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Introduction

The magnitude is an invariant for metric spaces defined by Leinster [11, 12]. It
measures a certain size of space. Hepworth-Willerton [8] and Leinster-Shulman [13]
defined the magnitude homology as a categorification of the magnitude. The magni-
tude homology MHℓ

k(G) is a bigraded module, and determined for a graph G, length
ℓ and degree k. There are various studies about magnitude and magnitude homology
[1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17].

Recently, Kaneta-Yoshinaga [9] introduced a simplicial complex for a mertic space
with a certain condition whose homology group is isomorphic to the magnitude
homology of the metric space. Asao-Izumihara [3] introduced a CW complex (we
call the Asao-Izumihara complex) for a graph whose (reduced) homology is isomophic
to the magnitude homology of the graph. Asao-Izumihara complex is constructed as
the quotient of a pair of a simplicial complex and a subcomplex (for details see §2.1).
It is important for the construction of Asao-Izumihara complex that vertices of the
simplicial complex are defined with the information of distance between the vertex
and the basepoint. Note that Asao-Izumihara complex captures only MHℓ

k(G) for
ℓ ≥ 2 and k ≥ 2. To improve this, we introduce the notion of magnitude homotopy
type Mℓ(G). The magnitude homotopy type is defined also for metric spaces.

By the construction, we can apply discrete Morse theory for both Asao-Izumihara
complex and magnitude homotopy type. Both the Asao-Izumihara complex and the
magnitude homotopy type have advantages. The Asao-Izumihara complex is useful
to discribe the figure of it for lower dimension especially ℓ = 3, 4. On the other
hands, the magnitude homotopy type has advantages in theoretical aspects. For
example, the manitude homotopy type can be used to prove Künneth formula and
Mayer-Vietoris type theorem, etc.

We are interested in the relationship between magnitude homology groups and
qualitative properties of graphs. In particular, we are interested in the following
topics.

(a) Diagonality.
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(b) Graph operations.

It is said that a graph G is diagonal if MHℓ
k(G) = 0, for k 6= ℓ. Diagonal graph is an

important class of graphs, because if a graph is diagonal then the rank of magnitude
homology of the graph is determined by only the magnitude. It is expected that there
are several relationships between diagonality and qualitative properties of graphs.
For example, it is shown that “diagonality implies girth= 3, 4 or ∞” in [2]. However,
we do not know when graphs are diagonal. About the topic (b), Leinster proved the
invariance of magnitudes of graphs under a Whitney twist in [12]. Roff generalized
the result for a sycamore twist. Moreover, Künneth formula and Mayer-Vietoris
theorem for magnitude homology were proved in [8]. Recently, magnitude homotopy
type version of these results were also proved in [17].

In this thesis, for the sake of conceptual simplicity, we focus on finite metric
spaces defined by finite graphs. This thesis is organized as follows. In §1.1, we
recall the definitions of magnitude and magnitude homology. In §1.2, we recall basic
definitions and theorems on discrete Morse theory. In §2, we review the definition
of the Asao-Izumihara complex and basic properties. In §3, we show that the Asao-
Izumihara complex of a pawful graph (or some other diagonal graph) is homotopy
equivalent to a wedge of spheres by using discrete Morse theory. In §4, we describe
the Asao-Izumihara complex of the odd cycle graph. In §5, we show several results
for the magnitude homotopy type of graphs using discrete Morse theory. In §5.1, we
introduce a useful matching (called projecting matching) on magnitude homotopy
type of graphs obtained by gluing two graphs. In §5.2, we show the Mayer-Vietoris
type theorem for the magnitude homotopy type. In §5.3, we prove the invariance of
magnitudes of graphs under a sycamore twist using the projecting matching.
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Chapter 1

Preliminaries

1.1 Magnitude and magnitude homology

We define a finite graph G as the pair (V (G), E(G)) of the following sets.

• V (G) is a finite set.

• E(G) ⊆ {{x, y} | (x, y) ∈ V (G)× V (G), x 6= y}.

The distance function on a graph G is defined as follows.

dG : V (G)× V (G) → Z≥0,

dG(a, b) :=

{
min{k ∈ Z≥0 | ∃{v0, v1}, {v1, v2}, · · · , {vk−1, vk} ∈ E(G), v0 = a, vk = b} (a 6= b),

0 (a = b).

If there does not exist such a sequence of edges for some pair of vertices (a, b), then
we define dG(a, b) = ∞. From now, we assume that dG(a, b) < ∞ for any pairs of
vertices (a, b) of G. We denote dG simply as d.

Definition 1.1.1 (Magnitude of a graph). Let q be a variable, and m := |V (G)|.
Define the m×m matrix ZG whose entries are elements of Q(q) as follows.

ZG :=
(
qd(x,y)

)
x,y∈G

.

Then ZG is invertible. We define the magnitude of G as follows.

#G :=
∑
x,y∈G

Z−1
G (x, y).
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Definition 1.1.2 (Sequence). We call (x0, · · · , xk) ∈ V (G)k+1 a sequence on G if it
satisfies xi 6= xi+1 for each i ∈ {0, · · · , k − 1}. For a sequence x = (x0, · · · , xk), the
subsequence of x is a sequence y = (y0, · · · , ym) that satisfies the following.

• There exists a sequence 0 ≤ i0 < i1 < · · · < im ≤ k such that yj = xij

(j = 0, 1, · · · ,m).

Then, we denote y ≺ x. The length of sequence x = (x0, · · · , xk) is defined by
L(x) := d(x0, x1) + d(x1, x2) + · · ·+ d(xk−1, xk).

Definition 1.1.3 (Smooth point). Let x = (x0, · · · , xk) be a sequence. We say that
the point xi (i = 1, · · · , k− 1) is smooth in x if xi satisfies d(xi−1, xi) + d(xi, xi+1) =
d(xi−1, xi+1). If the point xi (i = 1, · · · , k−1) is not smooth in x, we say xi is singular
in x. Denote by xi−1 ≺ xi ≺ xi+1 if xi is smooth in x, and by xi−1 ⊀ xi ⊀ xi+1 if xi

is singular in x.

Definition 1.1.4 (Magnitude homology of a graph). Fix ℓ ≥ 0. Define the abelian
group MCℓ

k(G) and the homomorphism ∂k as follows.

MCℓ
k(G) :=

⊕
Z〈sequence (x0, · · · , xk) on G | L(x0, · · · , xk) = ℓ〉,

∂k : MCℓ
k(G) → MCℓ

k−1(G), ∂k :=
k−1∑
i=1

(−1)i∂k,i,

∂k,i(x0, · · · , xk) :=

{
(x0, · · · , x̂i, · · · , xk) (if xi is smooth in x),

0 (otherwise).

Then (MCℓ
∗(G), ∂∗) is a chain complex and it is called the magnitude chain complex.

The magnitude homology MHℓ
k(G) is defined by MHℓ

k(G) := Hk(MCℓ
∗(G)).

Theorem 1.1.5 ([8], Theorem 2.8.). Let q be a variable. Then, we have

#G =
∑
ℓ≥0

(∑
k≥0

(−1)k rankMHℓ
k(G)

)
qℓ.

1.2 Discrete Morse theory

For elements a, b of a poset P , we denote a ≺ b if a and b satisfy a < b and there
does not exist c ∈ P such that a < c < b.
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Definition 1.2.1 (Partial matching). Let P be a poset. A partial matching M on
P is a subset of P × P satisfying the following.

