ)−1∂fλ, (fλ)−1∂fλ

)
= 0,

gR
(
(fλ)−1∂fλ, (fλ)−1∂fλ

)
=

3∑
j=1

|ϕj(λ)|2 = 2
(
|ψ2(λ)|2 + |ψ1(λ)|2

)2
> 0,
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fλ describes a family of surfaces in Nil3. Furthermore the generating spinors of fλ coincide
the ones of fL3

(+,+,−)
. Then the Dirac potential U is given by

U =
i

4
h(λ) =

i

4
h,

This means that fλ is minimal for each λ ∈ S1 and the support function of fλ is h. □

Remark 3.5.5. (1) For a minimal surface fλ|λ=1 defined in Theorem 3.5.4, denote the
Abresch-Rosenberg differential by Qdz2. Then the Abresch-Rosenberg differential of
fλ is λ−2Qdz2. This fact can be confirmed by (3.4.2) with H = 0 and (3.5.4).

(2) The Sym-Bobenko formula of minimal surfaces in Nil3 is written down in [10] in a
different way.

3.6. Weierstrass-type representation via loop group method. In the previous sub-
section minimal surfaces are constructed from an extended frame of a harmonic map into
H2. On the other hand, J. F. Dorfmeister, F. Pedit, and H. Wu built a Weierstrass-type
construction of harmonic maps into symmetric spaces, so-called DPW method [18]. There-
fore we can obtain a non-vertical minimal surface from holomorphic data which is a loop Lie
algebra-valued 1-form satisfying some conditions, called a holomorphic potential. In partic-
ular in this subsection, we will introduce the holomorphic potentials made from non-vertical
minimal surfaces, which is called normalized potentials [16] and recover an extended frame
of the normal Gauss map of minimal surfaces from holomorphic data by using the DPW
method.

The key of the DPW method is the decomposition theorems of loop groups, Birkhoff
decomposition and Iwasawa decomposition. First, we consider several loop groups which are
Lie groups of infinite dimensional.

ΛSL2Cσ =

{
g : S1 → SL2C

∣∣∣∣∣g(λ) =
∞∑

j=−∞

gjλ
j, g(−λ) = Ad

((
1 0
0 −1

))
g(λ)

}
.

We assume that the Fourier series of each element of ΛSL2Cσ is absolutely convergent. Then
the topology of ΛSL2Cσ is determined as a Banach algebra, see [45] for details. Let D+ and
D− denote the inside of the unit disk and the union of infinite points and the outside of the
unit disk, respectively. Then we can consider two loop groups of which the elements can be
extended holomorphically to D±:

Λ+SL2Cσ = {g ∈ ΛSL2Cσ|gj = 0 for j < 0} ,

Λ−SL2Cσ = {g ∈ ΛSL2Cσ|gj = 0 for j > 0} .

Moreover, we now use the lower subscript ∗ for normalization at λ = 0 or λ =∞ by identity,
that is,

Λ+
∗ SL2Cσ =

{
g ∈ Λ+SL2Cσ

∣∣g0 = id
}
,

Λ−
∗ SL2Cσ =

{
g ∈ Λ−SL2Cσ

∣∣g0 = id
}
.
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The extended frames of harmonic maps into H2 can be considered as loops into SU1,1. They
are elements of the loop group ΛSU1,1σ which is defined as follows:

ΛSU1,1σ =

{
g ∈ ΛSL2Cσ

∣∣∣∣Ad((1 0
0 −1

))(
g(1/λ)

⊤−1
)

= g(λ)

}
.

The Birkhoff and Iwasawa decompositions give fundamental decompositions of the above
loop groups.

Theorem 3.6.1 ([45]). The loop group ΛSL2Cσ can be decomposed as follows:

(1) Birkhoff decomposition: The respective multiplication maps

Λ−
∗ SL2Cσ × Λ+SL2Cσ → ΛSL2Cσ,

Λ+
∗ SL2Cσ × Λ−SL2Cσ → ΛSL2Cσ

are diffeomorphisms onto open-dense subsets of ΛSL2Cσ. These open dense sub-
sets are called the big cells of ΛSL2Cσ. In particular, the Birkhoff decompositions is
unique.

(2) Iwasawa decomposition: The multiplication map

ΛSU1,1σ × Λ+SL2Cσ → ΛSL2Cσ

is a diffeomorphism onto an open dense subset of ΛSL2Cσ. This open-dense subset
is also called the big cell. In particular, the Iwasawa decomposition is unique.

From now on we derive a holomorphic potential from the extended frames of normal Gauss
maps of minimal surfaces in Nil3. Let us assume that the extended frame takes values in the
big cell of ΛSL2Cσ.

Theorem 3.6.2 ([16]). Let F λ be an extended frame of the normal Gauss map of some
minimal surface in Nil3, and apply the Birkhoff decomposition in Theorem 3.6.1 to F λ as
F λ = F λ

−F
λ
+ with F λ

− ∈ Λ−
∗ SL2Cσ and F λ

+ ∈ Λ+SL2Cσ. Then the Maurer-Cartan form ξ of
F λ
−, that is, ξ = (F λ

−)
−1dF λ

−, is holomorphic with respect to z. Moreover the Maurer-Cartan
form ξ is represented explicitly as follows:

(3.6.1) ξ = λ−1

(
0 −p

Qp−1 0

)
dz

where p is a meromorphic function and Q is the coefficient function of the Abresch-Rosenberg
differential.

Definition 3.6.3. We will call the meromorphic 1-form ξ defined in (3.6.1) the normalized
potential for minimal surface in Nil3.

Conversely, by using the Iwasawa decomposition, we can recover the extended frame of
the normal Gauss map of a minimal surface as the decomposed factor of a primitive loop for
the normalized potential.

Theorem 3.6.4. Let ξ be a normalized potential for a minimal surface f in Nil3 defined
in (3.6.1), and F− be the solution of the partial differential equation:

(3.6.2) ∂F− = F−ξ
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with the initial condition F−(z = 0) = id. Moreover let F λ ∈ ΛSU1,1σ and F+ ∈ Λ+SL2Cσ

be the factors of F− in terms of the Iwasawa decomposition, that is, F− = F λF+. Then F
λk

forms an extended frame of the normal Gauss map of f up to the change of coordinates for
some k ∈ U1.

Remark 3.6.5. (1) The DPW method is constructing an extended frame of harmonic
maps by following the process we can see in Theorem 3.6.4.

(2) To obtain minimal surfaces, we can apply the Sym-Bobenko formula in Theorem 3.5.4.
Changing the initial condition of the equation (3.6.2) into F−(z = 0) = A ∈ ΛSU1,1σ

gives a change of the extended frame, that is, the new extended frame is F̃ λ = AF λ.
Therefore according to Remark 3.3.3 in general minimal surfaces in Nil3 with different
initial conditions of (3.6.2) are not isometric.
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4. Timelike surface theory in Lorentzian Heisenberg group

In this section, we show the theorem which is the timelike surfaces version of Theorem 3.5.4.
Moreover, the Weierstrass-type representation of timelike minimal surfaces in (Nil3, g+) is
obtained by the loop group method, which is constructed similarly to the Riemannian case.
From now on, denote the pair (Nil3, g+) by Nil3 simply.

4.1. Non-linear Dirac equation for timelike surfaces. By looking at the e1-terms and
e2-terms of the structure equations (2.2.2) and (2.2.3) we obtain the following theorem.

Theorem 4.1.1. Let f : D → Nil3 be a conformal immersion from a simply connected
domain D ⊂ C′ into the Lorentz Heisenberg group Nil3 and (ψ1, ψ2) be the generating spinors
for f . Then the following non-linear Dirac equation holds:

(4.1.1)

{(
0 ∂
−∂ 0

)
+

(
U 0
0 V

)}(
ψ1

ψ2

)
=

(
0
0

)
.

Here the para-complex functions U and V, called the Dirac potentials, are given by

(4.1.2) U = V = −H
2
eu/2 +

i′

4
h, h = 2(ψ2ψ2 − ψ1ψ1).

By Remark 2.2.7 and the definition of h, we have

h = −eu/2g+(f−1N, e3).

Then h is called the support function for a conformal immersion f : D → Nil3. Since the
Dirac potential is determined by only the support function for a conformal immersion when
the mean curvature vanishes everywhere, we immediately obtain the following lemma by
using Proposition 2.2.2.

Lemma 4.1.2. Let f : D→ Nil3 be a conformal immersion with constant mean curvature
0. Then the following statements are equivalent:

(1) The Dirac potential U is not invertible at p ∈ D.
(2) The support function h is equal to zero at p ∈ D.
(3) The vector e3 is tangent to f at p ∈ D.

The equivalence between statements (2) and (3) holds regardless of the values of the mean
curvature. Therefore timelike surfaces with h vanishing identically are part of the inverse
image of plane curves by the natural projection π : Nil3 → R2 that extracts the first and
second components

π(x1, x2, x3) = (x1, x2).

These surfaces are called Hopf cylinders. The mean curvature of a Hopf cylinder is equal to
half of the curvature of the base plane curve.

Definition 4.1.3. A Hopf cylinder in Nil3 which has a straight line as the base plane
curve is called a vertical plane.

Remark 4.1.4. Since the straight lines have the constant curvature 0, vertical planes are
the only Hopf cylinders that have the constant mean curvature 0.
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From now on, we will restrict ourselves to the case that the Dirac potential U is invertible
everywhere, that is,

(4.1.3) (ReU)2 − (ImU)2 ̸= 0.

Then by Proposition 2.2.2, the Dirac potential can be represented in the exponential formula:

(4.1.4) U = V = ϵ̃ew/2

for some para-complex function w and complex number ϵ̃ ∈ {±1,±i′}. In particular, if the
mean curvature is 0 and the support function h has positive values then ϵ̃ = i′.

4.2. Lax type representation for timelike surfaces. In Riemannian case, Berdinskĭı
and Tăımanov studied surfaces in the 3-dimensional homogeneous manifolds using the Lax
type representation which is equivalent to the non-linear Dirac equation for surfaces. In such
a way, the generalized Hopf differential, the so-called Abresch-Rosenberg differential, plays
an important role instead of the Hopf differential. In Lorentzian case, we can also obtain the
Lax type representation for timelike surfaces by using an analogy of the Hopf differential for
timelike surfaces.

Definition 4.2.1. Let f : D → Nil3 be a conformal immersion from a simply connected
domain D ⊂ C′ into Nil3. Define a para-complex function Q by

(4.2.1) Q =
1

4
(2H − i′)Ã, Ã = A− (ϕ3)2

2H − i′

where A and ϕ3 are the Hopf differential

A = g+(∇∂∂f,N)

and the e3-component of f−1fz for f , respectively. Then the quadratic differential Qdz2 is
well-defined and it is called the Abresch-Rosenberg differential for timelike surface f .

Definition 4.2.2. A non-vertical timelike minimal surface is called a horizontal umbrella
if the Abresch-Rosenberg differential vanishes everywhere.

Theorem 4.2.3. Let f be a conformal immersion from a simply connected domain D ⊂ C′

into Nil3 for which the Dirac potential U satisfies (4.1.3). Then the generating spinors

ψ̃ = (ψ1, ψ2) satisfies the system of equations:

(4.2.2) ψ̃z = ψ̃Ũ , ψ̃z̄ = ψ̃Ṽ ,

where

Ũ =

(
1
2
∂w + 1

2
ϵ̃e−w/2eu/2∂H −ϵ̃ew/2

Qϵ̃e−w/2 0

)
,

Ṽ =

(
0 −Qϵ̃e−w/2

ϵ̃ew/2 1
2
∂w + 1

2
ϵ̃e−w/2eu/2∂H

)
.

Here, Q is the coefficient of the Abresch-Rosenberg differential and ϵ̃ ∈ {±1,±i′} is the

number determined by (4.1.4). Conversely, every solution ψ̃ to the above equation with
(4.1.4) is a solution of the nonlinear Dirac equation (4.1.1) with (4.1.2).
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Proof. By computing the derivative of the Dirac potential ϵ̃ew/2 with respect to z, we have

1

2
ϵ̃ew/2∂w = −1

2
eu/2∂H + 2i′Hψ1ψ2(ψ2)

2 − 2H − i′

2
ψ2∂ψ2 −

2H + i′

2
ψ1∂ψ1.

Multiplying the equation above by ψ1 and using the function Q defined in (4.2.1), we derive

∂ψ1 =

(
1

2
∂w +

1

2
ϵ̃e−w/2eu/2∂H

)
ψ1 +Qϵ̃e−w/2ψ2.

The derivative of ψ2 with respect to z is given by the nonlinear Dirac equation. Thus we
obtain the first equation of (4.2.2). We can derive the second equation of (4.2.2) similarly
by differentiating the potential with respect to z̄.

Conversely, if the vector ψ̃ = (ψ1, ψ2) is a solution of (4.2.2), the terms of ∂ψ1 and ∂ψ2 of
(4.2.2) are the equations just what we want. □

The compatibility conditions of the system (4.2.2), that is ∂Ũ − ∂Ṽ − [Ũ , Ṽ ] = 0, derive
the following four equations:

1

2
∂∂w + ew −QQe−w +

1

2

(
∂∂H + ∂H∂(−w/2 + u/2)

)
ϵ̃e−w/2eu/2 = 0,

1

2
∂∂w + ew −QQe−w +

1

2

(
∂∂H + ∂H∂(−w/2 + u/2)

)
ϵ̃e−w/2eu/2 = 0,

∂Qϵ̃e−w/2 = −1

2
Q∂He−weu/2 − 1

2
∂Heu/2,

∂Qϵ̃e−w/2 = −1

2
Q∂He−weu/2 − 1

2
∂Heu/2.

Then we immediately obtain an analogy of Theorem 3.2.4.

Theorem 4.2.4. For a constant mean curvature timelike surface in Nil3 which has the
Dirac potential invertible everywhere, the Abresch-Rosenberg differential is para-holomorphic.

Remark 4.2.5. (1) To obtain a timelike surface from a solution (w,H,Q) of the com-

patibility conditions, a solution ψ̃ must satisfy the additional conditions

ϵ̃ew/2 = −H(ψ2ψ2 + ψ1ψ1) +
i′

2
(ψ2ψ2 − ψ1ψ1).

(2) When the conformal immersion is minimal the compatibility conditions of the system
of differential equations (4.2.2) are more simple:

1

2
∂∂w + ew −QQe−w = 0,

∂Q = 0.
(4.2.3)

These equations coincide with the Gauss-Codazzi equations for a timelike surface in
Minkowski 3-space which has the first fundamental form h2dzdz̄, the mean curvature
1/2, and the Hopf differential 4Qdz2. This fact means that a timelike minimal surface
in Nil3 induces a timelike constant mean curvature surface in Minkowski 3-space. The
correspondence between these surfaces will be explained later.
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Let F̃ be a fundamental system of solutions to the system (4.2.2):

(4.2.4) ∂F̃ = F̃ Ũ , ∂F̃ = F̃ Ṽ .

Then by putting

F := F̃G, U := G−1ŨG+G−1∂G, V := G−1Ṽ G+G−1∂G

where

G =

(
e−w/4 0
0 e−w/4

)
,

one can see in the same way as Proposition 3.4.1 that the system (4.2.4) is equivalent to the
following matrix differential equations

(4.2.5) ∂F = FU, ∂F = FV.

where

U =

(
1
4
∂w + 1

2
ϵ̃e−w/2eu/2∂H −ϵ̃ew/2

Qϵ̃e−w/2 −1
4
∂w

)
, V =

(
−1

4
∂w −Qϵ̃e−w/2

ϵ̃ew/2 1
4
∂w + 1

2
ϵ̃e−w/2eu/2∂H

)
.

4.3. Normal Gauss map of timelike surfaces in Nil3. Timelike minimal surfaces in Nil3
can be characterized by the harmonicity of the normal Gauss map, that is naturally defined
from the unit normal vector field. Although in the Riemannian case, the normal Gauss map
is a map into the hyperbolic plane H2, the normal Gauss maps of timelike surfaces are maps
into the de-Sitter sphere S2

1 in a Minkowski 3-space L3
(+,−,+).