• For any (a, b) ∈ M , a ≺ b.

• Each a ∈ P belongs to at most one element in M .

Denote by a ` b for (a, b) ∈ M .

Definition 1.2.2 (Acyclic matching). Let M be a partial matching on P . We say
M is acyclic if there does not exist a cycle

b1 � a1 ≺ b2 � a2 ≺ · · · ≺ bp � ap ≺ bp+1 = b1

with p ≥ 2, that satisfies (ai, bi+1) ∈ M for each i ∈ {1, 2, · · · , p} and bi 6= bj (i 6= j)
for every i, j ∈ {1, 2, · · · , p}.

Definition 1.2.3 (Critical element). Let M be a partial matching on P . An element
of P that belongs to no element in M is called a critical element.

Theorem 1.2.4 ([10], Theorem 11.13.(a)(b)). Let P be the face poset of a simplicial
complex S. Assume that we have an acyclic matching on P .

(a) If the critical elements form a subcomplex Sc of S, then there exists a sequence
of cellular collapse leading from S to Sc.

(b) Denote the number of critical i-dimensional simplex by ci. Then, S is homotopy
equivalent to a CW complex with ci cells in dimension i.

Definition 1.2.5 (Strong deformation retract). Let A be a topological space, and
B ⊂ A be a subspace. A continuous map F : A × [0, 1] → A is called a strong
deformation retract if it satisfies the following conditions.

• For x ∈ A, F (x, 0) = x and F (x, 1) ∈ B,

• For x ∈ B and t ∈ [0, 1], F (x, t) = x.

In the situation, we also say that there exists the strong deformation retract from A
to B.

Remark 1.2.6. Theorem 1.2.4 (a) especially means that

(a′) If the critical elements form a subcomplex Sc of S, then there exists the strong
deformation retract from S to Sc.
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Chapter 2

Magnitude homotopy type

2.1 Asao-Izumihara complex

Definition 2.1.1 (Simplicial complex). Let V be a set and P (V ) be the power set.
If a subset S ⊂ P (V ) satisfies the following, then we call S a simplicial complex.

• For any element A ∈ S and any subset B ⊂ A, B is an element of S.

Remark 2.1.2. In this thesis, we consider the empty set ∅ ⊂ V as a (−1)-dimensional
simplex called empty simplex. Any simplex contain the empty simplex. The sim-
plicial complex which has only the empty simplex is called the empty simplicial
complex, and denoted by {∅}. It is a subcomplex of any simplicial complex (other
than the void). The simplicial complex which has no simplices is called the void and
denoted by void.

Definition 2.1.3 (Path). Let x = (x0, · · · , xk) be a sequence. We call x a path if
x satisfies d(xi, xi+1) = 1 for any i ∈ {0, · · · , k − 1}. We define the set of paths on
graph G with length ℓ as follows.

Pℓ(G; a, b) := {path x = (x0, · · · , xℓ) on G | x0 = a, xℓ = b}, a, b ∈ V (G).

Definition 2.1.4 (Asao-Izumihara complex). Let ℓ ≥ 2 and a, b ∈ G. We define the
sets Kℓ(G; a, b) and K ′

ℓ(G; a, b) as follows.

Kℓ(G; a, b) := {∅ 6= {(xi1 , i1), · · · , (xik−1
, ik−1)} ⊂ G× {1, 2, · · · , ℓ− 1}

| (a, xi1 , · · · , xik−1
, b) ≺ ∃(a, x1, · · · , xℓ−1, b) ∈ Pℓ(G; a, b)},

K ′
ℓ(G; a, b) := {{xi1 , · · · , xik−1

} ∈ Kℓ(G; a, b) | L(a, xi1 , · · · , xik−1
, b) < ℓ}.

ThenKℓ(G; a, b) is a simplicial complex andK ′
ℓ(G; a, b) is the subcomplex ofKℓ(G; a, b).

We call the CW complex Kℓ(G; a, b)/K ′
ℓ(G; a, b) Asao-Izumihara complex.
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Remark 2.1.5. We denote a simplex {x0, · · · , xk} ∈ Kℓ(G; a, b) by (x0, · · · , xk).
For x, y ∈ Kℓ(G; a, b), let y ≺ x denote that y is the subsimplex of x.

Example 2.1.6. Let G be the cycle graph C4 with vertices a, b, c, d in order. Let
ℓ = 4. We describe the Asao-Izumihara complex K4(G; a, c)/K ′

4(G; a, c). First we
compute the set of paths P4(G; a, c).

P4(G; a, c) = {(a, b, a, b, c), (a, b, a, d, c), (a, b, c, b, c), (a, b, c, d, c),
(a, d, a, b, c), (a, d, a, d, c), (a, d, c, b, c), (a, d, c, d, c)}.

From the paths we obtain maximal faces of K4(G; a, c) as follows.

((b, 1), (a, 2), (b, 3)), ((b, 1), (a, 2), (d, 3)), ((b, 1), (c, 2), (b, 3)), ((b, 1), (c, 2), (d, 3)),

((d, 1), (a, 2), (b, 3)), ((d, 1), (a, 2), (d, 3)), ((d, 1), (c, 2), (b, 3)), ((d, 1), (c, 2), (d, 3)).

Next we compute K ′
4(G; a, c).

K ′
4(G; a, c) = {(b, 1), (a, 2), (b, 3), (d, 3), (c, 2), (d, 1), ((a, 2), (b, 3)), ((b, 1), (b, 3)),

((a, 2), (d, 3)), ((b, 1), (c, 2)), ((d, 1), (d, 3)), ((d, 1), (c, 2))}.

Therefore K4(G; a, c) and K ′
4(G; a, c) are as shown in Figure 2.1 (The part of red is

K ′
4(G; a, c)), and we have

K4(G; a, c)/K ′
4(G; a, c) ≈ S2 ∨ S2.

(d, 3)

(c, 2)

(b, 1)

(b, 3)

(a, 2)

(d, 1)

(c, 2)

(d, 3)

Figure 2.1: K4(C4; a, c) and K ′
4(C4; a, c).

Proposition 2.1.7. Let ℓ ≥ 0. Then,

MCℓ
∗(G) =

⊕
a,b∈G

MCℓ
∗(G; a, b)

as chain complexes, where MCℓ
∗(G; a, b) is the subcomplex of MCℓ

∗(G) generated by
sequences which start from a and end with b.
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Theorem 2.1.8 ([3], Theorem 4.3.). Let ℓ ≥ 3, ∗ ≥ 0 and a, b ∈ G. Then,

C∗(Kℓ(G; a, b)/K ′
ℓ(G; a, b), pt) ∼= C∗(Kℓ(G; a, b), K ′

ℓ(G; a, b)) ∼= MCℓ
∗+2(G; a, b),

as chain complexes.

Example 2.1.9. Let G be a cycle graph C4 with vertices a, b, c, d in order. Let
us compute the magnitude homology MH4

∗(G) using Asao-Izumihara complexes.
We have K4(G; a, c)/K ′

4(G; a, c) ≈ S2 ∨ S2 in Example 2.1.6. Similarly we have
K4(G; a, a)/K ′

4(G; a, a) ≈ S2 ∨ S2 ∨ S2. Since there is no paths from a to b with
length 4, K4(G; a, b) = ∅. Then,

MH4
k(G) =

⊕
a,b∈G

MH4
k(G; a, b) ∼=

⊕
a,b∈G

H̃k−2(K4(G; a, b)/K ′
4(G; a, b))

∼= (H̃k−2(S
2 ∨ S2))⊕4 ⊕ (H̃k−2(S

2 ∨ S2 ∨ S2))⊕4.

Therefore MH4
k(G) ∼=

{
Z20 (k = 4),

0 (k 6= 4, k ≥ 2).

2.2 Magnitude homotopy type

Definition 2.2.1. Let ℓ ≥ 0 and a, b ∈ G. We define the sets ∆ℓ(G; a, b) and
∆′

ℓ(G; a, b) as follows.

∆ℓ(G; a, b) := {{(xi0 , i0), · · · , (xik , ik)} ⊂ G× {0, 1, · · · , ℓ}
| (xi0 , · · · , xik) ≺ ∃(x0, · · · , xℓ) ∈ Pℓ(G; a, b)},

∆′
ℓ(G; a, b) := {{xi0 , · · · , xik} ∈ ∆ℓ(G; a, b) | L(xi0 , · · · , xik) < ℓ}.

Then ∆ℓ(G; a, b) is a simplicial complex and ∆′
ℓ(G; a, b) is a subcomplex of ∆ℓ(G; a, b).

Remark 2.2.2. We consider the cases that ∆ℓ(G; a, b) or ∆′(G; a, b) are empty set.

• In the case of ℓ = 0, if a = b, then ∆0(X; a, a) = {(a, 0)}. Since the empty
simplex ∅ is contained in ∆0(X; a, a), ∆′

0(X; a, a) = {∅}. If a 6= b, then
∆0(X; a, b) = ∆′

0(X; a, b) = void.

• Consider the case of ℓ > 0. If ∆ℓ(X; a, b) 6= ∅, then ∆′
ℓ(X; a, b) 6= ∅ since

{(a, 0)} is contained in it. If d(a, b) > ℓ, then ∆ℓ(X; a, b) = ∆′
ℓ(X; a, b) = void.

If d(a, b) = ℓ, then ∆ℓ(X; a, b) 6= ∅. If d(a, b) < ℓ and ∆ℓ(X; a, b) = ∅, then
∆ℓ(X; a, b) = ∆′

ℓ(X; a, b) = {∅}.
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Definition 2.2.3 (Magnitude homotopy type of a graph). The magnitude homotopy
type of a graph G is defined as follows.

Mℓ(G) :=
∨

a,b∈G

Mℓ(G; a, b), where Mℓ(G; a, b) := ∆ℓ(G; a, b)/∆′
ℓ(G; a, b).

Remark 2.2.4. As in the Asao-Izumihara complex, we denote a simplex {x0, · · · , xk} ∈
∆ℓ(G; a, b) by (x0, · · · , xk), and let y ≺ x denote that y is a subsimplex of x.

Example 2.2.5 ([17], Example 4.11.(1)(2)). (1) Let G be a tree. Then,

Mℓ(G) ≈

{
S0 ∨ · · · ∨ S0 (wedge of |V (G)| spheres) ≈ {(|V (G)|+ 1) points}, ℓ = 0,

Sℓ ∨ · · · ∨ Sℓ (wedge of 2|E(G)| spheres), ℓ ≥ 1.

(2) Let G be a complete graph with m vertices (m ≥ 2). Then,

Mℓ(G) ≈ Sℓ ∨ · · · ∨ Sℓ (wedge of m(m− 1)ℓ spheres).

Proof. (1) We prove it in the end of §4.

(2) For a, b ∈ V (G), all maximal faces of ∆ℓ(G; a, b) are ℓ-simplices and their
subsimplices which consist boundaries are all in ∆′

ℓ(G; a, b). There are m(m−
1)ℓ maximal faces in

⋃
a,b∈V (G) ∆ℓ(G; a, b). Therefore we have the result.

Theorem 2.2.6 ([17], Theorem 4.7.). For a graph G and k, ℓ ≥ 0,

H̃k(Mℓ(G)) ∼= MHℓ
k(G).

Proof. We prove that H̃k(Mℓ(G; a, b)) ∼= MHℓ
k(G; a, b) for a, b ∈ V (G). Clealy,

H̃k(Mℓ(G; a, b)) ∼= Hk(∆ℓ(G; a, b),∆′
ℓ(G; a, b)).

It is sufficient to show the isomorphism

C∗(∆ℓ(G; a, b),∆′
ℓ(G; a, b)) ∼= MCℓ

∗(G; a, b)

as chain complexes. Define a homomorphism φk : Ck(∆ℓ(G; a, b),∆′
ℓ(G; a, b)) →

MCℓ
k(G; a, b) by ((xi0 , i0), · · · , (xik , ik)) 7→ (xi0 , · · · , xik). We can easily check the

map φ∗ is a chain map and isomorphism.

Definition 2.2.7 (Suspension). Let X, Y be CW complexes.
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• We define the join of X and Y by

X ∗ Y := X × Y × [0, 1]
/

∼,

where∼ is the equivalence relation such that (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼
(x2, y, 1) for any x, x1, x2 ∈ X, y1, y2, y ∈ Y . Especially, we denote by Γα(X)
the cone of X with apex α:

Γα(X) := {α} ∗X.

Note that Γα(void) = void and Γα({∅}) = {α}.

• Let A ⊂ X be a subcomplex. The (reduced) suspension of the pair (X,A) is
defined by

Σ(X,A) := (Γα(X),Γα(A) ∪X).

Note that Σ(X,void) = (Γα(X), X) and Σ({∅},void) = ({α}, {∅}).

Theorem 2.2.8 ([17], Theorem 4.21.). Let ℓ ≥ 2. The magnitude homotopy type
Mℓ(X; a, b) of a graph X is homotpy equivalent to the double suspension of Asao-
Izumihara complex Kℓ(X; a, b)/K ′

ℓ(X; a, b).

Proof. It is sufficient to show that

(|∆ℓ(X; a, b)|, |∆′
ℓ(X; a, b)|) ' Σ2(|Kℓ(X; a, b)|, |K ′

ℓ(X; a, b)|),

for ℓ ≥ 2, a, b ∈ X with d(a, b) ≤ ℓ. Let ℓ ≥ 0, a, b ∈ X. Suppose that d(a, b) ≤ ℓ,
and Kℓ(X; a, b) 6= ∅. From this point, for simplicity, we will write Kℓ = Kℓ(X; a, b),

∆ℓ = ∆ℓ(X; a, b), etc. Define the set ∆̃ℓ = ∆̃ℓ(X; a, b) as follows.

∆̃ℓ := {{(a, 0), (xi1 , i1), · · · , (xik , ik)} | {(xi1 , i1), · · · , (xik , ik)} ∈ Kℓ} ∪Kℓ.

Then, we can easily check that ∆̃ℓ is a simplicial complex. Let α = (a, 0), then we
have

|∆̃ℓ| = Γα(|Kℓ|).

Define the subset ∆̃′
ℓ ⊂ ∆̃ℓ by

∆̃′
ℓ = {{(xi0 , i0), · · · , (xik , ik)} ∈ ∆̃ℓ | L(xi0 , · · · , xik , b) < ℓ}.