The de-Sitter sphere is known as a Lorentzian symmetric space. Let us recall a repre-
sentation of the de-Sitter sphere as a Lorentzian symmetric space. Let L3

(+,−,+) denote the

Minkowski 3-space (R3, ⟨, ⟩) where the notation ⟨, ⟩ is an indefinite inner product:

⟨(x1, x2, x3), (x̃1, x̃2, x̃3)⟩ = x1x̃1 − x2x̃2 + x3x̃3.

The de-Sitter sphere S2
1 is a timelike surface in L3

(+,−,+) defined by

S2
1 =

{
(x1, x2, x3)

∣∣(x1)2 − (x2)
2 + (x3)

2 = 1
}
.

On the other hand, let su′1,1 denote the special para-unitary Lie algebra of index (1, 1) defined
by

su′1,1 =

{(
i′a b̄
b −i′a

)∣∣∣∣ a ∈ R, b ∈ C′
}
.

The Lie bracket of su′1,1 is the usual commutator of matrices. Let us equip su′1,1 with the
following indefinte scalar product ⟨, ⟩m2:

⟨X, Y ⟩m2 = 2Trace(XY ).

Then the Minkowski 3-space L3
(+,−,+) is identified with su′1,1 as an indefinite scalar product

space by the following correspondence:

(4.3.1) su′1,1 ∋
1

2

(
i′r −p− i′q

−p+ i′q −i′r

)
←→ (p, q, r) ∈ L3

(+,−,+),

and the de-Sitter sphere S2
1 can be realized in su′1,1 as

S2
1 =

{
X ∈ su′1,1

∣∣⟨X,X⟩m2 = 1
}
.
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Figure 2. Left translated unit normal vector field takes values in the de-Sitter
sphere in nil3 (left). Stereographic projections map the de-Sitter spheres in
L3

(+,−,+) (right) and nil3 to the common subset.

The Lie group SU′
1,1 which corresponds to the Lie algebra su′1,1, that is called the special

para-unitary Lie group of index (1, 1), is given by

SU′
1,1 =

{(
a b̄
b ā

)∣∣∣∣a, b ∈ C′, aā− bb̄ = 1

}
.

Then the Lie group SU′
1,1 acts transitively and isomorphically on S2

1:

SU′
1,1 × S2

1 ∋ (F,X) 7→ Ad(F )X ∈ S2
1.

The isotropy subgroup with respect to this action at the point

(
i′/2 0
0 −i′/2

)
is the subgroup

U′
1 of SU′

1,1 consisting of diagonal matrices:

U′
1 =

{(
±ei′θ 0
0 ±e−i′θ

)∣∣∣∣ θ ∈ R
}
.

The resulting homogeneous space S2
1 = SU′

1,1/U
′
1 is a Lorentzian symmetric space with

involution σ:

σ : SU′
1,1 ∋ X 7→ Ad

(
1

2

(
i′ 0
0 −i′

))
X ∈ SU′

1,1.

Although the left translated unit normal vector field of a timelike surface in Nil3 takes

values in the de-Sitter sphere S̃2
1 in nil3:

S̃2
1 =

{
x1e1 + x2e2 + x3e3 ∈ nil3

∣∣−(x1)2 + (x2)
2 + (x3)

2 = 1
}
,

one can regard the map as a map into the de-Sitter sphere S2
1 in L3

(+,−,+) via the stereographic

projections of S̃2
1 and S2

1 (FIGURE 2).

For simplicity, we assume that the support function takes positive values. This implies

that the left translated unit normal vector field takes values in the lower half of S̃2
1. Then

the composition of the left translated unit normal vector field f−1N : D → S̃2
1 ⊂ L3

(+,−,+)

and the stereographic projections with the base points e3 and (0, 0,−1) ∈ L3
(+,−,+):

π′
L3 : S2

1 ∋ (x1, x2, x3) 7→
x1

1 + x3
+ i′

x2
1 + x3

∈ C′,

π′
nil3 : S̃2

1 ∋ x1e1 + x2e2 + x3e3 7→
x1

1− x3
+ i′

x2
1− x3

∈ C′

35



defines a S2
1-valued map

(4.3.2) π′
L3

−1 ◦ π′
nil3 ◦ f−1N : D→ SU′

1,1 ⊂ L3
(+,−,+).

Since the composition π′
L3

−1 ◦ π′
nil3 : S̃2

1 → S2
1 is computed as

π′
L3

−1 ◦ π′
nil3(x1e1 + x2e2 + x3e3) =

(
−x1
x3
,−x2

x3
,− 1

x3

)
,

the map (4.3.2) is given explicitly in terms of the generating spinors as

(4.3.3) π′
L3

−1 ◦ π′
nil3 ◦ f−1N =

1

ψ2ψ2 − ψ1ψ1

(
−2 Im(ψ1ψ2), 2Re(ψ1ψ2), ψ2ψ2 + ψ1ψ1

)
.

Definition 4.3.1. For a timelike surface in Nil3, the map π′
L3

−1 ◦ π′
nil3 ◦ f−1N defined

by (4.3.3) is called the normal Gauss map of the timelike surface, and denoted by the same
letter f−1N with the left translated unit normal vector field.

Via the identification (4.3.1), the normal Gauss map f−1N of a timelike surface f : D→ Nil3
is represented as

(4.3.4) f−1N =
1

2
Ad(F )

(
i′ 0
0 −i′

)
where F is a SU′

1,1-valued map defined by

(4.3.5) F =
1√

ψ2ψ2 − ψ1ψ1

(
ψ2 ψ1

ψ1 ψ2

)
.

Definition 4.3.2. A SU′
1,1-valued map F which gives the normal Gauss map by the form

(4.3.4) is called a frame of the normal Gauss map.

Remark 4.3.3. (1) The particular frame (4.3.5) of the normal Gauss map of a timelike
minimal surface is a solution of the system (4.2.5). This can be checked since the
pair (ψ2, ψ1) is a solution of the system (4.2.2) for a timelike minimal surface with
the generating spinors (ψ1, ψ2).

(2) A frame of the normal Gauss map is not unique as in the Riemannian case. Let F0

be an element of SU′
1,1, k a U′

1-valued map, and F a frame of the normal Gauss map
for some timelike surface. Then F0Fk defines another frame. Since the arbitrary
choice of initial condition does not correspond to a given timelike surface, we use the
particular frame in (4.3.5).

4.4. Characterization of timelike minimal surfaces in Nil3. The minimality of timelike
surfaces in Nil3 can be characterized by the harmonicity of the normal Gauss map or a family
of flat connections on a trivial principal bundle.

We define a family of Maurer-Cartan forms αµ by

(4.4.1) αµ = Uµdz + V µdz̄.

Here the coefficient matrices Uµ and V µ are defined by parameterizing U and V in (4.2.5)
with µ ∈ S1

1 = {µ ∈ C′|µµ̄ = 1,Reµ > 0} as follows:

Uµ =

(
1
4
∂w + 1

2
ϵ̃e−w/2eu/2∂H −µ−1ϵ̃ew/2

µ−1Qϵ̃e−w/2 −1
4
∂w

)
, V µ =

(
−1

4
∂w −µQϵ̃e−w/2

µϵ̃ew/2 1
4
∂w + 1

2
ϵ̃e−w/2eu/2∂H

)
.

36



Theorem 4.4.1. Let f : D → Nil3 be a conformal immersion from a simply connected
domain D ⊂ C′ into Nil3 satisfying (4.1.3). Then the following conditions are mutually
equivalent:

(1) f is minimal.
(2) The Dirac potential has purely imaginary values.
(3) d+ αµ defines a family of flat connections on D× SU′

1,1.

(4) The normal Gauss map f−1N is a non-conformal Lorentz harmonic map into the
de-Sitter sphere S2

1 ⊂ L3
(+,−,+).

Before we prove the Theorem 4.4.1, we discuss the zero-curvature representation of Lorentz
harmonic maps.

For a map φ : D→ S2
1 into the de-Sitter sphere S2

1 ⊂ L3
(+,−,+), take a frame F , that is,

φ =
1

2
Ad(F )

(
i′ 0
0 −i′

)
.

Moreover decompose the Maurer-Cartan form α = F−1dF into α = α0+α1 according to the
decomposition su′1,1 = k′ +m′ with

k′ =

{(
i′r 0
0 −i′r

)∣∣∣∣ r ∈ R
}
, m′ =

{(
0 −p− i′q

−p+ i′q 0

)∣∣∣∣ p, q ∈ R
}
.

Then we obtain the following proposition.

Proposition 4.4.2. A map φ : D → S2
1 is Lorentz harmonic if and only if the following

equation holds:

(4.4.2) d(∗α1) + [α0 ∧ ∗α1] = 0.

Here the notation ∗ is the Hodge star operator defined by

∗dz = i′dz, ∗dz̄ = −i′dz̄.

Proof. Decompose α0 and α1 into the dz-part and the dz̄-part:

α0 = αk
′dz + αk

′′dz̄, α1 = αm
′dz + αm

′′dz̄.

Then we put α′ := α′
k + α′

m and α′′ := α′′
k + α′′

m, that is, α = α′dz + α′′dz̄ denote the
decomposition of α into dz-part and dz̄-part. A straightforward computation shows

∂φ =
1

2
Ad(F )

[
α′,

(
i′ 0
0 −i′

)]
.

Therefore direct computations show

∂∂φ =
1

2
Ad(F )

([
α′′,

[
α′,

(
i′ 0
0 −i′

)]]
+

[
∂α′,

(
i′ 0
0 −i′

)])
.

By decomposing α′ and α′′ into k-part and m-part one can see that[
∂α′,

(
i′ 0
0 −i′

)]
=

[
∂αm

′,

(
i′ 0
0 −i′

)]
,[

α′′,

[
α′,

(
i′ 0
0 −i′

)]]
=

[
αm

′′,

[
αm

′,

(
i′ 0
0 −i′

)]]
+

[
αk

′′,

[
αm

′,

(
i′ 0
0 −i′

)]]
.
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The Jacobi identity implies[
αk

′′,

[
αm

′,

(
i′ 0
0 −i′

)]]
=

[
[αk

′′, αm
′] ,

(
i′ 0
0 −i′

)]
.

Therefore we obtain

∂∂φ =
1

2
Ad(F )

([
∂αm

′ + [αk
′′, αm

′] ,

(
i′ 0
0 −i′

)]
+

[
αm

′′,

[
αm

′,

(
i′ 0
0 −i′

)]])
Since the first term is in m and the second term is in k, the definition of Lorentz harmonicity,
∂∂φ = ρφ, implies

(4.4.3) ∂αm
′ + [αk

′′, αm
′] = 0.

Similar computations for ∂∂φ derive

∂αm
′′ + [αk

′, αm
′′] = 0.

Clearly, this is equivalent to the harmonicity condition (4.4.3). Therefore we have

(4.4.4) ∂αm
′′ + ∂αm

′ + [αk
′, αm

′′] + [αk
′′, αm

′] = 0,

which is equivalent to (4.4.2). Conversely, we assume (4.4.2). Since the map φ satisfies the
Maurer-Cartan equation

dα +
1

2
[α ∧ α] = 0,

we have the following equations in the k-part and the m-part:

∂αk
′′ − ∂αk

′ + [αk
′, αk

′′] + [αm
′, αm

′′] = 0,

−∂αm
′ + ∂αm

′′ + [αm
′, αk

′′] + [αk
′, αm

′′] = 0.
(4.4.5)

Subtracting the first equation of (4.4.5) from (4.4.4) derives the harmonicity condition (4.4.3).
Therefore the proof completes. □

We define a family of Maurer-Cartan forms αµ for φ parameterized by µ ∈ S1
1 as follows:

(4.4.6) αµ = α0 + µ−1αm
′dz + µα′′

mdz̄.

Then we obtain the following theorem. Such a fundamental observation was first due to
Pohlmeyer [43]. We can prove it in the same way of [37, Proposition 2.1.4].

Theorem 4.4.3. A map φ : D→ S2
1 is Lorentz harmonic if and only if the family αµ for

φ satisfies

dαµ +
1

2
[αµ ∧ αµ] = 0

for every µ ∈ S1
1.

Proof of Theorem 4.4.1. The equivalence between (1) and (2) is trivial from the definition of
the Dirac potentials for timelike surfaces in Nil3.

Define Uµ and V µ by αµ = Uµdz + V µdz̄. Then the statement (3) holds if and only if

(4.4.7) ∂Uµ − ∂V µ − [Uµ, V µ] = 0

for all µ ∈ S1
1. The coefficients of µ−1, µ0, and µ of (4.4.7) are as follows:

(4.4.8)
1

2
eu/2∂H = 0, ∂Q+

1

2
Qϵ̃e−w/2eu/2∂H = 0,
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1

2
∂∂w + ew −QQe−w +

1

2
(∂∂H + ∂

−w + u

2
∂H)ϵ̃e−w/2eu/2 = 0,

1

2
∂∂w + ew −QQe−w +

1

2
(∂∂H + ∂

−w + u

2
∂H)ϵ̃e−w/2eu/2 = 0,

(4.4.9)

(4.4.10) ∂Q+
1

2
Qϵ̃e−w/2eu/2∂H = 0,

1

2
eu/2∂H = 0.

Equations (4.4.8), (4.4.9), and (4.4.10) are the coefficient of µ−1, µ0, and µ, respectively. The
equations (4.4.9) appears in the compatibility conditions of (4.2.2) for the original timelike
surface, and then they always hold.

When we assume the condition (1), the conditions (4.4.8) and (4.4.10) are rewritten into

∂Q = 0.

Hence it is straightforward that the condition (4.4.7) holds.

Next we assume the condition (3) holds, that is, (4.4.8), (4.4.9), and (4.4.10) are satisfied.
Then it is easy to see that H is constant. Furthermore, since αµ takes values in su′1,1, we
can derive that the mean curvature H is 0 by comparing (2, 1)-entry with (1, 2)-entry of αµ.

We can see the condition (3) implies (4) by Theorem 4.4.3. In fact, if we assume (3), the
particular frame (4.3.5) is a solution of the system (4.2.5) and the Maurer-Cartan equation

dαµ +
1

2
[αµ ∧ αµ] = 0

holds for every µ. Then the normal Gauss map Ad(F µ|µ=1)

(
i′/2 0
0 −i′/2

)
is Lorentz har-

monic by Theorem 4.4.3. The non-verticality is obtained since the (1, 2)-part of U is non-
degenerate. Hence (3) implies (4).

To complete the proof, we must prove (4) =⇒ (1). This is proved by applying the results
proven in the next section. We can construct a timelike minimal surface from a harmonic
map into S2

1. Assuming that the normal Gauss map (4.3.4) is harmonic, we obtain a time-
like minimal surface which has the generating spinor (ψ1, ψ2) same as the timelike surface
f . Therefore we can see that the timelike minimal surface is f up to a translation by
Theorem 2.2.5. Hence f is minimal. □

Definition 4.4.4. For a Lorentz harmonic map φ into S2
1 ⊂ L3

(+,−,+), a SU′
1,1-valued

solution F µ of the equation (F µ)−1dF µ = αµ, where αµ is the su′1,1-valued 1-form defined in
(4.4.6), is called an extended frame of φ.

Remark 4.4.5. Since the normal Gauss map of a timelike minimal surface f is a Lorentz
harmonic map into the de-Sitter sphere, we can obtain an extended frame by parameterizing
the Maurer-Cartan form of the particular frame (4.3.5) as in (4.4.6). The family αµ is nothing
but the one defined in (4.4.1). We call the family of Maurer-Cartan forms αµ the extended
frame of a timelike minimal surface f .

4.5. Sym-Bobenko formula of timelike minimal surfaces in Nil3. In this subsection,
we will derive an immersion formula for timelike minimal surfaces in Nil3 in terms of the
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extended frame, the so-called Sym-Bobenko formula. Unlike the integral representation for-
mula, the so-called Weierstrass-type representation [11, 28, 48], the Sym-Bobenko formula
will be given by the derivative of the extended frame with respect to the spectral parameter.