Then, ∆̃′
ℓ is the subcomplex of ∆̃ℓ, and we have

|∆̃′
ℓ| = Γα(|K ′

ℓ|) ∪ |Kℓ|.
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By Definition 2.2.7, we have the following.

Σ(|Kℓ|, |K ′
ℓ|) = (Γα(|Kℓ|),Γα(|K ′

ℓ|) ∪ |Kℓ|)
= (|∆̃ℓ|, |∆̃′

ℓ|).

Similarly, let an apex β = (b, ℓ), then

Σ2(|Kℓ|, |K ′
ℓ|) = Σ(|∆̃ℓ|, |∆̃′

ℓ|)
= (Γβ(|∆̃ℓ|),Γβ(|∆̃′

ℓ|) ∪ |∆̃ℓ|)
= (|∆ℓ|, |∆′

ℓ|).
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Chapter 3

Diagonality

3.1 Diagonal graph

Definition 3.1.1 (Diagonal graph). Let G be a graph. We say that G is diagonal
if G satisfies MHℓ

k(G) = 0 for k 6= ℓ.

Example 3.1.2. Complete graphs and trees are diagonal ([8], Example 2.5, Corol-
lary6.8). The join of two (non-empty) graphs are diagonal ([8], Theorem 7.5.). On
the other hands, cycle graphs Cm (m ≥ 5) are not diagonal.

3.2 Pawful graph

Y. Gu introduced pawful graphs in [5].

Definition 3.2.1 (Pawful graph). Let G be a graph with the diameter ≤ 2. We call
G a pawful graph if G satisfies the following condition.

• For any vertices x, y, z ∈ G with d(x, y) = 2, d(y, z) = 2, and d(x, z) = 1, there
exists the vertex a ∈ G such that d(a, x) = d(a, y) = d(a, z) = 1.

Remark 3.2.2. The join of two (non-empty) graphs is a pawful graph.

Theorem 3.2.3 ([16], Theorem 3.4). Let G be a pawful graph. Let ℓ ≥ 3 and
a, b ∈ G. Then the Asao-Izumihara complex Kℓ(G; a, b)/K ′

ℓ(G; a, b) is empty or
contractible or homotopy equivalent to the wedge of (ℓ− 2)-spheres.

Proof. For the face poset of a simplicial complex Kℓ(a, b), let P be a (induced)
subposet of the face poset whose elements are contained in Kℓ(G; a, b) \K ′

ℓ(G; a, b).
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Let p be a map p : {(x, y, z) ∈ V (G)3 | d(x, y) = 2, d(y, z) = 2, d(x, z) = 1} → V (G)
such that p(x, y, z) = a satisfies d(a, x) = d(a, y) = d(a, z). Such a map exists by
Definition 3.2.1. We also fix a map q : {(x, y) ∈ V (G) | d(x, y) = 2} → V (G) such
that q(x, y) = b satisfies d(x, b) = d(b, y) = 1.

Next we define the set S as follows.

S :={(α, β, γ, δ) ∈ V (G)4 | d(α, δ) = 1, d(β, δ) = 2, d(α, β) = 1, γ = α}
t {(α, β, γ, δ) ∈ V (G)4 | d(α, δ) = 2, d(β, δ) = 2, d(α, β) = 1, γ = p(α, δ, β)}
t {(α, β, γ) ∈ V (G)3 | d(α, γ) = 2, β = q(α, γ)}.

For x = (x0, · · · , xk) ∈ P , we denote the minimum i ∈ {1, 2, · · · , k − 2} such that

(xi−1, xi, xi+1, xi+2) ∈ S (3.2.1)

by i(x). If (x0, x1, x2) ∈ S, then let i(x) = 0. In the case that there does not exist
i ∈ {1, 2, · · · , k − 2} satisfying (3.2.1) and i(x) 6= 0, then define i(x) = ∞. On the
other hands, we denote the minimum j ∈ {0, 1, · · · , k − 1} such that d(xj, xj+1) = 2
by j(x). If there does not exist such j ∈ {0, 1, · · · , k − 1}, then define j(x) = ∞.
Now we define the subsets A, P ′, P ′′ ⊂ P as follows.

A := {x ∈ P | i(x) = ∞ and j(x) = ∞},
P ′ := {x ∈ P | i(x) > j(x)},
P ′′ := {x ∈ P | i(x) < j(x)}.

Define the map f : P ′ → P ′′ by

x = (x0, · · · , xk) 7→ (x0, · · · , xj(x)−1, xj(x), z, xj(x)+1, · · · , xk),

where z ∈ G is a vertex satisfying (x0, z, x1) ∈ S if j(x) = 0, or (xj(x)−1, xj(x), z, xj(x)+1) ∈
S if j(x) ≥ 1. Also we define the map g : P ′′ → P ′ by

y = (y0, · · · , yk) 7→ (y0, · · · , ŷi(y)+1, · · · , xk).

Since g ◦ f = idP ′ and f ◦ g = idP ′′ hold, f and g are bijection.

We define the subset M ⊆ P × P by M := {(x, y) ∈ P ′ × P ′′ | f(x) = y}. Then
x ≺ y for any (x, y) ∈ M , and each x ∈ P belongs at most one element in M since
f is injective. Therefore M is a partial matching on M .
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Next we prove that M is acyclic. Assume that there exists a cycle

y1 � x1 ≺ y2 � x2 ≺ · · · ≺ yp � xp ≺ yp+1 = y1

such that (xi, yi+1) ∈ M for each i ∈ {1, 2, · · · , p} (p ≥ 2) and yi 6= yj for every i, j ∈
{1, 2, · · · , p} (i 6= j). For yt = (yt0, · · · , ytk) ∈ P ′′, let (yt0, · · · , ŷit+1, · · · , ytk) = xt. For
xt ∈ P ′, we denote j(xt) by jt. We can assume that j1 is the minimum number in
all jt. Then we have the following.

• jt = it for t ≥ 1,

• jt + 1 ≥ jt+1 and jt 6= jt+1 for t ≥ 1,

• j2 = j1 + 1.

Let y1 = (y0, · · · , yk), then x1, y2, x2, y3 are as follows.

x1 = (y0, · · · , yi1 , yi1+2, · · · , yk),
y2 = (y0, · · · , yi1 , z1, yi1+2, · · · , yk),where z1 satisfies (yi1−1, yi1 , z1, yi1+2) ∈ S,
x2 = (y0, · · · , yi1 , z1, yi1+3, · · · , yk),
y3 = (y0, · · · , yi1 , z1, z2, yi1+3, · · · , yk),where z2 satisfies (yi1 , z1, z2, yi1+3) ∈ S.

For yt = (yt0, · · · , ytk) ∈ P ′′ (t ≥ 3), we prove d(yti1 , y
t
i1+2) ≤ 1 by induction.

(I) In the case of t = 3, by (yi1 , z1, z2, yi1+3) ∈ S, we have z2 = yi1 or z2 =
p(yi1 , z1, yi1+3) for y

3. In both cases, d(y3i1 , y
3
i1+2) = d(yi1 , z2) ≤ 1.

(II) For yt (t ≥ 3), we assume d(yti1 , y
t
i1+2) ≤ 1. Then

yt+1 = (yt0, · · · , ytit−1, y
t
it , zt, y

t
it+2, · · · , ytk),

where zt satisfies (y
t
it−1, y

t
it , zt, y

t
it+2) ∈ S. By the assumption d(yti1 , y

t
i1+2) ≤ 1,

we have it 6= i1. Therefore it ≥ i1 + 1.

(i) In the case of it = i1 + 1, as in (I), d(yt+1
i1 , yt+1

i1+2) = d(ytit−1, zt) ≤ 1 since
(ytit−1, y

t
it , zt, y

t
it+2) ∈ S.

(ii) In the case of it ≥ i1 + 2, d(yt+1
i1 , yt+1

i1+2) = d(yti1 , y
t
i1+2) ≤ 1.

By (I) and (II), we have d(yti1 , y
t
i1+2) ≤ 1 (t ≥ 3). Since yti1+1 is singular in yt,

jt = it 6= i1 = j1 (t ≥ 3). By j2 6= j1, we obtain jt 6= j1 (t ≥ 2). On the other hands,
j1 = i1 = ip+1 = jp+1 by y1 = yp+1. It contradicts. Now we have the matching M is
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acyclic. We consider the matching M on P as the matching on Kℓ(G; a, b), then the
set of critical elements is AtK ′

ℓ(G; a, b). The elements of A are all (ℓ− 2)-simplices.
By Theorem 1.2.4, Kℓ(G : a, b) is homotopy equivalent to the CW complex which is
constructed some (ℓ − 2)-cells attaching K ′

ℓ(G; a, b). Therefore the Asao-Izumihara
complex Kℓ(G; a, b)/K ′

ℓ(G; a, b) is (empty or contractible or) homotopy equivalent to
wedge of (ℓ− 2)-spheres.

Corollary 3.2.4 ([5], Theorem 4.4.). Pawful graphs are diagonal.

3.3 Generalization

In this subsection, we generalize the result for pawful graphs (Theorem 3.2.3). Let
G be a graph with diameter 2. We define the set X, Y , X ′, Y ′ as follows.

X := {(α, β, γ) ∈ V (G)3 | d(α, β) = d(β, γ) = 1, d(α, γ) = 2},
Y := {(α, β, γ, δ) ∈ V (G)4 | d(α, β) = d(β, γ) = d(γ, δ) = 1, d(β, δ) = 2},
X ′ := {(α, γ) ∈ V (G)2 | d(α, γ) = 2},
Y ′ := {(α, β, δ) ∈ V (G)3 | d(α, β) = 1, d(β, δ) = 2}.

Let π1 : X → X ′ and π2 : Y → Y ′ be natural projections.

Definition 3.3.1. Assume that maps f1 : X
′ → X and f2 : Y

′ → Y satisfy the
following.

(i) π1 ◦ f1 = idX′ and π2 ◦ f2 = idY ′ .

(ii) If (α, β, γ, δ) ∈ f2(Y
′), then (∗, α, β, γ) /∈ f2(Y

′) and (α, β, γ) /∈ f1(X
′).

(iii) Let (α, β, γ, δ) ∈ f2(Y
′). If d(α, γ) = 2, then there does not exist γ′( 6= γ) ∈

V (G) such that d(β, γ′) = d(γ′, δ) = 1.

Then we define the set S ⊆ X t Y by S := f1(X
′) t f2(Y

′).

Theorem 3.3.2. Let G be a graph with diameter 2. Assume that G has S as in
Definition 3.3.1. Let ℓ ≥ 3 and a, b ∈ V (G). Then the Asao-Izumihara complex
Kℓ(G; a, b)/K ′

ℓ(G; a, b) is homotopy equivalent to a wedge of (ℓ− 2)-spheres. In par-
ticular, G is diagonal.

Proof. Similar to Theorem 3.2.3.
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Figure 3.1: Non-pawful diagonal graph G1.

Example 3.3.3. Let G1 be a graph as in Figure 3.1. Note that G1 is not pawful,
because for vertices 1, 3, 4 with d(1, 3) = d(1, 4) = 2 and d(3, 4) = 1 there does not
exist a vertix a such that d(a, 1) = d(a, 3) = d(a, 4) = 1. For this graph, we can
construct the set S as follows. Define the map f1 : X

′ → X by

f1(X
′) =

{
(1, 2, 3), (1, 5, 4), (1, 2, 6), (2, 6, 4), (3, 2, 1), (3, 6, 5),
(4, 5, 1), (4, 6, 2), (5, 6, 3), (6, 2, 1)

}
.

Define the map f2 : Y
′ → Y by

f2(Y
′) =



(2, 1, 2, 3), (5, 1, 2, 3), (2, 1, 5, 4), (5, 1, 5, 4), (2, 1, 2, 6), (5, 1, 2, 6),
(1, 2, 5, 4), (3, 2, 6, 4), (5, 2, 6, 4), (6, 2, 6, 4),
(2, 3, 2, 1), (4, 3, 2, 1), (6, 3, 2, 1), (2, 3, 6, 5), (4, 3, 6, 5), (6, 3, 6, 5),
(3, 4, 5, 1), (5, 4, 5, 1), (6, 4, 5, 1), (3, 4, 6, 2), (5, 4, 6, 2), (6, 4, 6, 2),
(1, 5, 2, 3), (2, 5, 6, 3), (4, 5, 6, 3), (6, 5, 6, 3),
(2, 6, 2, 1), (3, 6, 2, 1), (4, 6, 5, 1), (5, 6, 5, 1)


.

Then, since we have

{(α, β, γ, δ) ∈ f2(Y
′) | d(α, γ) = 2} = {(4, 3, 2, 1), (3, 4, 5, 1)},

it is easily seen that f1 and f2 satisfy the conditions (i), (ii) and (iii) of Definition
3.3.1. Thus by Theorem 3.3.2 we conclude that G1 is diagonal.

Example 3.3.4. Let G2 be a graph as in Figure 3.2. The graph G2 is not pawful but
diagonal graph. We can check G2 is diagonal by using Mayer-Vietoris type Theorem
by [8] (see Corollary 5.2.10). However, there does not exist S as in Definition 3.3.1.
The reason why is as follows. For (4, 3, 1) ∈ Y ′, f2((4, 3, 1)) = (4, 3, 2, 1). On the
other hands, for (3, 4, 2) ∈ Y ′, we have f2((3, 4, 2)) 6= (3, 4, 5, 2) since f2 satisfies the
condition (iii) in Definition 3.3.1. Then (3, 4, 3, 2) ∈ f2(Y

′), and we can not satisfy
the condition (ii).
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3 4
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Figure 3.2: Non-pawful diagonal graph G2 which does not have S.

Example 3.3.5. Example 3.3.3 and Example 3.3.4 are cases of graphs whose each
edge is contained in a cycle of length ≤ 4 and which are diagonal. However, it is

1

2

3 4

5

6

Figure 3.3: Non-diagonal graph G3 .

not true that for a graph if each edge is contained in a cycle of length ≤ 4 then
it is diagonal. Let G3 be a graph as in Figure 3.3, and it is not diagonal. In fact,
MH3

2(G3) does not vanish since (2, 4, 5) ∈ MH3
2(G3).
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Chapter 4

Cycle graph

As an example of non-diagonal graph, we describe the Asao-Izumihara complex of
odd cycle graphs. Y. Gu computed the magnitude homology of cycle graphs. The
result for odd cycle graphs is as follows.

Theorem 4.0.1 ([5], Theorem 4.6.). Let C2m−1 (m ≥ 3) be the cycle graph. Then
the magnitude homology of C2m−1 is as follows.