A timelike minimal surface in Nil3 induces a timelike surface of constant mean curvature
H̃ = 1/2 in Minkowski 3-space as mentioned in Remark 4.2.5. Let us redefine the generating

spinors (ψ1, ψ2) of a conformal immersion f̃ : D→ L3
(+,−,+) as

(4.5.1) ϕ̃1 = ϵ
(
(ψ2)

2 + (ψ1)
2
)
, ϕ̃2 = ϵi′

(
(ψ2)

2 − (ψ1)
2
)
, ϕ̃3 = 2i′ψ1ψ2

where the functions ϕ̃j are defined by ∂f̃ = (ϕ̃2, ϕ̃1, ϕ̃3). Then the Dirac potentials are

changed into U = V = i′H̃eũ/2/2, where the function eũ is the conformal factor of f̃ . The

conformal factor is rephrased in terms of the generating spinors as eũ = 4
(
ψ2ψ2 − ψ1ψ1

)2
.

Since the Dirac potentials for timelike minimal surfaces in Nil3 and surfaces in L3
(+,−,+) of

constant mean curvature H̃ = 1/2 coincide, the common generating spinors can describe
these surfaces.

Proposition 4.5.1. The Gauss map of the induced surface f̃ in L3
(+,−,+) coincides with

the normal Gauss map of the original timelike minimal surface f in Nil3.

Proof. The spinor representation of the normal Gauss map (4.3.3) of the timelike minimal

surface f coincides with the Gauss map of f̃ since the generating spinors of f and f̃ are
same. □

The Sym-Bobenko formula of timelike surfaces of constant mean curvature in L3
(+,−,+) is

discovered by Inoguchi [24]. In [17, 24], they used a null coordinate system on a Lorentz
surface. On the other hand in this thesis, we construct the Sym formula with a para-
complex conformal coordinate system. When we construct a Weierstrass-type representation
of timelike minimal surfaces in Nil3 in the next subsection, conformal coordinate systems are
useful because only one Weierstrass data can be obtained from surfaces.

Theorem 4.5.2. Let F µ be an extended frame of some Lorentz harmonic map φ from a
simply connected domain D ⊂ C′ into the de-Sitter sphere S2

1 ⊂ L3
(+,−,+). Assume that the

coefficient function a of (1, 2)-entry of αm
′ satisfies aa < 0 on D. Define two maps fL3

(+,−,+)

and NL3
(+,−,+)

by

fL3
(+,−,+)

= −i′µ
(
∂

∂µ
F µ

)
(F µ)−1 − 1

2
Ad(F µ)

(
i′ 0
0 −i′

)
, NL3

(+,−,+)
=

1

2
Ad(F µ)

(
i′ 0
0 −i′

)
.

Then by the identification (4.3.1), fL3
(+,−,+)

describes an associated family of timelike surfaces

of constant mean curvature 1/2 in L3
(+,−,+) with the first fundamental form I = −16aadzdz̄

and NL3
(+,−,+)

is the spacelike unit normal vector field of fL3
(+,−,+)

for each µ ∈ S1
1.

Proof. After gauging the extended frame, the coefficient a takes purely imaginary values,
that is a can be assumed to be purely imaginary from the beginning. For simplicity, we
consider only the case of i′a < 0. Define h by h = −4i′a. Then h has positive values.
Moreover for a frame F µ|µ=1 = F = (Fij) of φ, define ψ1 and ψ2 by putting

F21 =
√
2ψ1h

−1/2, F22 =
√
2ψ2h

−1/2,
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respectively. Then a frame F is written as

F =
√
2h−1/2

(
ψ2 ψ1

ψ1 ψ2

)
.

Since detF = 1, we have h = 2(ψ2ψ2 − ψ1ψ1). Thus we have

F =
1√

ψ2ψ2 − ψ1ψ1

(
ψ2 ψ1

ψ1 ψ2

)
.

Because an extended frame is continuous with respect to the spectral parameter µ the frame
F µ can be represented in the form of

F =
1√

ψ2(µ)ψ2(µ)− ψ1(µ)ψ1(µ)

(
ψ2(µ) ψ1(µ)
ψ1(µ) ψ2(µ)

)
for some para-complex functions ψ1(µ) and ψ2(µ) with ψk(1) = ψk for k = 1, 2. Therefore
it is straightforward that the maps −i′µ(∂µF µ)(F µ)−1 and NL3

(+,−,+)
take values in su′1,1, and

then the map fL3
(+,−,+)

is su′1,1-valued.

Since the Maurer-Cartan form αµ of a frame F µ is defined by (4.4.6) the frame F µ satisfies

(4.5.2) ∂F µ = F µUµ, ∂F µ = F µV µ

where

Uµ = αk
′ + µ−1αm

′, V µ = αk
′′ + µαm

′′.

By the usual computations, we obtain

∂fL3 = ∂

(
−i′µ

(
∂

∂µ
F µ

)
(F µ)−1)− 1

2
Ad(F µ)

(
i′ 0
0 −i′

))
= Ad(F µ)

(
−i′µ

(
∂

∂µ
Uµ

)
− 1

2

[
Uµ,

(
i′ 0
0 −i′

)])
= 2i′µ−1

(
−i

′

4
h

)
Ad(F µ)

(
0 1
0 0

)
= µ−1

(
ψ1(µ)ψ2(µ) −(ψ2(µ))

2

(ψ1(µ))
2 −ψ1(µ)ψ2(µ)

)
.

Thus by putting ϕj(µ) for j = 1, 2, 3 as

ϕ1(µ) = µ−1i′
(
(ψ2(µ))

2 + (ψ1(µ))
2
)
, ϕ2(µ) = µ−1

(
(ψ2(µ))

2 − (ψ1(µ))
2
)
,

and

ϕ3(µ) = µ−12ψ1(µ)ψ2(µ),

we have

∂fL3 =
1

2

(
ϕ3(µ) −ϕ2(µ)− i′ϕ1(µ)

−ϕ2(µ) + i′ϕ1(µ) −ϕ3(µ)

)
.

Hence the identification (4.3.1) of su′1,1 and L3
(+,−,+) shows

∂fL3
(+,−,+)

=
(
ϕ2(µ), ϕ1(µ), i′ϕ3(µ)

)
.
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It is straightforward that the map fL3
(+,−,+)

is a conformal immersion of constant mean curva-

ture 1/2 with the first fundamental form 4
(
ψ2(µ)ψ2(µ)− ψ1(µ)ψ1(µ)

)2
dzdz̄, and the Gauss

map of fL3
(+,−,+)

is NL3
(+,−,+)

for each µ ∈ S1
1.

By considering the gauge transformation

F µ 7→ F̂ µ := F µ

(
µ−1/2 0
0 µ1/2

)
,

it can be shown that the deformation with respect to µ does not change the Dirac potential,
that is, ψ2(µ)ψ2(µ)−ψ1(µ)ψ1(µ) is independent of µ. In fact the differential equations (4.5.2)
are rewritten into

(4.5.3) ∂F̂ µ = F̂ µÛµ, ∂F̂ µ = F̂ µV̂ µ

where

Ûµ =

(
U11 U12

µ−2U21 U22

)
, V̂ µ =

(
V11 µ2V12
V21 V22

)
for Uµ|µ=1 = (Uij) and V

µ|µ=1 = (Vij). Since (1, 2)-entry of −Ûµ denotes the Dirac potential

i′(ψ2(µ)ψ2(µ)−ψ1(µ)ψ1(µ))/2, it can be seen the conformal factor of fL3
(+,−,+)

is h2, and then

the deformation with respect to µ preserves the metric and the mean curvature. □

Remark 4.5.3. A Gauss map of a timelike surface in L3
(+,−,+) of constant mean curvature

derives an extended frame by Remark 4.4.5 and Proposition 4.5.1. Therefore an associated
family of timelike surfaces in L3

(+,−,+) of constant mean curvature can be obtained from

a timelike surface of constant mean curvature 1/2. In general, timelike constant mean
curvature H ̸= 0 surfaces can be constructed in [17, 24].

To construct timelike minimal surfaces in Nil3, we identify the Lie algebra nil3 with the
Lie algebra su′1,1 as a real vector space. Let {E1, E2, E3} denote the basis of su′1,1 given by

E1 =
1

2

(
0 −i′
i′ 0

)
, E2 =

1

2

(
0 −1
−1 0

)
, E3 =

1

2

(
i′ 0
0 −i′

)
.

Then the identification is given by a linear isomorphism Ξ : su′1,1 → nil3, which is not Lie
algebra isomorphism, defined by

(4.5.4) Ξ(x1E1 + x2E2 + x3E3) = x1e1 + x2e2 + x3e3.

When the derivative of a minimal surface f in Nil3 is given by f−1∂f = ϕ1e1 + ϕ2e2 + ϕ3e3,
we know that the induced surface f̃ has the derivative ∂f̃ = (ϕ2, ϕ1, i′ϕ3) by the definition
of the generating spinors (2.2.4) and (4.5.1). Therefore timelike minimal surfaces in Nil3 can
be constructed by using Theorem 4.5.2.

Theorem 4.5.4. Let F µ be an extended frame of some harmonic map from a simply
connected domain D into H2, and fL3

(+,−,+)
the associated family of constant mean curvature

1/2 surfaces defined in Theorem 4.5.2. Moreover define a map fµ : D→ Nil3 by

fµ = exp ◦Ξ ◦ f̂µ

42



where the map f̂µ : D→ su′1,1 is a su′1,1-valued map defined by

f̂µ =
(
fL3

(+,−,+)

)o
− i′

2
µ

(
∂

∂µ
fL3

(+,−,+)

)d

Here the superscripts “o” and “d” denote the off-diagonal part and diagonal part, respectively.
Then the map fµ describes a family of timelike minimal surfaces in Nil3. Moreover the
normal Gauss map of fµ is NL3

(+,−,+)
.

Proof. Since fL3
(+,−,+)

is su′1,1-valued, the diagonal entries of
i′

2
µ ∂

∂µ
fL3

(+,−,+)
take purely imag-

inary values and trace of i′

2
µ ∂

∂µ
fL3

(+,−,+)
vanishes. Therefore i′

2
µ ∂

∂µ
fL3

(+,−,+)
takes su′1,1 values.

We have

∂

(
i′

2
µ
∂

∂µ
fL3

(+,−,+)

)
=
i′

2
µ
∂

∂µ

(
−1

2
µ−1hAd(F µ)

(
0 1
0 0

))
= −i

′

2
∂fL3

(+,−,+)
− 1

2

[
fL3

(+,−,+)
+NL3

(+,−,+)
, ∂fL3

(+,−,+)

](4.5.5)

Then the diagonal part of (4.5.5) is

∂

(
i′

2
µ
∂

∂µ
fL3

(+,−,+)

)d

= −i
′

2

(
∂fL3

(+,−,+)

)d
− 1

2

[
fL3

(+,−,+)
, ∂fL3

(+,−,+)

]d
−
[
NL3

(+,−,+)
, ∂fL3

(+,−,+)

]d
.

By a simple computation using

−i
′

2

(
∂fL3

(+,−,+)

)
= −i

′

4

(
ϕ3(µ) −ϕ2(µ)− i′ϕ1(µ)

−ϕ2(µ) + i′ϕ1(µ) −ϕ3(µ)

)d

= −1

2
ϕ3(µ)E3,

−1

2

[
fL3

(+,−,+)
, ∂fL3

(+,−,+)

]d
= −1

2

[∫
ϕ1(µ)dzE1 +

∫
ϕ2(µ)dzE2, ϕ

1(µ)E1 + ϕ2(µ)E2

]
= −1

2

(
ϕ2(µ)

∫
ϕ1(µ)dz − ϕ1(µ)

∫
ϕ2(µ)dz

)
E3,

−1

2

[
NL3

(+,−,+)
, ∂fL3

(+,−,+)

]d
= −1

2

[
1

2
Ad(F µ)

(
i′ 0
0 −i′

)
,−1

2
µ−1hAd(F µ)

(
0 1
0 0

)]d
=
i′

8
µ−1h

(
Ad(F µ)

[(
i′ 0
0 −i′

)
,

(
0 1
0 0

)])d

= −i
′

2
(∂fL3

(+,−,+)
)d

= −1

2
ϕ3(µ)E3,
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we obtain the derivative of f̂µ

∂f̂µ = ϕ1(µ)E1 + ϕ2(µ)E2 − ∂
(
i′

2
µ
∂

∂µ
fL3

(+,−,+)

)d

= ϕ1(µ)E1 + ϕ2(µ)E2 +

(
ϕ3(µ) +

1

2
ϕ2(µ)

∫
ϕ1(µ)dz − 1

2
ϕ1(µ)

∫
ϕ2(µ)dz

)
E3.

This implies that the derivative of fµ is computed as

fµ−1∂fµ = ϕ1(µ)e1 + ϕ2(µ)e2 + ϕ3(µ)e3.

Therefore the map fµ describes a family of timelike minimal surfaces in Nil3 since the
generating spinors are the same as ones of fL3

(+,−,+)
. Moreover from Proposition 4.5.1, the

normal Gauss map of fµ is given by NL3
(+,−,+)

. □

Remark 4.5.5. (1) The support function of fµ is independent of µ since the conformal
factor of the induced surface fL3

(+,−,+)
is independent of µ. On the other hand, the

deformation with respect to µ changes the conformal factor of fµ.
(2) For a timelike minimal surface, the normal Gauss map defines a Lorentz harmonic

map into S2
1. Therefore a family of timelike minimal surfaces that preserves the

support function can be obtained by Theorem 4.5.4.
(3) Denote the Abresch-Rosenberg differential by Qdz2 for a timelike minimal surface

fµ|µ=1 defined in Theorem 4.5.4. Then the Abresch-Rosenberg differential of fµ is
given by µ−2Qdz2. This fact can be seen from (4.2.5) and (4.5.3).

4.6. Weierstrass-type representation via loop group method. We observed that non-
vertical timelike minimal surfaces can be constructed from an extended frame of a Lorentz
harmonic map into the de-Sitter sphere S2

1 in the previous subsection. By adapting the
DPW method to the case of Lorentz harmonic maps, it can be expected that we obtain
the Weierstrass-type construction of an extended frame of a Lorentz harmonic map. In this
subsection, we will give the construction of an extended frame of the normal Gauss map
of a timelike minimal surface in Nil3 with a conformal coordinate system. Without using
para-complex coordinate systems, J. F. Dorfmeister, J. Inoguchi, and M. Toda [17] gave the
Weierstrass-type representation of an extended frame of timelike surfaces in the Minkowski
3-space of constant mean curvature. Thus we will use their method and the correspondence
between para-complex coordinate systems and null coordinate systems.

Let us recall the hyperbola S1
1 on C′:

S1
1 = {µ ∈ C′|µµ = 1,Reµ > 0} .

An extended frame F µ of a timelike minimal surface is analytic on C′\{x(1± i′)|x ∈ R} with
respect to µ. Therefore, as in the Riemannian case, it is natural to introduce the following
loop groups:

Λ′SL2C′
σ =

{
g : S1

1 → SL2C′

∣∣∣∣∣g(µ) =
∞∑

j=−∞

gjµ
j, g(−µ) = Ad

((
1 0
0 −1

))
g(µ)

}
,

Λ′+SL2C′
σ = {g ∈ Λ′SL2C′

σ|gj = 0 for j < 0} ,

Λ′−SL2C′
σ = {g ∈ Λ′SL2C′

σ|gj = 0 for j > 0} ,
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Λ′+
∗ SL2C′

σ =
{
g ∈ Λ′+SL2C′

σ

∣∣g0 = id
}
,

Λ′−
∗ SL2C′

σ =
{
g ∈ Λ′−SL2C′

σ

∣∣g0 = id
}
,

Λ′SU′
1,1σ =

{
g ∈ Λ′SL2C′

σ

∣∣∣∣Ad((1 0
0 −1

))(
g(1/µ)

⊤)−1

= g(µ)

}
.

The following loop group decompositions, Birkhoff and Iwasawa decompositions are refor-
mations of [17, Theorem 2.5] in terms of the conformal para-complex structure.