MHℓ
k(C2m−1) =


Z2m−1 ((k, ℓ) = (0, 0)),

Z4m−2 ((k, ℓ) = (1, 1)),

ZrankMHℓ−1
k−1(C2m−1)+2 rankMHℓ−m

k−2 (C2m−1) (k ≥ 0, ℓ ≥ 0, (k, ℓ) 6= (0, 0), (1, 1)),

0 (otherwise).

Example 4.0.2. The rank of the magnitude homology of cycle graph C7 is as follows.

ℓ\k 0 1 2 3 4 5 6 7 8 9
0 7
1 14
2 14
3 14
4 14 14
5 42 14
6 70 14
7 98 14
8 28 126 14
9 112 154 14

We describe the Asao-Izumihara complexes of odd cycle graphs.
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Theorem 4.0.3. Let G = C2m−1 (m ≥ 3) be the cycle graph with 2m − 1 vertices.
Fix ℓ ≥ 3 and a, b ∈ G. Then the Asao-Izumihara complex Kℓ(G; a, b)/K ′

ℓ(G; a, b)
is empty or contractible or homotopy equivalent to the wedge of spheres with various
dimensions.

Proof. Let P := Kℓ(G; a, b) \K ′
ℓ(G; a, b). We define the set S as follows.

S := {(α, β, γ) ∈ V (G)3 | d(α, β) = 1, d(α, γ) = d(α, β) + d(β, γ)}.

For x = (x0, · · · , xk) ∈ P , we denote the minimum i ∈ {0, 1, · · · , k − 2} such
that (xi, xi+1, xi+2) ∈ S by i(x). In the case that there does not exist such i ∈
{0, 1, · · · , k − 2}, then define i(x) = ∞. On the other hands, we denote by j(x) the
minimum j ∈ {1, 2, · · · , k − 1} satisfying either of the following.

• d(xj−1, xj) = 1, d(xj, xj+1) ≥ 2, d(xj, xj+1) = d(xj, xj−1) + d(xj−1, xj+1),

• d(xj−1, xj) ≥ 2, d(xj, xj+1) ≥ 2.

In the case of d(x0, x1) ≥ 2, define j(x) = 0. If there does not exist such j ∈
{1, 2, · · · , k − 1} and j(x) 6= 0, then define j(x) = ∞. Now we define the subsets A,
P ′, P ′′ ⊂ P as follows.

A := {x ∈ P | i(x) = ∞ and j(x) = ∞},
P ′ := {x ∈ P | i(x) > j(x)},
P ′′ := {x ∈ P | i(x) < j(x)}.

Define the map f : P ′ → P ′′ by

x = (x0, · · · , xk) 7→ (x0, · · · , xj(x), z, xj(x)+1, · · · , xk),

where z ∈ G satisfies (xj(x), z, xj(x)+1) ∈ S . Note that f is well-defined since there
is the only one shortest path between any two different vertices. Also we define the
map g : P ′′ → P ′ by

y = (y0, · · · , yk) 7→ (y0, · · · , ŷi(y)+1, · · · , xk).

We prove f ◦ g = idP ′′ . For y = (y0, · · · , yk) ∈ P ′′,

f ◦ g(y) = f((y0, · · · , yi(y)−1, yi(y), yi(y)+2, · · · , yk)).

If d(yi(y)−1, yi(y)) ≥ 2, then j(g(y)) = i(y). If d(yi(y)−1, yi(y)) = 1, then yi(y) satisfies
d(yi(y)−1, yi(y)+1) < d(yi(y)−1, yi(y)) + d(yi(y), yi(y)+1) = 2 since (yi(y)−1, yi(y), yi(y)+1) /∈
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S. The graph G has no 3-cycle, then d(yi(y)−1, yi(y)+1) = 0 i.e. yi(y)−1 = yi(y)+1.
Therefore, j(g(y)) = i(y). In any cases we have f ◦ g(y) = y.

Next we prove g ◦ f = idP ′ . For x = (x0, · · · , xk) ∈ P ′,

g ◦ f(x) = g((x0, · · · , xj(x), z, xj(x)+1, · · · , xk)), where (xj(x), z, xj(x)+1) ∈ S.

If j(x) = 0, then i(f(x)) = j(x). If j(x) ≥ 1, then i(f(x)) = j(x) since (xj(x)−1, xj(x), z) /∈
S. In any cases we have g ◦ f(x) = x. Therefore f and g are bijection.

We define the subset M ⊆ P × P by M := {(x, y) ∈ P ′ × P ′′ | f(x) = y}. Then
x ≺ y for any (x, y) ∈ M , and each x ∈ P belongs at most one element in M since
f is injective. Therefore M is a partial matching on M .

Next we prove that M is acyclic. Assume that there exists a cycle such that

y1 � x1 ≺ y2 � x2 ≺ · · · ≺ yp � xp ≺ yp+1 = y1

with p ≥ 2, that satisfies (xi, yi+1) ∈ M for each i ∈ {1, 2, · · · , p} and yi 6= yj (i 6= j)
for every i, j ∈ {1, 2, · · · , p}. For yt = (yt0, · · · , ytk) ∈ P ′′, let (yt0, · · · , ŷit+1, · · · , ytk) =
xt. For xt ∈ P ′, we denote j(xt) by jt. We can assume that j1 is the minimum
number in all jt. Then we have the following.

• jt = it for t ≥ 1,

• jt + 1 ≥ jt+1 and jt 6= jt+1 for t ≥ 1,

• j2 = j1 + 1.

Let y1 = (y0, · · · , yk), then x1, y2, x2 are as follows.

x1 = (y0, · · · , yi1 , yi1+2, · · · , yk),
y2 = (y0, · · · , yi1 , z1, yi1+2, · · · , yk),where z1 satisfies (yi1 , z1, yi1+2) ∈ S in the case of

i1 = 0 or d(yi1−1, yi1) ≥ 2, and z1 = yi1−1 in the case of d(yi1−1, yi1) = 1,

x2 = (y0, · · · , yi1 , z1, yi1+3, · · · , yk).

Moreover y3 = (y0, · · · , yi1 , z1, yi1 , yi1+3, · · · , yk) since d(yi1 , z1) = 1.
For yt = (yt0, · · · , ytk) ∈ P ′′ (t ≥ 3), we prove d(yti1 , y

t
i1+1) = 1, yti1 = yti1+2 by

induction.

(I) In the case of t = 3, d(y3i1 , y
3
i1+1) = d(yi1 , z1) = 1, y3i1 = yi1 = y3i1+2.
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(II) For yt (t ≥ 3), we assume d(yti1 , y
t
i1+1) = 1, yti1 = yti1+2. Then we have it 6= i1.

Therefore it ≥ i1 + 1.

(i) In the case of it = i1 + 1, for yt+1 = (yt0, · · · , yti1 , yti1+1, zt, y
t
i1+3, · · · , ytk),

yt+1
i1+2 = zt = yti1 = yt+1

i1 holds because of d(yt+1
i1 , yt+1

i1+1) = d(yti1 , y
t
i1+1) = 1.

(ii) In the case of it ≥ i1+2, for yt+1 = (yt0, · · · , yti1 , yti1+1, y
t
i1+2, · · · , zt, · · · , ytk),

we have d(yt+1
i1 , yt+1

i1+1) = 1 and yt+1
i1 = yti1 = yti1+2 = yt+1

i1+2.