Theorem 4.6.1. The loop group Λ′SL2C′
σ can be decomposed as follows:

(1) Birkhoff decomposition: The multiplication maps

Λ′−
∗ SL2C′

σ × Λ′+SL2C′
σ → Λ′SL2C′

σ,

Λ′+
∗ SL2C′

σ × Λ′−SL2C′
σ → Λ′SL2C′

σ

are diffeomorphisms onto the open dense subsets of Λ′SL2C′
σ. These open dense

subsets are called the big cells of Λ′SL2C′
σ.

(2) Iwasawa decomposition: The multiplication map

Λ′SU′
1,1σ × Λ′+SL2C′

σ → Λ′SL2C′
σ

is a diffeomorphism onto the open dense subset of Λ′SL2C′
σ. This open dense subset

also is called the big cell of Λ′SL2C′
σ.

Proof. We consider the loop algebras of two real Lie algebras sl2R and su′1,1 Let us define
several loop algebras as follows:

Λsl2Rσ =

{
ξ : R+ → sl2R

∣∣∣∣∣ξ(λ) =
∞∑

j=−∞

ξjλ
j, ξ(−λ) = Ad

((
1 0
0 −1

))
ξ(λ)

}
,

Λ±sl2Rσ =

{
ξ ∈ Λsl2Rσ

∣∣∣∣∣ξ(λ) =
∞∑
j=0

ξ±jλ
±j

}
,

Λ±
∗ sl2Rσ =

{
ξ ∈ Λ±sl2Rσ

∣∣ξ0 = 0
}
,

Λ′sl2C′
σ =

{
τ : S1

1 → sl2C′

∣∣∣∣∣τ(µ) =
∞∑

j=−∞

τjµ
j, τ(−µ) = Ad

((
1 0
0 −1

))
τ(µ)

}
,

Λ′±sl2C′
σ =

{
τ ∈ Λ′sl2C′

σ

∣∣∣∣∣τ(µ) =
∞∑
j=0

τjµ
j

}
,

Λ′su′1,1σ = {τ ∈ Λ′sl2C′
σ|τ ∗(1/µ) = τ(µ)} .

Since the explicit map

(4.6.1) sl2R ∋ X 7→ ℓX + ℓ̄X∗ ∈ su′1,1, X∗ = −Ad

((
1 0
0 −1

))
X

⊤

45



defines an isomorphism of real Lie algebras, an isomorphism between Λsl2Rσ and Λ′su′1,1σ is

induced as follows: Let ξ =
∑∞

j=−∞ ξjλ
j be an element of Λsl2Rσ and consider the isomor-

phism (4.6.1)

ξ 7→ ξℓ+ ξ∗ℓ̄ =
∞∑

j=−∞

(ξjℓ+ ξ∗j ℓ̄)λ
j

=
∞∑

j=−∞

(ξjℓ+ ξ∗−j ℓ̄)µ
j

= ξ(µ)ℓ+ ξ∗(1/µ)ℓ̄

(4.6.2)

where µ ∈ S1
1 is given by λ = µℓ+ µ−1ℓ̄. Since a direct computation shows τ(µ) := ξℓ+ ξ∗ℓ̄

satisfies

(τ(µ))∗ =
∞∑

=−∞

(ξj
∗ℓ̄+ ξ−jℓ)µj

we have τ ∗(1/µ) = τ(µ), and then τ is an element of Λ′su′1,1σ. Thus we obtain an isomorphism
(4.6.2) between Λsl2Rσ and Λ′su′1,1σ.

In general, the para complexification g⊗C′ of a given real Lie algebra g gives isomorphic
to g⊕ g as a real Lie algebra. In fact, the map

(4.6.3) g⊕ g ∋ (X, Y ) 7→ ℓX + ℓ̄Y ∈ g⊗ C′

is an isomorphism of real Lie algebras. Therefore combining the isomorphism (4.6.2) with
(4.6.3) derives an isomorphisms between Λsl2Rσ⊕Λsl2Rσ and Λ′su′1,1σ⊕Λ′su′1,1σ ≃ Λ′sl2C′

σ:

Λsl2Rσ⊕Λsl2Rσ ∋ (ξ(λ), η(λ)) 7→ (ξ(µ)ℓ+ξ∗(1/µ)ℓ̄, η(µ)ℓ+η∗(1/µ)ℓ̄) ∈ Λ′su′1,1σ⊕Λ′su′1,1σ,

(4.6.4) Λsl2Rσ ⊕ Λsl2Rσ ∋ (ξ(λ), η(λ)) 7→ ξ(µ)ℓ+ η∗(1/µ)ℓ̄ ∈ Λ′sl2C′
σ.

The isomorphisms discussed above induce the isomorphisms of Lie groups SL2R ≃ SU′
1,1,

ΛSL2Rσ ≃ Λ′SU′
1,1σ, and ΛSL2Rσ × ΛSL2Rσ ≃ Λ′SU′

1,1σ × Λ′SU′
1,1σ ≃ Λ′SL2C′

σ. Moreover
the isomorphism (4.6.4) induces the following isomorphisms:

Λ+
∗ sl2Rσ ⊕ Λ−sl2Rσ ≃ Λ′+sl2C′

σ.

Thus we have an isomorphism between loop groups Λ+
∗ SL2Rσ × Λ−SL2Rσ and Λ′+SL2C′

σ.

The Birkhoff and Iwasawa decompositions of ΛSL2Rσ and ΛSL2Rσ × ΛSL2Rσ were given
in Theorem 2.2 and Theorem 2.5 in [17]. Therefore we know that the multiplication maps

Λ−
∗ SL2Rσ × Λ+SL2Rσ → ΛSL2Rσ,

Λ+
∗ SL2Rσ × Λ−SL2Rσ → ΛSL2Rσ,

∆(ΛSL2Rσ × ΛSL2Rσ)× (Λ+
∗ SL2Rσ × Λ−SL2Rσ)→ ΛSL2Rσ × ΛSL2Rσ

(4.6.5)

are diffeomorphisms onto the open dense subsets of ΛSL2Rσ and ΛSL2Rσ×ΛSL2Rσ, respec-
tively. Hence by combining the isomorphisms of loop groups with the above decompositions,
we complete the proof. □
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Remark 4.6.2. Since the loop algebra Λsl2Rσ is a Banach Lie algebra [17], we know that
the loop algebra Λ′sl2C′

σ also is a Banach Lie algebra. Moreover, the Lie groups ΛSL2Rσ

and Λ′SL2C′
σ corresponding to Λsl2Rσ and Λ′sl2C′

σ become Banach Lie groups.

From now on we derive para-holomorphic data from an extended frame of normal Gauss
maps of timelike minimal surfaces in Nil3. Let us assume that extended frames take values
in the big cell of Λ′SL2C′

σ.

Theorem 4.6.3. Let F µ be an extended frame of the normal Gauss map of a timelike
minimal surface in Nil3, and apply the Birkhoff decomposition in Theorem 4.6.1 to F µ as
F µ = F µ

−F
µ
+ with F µ

− ∈ Λ′−
∗ SL2C′

σ and F µ
+ ∈ Λ′+SL2C′

σ. Then the Maurer-Cartan form ξ of
F µ
−, that is, ξ = (F µ

−)
−1dF µ

−, is para-holomorphic with respect to z. Moreover ξ is represented
explicitly as follows:

(4.6.6) ξ = µ−1

(
0 −p

Qp−1 0

)
dz

where the para-holomorphic function p(z) is defined by using the support function h(z, z̄) as

p(z) =
i′h2(z, 0)

4h(0, 0)
.

Proof. The Maurer-Cartan form ξ can be computed as

ξ = (F µ
−)

−1dF µ
− = F µ

+α
µ(F µ

+)
−1 − dF µ

+(F
µ
+)

−1(4.6.7)

where αµ is the 1-form given in (4.4.1). Since F µ
− belongs to Λ′−

∗ SL2C′
σ the middle term does

not have µj for j ≥ 0. On the other hand, the right hand side does not have µj for j < −1.
Thus the 1-form ξ has only µ−1 term. A straightforward computation of the µ−1 term of the
right hand side shows

ξ = µ−1F+0

(
0 − i′

4
h

4i′Q
h

0

)
(F+0)

−1dz

where the matrix F+0 is the constant term of the expansion of F µ
+ with respect to µ, that

is, F µ
+ = F+0 + F+1µ+ F+2µ

2 + · · · . Therefore it can be seen ∂F µ
− = 0, and then ξ is para-

holomorphic. Hence we obtain

(4.6.8) ξ = µ−1F+0

(
0 − i′

4
h

4i′Q
h

0

)
(F+0)

−1

∣∣∣∣
z̄=0

dz.

Since F µ
+ belongs to Λ′SL2C′

σ, we know that F+0 is of the form:

F+0(z, z̄) =

(
a(z, z̄) 0

0 a−1(z, z̄)

)
by taking the limit µ→ 0. Hence (4.6.8) is represented as

ξ = µ−1

(
0 − i′

4
h(z, 0)a2(z, 0)

4i′Q(z)
h(z,0)

a−2(z, 0) 0

)
dz.
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Since F µ takes values in Λ′SU′
1,1σ, the restriction of the Maurer-Cartan form αµ|z̄=0 has only

holomorphic part, and then F µ|z̄=0 takes values in Λ′−SL2C′
σ. Therefore F+|z̄=0 = (F−)

−1F µ|z̄=0

has only the µ0-term. By looking at the µ0-term of (4.6.7) we obtain

0 = (F+0α
′
k(F+0)

−1 − ∂F+0(F+0)
−1)
∣∣
z̄=0

dz.

Hence the equation dF+0 = F+0α
′
k derives a(z, 0) = h1/2(z, 0)c for some constant c. It is

obvious that c = h−1/2(0, 0) because F+0(z = 0) = id. Hence we complete the proof. □

Definition 4.6.4. We will call the para-holomorphic 1-form ξ in Theorem 4.6.3 the nor-
malized potential of timelike minimal surfaces after in the Riemannian case.

Conversely, we can construct an extended frame of timelike minimal surfaces by using
the Iwasawa decomposition as the decomposed factor of a primitive loop for a normalized
potential.

Theorem 4.6.5. Let ξ be a normalized potential of a timelike minimal surface f in Nil3
defined in (4.6.6), and F− be the solution of

∂F− = F−ξ

with the initial condition F−(z = 0) = id. Moreover let F µ ∈ Λ′SU′
1,1σ and F+ ∈ Λ′+SL2C′

σ

be the decomposed factors of F− with respect to the Iwasawa decomposition, that is F− =
F µF+. Then F µk forms an extended frame of f up to the change of coordinates for some
k ∈ U′

1.

Proof. A straightforward computation of the Maurer-Cartan form αµ of F µ gives

αµ = (F+)
−1ξF+ − (F+)

−1dF+.

We can see the right hand side of the above equation does not have µj for j < −1. On the
other hand, since the left hand side belongs to the Lie algebra of Λ′SU′

1,1σ, thus α
µ is of the

form:

αµ = µ−1α−1 + α0 + µ1α1

where αj
∗ = α−j. Therefore we can see the Maurer-Cartan form αµ almost has the form in

(4.4.1). In fact, denoting F+0 =

(
a 0
0 a−1

)
and F+1 =

(
0 b
c 0

)
, straightforward computations

show

α−1 =

(
0 −a−2p

a2Qp−1 0

)
dz,

α0 =

(
∂ log adz + ∂ log adz̄ 0

0 −∂ log adz − ∂ log adz̄

)
.

Consequently, a proper choice of k ∈ U′
1 and the change of coordinates induce the form same

to (4.4.1). This completes the proof. □
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4.7. Examples of timelike minimal surfaces. In [26], S.-P. Kobayashi and the author
gave some basic examples of Weierstrass-type representation of timelike minimal surfaces.
In this subsection, we introduce them with their para-holomorphic data, that is, normalized
potentials. In particular, the B-scroll type minimal surfaces given in this subsection will be
looked into in the next section.

Example 4.7.1 (Horizontal umbrella). The timelike minimal surfaces given by the following
normalized potential have the Abresch-Rosenberg differential which vanishes anywhere.

ξ = µ−1

(
0 −i′
0 0

)
dz.

The solution of the equation dF− = F−ξ with the initial condition F−(z = 0) = id is given
by

F− =

(
1 −i′µ−1z
0 1

)
.

The Λ′SU′
1,1σ-valued map F µ derived from the Iwasawa decomposition of F− is computed as

F µ =
1

(1 + zz̄)1/2

(
1 −i′µ−1z
i′µz̄ 1

)
.

The map F µ is defined on a simply connected domain D̃ = {z ∈ C′|zz̄ > −1}. By the Sym
formulas in Theorem 4.5.2 and Theorem 4.5.4 we obtain a timelike surface fL3

(+,−,+)
in L3

(+,−,+)

of constant mean curvature 1/2 and a timelike minimal surface fµ in Nil3

fL3
(+,−,+)

=

(
2(µ−1z + µz̄)

1 + zz̄
,
2i′(µ−1z − µz̄)

1 + zz̄
,
3zz̄ − 1

1 + zz̄

)
,

fµ =

(
2i′(µ−1z − µz̄)

1 + zz̄
,
2(µ−1z + µz̄)

1 + zz̄
, 0

)
.

A straightforward computation shows the first fundamental form Iµ of fµ is

Iµ = 16
(1− zz̄)2

(1 + zz̄)4
dzdz̄.

In general, horizontal umbrellas can be represented as graphs of functions in the form of
F (x1, x2) = ax1 + bx2 + c for a, b, c ∈ R, and have the non-constant Gaussian curvature K:

K =
2(−(a+ 1

2
x2)

2 + (b− 1
2
x1)

2 + 1) + 1

4(−(a+ 1
2
x2)2 + (b− 1

2
x1)2 + 1)2

.

Example 4.7.2 (Hyperbolic paraboloids corresponding to circular cylinders). We take a
normalized potential of the form

ξ = µ−1

(
0 − i′

4
i′

4
0

)
dz.

The solution of the equation dF− = F−ξ with the initial condition F−(z = 0) = id is given
by

F− =

(
cos µ−1z

4
−i′ sin µ−1z

4

i′ sin µ−1

4
cos µ−1z

4

)
.
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Then we obtain an extended frame F µ by applying the Iwasawa decomposition to F−:

F µ =

(
cos µ−1z+µz̄

4
−i′ sin µ−1z+µz̄

4

i′ sin µ−1z+µz̄
4

cos µ−1z+µz̄
4

)
.

The corresponding surfaces fL3
(+,−,+)

and fµ in L3
(+,−,+) and Nil3, respectively, are computed

as

fL3 =

(
sin

µ−1z + µz̄

2
, i′
µ−1z − µz̄

2
,− cos

µ−1z + µz̄

2

)
,

fµ =

(
i′
µ−1z − µz̄

2
, sin

µ−1z + µz̄

2
, i′
µ−1z − µz̄

4
sin

µ−1z + µz̄

2

)
.

The surface fL3
(+,−,+)

is known as a circular cylinder. Moreover the surface fµ describes a

part of hyperbolic paraboloid x3 = x1x2/2 for each µ. The first fundamental form Iµ of fµ

is

Iµ = cos2
(
µ−1z + µz̄

2

)
dzdz̄.

Thus fµ is not defined entirely. The support function h and the Abresch-Rosenberg differ-
ential Qdz2 are given by h = 1 and Q = µ−2/16.

Example 4.7.3 (Hyperbolic paraboloids corresponding to hyperbolic cylinders). In [17],
we can see the hyperbolic cylinders in L3

(+,−,+) are obtained from the following normalized
potential ξ:

ξ = µ−1

(
0 − i′

4

− i′

4
0

)
dz.

The timelike minimal surface constructed from the same potential describes a hyperbolic
paraboloid x3 = −x1x2/2 as follows:

The solution F− of the equation dF− = F−ξ with the initial condition F−(z = 0) = id is
given by

F− =

(
cosh µ−1z

4
−i′ sinh µ−1z

4

−i′ sinh µ−1z
4

cosh µ−1z
4

)
.

Then an extended frame F µ is obtained as the factor of Iwasawa decomposition of F−:

F µ =

(
cosh −µ−1z+µz̄

4
i′ sinh −µ−1z+µz̄

4

i′ sinh −µ−1z+µz̄
4

cosh −µ−1z+µz̄
4

)
.