By (I) and (II), we have yti1 = yti1+2 (t ≥ 3). Since yti1+1 is singular in yt, jt =
it 6= i1 = j1 (i ≥ 3). By j2 6= j1, we obtain jt 6= j1 (t ≤ 2). On the other hands,
j1 = i1 = ip+1 = jp+1 by y1 = yp+1. It contradicts. Now we have that the matching
M is acyclic. Remark that the set of critical elements is A.

For any x ∈ A, let us prove that x has no smooth point. First x satisfies i(x) =
j(x) = ∞. It means x = (x0, · · · , xk) satisfies as follows.

(1) There does not exist i ∈ {1, · · · , k − 1} such that d(xi−1, xi) = 1 and xi−1 ≺
xi ≺ xi+1.

(2) d(x0, x1) = 1.

(3) There does not exist j ∈ {2, · · · , k−1} such that d(xj−1, xj) ≥ 2 and d(xj, xj+1) ≥
2.

(4) There does not exist j ∈ {2, · · · , k−1} such that d(xj−1, xj) = 1, d(xj, xj+1) ≥
2 and xj ≺ xj−1 ≺ xj+1.

Assume that x has a smooth point xn (n ∈ {1, · · · , k − 1)}. By (1), we have
d(xn−1, xn) ≥ 2. Then n ≥ 2 by (2). Furthermore, d(xn−2, xn−1) = 1 (otherwise
it contradicts (3)). If xn−1 is smooth in x, then (xn−2, xn−1, xn) ∈ S. Therefore,
xn−1 is singular in x. It means xn−1 ≺ xn−2 ≺ xn. We know d(xn−2, xn−1) = 1 and
d(xn−1, xn) ≥ 2. It contradicts (4). Therefore, x has no smooth point. It means that
the any subsimplex which consists boundaries of every critical element is contained
in K ′(G; a, b).

We consider the matching M on P as the matching on Kℓ(G; a, b), then the set of
critical elements is AtK ′

ℓ(G; a, b). By Theorem 1.2.4, Kℓ(G; a, b) is homotopy equiva-
lent to the CW complex which is constructed some cells attaching K ′

ℓ(G; a, b). There-
fore the Asao-Izumihara complex Kℓ(G; a, b)/K ′

ℓ(G; a, b) is (empty or contractible or)
homotopy equivalent to wedge of spheres with various dimensions.
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Proof of Example 2.2.5(1). Let G be a tree. Let ℓ ≥ 3 and a, b ∈ V (G). First we
describe the Asao-Izumihara complexes for trees. As same as the proof of Theorem
4.0.3, we construct a matching M on P := Kℓ(G; a, b) \ K ′

ℓ(G; a, b). Define the set
S, A, P ′, P ′′ and the map f , g by all the same as the proof of Theorem 4.0.3.
Then we have the bijectivity of f by the same reason, and we can define a partial
matching M ⊆ P × P as same. In the case of trees, we can show that the matching
M is acyclic in exactly the same way as in the proof of Theorem 4.0.3. All critical
elements are contained in A, and satisfy the condition (1), (2), (3) and (4) of the proof
of Theorem 4.0.3. We can easily check that they have no smooth point. It means
that the any subsimplex which consists the boundaries of every critical element is
contained in K ′(G; a, b). Similar to the last part of the proof of Theorem 4.0.3, the
Asao-Izumihara complex Kℓ(G; a, b)/K ′

ℓ(G; a, b) is homotopy equivalent to wedge of
spheres. Moreover, for any critical element x = (x0, · · · , xk) ∈ A, we can check there
does not exist j ∈ {0, · · · , k−1} such that d(xj, xj+1) ≥ 2. If (α, β, γ) ∈ V (G)3 with
d(α, β) = d(β, γ) = 1 satisfies α 6= γ, then β smooth in (α, β, γ). Therefore, any
critical element x = (x0, · · · , xk) ∈ A satisfies

(i) d(xi, xi+1) = 1 for any i, and

(ii) xi = xi+2 for any i.

By (i), the Asao-Izumihara complex is consisted of only (ℓ− 2) dimensional spheres.
By (i) and (ii), the number of spheres is equal to 2|E(G)|. By Theorem 2.2.8,
the magnitude homotopy type Mℓ(G; a, b) is homotopy equivalent to the double
suspension of Asao-Izumihara complex, then we have the result for ℓ ≥ 3. The result
for 0 ≤ ℓ ≤ 2 can be easily checked.

Remark 4.0.4. For a even cycle graph, we can not construct an acycle matching
by the same way for a odd cycle graph since there exist pairs of vertices which have
more than one shortest paths.
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Chapter 5

Discrete Morse theory on
magnitude homotopy type

5.1 Projecting matching

Definition 5.1.1 (Induced subgraph). Let G be a graph. An induced subgraph H
is a graph with the vertex set V (H) ⊆ V (G), and which satisfies {x, y} ∈ E(H) if
and only if {x, y} ∈ E(G) for x, y ∈ V (H). In this paper, we call a induced subgraph
simply a subgraph.

Definition 5.1.2. Let G be a graph, and H ⊂ G be a subgraph. We say that x ∈ G
projects to H if there exists π(x) ∈ H such that dG(x, y) = dG(x, π(x))+dG(π(x), y)
for any y ∈ H.

Definition 5.1.3 (Convex subgraph). Let G be a graph, and H ⊂ G be a subgraph.
If H satisfies the following, then we say H is convex.

• For any x, y ∈ H, dH(x, y) = dG(x, y).

Through this section, our setting is as follows. Let G, H and K be conected
graphs. Assume that there exists an isomorphism iG : K → iG(K) ⊂ G of K to an
induced subgraph iG(K) ⊂ G, and iG(K) is convex in G (similarly for H). Define a
new graph X = G ∪H by G tH identified iG(k) and iH(k) for each k ∈ K. Denote
by simply K or G ∩H the subgraph iG(K)(= iH(K)) ⊂ G ∪H.

Definition 5.1.4. (Biased point) Define the set

H∗ = {y ∈ H \K | y projects to K}.
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We call an element of H∗ a biased point. We denote the set H0 := H \ (K ∪H∗).

Let ℓ ≥ 0 and a, b ∈ X.

Definition 5.1.5. Let x = (x0, · · · , xk) ∈ ∆ℓ(X; a, b).

(i) We say that x is flat if x0, · · · , xk ∈ G ∪H0 or x0, · · · , xk ∈ H.

(ii) We say that (xi, xi+1, · · · , xj) is sticky if xi ∈ int(G) and xj ∈ H∗, or vise versa,
and xi+1, xi+2, · · · , xj−1 ∈ K. For sticky subsequence (xi, xi+1, · · · , xj), we say
it is fillable if xi+1 6= π(xi) (xi ∈ H∗) or xj−1 6= π(xj) (xj ∈ H∗). Otherwise,
we say it is removable.

(iii) We say x is twistable if there does not exist i ∈ {0, · · · , k − 1} and j ∈
{i+ 1, · · · , k} such that (xi, xi+1, · · · , xj) is sticky.