Therefore the surfaces fL3
(+,−,+)

and fµ are computed as

fL3 =

(
µ−1z + µz̄

2
,− sinh i′

−µ−1z + µz̄

2
,− cosh

−µ−1z + µz̄

2

)
,

fµ =

(
− sinh i′

−µ−1z + µz̄

2
,
µ−1z + µz̄

2
,
µ−1z + µz̄

4
sinh i′

−µ−1z + µz̄

2

)
.
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Since the first fundamental form Iµ of fµ is Iµ =
(
cosh i′

2
(−µ−1z + µz̄)

)2
dzdz̄, each surface

fµ can be defined entirely on C′ in contrast to Example 4.7.2. The support function h and
the Abresch-Rosenberg differential Qdz2 are h = 1 and Qdz2 = −µ−2/16dz2.

Example 4.7.4 (B-scroll type minimal surfaces). We will construct B-scrolls in L3
(+,−,+)

which is first introduced by L. Graves [22] and the corresponding surfaces in Nil3, which we
will call B-scroll type minimal surfaces.

Let γ be a null curve in L3
(+,−,+) defined on an open interval. Then by proper reparametriza-

tion, there exist a frame (A,B,C) along γ and functions kj on the interval for j = 1, 2 such
that

A =
dγ

ds
, ⟨A,B⟩ = ⟨C,C⟩ = 1,

⟨A,A⟩ = ⟨B,B⟩ = ⟨A,C⟩ = ⟨B,C⟩ = 0,

d

ds
(A,B,C) = (A,B,C)

 0 0 −k2
0 0 −k1
k1 k2 0

 .

Such a frame is called null Frenet frame of γ. We would like to note that a null Frenet frame
is not unique for a null curve in L3

(+,−,+). The surface f(s, t) defined from a null curve γ with

a null Frenet frame (A,B,C) by

f(s, t) = γ(s) + tB(s)

is called a B-scroll. The mean curvature of a B-scroll is given by k2.

Definition 4.7.5. A non-vertical timelike minimal surface is said to be B-scroll type if it
induces a B-scroll.

The following normalized potential ξ gives a B-scroll of constant mean curvature 1/2:

ξ = µ−1

(
0 − i′

4

−S(z)ℓ̄ 0

)
dz,

where S(z) is a para-holomorphic function. The equation

(4.7.1) dF− = F−ξ, F−(z = 0) = id

can not be solved explicitly. But we can understand partially as follows: Because of the
para-holomorphicity, the function S(z) can be decomposed as

S(z) = Q(s)ℓ+R(t)ℓ̄

with s = x + y and t = x − y for the para-complex coordinate system z = x + i′y where
Q and R are defined by Q = ReS + ImS and R = ReS − ImS. Moreover the normalized
potential ξ can be splitted as

ξ = ξsℓ+ ξt
∗
ℓ̄
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where

ξs = λ−1

(
0 −1

4
0 0

)
ds, ξt = λ

(
0 −R(t)
1
4

0

)
dt,

ξt
∗
= −Ad

((
1 0
0 −1

))(
ξt
(
1

µ̄

))⊤

.

Therefore the solution F− of (4.7.1) is obtained by F− = F sℓ+F t∗ℓ̄ where F s, F t ∈ ΛSL2Rσ

are the solutions of the equations

dF s = F sξs, dF t = F tξt F s(0) = F t(0) = id .

Here F t∗ = Ad

((
1 0
0 −1

))
F t(1/µ̄)

⊤−1
. Although the solution F s is explicitly integrated

as

F s =

(
1 −1

4
λ−1s

0 1

)
,

we can not compute F t explicitly. By the Iwasawa decomposition (F s, F t) = (F̂ , F̂ )(V̂+, V̂−)
in the last equation of (4.6.5), we can compute

F− = F sℓ+ F t∗ℓ̄ = (F̂ ℓ+ F̂ ∗ℓ̄)(V̂+ℓ+ V̂ ∗
− ℓ̄).

Then by setting

F t = id
∑
k≥1

λk
(
ak bk
ck dk

)
where a2k+1 = d2k+1 = b2k = c2k = 0 for all k ≥ 1, we can compute F̂ .

Proposition 4.7.6. The map F̂ can be computed as follows:

F̂ = F tV, V =

((
1 + 1

4
sc1
)−1 −1

4
λ−1s

0 1 + 1
4
sc1

)
.

Proof. Since F̂ = F s(V̂+)
−1 = F t(V̂−)

−1 holds, we have

(F s)−1F t = (V̂+)
−1V̂−.

This is exactly the Birkhoff decomposition of the left hand side. By multiplying V on
(F s)−1F t by right, we have

(F s)−1F tV =

(
1 1

4
λ−1s

0 1

)(
id+

∑
k≥1

λk
(
ak bk
ck dk

))
V

=

{(
1 + 1

4
sc1

1
4
λ−1s

0 1

)
+O(λ)

}( 1
1+ 1

4
sc1

−1
4
λ−1s

0 1 + 1
4
sc1

)
= id+O(λ).

Therefore (F s)−1F tV takes values in Λ+
∗ SL2Rσ. Hence the Birkhoff decomposition of (F s)−1F t

is given by (F s)−1F t = (id+O(λ))V −1. The uniqueness of the Birkhoff decomposition im-

plies V̂− = V −1. This completes the proof. □
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Since the uniqueness of the Iwasawa decomposition implies F µ = F̂ ℓ+ F̂ ∗ℓ̄, we can obtain
the representation of B-scrolls by the Sym-Bobenko formula:

fL3
(+,−,+)

= {γ(t) + q(s, t)B(t)} ℓ+ {γ(t) + q(s, t)B(t)}∗ ℓ̄

where

γ(t) = −i′µ(∂µF t)(F t)−1 − i′

2
Ad(F t)

(
1 0
0 −1

)
,

B(t) = −i′µAd(F t)

(
0 1
0 0

)
,

q(s, t) =
s

2(1 + 1
16
st)

.

Furthermore the timelike minimal surface fµ corresponding to fL3
(+,−,+)

is computed as

fµ = exp(f̂µ), f̂µ =
{
γ̂(t) + q(s, t)B̂(t)

}
ℓ+

{
γ̂(t) + q(s, t)B̂(t)

}∗
ℓ̄,

where

γ̂(t) = γ(t)o − i′

2
µ∂µγ(t)

d, B̂(t) = B(t)o − i′

2
µ∂µB(t)d.

A direct computation shows that exp(γ̂(t)ℓ+ γ̂(t)∗ℓ̄) is a null curve in Nil3 and B̂(t)ℓ+B̂(t)∗ℓ̄
defines a null vector at each point of the curve γ̂.

By starting from B-scrolls and using the relation between timelike surfaces in L3
(+,−,+) of

constant mean curvature 1/2 and timelike minimal surfaces in Nil3 mentioned in subsection
4.5, we can construct B-scroll type minimal surfaces explicitly as follows:

Let γ be a null curve in L3
(+,−,+) with γ(0) = (0, 0, 0) and (A,B,C) be a null Frenet

frame along γ with k2 = 1/2. We consider the B-scroll Φ(s, t) = γ(s) + tB(s). A conformal
coordinate system z = ℓx+ ℓ̄y can be given by

s = x, t =
1

x/8 + 1/y
.

Then the derivative ∂Φ = (ϕ2, ϕ1, i
′ϕ3) is computed as

ϕ1 = ℓ

(
A1(s) + tB1′(s)− t2

8
B1(s)

)
+ ℓ̄

t2

y2
B1,

ϕ2 = ℓ

(
A2(s) + tB2′(s)− t2

8
B2(s)

)
+ ℓ̄

t2

y2
B2,

ϕ3 = ℓ

(
A3(s) + tB3′(s)− t2

8
B3(s)

)
− ℓ̄ t

2

y2
B3.

Here A = (A2, A1, A3) and B = (B2, B1, B3).

Lemma 4.7.7.

(4.7.2) 2Re

(
(ϕ1, ϕ2, ϕ3 −

ϕ1

2

∫ z

0

Re(ϕ2dz) +
ϕ2

2

∫ z

0

Re(ϕ1dz))dz

)
is a closed form.
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Proof. The exterior derivative of (4.7.2) can be computed as

(0, 0, 2∂ϕ3 + ϕ1ϕ2 − ϕ2ϕ1)dz ∧ dz̄.
Then the above 2-form vanishes by using the structure equations of Φ. □

Lemma 4.7.7 and the Stokes’ theorem imply that the map

f(z, z̄) = (f1, f2, f3) =

∫ z

0

Re

(
(ϕ1, ϕ2, ϕ3 −

ϕ1

2

∫ z

0

Re(ϕ2dz) +
ϕ2

2

∫ z

0

Re(ϕ1dz))dz

)
is well-defined. f1 and f2 are obviously given by

f1 =

∫ z

0

Re(ϕ1dz) = γ1(s) + tB1(s), f2 =

∫ z

0

Re(ϕ2dz) = γ2(s) + tB2(s).

Let us represent f3 =
∫ z

0
Re
(
(ϕ3 − ϕ1

2
f2 +

ϕ2

2
f1)dz

)
in terms of the coordinate system (s, t).

By Lemma 4.7.7, the following paths Γs and Γt can be chosen as the integral path from 0 to
z = ℓs+ ℓ̄1/(−s/8 + 1/t):

Γs : z(s̃) = ℓs̃, 0 ≤ s̃ ≤ s,

Γt : z(t̃) = ℓs+ ℓ̄
1

−s/8 + 1/t̃
, 0 ≤ t̃ ≤ t.

Therefore f3 can be represented as

f3(z, z̄) = γ3(s) +

∫ s

0

(
−γ2

2
A1 +

γ1
2
A2
)
ds+ t

(
−B3(s)− γ2(s)

2
B1(s) +

γ1(s)

2
B2(s)

)
.

Defining maps γ̃ and f by

γ̃ = (γ1, γ2, γ3 +

∫ s

0

(
−γ2

2
A1 +

γ1
2
A2
)
ds),

f = (f1, f2, f3)

as a curve and a map into Nil3, respectively, we can obtain a timelike minimal surface

f(z, z̄) = γ̃(s) · exp(t(B1e1 +B2e2 −B3e3))

which induces the B-scroll Φ.
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5. Null scrolls in Lorentzian Heisenberg group

In the previous section, we constructed timelike minimal surfaces in Lorentzian Heisenberg
group Nil3. In this section, we focus on the surfaces that have the Abresch-Rosenberg
differential Qdz2 satisfying QQ = 0. When the Abresch-Rosenberg differential satisfies
QQ = 0, the first equation of the conditions (4.2.3) becomes a hyperbolic-type Liouville
equation. The exact solutions of Liouville equations are well-studied in [6, 12, 14, 35, 44].
In the previous section, we called these surfaces B-scroll type minimal surfaces.

5.1. Non-uniqueness of timelike minimal surfaces for (w,Q). Timelike surfaces are
obtained from the support function and the Abresch-Rosenberg differential, which derive a
solution (w,Q) for the compatibility condition (4.2.3) of minimal surfaces and the Weierstrass
data. It is remarkable that for a solution (w,Q) of (4.2.3), the uniqueness of the timelike
minimal surfaces may not hold.

Theorem 5.1.1. Let f1 and f2 be timelike minimal surfaces, and hk and Qkdz
2 the support

functions and the Abresch-Rosenberg differentials of fk for k = 1, 2. If h1 = ±h2 and
Q1 = Q2 hold, then the derivatives f1

−1∂f1 =
∑
ϕj
1ej and f2

−2∂f2 =
∑
ϕj
2ej are related in

(5.1.1) (ϕ2
2, ϕ

1
2, i

′ϕ3
2) = (ϕ2

1, ϕ
1
1, i

′ϕ3
1)F0

for some matrix element F0 of the following matrix group: X ∈M3R

∣∣∣∣∣∣ X⊤

1 0 0
0 −1 0
0 0 1

X =

1 0 0
0 −1 0
0 0 1

 , detX = 1

 .

Conversely, if f1 and f2 satisfy (5.1.1), then h1 = ±h2 and Q1 = Q2 hold.

Proof. Let f1 and f2 be timelike minimal surfaces in Nil3 with the same support function
h and the same Abresch-Rosenberg differential Qdz2. Then the constant mean curvature
1/2 surfaces fL3

(+,−,+)
,1 and fL3

(+,−,+)
,2 induced from f1 and f2 have the same metric h2dzdz̄

and the same Hopf differential 4Qdz2 according to the previous section. The fundamental
theorem of timelike surfaces in L3 shows that there exists a orientation preserving isometry
Ψ : L3

(+,−,+) → L3
(+,−,+) of L3

(+,−,+) such that fL3
(+,−,+)

,2 = Ψ ◦ fL3
(+,−,+)

,1. This implies that

(5.1.2) (ϕ2
2, ϕ

1
2, i

′ϕ3
2) = (ϕ2

1, ϕ
1
1, i

′ϕ3
1)F0

holds for some element F0 of the Lorentz group: X ∈M3R

∣∣∣∣∣∣ X⊤

1 0 0
0 −1 0
0 0 1

X =

1 0 0
0 −1 0
0 0 1

 , detX = 1

 .

Conversely we assume that timelike minimal surfaces fj with hj, Qj for j = 1, 2 satisfy the
condition (5.1.2). Then the induced surfaces fL3

(+,−,+)
,j for j = 1, 2 in L3 are same up to

orientation preserving isometries. Therefore constant mean curvature 1/2 surfaces fL3
(+,−,+)

,j

have the same first fundamental form and the same Hopf differential. The relation mentioned
in the previous section between timelike minimal surfaces in Nil3 and timelike constant mean
curvature 1/2 surfaces in L3 shows h̃ = ±h and Q̃ = Q. □
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5.2. Null scrolls and their minimality conditions. In this subsection, we introduce
the null scrolls in Nil3 and probe their minimality conditions. They are considered as an
generalization of ruled surfaces over null curves with null director curves in the Minkowski
space, what is called, null scrolls. Minimal null scrolls in Nil3 will be characterized with the
timelike minimal surfaces with QQ = 0 in the next subsection.

Let γ be a null curve in Nil3 defined on an open interval. We denote the velocity of γ by
A. Namely, we define the nil3-valued vector field A by A =

∑3
i=1A

iei = γ−1 dγ
ds
. Here the

notation γ−1 denotes the left translation from Tγ(·)Nil3 to nil3. Moreover, for an arbitrary

nil3-valued vector field X(s) =
∑3

j=1X
j(s)ej defined on an open interval, we denote the

derivative (not covariant derivative) of X by X ′, that is, X ′(s) =
∑3

j=1X
j ′(s)ej. Here

the notation ′ denotes the derivation with respect to the parameter s. Furthermore in this
section, for a surface f(s, t) the derivatives with respect to s and t will be denoted by fs and
ft, respectively. We will denote the partial differentials with respect to s and t by ∂s and ∂t.

Definition 5.2.1 ([27]). A timelike surface f into Nil3 is said to be a null scroll if there

exist a null curve γ = γ(s) in Nil3 and a curve B̃ = B̃(s) which takes values in the light cone
in nil3 such that f can be represented as

(5.2.1) f(s, t) = γ(s) · exp(tB̃(s)).

Here, exp : nil3 → Nil3 is the exponential map of Lie group Nil3. Moreover, we call the curve

γ a base curve and B̃ a ruling of a null scroll f .

Remark 5.2.2. (1) We use only the structure of a Lie group to define the map of
the form (5.2.1). Thus we can define the surfaces of the form (5.2.1) in arbitrary
Lie groups. Moreover, they can be considered as a natural generalization of ruled
surfaces. In fact, in semi-Euclidean spaces, the exponential map is the identity map
and the group structure is given by the usual sum. Then the maps defined in the
form (5.2.1) are ruled surfaces. Moreover, in Lie groups endowed with bi-invariant
metrics, the exponential maps define geodesics, and then the maps of the form (5.2.1)
become ruled surfaces.

(2) By the computations in Example 4.7.4, B-scroll type minimal surface is an example
of null scrolls.

Let f(s, t) = γ(s) ·exp(tB̃(s)) be a null scroll and A be the velocity of γ. Moreover expand

B̃ =
∑3

j=1B
jej. The derivatives of f with respect to s and t are computed as

f−1fs =(A1 + tB1′)e1 + (A2 + tB2′)e2

+

(
A3 + t(B3′ + A1B2 − A2B1) +

t2

2
(B2B1′ −B1B2′)

)
e3,

f−1ft =B
1e1 +B2e2 +B3e3.

Therefore the first fundamental form I of f is given by

I = g11ds
2 + 2g12dsdt
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where the coefficients gij are computed as

g11 =g+(fs, fs)

=t
(
2g+(A, B̃

′) + 2(A1B2 − A2B1)A3
)

+ t2
(
g+(B̃

′, B̃′) + 2(A1B2 − A2B1)B3′ + (A1B2 − A2B1)2 + (B2B1′ −B1B2′)A3
)

+ t3(B2B1′ −B1B2′)(B3′ + A1B2 − A2B1)

+ t4
1

4
(B2B1′ −B1B2′)2,

g12 =g+(fs, ft)

=g+(A, B̃) + t(A1B2 − A2B1)B3 + t2
1

2
(B2B1′ −B1B2′)B3,

g22 =g+(ft, ft) = 0.

Hence it is obvious that the first fundamental form of a null scroll degenerates if and only if
the coefficient g12 of (1, 1)-part vanishes.

Since g22 vanishes, the mean curvature H of a null scroll is given by

H = −g11h22 − 2g12h12
2g122

where the functions hij are the coefficients of (i, j)-part of the second fundamental form
II = h11ds

2 + 2h12dsdt+ h22dt
2. In particular, we know that a null scroll is minimal if and

only if it follows the equation:

(5.2.2) g11g+(∇∂tft, fs × ft)− 2g12g+(∇∂sft, fs × ft) = 0.

Straightforward computations show

f−1∇∂tft = −B2B3e1 −B1B3e2,

f−1fs × ft =
((

A3 + t(B3′ + A1B2 − A2B1) +
t2

2
(B2B1′ −B1B2′)

)
B2 − (A2 + tB2′)B3

)
e1

+

((
A3 + t(B3′ + A1B2 − A2B1) +

t2

2
(B2B1′ −B1B2′)

)
B1 − (A1 + tB1′)B3

)
e2

+
(
(A1 + tB1′)B2 − (A2 + tB2′)B1

)
e3,

and then we obtain

g+(∇∂tft, fs × ft) = −g12(B3)2.

Thus, the minimality condition (5.2.2) can be represented as

(5.2.3) g11(B
3)2 + 2g+(∇∂sft, fs × ft) = 0
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since g12 vanishes nowhere. The covariant derivative of ft with respect to ∂s is calculated as

f−1∇∂sft

=

(
B1′ − 1

2

(
A3 + t(B3′ + A1B2 − A2B1) +

t2

2
(B2B1′ −B1B2′)

)
B2 − 1

2
(A2 + tB2′)B3

)
e1

+

(
B2′ − 1

2

(
A3 + t(B3′ + A1B2 − A2B1) +

t2

2
(B2B1′ −B1B2′)

)
B1 − 1

2
(A1 + tB1′)B3

)
e2

+

(
B3′ +

1

2
(A1 + tB1′)B2 − 1

2
(A2 + tB2′)B1

)
e3.

Therefore we have

g+(∇∂sft, fs × ft) =g+(A, B̃ × B̃′) +
1

2
g+(A, B̃)g+(A,B)

+ t

−(A1B2 − A2B1)
(
A3(B3)2 + (B2B1′ −B1B2′)

)
+1

2
g+(A, B̃)(−B1B1′ +B2B2′ −B3B3′)



+ t2


−1

2
(B2B1′ −B1B2′)

(
A3(B3)2 + (B2B1′ −B1B2′)

)
−(A1B2 − A2B1)B3′(B3)2

−1
2
(A1B2 − A2B1)2(B3)2


+ t3

−1
2
(A1B2 − A2B1)(B2B1′ −B1B2′)(B3)2

−1
2
(B2B1′ −B1B2′)B3′(B3)2


+ t4

(
−1

8

)
(B2B1′ −B1B2′)(B3)2.

Hence the minimality condition of null scrolls (5.2.3) can be converted into the equations of
coefficients for tk, k = 0, 1, 2, 3, 4.

Lemma 5.2.3. For any curve B̃ =
∑3

j=1B
jej which takes values in the light cone in nil3,

there uniquely exists a function β : I → R such that B̃ × B̃′ = −βB̃. Then it follows that

g+(B̃
′, B̃′) = β2.

Proof. A direct computation shows B̃×B̃′ takes values in the light cone in nil3 and has the

product 0 with B̃ with respect to g+ at each point. This implies the existence and uniqueness

of a function β : I → R such that B̃ × B̃′ = −βB̃. Since the derivation of B̃ × B̃′ = −βB̃
derives the following equation:

−βB̃′ = β′B̃ + B̃ × B̃′′.
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Therefore we obtain

β2g+(B̃
′, B̃′) = g+(β

′B̃ + B̃ × B̃′′, β′B̃ + B̃ × B̃′′)

= g+(B̃ × B̃′′, B̃ × B̃′′)

= g+(B̃, B̃
′′)2

= g+(B̃
′, B̃′)2.

Hence the equation g+(B̃
′, B̃′) = β2 holds. □

Theorem 5.2.4. Let γ be a null curve in Nil3, B̃ =
∑3

i=1B
iei be a curve taking values

in the light cone in nil3 and γ(s) · exp(tB̃(s)) be a null scroll. Then the following statements
are equivalent.

(1) The null scroll γ(s) · exp(tB̃(s)) has the mean curvature 0.

(2) g+(A, B̃) = 0 or g+(A,B) = 2β holds.

Here, the vector field B is given by B = B1e1 + B2e2 − B3e3 and the function β is defined

for B̃ in Lemma 5.2.3.

Proof. The coefficient of t0 for g11(B
3)2 + 2g+(∇∂sft, fs × ft) is given by

(5.2.4) 2g+(A, B̃ × B̃′) + g+(A, B̃)g+(A,B).

By Lemma 5.2.3, (5.2.4) is rewritten into

g+(A, B̃)(g+(A,B)− 2β),

and then the minimality condition (5.2.3) derives

g+(A, B̃) = 0 or g+(A,B) = 2β.

It is easy to see that the coefficient functions of t3 and t4 for g11(B
3)2 + 2g+(∇∂sft, fs × ft)

always vanish. Let us prove that the coefficient function of t2 equals identically to zero. The
coefficient of t2 in g11(B

3)2 + 2g+(∇∂sft, fs × ft) is computed as

(5.2.5) g+(B̃
′, B̃′)(B3)2 − (B2B1′ −B1B2′)2.

It is straightforward that the coefficient (5.2.5) of t2 vanishes by using Lemma 5.2.3.

Next, we show that the coefficient of t vanishes when g+(A, B̃) = 0 or g+(A,B) = 2β holds.

When g+(A, B̃) = 0, that is, the velocity and the ruling are linearly dependent at each point,
we have

A1B2 − A2B1 = 0 and g+(A, B̃
′) = 0.

Then it can be seen that the coefficient of t in g11(B
3)2 + 2g+(∇∂sft, fs × ft),

(5.2.6)

g+(A, B̃)(−B1B1′ +B2B2′ −B3B3′)− 2(A1B2 −A2B1)(B2B1′ −B1B2′) + 2g+(A, B̃
′)(B3)2

vanishes. Finally, assume that g+(A,B) = 2β holds. If β = 0, B and B′ are linearly
dependent at each point. Therefore it is easy to see that the coefficient (5.2.6) of t vanishes.
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Considering the case of β ̸= 0, since A× B̃ can be represented as

A× B̃ =
g+(A, B̃

′)

β
B̃ − g+(A, B̃)

β
B̃′,

we have

A1B2 − A2B1 =
g+(A, B̃

′)

β
B3 − g+(A, B̃)

β
B3′.

Thus a simple computation shows (5.2.6) vanishes. □

5.3. Null frames for null curves in Nil3. By the computations of B-scroll type minimal
surfaces in the previous section, the curve theory in the Minkowski space is useful to inves-
tigate null scrolls in Nil3. We give a frame along a null curve in Nil3, which we call a null
frame. In Minkowski space, it is known as a null Frenet frame or Cartan frame [3, 8].

Let γ be a null curve in Nil3 and denote the bundle along γ consisting of the vectors which
have product 0 with dγ

ds
by T⊥γ, that is,

T⊥
γ(s)γ =

{
v ∈ Tγ(s)Nil3

∣∣∣∣ g+(v, dγds (s)
)

= 0

}
.

It is obvious that the subspace T⊥
γ(s)γ is a 2-dimensional and includes Tγ(s)γ. Thus the bundle

T⊥γ can be decomposed into

T⊥γ = Tγ ⊕ S(T⊥γ)

for some spacelike line bundle S(T⊥γ), called a screen bundle of γ (see [19]). Therefore when
we take a screen bundle of γ, the bundle Tγ can be decomposed orthogonally:

TγNil3 =
(
S(T⊥γ)

)⊥ ⊕orthogonal S(T⊥γ).

Here, clearly, the plane bundle
(
S(T⊥γ)

)⊥
includes the tangent vector dγ

ds
and gives Lorentzian

plane at each point of γ. Therefore the existence of the nil3-valued vector field B satisfying
the condition g+(A,B) = 1 is guaranteed by the following lemma.

Lemma 5.3.1 ([19]). Let ⟨ , ⟩ denote the Lorentzian metric in Minkowski 3-space L3.
Moreover, fix a null vector v ∈ L3. For each 2-dimensional Lorentzian vector subspace
W ⊂ L3 which includes v, there exists a unique null vector w ∈ W which satisfies ⟨v, w⟩ = 1.

Defining a spacelike vector field C along γ as C := A×B, we obtain the following propo-
sition.

Proposition 5.3.2. Every null curve γ(s) has a frame (A,B,C) and real-valued functions
ki (i = 0, 1, 2) satisfying the following conditions:

A = γ−1dγ

ds
, g+(A,B) = g+(C,C) = 1,

g+(A,A) = g+(B,B) = g+(A,C) = g+(B,C) = 0,

(A′,B′, C ′) = (A,B,C)

k0 0 −k2
0 −k0 −k1
k1 k2 0

 .

(5.3.1)
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Proof. For a null curve γ, take a frame (A,B,C) as discussed above. Then it is sufficient
to show the frame (A,B,C) satisfies the last condition. Let us denote A′, B′, and C ′ as

A′ = aAA+ bAB + cAC, B′ = aBA+ bBB + cBC,

and

C ′ = aCA+ bCB + cCC.

Clearly, we have bA = 0, aB = 0, and cC = 0 since g+(A,A), g+(B,B), and g+(C,C) are
constant. Moreover, since g+(A,B), g+(A,C), and g+(B,C) are constant, we have

aA = g+(A
′, B) =

d

ds
g+(A,B)− g+(A,B′) = −g+(A,B′) = −bB,

cA = g+(A
′, C) =

d

ds
g+(A,C)− g+(A,C ′) = −g+(A,C ′) = −bC ,

cB = g+(B
′, C) =

d

ds
g+(B,C)− g+(B,C ′) = −g+(B,C ′) = −aC .

Therefore we obtain the last condition of the proposition by putting kj as k0 = aA = −bB,
k1 = cA = −bC , and k2 = cB = −aC . □

Remark 5.3.3. We can assume k0 = 0 from the beginning, if necessary, by reparametrizing
the curve [3]. In the curve theory in Minkowski space, such a parameter is known as the
distinguished parameter. Because we took the vector field B for a fixed screen bundle, the
frame (A,B,C) depends on the choice of a screen bundle. Hence another choice of a screen
bundle gives a change in kj.

Definition 5.3.4. We call a frame (A,B,C) given by Proposition 5.3.2 with k0 = 0 a null
frame for a null curve γ and the functions k1 and k2 the first curvature and second curvature
of γ with respect to (A,B,C).

Theorem 5.3.5. For any real-valued functions k1 and k2, there exists a null curve γ in
Nil3 which has kj (j = 1, 2) as the first and second curvature with respect to some null frame.

Proof. Let O(2, 1) denote the Lorentz group,

O(2, 1) =

 X ∈M3R

∣∣∣∣∣∣ X⊤

−1 0 0
0 1 0
0 0 1

X =

−1 0 0
0 1 0
0 0 1

 .

Moreover, define a matrix F0 by

F0 =

−1/√2 1/
√
2 0

1/
√
2 1/

√
2 0

0 0 1

 .

It is straightforward that for an arbitrary null frame (A,B,C) along a null curve in Nil3,
there exists a unique O(2, 1)-valued map X such that (A,B,C) = XF0. Conversely, the map
XF0 satisfies the conditions (5.3.1) with k0 = 0 for every O(2, 1)-valued map X. Therefore
it is sufficient to prove the proposition with the following initial condition:

(5.3.2) γ(0) = (0, 0, 0), (A(0), B(0), C(0)) = F0.
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For any basis (
∑3

j=1A
jej,

∑3
j=1B

jej,
∑3

j=1C
jej) of nil3 which satisfies the null frame

condition (5.3.1) with k0 = 0, we consider the matrixA1 B1 C1

A2 B2 C2

A3 B3 C3


and denote it as (A,B,C). Moreover, we identify the basis (

∑3
j=1A

jej,
∑3

j=1B
jej,

∑3
j=1C

jej)

and the matrix (A,B,C). First, take the solution of the following system of ordinary differ-
ential equations with the initial condition (5.3.2):
(5.3.3)

d

ds

A1

A2

A3

 = k1

C1

C2

C3

 ,
d

ds

B1

B2

B3

 = k2

C1

C2

C3

 ,
d

ds

C1

C2

C3

 = −k2

A1

A2

A3

− k1
B1

B2

B3

 .

Then we should prove that the solution (A,B,C) satisfies the conditions (5.3.1). By a direct
calculation using (5.3.3), we obtain

d

ds

(
AiBj + AjBi + CiCj

)
= 0.

Thus by substituting s = 0, we get

AiBj + AjBi + CiCj =

−1 (i = j = 1)
1 (i = j ̸= 1)
0 (i ̸= j)

.

Since the triplet {V1, V2, V3} where Vj are defined by

V1 :=
1√
2
(B − A), V2 :=

1√
2
(B + A), V3 := C

becomes an orthonormal basis of nil3 at each point s, the solution (A,B,C) satisfies the
conditions (5.3.1). Furthermore, the null curve γ = (γ1, γ2, γ3) which has the null frame
(A,B,C) is given by

γ1 =

∫ s

0

A1ds, γ2 =

∫ s

0

A2ds, γ3 =

∫ s

0

(A3 − 1

2
γ2A1 +

1

2
A2γ1)ds.

□

From the discussion about the relation between B-scrolls and B-scroll type minimal sur-
faces in Example 4.7.4, we obtain minimal null scrolls from an arbitrary function.

Theorem 5.3.6. For a null curve γ in Nil3 with a null frame (A,B,C), let f : D→ Nil3
be a null scroll over γ with the ruling B̃ =

∑3
j=1B

jej where B = B1e1 + B2e2 − B3e3, that
is,

f(s, t) = γ(s) · exp(tB̃(s)).

If the second curvature of γ with respect to the null frame (A,B,C) is 1/2, then the null
scroll f is minimal.
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Proof. Since the vector field B satisfies the condition (5.3.1) with k0 = 0, we have β = k2
where β is defined in Lemma 5.2.3. Then assuming k2 = 1/2 derives 2β = 1 = g+(A,B).
Thus Theorem 5.2.4 implies f is minimal. □

By Theorem 5.3.5 and Theorem 5.3.6 we obtain the following corollary immediately.

Corollary 5.3.7. For an arbitrary real valued function k1, there exists a minimal null
scroll such that the base curve has the first curvature k1 with respect to some null frame.

In general, an another coordinate system (x, y) for a null scroll γ(s) · exp(tB̃(s)) is a null
coordinate system if and only if the either of following two conditions holds:

sx = 0 and g11sy + 2g12ty = 0,

sy = 0 and g11sx + 2g12tx = 0.(5.3.4)

Here the subscripts x and y denote the partial differentials with respect to x and y, re-
spectively. The following lemma clarifies the conditions for null coordinate systems (and
conformal coordinate systems) of minimal null scrolls constructed in Theorem 5.3.6.

Lemma 5.3.8. Let f(s, t) = γ(s) · exp
(
tB̃(s)

)
be a minimal null scroll constructed in

Theorem 5.3.6, and (x, y) be a null coordinate system for f satisfying the condition (5.3.4).
Then coordinate systems (s, t) and (x, y) satisfy the following relation:

s(x) = 8p(x), t(x, y) =
1

p(x) + q(y)

where one variable functions p(x) and q(y) meet the conditions p(x)+q(y) ̸= 0 and pxqy < 0.

Proof. We will compute the support function h and the Abresch-Rosenberg differential
Qdz2 for minimal null scrolls defined in Theorem 5.3.6.

Since the para-complex number ℓ = (1 + i′)/2 has the properties, ℓ2 = ℓ and ℓℓ̄ = 0
a coordinate system z = ℓx + ℓ̄y for a null coordinate (x, y) gives a conformal coordinate
system, and then the first fundamental form I and the unit normal vector field N of a null
scroll f in Theorem 5.3.6 are represented as

I = eudzdz̄ = eudxdy = 2g12sxtydxdy,

N = −i′ ∂f × ∂f
|g+(∂f × ∂f, ∂f × ∂f)|1/2

= −(g12)−1fs × ft.

Thus we have the support function h of f :

h =g+(−eu/2f−1N, e3)

=
√
2|sxty|1/2|g12|−1/2g+(f

−1fs × f−1ft, e3).

Since we have B × B′ = 1
2
B and g+(A,B) = 1, g+(f

−1fs × f−1ft, e3) and g12 are computed
as

g+(f
−1fs × f−1ft, e3) =(A1 + tB1′)B2 − (A2 + tB2′)B1

=A1B2 − A2B1 + t
1

2
B3,
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g12 =g+(A, B̃) + t(A1B2 − A2B1)B3 + t2
1

2
(B2B1′ −B1B2′)B3

=g+(A, B̃)− (A1B2 − A2B1)2 + (A1B2 − A2B1 + t
1

2
B3)2

=g+(A, B̃)− g+(A,B)g+(A, B̃) + (A1B2 − A2B1 + t
1

2
B3)2

=(A1B2 − A2B1 + t
1

2
B3)2.

Hence we obtain

h =
√
2|sxty|1/2|g12|−1/2g+(f

−1fs × f−1ft, e3)

=
√
2ϵ|sxty|1/2

where ϵ ∈ {±1} is the signature of g+(f
−1fs × f−1ft, e3).

To obtain the Abresch-Rosenberg differential, we will calculate ϕ3 = g+(f
−1∂f, e3) and

g+(∇∂fz, N). Since the derivative ∂f of f with respect to z is

f−1∂f =ℓ(sxf
−1fs + txf

−1ft) + ℓ̄(tyf
−1ft)

=
(
ℓ(sx(A

1 + tB1′) + txB
1) + ℓ̄(tyB

1)
)
e1 +

(
ℓ(sx(A

2 + tB2′) + txB
2) + ℓ̄(tyB

2)
)
e2

+
(
ℓ(sxD

3 + txB
3) + ℓ̄(tyB

3)
)
e3,

we have

ϕ3 = ℓ(sxD
3 + txB

3) + ℓ̄(tyB
3)

where D3 is the e3-component of f−1fs:

D3 = g+(f
−1fs, e3) = A3 + t(B3′ + A1B2 − A2B1) + t2

1

2
(B2B1′ −B1B2′).

Besides, a straightforward computation shows

∇∂∂f = ℓ
(
sxxfs + txxft + (sx)

2∇∂sfs + 2sxtx∇∂tfs + (tx)
2∇∂tft

)
+ ℓ̄
(
tyyft + (ty)

2∇∂tft
)
,

and then, by using the conditions (5.2.2), (5.2.3), and (5.3.4), the coefficient of the Hopf
differential can be computed as

g+(∇∂∂f,N) = ℓ
(
(sx)

2h11 − (tx)
2(B3)2

)
+ ℓ̄
(
(ty)

2(B3)2
)
.

Hence the Abresch-Rosenberg differential Qdz2 of f is calculated into

(5.3.5) Q =
ℓ

4

(
−(sx)2h11 − (sx)

2(D3)2 − 2sxtxD
3B3

)
,

and it can be represented by using the frame conditions (5.3.1) with k0 = 0 as,

Q =
ℓ

4
(sx)

2(g12)
−1

(
k1g12 +

t2

8

(
1 + 2A3B3 − (A1B2 − A2B1)2

))
=
ℓ

4
(sx)

2k1.
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It should be noted that in the calculations of the Abresch-Rosenberg differential we don’t
use the frame conditions (5.3.1) with k0 = 0 until (5.3.5). This means that the Abresch-
Rosenberg differential Qdz2 of minimal null scrolls, which are not necessarily defined in
Theorem 5.3.6, satisfies QQ = 0.

Moreover, a solution w of the compatibility conditions (4.2.3) for timelike minimal surfaces
satisfies

ew =
1

16
h2 =

1

8
sxty.

On the other hand, it is known that the exact solution w of the Liouville equation

1

2
wzz̄ + ew = 0

is given in the form of

w = log

(
− pxqy
(p(x) + q(y))2

)
, p(x) + q(y) ̸= 0, pxqy < 0

for arbitrary one variable functions p and q of x and y, respectively. Therefore coordinate
systems (s, t) and (x, y) are in the following relation:

sxty
8

= − pxqy
(p+ q)2

.

Hence we obtain the explicit representation of the null scroll’s coordinate systems (s, t) in
terms of null coordinate systems (x, y) by separating variables

s(x) = 8p(x), t =
1

p(x) + q(y)
.

□

Furthermore, for a minimal null scroll constructed in Theorem 5.3.6, another minimal null
scroll with the same or multiplied by −1 support function and the same Abresch-Rosenberg
differential can be obtained by the following theorem.

Theorem 5.3.9. Let f be a minimal null scroll constructed in Theorem 5.3.6 and F0 be
a matrix satisfying

F⊤
0

1 0 0
0 −1 0
0 0 1

F0 =

1 0 0
0 −1 0
0 0 1

 , detF0 = 1.

Denote the support function and the Abresch-Rosenberg differential of f by h and Qdz2 and
define a timelike minimal surface f̃ so that

(ϕ̃2, ϕ̃1, i′ϕ̃3) = (ϕ2, ϕ1, i′ϕ3)F0

where ϕj and ϕ̃j are given by f−1∂f =
∑
ϕjej and f̃

−1∂f̃ =
∑
ϕ̃jej. Then f̃ has the support

function ±h and the Abresch-Rosenberg differential Qdz2, and it is also a minimal null scroll.

Proof. The proof that the surface f̃ has the support function ±h and the Abresch-
Rosenberg differential Qdz2 is given by Theorem 5.1.1. Moreover, the fact that B-scroll
type minimal surfaces induce B-scrolls shows that f̃ is also a null scroll. □
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From the above discussion, we obtain the characterization of minimal null scrolls.

Theorem 5.3.10. If a null scroll f is minimal, then the Abresch-Rosenberg differential
Qdz2 of f satisfies QQ = 0. Conversely, every timelike minimal surface with QQ = 0 is a
null scroll.

Proof. The first half of the claim is already proved. We prove the latter half. Let f be a
timelike minimal surface of the Abresch-Rosenberg differential Qdz2 with QQ = 0 and let
h denote the support function of f . By Theorem 5.1.1 and Theorem 5.3.9, it is sufficient
to construct a minimal null scroll which has the support function ±h and the Abresch-
Rosenberg differential Qdz2.

For a null scroll γ(s) · exp(tB̃(s)), (A,B,A × B) is not always a frame. It is easy to

check that (A,B,C) for γ(s) · exp(tB̃(s)) is not a frame if and only if A and B are linearly

dependent, that is g+(A,B) = 0. If g+(A,B) = 0, minimal null scroll γ(s) · exp(tB̃(s))
must be a vertical plane (see Proposition 5.4.1 and Example 5.4.4). The Abresch-Rosenberg
differential of the vertical plane is 0. From now on we assume f is not a vertical plane, and
construct minimal null scrolls by using Corollary 5.3.7. The holomorphicity of Q means that
Q can be separated into functions of x and y,

Q = ℓS(x) + ℓ̄T (y)

where z = ℓx + ℓ̄y, and S and T are one variable real functions of x and y, respectively.
Then the condition QQ = 0 implies

S = 0 or T = 0.

We prove only the case of T = 0 for simplicity. The solutions of the compatibility conditions
(4.2.3) for timelike minimal surfaces are given by

w = log

(
− pxqy
(p(x) + q(y))2

)
where p and q are functions of x and y, respectively, such that p(x)+ q(y) ̸= 0 and pxqy < 0.
Then we define functions k1(s) and k2(s) by

(5.3.6) k1(s(x)) =
S(x)

16px2
, k2(s(x)) =

1

2

where the parameter s is defined by s(x) = 8p(x). From Proposition 5.3.5 we can obtain
a null frame (A,B,C) and a null curve γ(s) which has the first and second curvature k1(s)
and k2(s) with respect to (A,B,C). Now, we consider the null scroll

(5.3.7) γ(s(x)) · exp
(

1

p(x) + q(y)
B̃(s(x))

)
.

Here, B̃ =
∑3

i=1B
iei is the curve in nil3 determined from B = B1e1 + B2e2 − B3e3. Di-

rect computations show that for (5.3.7), the Abresch-Rosenberg differential is ℓS(x)dz2 and
the support function can be represented as 4ϵew/2 where ϵ ∈ {±1} is the signature of
g+(f

−1fs × f−1ft, E3). Since the null scroll (5.3.7) has the support function 4ew/2 or −4ew/2

and the same Abresch-Rosenberg differential as f , timelike minimal surface f has to be a
null scroll by Theorem 5.3.9. □
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Figure 3. ([27]) Horizontal umbrella: Timelike minimal surface with the
Abresch-Rosenberg differential vanishing anywhere.

Example 5.3.11. Let us construct timelike minimal surfaces with vanishing Abresch-Rosenberg
differential except for vertical planes. Solve the differential equation (5.3.3) under the con-
dition k1 = 0, k2 = 1/2 and the initial conditions Aj(0) = Aj

0, B
j(0) = Bj

0, and C
j(0) = Cj

0 .
Then the null frame (

∑
Ajej,

∑
Bjej,

∑
Cjej) is given by

Aj(s) = Aj
0, Bj(s) = −s

2

8
Aj

0 +
s

2
Cj

0 +Bj
0, Cj(s) = −s

2
Aj

0 + Cj
0 ,

and the base curve γ is given by γ(s) = (A1
0s, A

2
0s, A

3
0s). Hence the null scroll γ(s)·exp(tB̃(s))

obtained from k1 = 0 and k2 = 1/2 is written explicitly as follows:

(A1
0s, A

2
0s, A

3
0s) · (t(−

s2

8
A1

0 +
s

2
C1

0 +B1
0), t(−

s2

8
A2

0 +
s

2
C2

0 +B2
0), t(

s2

8
A3

0 −
s

2
C3

0 −B3
0))

=

(
(s− s2t

8
)A1

0 + tB1
0 +

st

2
C1

0 , (s−
s2t

8
)A2

0 + tB2
0 +

st

2
C2

0 , (s−
s2t

8
)A3

0 − tB3
0

)
.

By (5.3.6), it is obvious that the condition k1 = 0 means the vanishing of the Abresch-
Rosenberg differential. Therefore surfaces given in Example 5.3.11 are horizontal umbrellas
(FIGURE 3). Since, by C × A = A and B × C = B, a simple computation shows

det

A1
0 B1

0 C1
0

A2
0 B2

0 C2
0

A3
0 −B3

0 0

 = 0,

the vectors (A1
0, A

2
0, A

3
0), (B

1
0 , B

2
0 ,−B3

0), and (C1
0 , C

2
0 , 0) are linear dependent at each point.

5.4. Construction of minimal null scrolls with prescribed rulings. In Subsection
5.3, we observed that timelike minimal surfaces with QQ = 0 are obtained as minimal null
scrolls, in particular, as null scrolls constructed from null curves with null frames and the
second curvatures k2 = 1/2 except for the vertical planes. However, the construction from
curvatures is troublesome because of the need to solve a system of differential equations. In
this subsection, we will construct the minimal null scrolls with prescribed rulings using only
elementary computations. We should consider only the following three cases:

g+(A,B) = 2β with β = 0, g+(A,B) = 2β with β ̸= 0, g+(A, B̃) = 0

because any minimal null scroll belongs to the class satisfying one of them by Theorem 5.2.4.
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First, we consider the case of g+(A,B) = 2β with β = 0. The following proposition reveals
that vertical planes are characterized by this condition.

Proposition 5.4.1. Let γ be an affine null line in Nil3 and B̃ =
∑3

i=1B
iei be a curve

which takes values in the light cone in nil3, satisfies B3 ̸= 0, and induces the null vector

B = B1e1 + B2e2 − B3e3 linear dependent on γ−1 dγ
ds
. Then the null scroll γ(s) · exp(tB̃(s))

is minimal and satisfies the minimality condition g+(A,B) = 2β with β = 0. Conversely,

if a minimal null scroll has a ruling B̃ with β = 0 and satisfies the minimality condition

g+(A,B) = 2β, the base curve is an affine null line and the ruling B̃ induces a null vector
field B linear dependent on the velocity.

Proof. First, we take the minimal null scroll given by an affine null line γ(s) = K1(s)(c
1, c2, c3)

and a ruling B̃ =
∑3

i=1B
iei which induces the null vector fields B = B1e1 + B2e2 − B3e3

linear dependent on the velocity γ−1 dγ
ds
, that is,

g+(γ
−1dγ

ds
,B) =

dK1

ds

(
−c1B1 + c2B2 − c3B3

)
= 0.

Here K1 is a function and cj (j = 1, 2, 3) are constants that are not 0 simultaneously and
satisfy−(c1)2+(c2)2+(c3)2 = 0. By the linear dependence, the vector field B can be rewritten
as B = K2(c

1e1 + c2e2 − c3e3) for some smooth function K2. Then a simple computation
shows

B ×B′ = 0,

that means β = 0. Hence the null scroll γ(s) · exp(tB̃(s)) fulfills the minimality condition
g+(A,B) = 2β with β = 0. Conversely, we assume g+(A,B) = 2β and β = 0. In this case,

the vector field B̃′ is null, and then the condition

B̃ × B̃′ = 0

means the vector field B̃′ is linear dependent on B̃ at each point. Therefore it follows the
differential equations

Bj ′ = K3B
j j = 1, 2, 3

for some function K3. Hence the ruling B̃ has to be of the form

(5.4.1) B̃(s) = e
∫
K3ds

(∑
cjej

)
where cj (j = 1, 2, 3) are some constants. Thus, from the assumption g+(A,B) = 2β and
β = 0, the base curve γ is written explicitly

γ−1dγ

ds
(s) = K4(s)e

∫
K3ds

(
c1e1 + c2e2 − c3e3

)
,

γ(s) =

∫ s

0

(
K4(s)e

∫
K3ds

)
ds(c1, c2,−c3)

(5.4.2)

for some function K4 under the initial condition γ(0) = (0, 0, 0). Therefore the base curve γ
draws an affine null line. □
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Remark 5.4.2. The first and second fundamental forms of minimal null scrolls defined from
(5.4.1) and (5.4.2) can be computed as

I = −2g12
(
tK3(s)ds

2 + dsdt
)
,

II =
g12
|g12|

e2
∫
K3(s)ds(c3)2

(
(K4(s) + tK3(s))(−K4(s) + tK3(s))

K4(s)
ds2 + 2tK3(s)dsdt+ dt2

)
where g12 = −2K4(s)e

2
∫
K3(s)ds(c3)2. Hence the non-degeneracy of I means vanishing c3

nowhere on the domain, and the first fundamental form degenerates if and only if the second
fundamental form vanishes. Furthermore if the first fundamental form is non-degenerate
then the second fundamental form is also non-degenerate.

Corollary 5.4.3. A null scroll f(s, t) = γ(s)·exp(tB̃(s)) satisfies the minimality condition
g+(A,B) = 2β with β = 0 if and only if the null scroll is a part of a vertical plane.

Proof. Proposition 5.4.1 implies that minimal null scrolls which satisfy the conditions
g+(A,B) = 2β and β = 0 can be constructed from an arbitrary null vector field B which
has B3 ̸= 0 and β = 0, by defining the velocity A of the base curves as A = hB. A direct
computation shows the vector field E3 is tangent to these surfaces, and then they are part
of vertical surfaces, that is, Hopf cylinders. Therefore these minimal null scrolls contain
the affine lines in x3-axis direction. Furthermore, since the direction of the ruling (5.4.1) is
independent to the parameter s, these minimal null scrolls are part of planes spanned by
(c1, c2, c3) and (0, 0, 1). □

Example 5.4.4 (Vertical plane). Let θ ∈ (0, π) be a constant. Take a null vector field B̃ as

B̃(s) = se1+s cos θe2+s sin θe3, and define a null vector field A as A = e1+cos θe2− sin θe3.
Then the null scroll

γ(s) · exp(tB̃(s)) = ((1 + t)s, (1 + t)s cos θ, (1 + t)s sin θ − 2s sin θ)

is a timelike minimal surface (FIGURE 4 ).

Figure 4. ([27]) Vertical plane: Minimal null scrolls with the minimality
condition g(A,B) = 2β and β = 0.

From now on, we will construct the minimal null scrolls which satisfy the minimality
condition g+(A,B) = 2β with β vanishing nowhere. Without loss of generality, we can
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assume β = 1/2 if necessary replacing B̃ with 1
2β
B̃. For an arbitrary curve that takes values

in the light cone in nil3 with β = 1/2, the base curve γ can be constructed as follows.

Since the vector field γ−1 dγ
ds
× B for a null scroll γ(s) · exp(tB̃(s)) is orthogonal to B at

each point, it can be represented as

γ−1dγ

ds
×B = aB′ + bB

for some functions a and b. Therefore the equations

g+(γ
−1dγ

ds
×B, γ−1dγ

ds
) = 0, g+(γ

−1dγ

ds
×B,B′) = g+(γ

−1dγ

ds
,B ×B′) = 1/2

derive a = 2 and b = −2g+(γ−1 dγ
ds
, B′) when the null scroll fulfills the minimality condition

g+(γ
−1 dγ

ds
, B) = 2β with β = 1/2. This implies that determining the direction for γ−1 dγ

ds
×B

is equivalent to taking a function g+(γ
−1 dγ

ds
, B′). On the other hand, by Lemma 5.3.1, taking

a null vector γ−1 dγ
ds
(s) which satisfies

g+(γ
−1dγ

ds
(s), B(s)) = 1

coincides with taking the Lorentz plane including B(s). Since determining a Lorentz plane
is equivalent to determining a spacelike normal direction, we can prove the following propo-
sition.

Proposition 5.4.5. For any minimal null scroll γ(s) ·exp(tB̃(s)) which satisfies the min-
imality condition g+(A,B) = 2β with β = 1/2, it follows

γ−1dγ

ds
= −4 (2g+(B′′, B′′)B +B′′)− 2b

(
B′ +

b

4
B

)
where b = −2g+(γ−1 dγ

ds
, B′). Conversely, for any curve B̃ which takes values in the light cone

in nil3 with β = 1/2 and any real valued function b, define a nil3-valued vector field A as

A = −4 (2g+(B′′, B′′)B +B′′)− 2b

(
B′ +

b

4
B

)
.

Then the curve γ which has the velocity A is null and it follows that g+(A,B) = 1. Thus the

null scroll over γ with the ruling B̃ is minimal.

Proof. Let γ(s)·exp(tB̃(s)) be a minimal null scroll which satisfies the minimality condition
g+(A,B) = 2β with β = 1/2. Since we have

g+(B, bB
′ + 2B′′) = 2g+(B,B

′′) = −1

2
̸= 0,

g+(2B
′ + bB,B) = 0,

g+(2B
′ + bB, bB′ + 2B′′) = 2bg+(B

′, B′) + 2bg+(B,B
′′) = 0,

it is straightforward that the velocity γ−1 dγ
ds

belongs to

(γ−1dγ

ds
×B)⊥ = (2B′ + bB)⊥ = span{B, bB′ + 2B′′}
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at each point. Threfore the velocity can be represented as γ−1 dγ
ds

= uB + v(bB′ + 2B′′) for
some functions u and v. It is easy to see that u = −8g+(B′′, B′′) − b2/2 and v = −2 by
substituting the velocity into

g+

(
γ−1dγ

ds
, γ−1dγ

ds

)
= 0, g+

(
γ−1dγ

ds
,B

)
= 1.

Hence we obtain

γ−1dγ

ds
= −4 (2g+(B′′, B′′)B +B′′)− 2b

(
B′ +

b

4
B

)
.

Conversely, for an arbitrary curve B̃ which takes values in the light cone in nil3 and derives
β = 1/2, and an arbitrary function b, set a nil3-valued vector field A as

A = −4 (2g+(B′′, B′′)B +B′′)− 2b

(
B′ +

b

4
B

)
.

By tracing back the computations in the first half of this proof, it can be seen that A
is the null vector field which belongs to (2B′ + bB)⊥ = span{B, bB′ + 2B′′} and satisfies
g+(A,B) = 1. Then by Theorem 5.2.4, the null scroll over the null curve which has the

velocity A with the ruling B̃ is minimal. □

Remark 5.4.6. The null vector field A given in Proposition 5.4.5 with b = 0 and B define
a null frame (A,B, 2B′), and then the curvatures are k1 = 4g+(B

′′, B′′) and k2 = 1/2. Hence

Example 5.3.11 shows if a curve B̃ has β = 1/2 and B′′ is null, B̃ constructs a horizontal
umbrella by Proposition 5.4.5 with b = 0 (see Example 5.4.9). Moreover, although it is
hard to compute the Abresch-Rosenberg differential in general, it can be obtained easily
when b = 0. Since we have (5.3.6) with the null frame (A,B, 2B′), we can see S = 16px

2k1.
Therefore we have Q = ℓ64px

2g+(B
′′, B′′).

Example 5.4.7 (Circle ruling). Set a ruling B̃ = 1
2
e1+

1
2
cos(s)e2+

1
2
sin(s)e3. This describes

a circle (left of FIGURE 5). It is obvious that β = 1/2. Let us define a null vector field A
by Proposition 5.4.5 with b = 0. Then we have

A = −e1 + cos(s)e2 − sin(s)e3.

Thus we obtain a null curve γ with the initial condition γ(0) = (0, 0, 0) from A:

γ(s) =

(
−s, sin(s),−1

2
s sin(s)

)
.

Hence the minimal null scroll f(s, t) over γ with ruling B̃ (right of FIGURE 5) is given by

f(s, t) =

(
−s+ 1

2
t, sin(s) +

1

2
t cos(s),−1

2
s sin(s) +

1

4
t sin(s)− 1

4
ts cos(s)

)
.

Example 5.4.8 (Hyperbola ruling). Set a ruling B̃ = 1
2
cosh(s)e1 +

1
2
sinh(s)e2 − 1

2
e3. This

describes a hyperbola (left of FIGURE 6). Then we have β = 1
2
. Define a null vector field

A by using Proposition 5.4.5 with b = 0:

A = − cosh(s)e1 − sinh(s)e2 + e3,
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Figure 5. ([27]) Example of minimal null scrolls constructed from ruling
valued in a circle (right) and the image of its ruling (left).

and then we obtain a null curve γ

γ(s) =

(
− sinh(s),− cosh(s) + 1,

1

2
s+

1

2
sinh(s)

)
with the initial condition γ(0) = (0, 0, 0). Hence the minimal null scroll f(s, t) over γ with

ruling B̃ (right of FIGURE 6) is given by

f(s, t) =

(
− sinh(s) +

1

2
t cosh(s),− cosh(s) + 1 +

1

2
t sinh(s),

1

2
s+

1

2
sinh(s)− 1

4
t− 1

4
t cosh(s)

)
.

Figure 6. ([27]) Example of minimal null scrolls constructed from ruling
valued in a hyperbola (right) and the image of its ruling (left).

Example 5.4.9 (Parabola ruling). Set a ruling B̃ =
(
1
8
s2 + 1

2

)
e1 +

1
2
se2 +

(
1
8
s2 − 1

2

)
e3.

Then we have β = 1
2
. This describes a parabola (left of FIGURE 7). By using Proposition

5.4.5 with a constant b we define a null vector field A by

A =

(
− b

2

16
s2 − b

2
s− b2

4
− 1

)
e1 −

(
b2

4
s+ b

)
e2 +

(
b2

16
s2 +

b

2
s− b2

4
+ 1

)
e3.
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Then we obtain a null curve γ with the initial condition γ(0) = (0, 0, 0) which has the
velocity A:

γ(s) =

(
− b

2

48
s3 − b

4
s2 −

(
b2

4
+ 1

)
s,−b

2

8
s2 − bs,− b4

3840
s5 − b3

192
s4 +

b4

192
s3 +

b

4
s2 +

(
1− b2

4

)
s

)
.

Hence the minimal null scroll f(s, t) over γ with ruling B̃ is given by

f(s, t) =


− b2

48
s3 − b

4
s2 −

(
b2

4
+ 1
)
s+ t

(
1
8
s2 + 1

2

)
,

− b2

8
s2 − bs+ st

2
,

− b4

3840
s5 − b3

192
s4 + b4

192
s3 + b

4
s2 +

(
1− b2

4

)
s+ t

(
b2

384
s4 −

(
1
8
+ b2

32

)
s2 + b

4
s− 1

2

)


⊤

.

If b = 0, then the minimal null scroll f lies on a plane in R3 (right of FIGURE 7), and this
is also an example of horizontal umbrellas (see Example 5.3.11).

Figure 7. ([27]) Example of minimal null scrolls constructed from ruling
valued in a hyperbola (right) and the image of its ruling (left).

Finally, we look into the case of g+(A, B̃) = 0. In this case, obviously, the rulings don’t
impose any conditions other than linear dependence on the velocity of the base curve. Thus
we have the proposition.

Proposition 5.4.10. Let γ(s) · exp(tB̃(s)) be a minimal null scroll which satisfy the

minimality condition g+(γ
−1 dγ

ds
, B̃) = 0. Then it follows that β ̸= 0 and B3 ̸= 0. Conversely,

for a curve B̃ in the light cone in nil3 and a real valued function h, define a null vector field

A =
∑3

i=1A
iei by A = hB̃, and γ as the curve which has the velocity A. If β ̸= 0 and B3 ̸= 0

hold, then γ(s) · exp(tB̃(s)) is a minimal null scroll on t ̸= 0.

Proof. First, we assume that a minimal null scroll γ(s) · exp(tB̃(s)) satisfies the condition

g+(γ
−1 dγ

ds
, B̃) = 0, that is, the velocity is linear dependent on the ruling everywhere. Then

we have

A1B2 − A2B1 = 0.

Therefore it can be seen that the dsdt-part of the first fundamental form is given by

(5.4.3) g12 = t2
1

2
β(B3)2.
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Because of the non-degeneracy of a null scroll, we obtain β ̸= 0 and B3 ̸= 0 everwhere.

Conversely, let us consider the map f(s, t) = γ(s) · exp(tB̃(s)), built from a curve B̃ in the

light cone in nil3 and a curve γ which has the velocity linearly dependent on B̃ at each point,
The non-degeneracy on t ̸= 0 of the first fundamental form is guaranteed from (5.4.3). Thus
the map f is an immersion and minimal by Theorem 5.2.4. □

It can be checked easily that a minimal null scroll γ(s) · exp(tB̃(s)) is of the form

γ(s) · exp(tB̃(s)) = (γ1(s) + t̃γ1
′
(s), γ2(s) + t̃γ2

′
(s), γ3(s) + t̃γ3

′
(s))

when the null scroll fulfills the minimality condition g+(A, B̃) = 0. Hence all the minimal

null scrolls that satisfy the minimality condition g+(A, B̃) = 0 are given by the following
example.

Example 5.4.11 (Tangent surfaces). Let us consider a curve γ(s) = (γ1(s), γ2(s), γ3(s)) in
(semi-)Euclidean space R3. A surface f(s, t) in R3 is said to be a tangent surface on γ if f
is a ruled surface over γ, and its ruling is the velocity of γ, that is, the surface of the form

f(s, t) = γ(s) + tγ′(s)

= (γ1(s) + tγ1
′
(s), γ2(s) + tγ2

′
(s), γ3(s) + tγ3

′
(s)).(5.4.4)

Let us regard γ as a curve in Nil3 by ignoring the multiplication of ambient space. When γ
is null with respect to the Lorentzian metric g+ in Nil3 and satisfies γ−1 dγ

ds
× (γ−1 dγ

ds
)′ ̸= 0

and g+(γ
−1 dγ

ds
, e3) ̸= 0, the map defined in (5.4.4) forms a null scroll in Nil3. Moreover, it is

minimal. In fact (5.4.4) can be represented as

γ(s) · exp(t(γ−1dγ

ds
(s))).

Since γ is null in Nil3 and Proposition 5.4.10, tangent surface f in R3 can be regarded as a
minimal null scroll in Nil3.

Propositions 5.4.1, 5.4.5 and 5.4.10 can be summarised to obtain the construction theorem
of minimal null scrolls with prescribed null rulings.

Theorem 5.4.12. Let B̃ =
∑3

i=1B
iei be a curve which takes values in the light cone in

nil3 except for the origin, and satisfies B̃ × B̃′ = −βB̃ with β = 0 or 1/2. Define a vector
field A if β = 0 and B3 ̸= 0 as

A = αB,

and if β = 1/2 as

A = −1

2
b2B − 2bB′ − 4 (2g+(B

′′, B′′)B +B′′) .

Or else, if β = 1/2 and B3 ̸= 0, define A as

A = αB̃.

Here, B = B1e1 + B2e2 − B3e3, b is an arbitrary function and α is a nowhere vanishing
function. Moreover, let γ be the curve in Nil3 which has the velocity A. Then the map

γ(s) · exp(tB̃(s)) locally defines a minimal null scroll.
74



From Propositions 5.4.1, 5.4.5 and 5.4.10, we can construct every minimal null scroll
locally by the Theorem 5.4.12. Furthermore, the following theorem implies it is sufficient
to construct all minimal null scrolls that we consider only Propositions 5.4.1 and 5.4.5 with
b = 0.

Theorem 5.4.13. If a minimal null scroll is not a vertical plane then there exist a null

curve γ in Nil3 and a curve B̃ in the light cone in nil3 which satisfy

(5.4.5) γ−1dγ

ds
= −4(2g+(B′′, B′′)B +B′′)

and which define the map γ(s) · exp(tB̃(s)) describing the original minimal null scroll.

Proof. We can obtain a null curve γ with a null frame (A,B,C) and the second curvature
1/2 from the Abresch-Rosenberg differential and the support function of the original minimal
null scroll as seen in the proof of Theorem 5.3.10. The null frame condition (5.3.1) derives
the condition (5.4.5). □

Remark 5.4.14. Theorem 5.4.13 implies the class of minimal null scrolls with the minimal-

ity condition g+(A, B̃) = 0 is included in the one with the minimality condition g+(A,B) = 2β
and β ̸= 0. However, it is difficult to construct timelike minimal surfaces of the former class
from the curvature of the base curves because no special features of the Abresch-Rosenberg
differential and the support function are expected.
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Birkhäuser, Boston, MA, 1996.

[52] A. Sym. Soliton surfaces and their applications (soliton geometry from spectral problems). Geometric
Aspects of the Einstein Equations and Integrable Systems, Lecture Notes in Phys. 239, Springer, Berlin,
154–231, 1985.
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