Definition 5.1.6. Let x = (x0, · · · , xk), y = (y0, · · · , yn) ∈ ∆ℓ(X; a, b). Let x′ =
(xi, xi+1, · · · , xj) be a subsequence of x, and y′ = (yp, yp+1, · · · , yq) be a subsequence
of y. If xj = yp, define x′ ∗ y′ := (xi, xi+1, · · · , xj, yp+1, · · · , yq).
Proposition 5.1.7 ([14], Proposition 5.9). Let G, H, X, K be as above. Assume
that K is convex in X, and H projects to K. Let ℓ ≥ 0, a, b ∈ X and x =
(x0, · · · , xk) ∈ ∆ℓ(X; a, b). Then the following are equivalent.

(i) x is twistable.

(ii) x can be decomposed x = x1 ∗x2 ∗ · · · ∗xm, where each xi is flat and each point
of concatenation is contained in H0.

Proof. We prove (i) =⇒ (ii). Assume that x is twistable. If x is flat, x satisfies (ii).
Let x be not flat, and the maximum i ∈ {1, 2, · · · , k − 1} such that (x0, · · · , xi) is
flat.

• If x0, · · · , xi ∈ G ∪ H0, then xi+1 ∈ H∗ and xi ∈ H0 ∪K. If xi ∈ H0, then x
is decomposed at xi such that (x0, · · · , xi) is flat. Assume that xi ∈ K. Take
j ∈ {0, · · · , i−1} such that xj ∈ (G∪H0)\K = int(G)∪H0, xj+1, · · · , xi ∈ K.
Since (xj, xj+1, · · · , xi, xi+1) is not sticky, we have xj ∈ H0. Hence, x has a
decomposition x = (x0, · · · , xj) ∗ (xj, · · · , xk) such that (x0, · · · , xj) is flat and
the point of concatenation xj is in H0.

• If x0, · · · , xi ∈ H, then xi+1 ∈ int(G) and xi ∈ H0 ∪K. We may assume that
xi ∈ K. Take j ∈ {0, · · · , i − 1} such that xj ∈ int(H), xj+1, · · · , xi ∈ K.
Since (xj, xj+1, · · · , xi, xi+1) is not sticky, we have xj ∈ H0. Hence, x has a
decomposition x = (x0, · · · , xj) ∗ (xj, · · · , xk) such that (x0, · · · , xj) is flat and
the point of concatenation xj is in H0.
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In both cases, we continue decomposition for (xj, · · · , xk), then we obtain the de-
composition for x such as (ii). The converse (ii) =⇒ (i) is straightforward

Definition 5.1.8 (Projecting matching). For x = (x0, · · · , xk) ∈ ∆ℓ(X; a, b) \
∆′

ℓ(X; a, b), we denote by i(x) the minimum i ∈ {0, · · · , k−1} such that (xi, xi+1, · · · , xj)
(j ≥ i + 1) is sticky, and this j is denoted by j(x). Then we define the projecting
matching as follows.

(i) If xi(x) ∈ H∗ and xi(x)+1 6= π(xi(x)), then

x ` (x0, · · · , xi(x), π(xi(x)), xi(x)+1, · · · , xk).

(ii) If xi(x) ∈ H∗ and xi(x)+1 = π(xi(x)), then

x a (x0, · · · , x̂i(x)+1, · · · , xk).

(iii) If xj(x) ∈ H∗ and xj(x)−1 6= π(xj(x)), then

x ` (x0, · · · , xj(x)−1, π(xj(x)), xj(x), · · · , xk).

(iv) If xj(x) ∈ H∗ and xj(x)−1 = π(xj(x)), then

x a (x0, · · · , x̂j(x)−1, · · · , xk).

Proposition 5.1.9 ([17], Proposition 5.9.). The projecting matching is acyclic.

Proof. Let x = (x0, · · · , xk) ∈ ∆ℓ(X; a, b) \∆′
ℓ(X; a, b). A sequence x can be decom-

posed as
x = w1 ∗ w2 ∗ · · · ∗ wm, (5.1.1)

where each wi is flat or sticky. Such a decomposition is constructed as follows. First,
we pick up all sticky subsequence, then x is decomposed into sticky subsequences and
other subsequences which do not have sticky subsequence. By Proposition 5.1.7, we
can decompose non sticky parts into flat subsequence such that concatenations of flat
subsequences are contained in H0. Note that concatenations of a sticky subsequence
and a flat subsequence in (5.1.1) are not contained in K since endpoints of sticky
subsequence are containd in H∗ ∪ int(G).

We prove the matching is acyclic. Assume that there exists a cycle such that

y1 � x1 ≺ y2 � x2 ≺ · · · ≺ yp � xp ≺ yp+1 = y1
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with p ≥ 2, that satisfies xi ` yi+1 for each i ∈ {1, 2, · · · , p} and yi 6= yj (i 6=
j) for every i, j ∈ {1, 2, · · · , p}. For x ∈ ∆ℓ(X; a, b) \ ∆′

ℓ(X; a, b), we denote the
number of points in int(G) by |x|G, and as same in int(H) by |x|H . We have |y1|G ≥
|x1|G = |y2|G ≥ |x2|G = · · · ≥ |xp|G = |yp+1|G = |y1|G, then it must be all equal.
Similary, |y1|H = |x1|H = |y2|H = |x2|H = · · · = |xp|H = |yp+1|H = |y1|H . Let
y1 = (y0, · · · , yk). Let yα1 be a removal point such that x1 = (y0, · · · , ŷα1 , · · · , yk),
then yα1 ∈ K. A decomposition of y such as (5.1.1) is denoted by

y = w1 ∗ w2 ∗ · · · ∗ wm

with the first sticky subsequence wi = (yq, yq+1, · · · , yr). We can assume yq ∈ H∗.
By definition of projecting matching, yα1 = yq+1. To remove a point in K does
not bring out a new stickey subsequence. Then the first sticky subsequence of x1

is w′
i = (yq, yq+2, · · · , yr) and it is fillable. Therefore, y2 = y1 since y2 a x1. It

contradicts p ≥ 2.

Definition 5.1.10. Denote by Tℓ(X; a, b) the set of critical elements of projecting
matching M on ∆ℓ(X; a, b) \∆′

ℓ(X; a, b), and define Tℓ(X) := ta,b∈XTℓ(X; a, b).

Remark 5.1.11. Clearly,

Tℓ(X; a, b) = {x ∈ ∆ℓ(X; a, b) \∆′
ℓ(X; a, b) | x is twistable }.

5.2 Mayer-Vietoris type theorem

In this subsection, the setting is same as §5.1. Let us define the condition(∗) by

(∗) the graph H projects to G ∩H.

Theorem 5.2.1 ([17], Corollary 5.16.(1)). Assume that the graph X = G∪H satisfies
the condition(∗). Then,

Mℓ(G ∩H) ∨Mℓ(X) ' Mℓ(G) ∨Mℓ(H).

Before the proof of Theorem 5.2.1, we need some preparation. Let ℓ ≥ 0 and
a, b ∈ X. Define the subsets S(G), S(H), S(G ∩H) ⊂ ∆ℓ(X; a, b) as follows.

S(G) := {(x0, · · · , xk) ∈ ∆ℓ(X; a, b) | x0, · · · , xk ∈ G},
S(H) := {(x0, · · · , xk) ∈ ∆ℓ(X; a, b) | x0, · · · , xk ∈ H},

S(G ∩H) := {(x0, · · · , xk) ∈ ∆ℓ(X; a, b) | x0, · · · , xk ∈ G ∩H}.
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Note that S(G) ⊂ ∆ℓ(X; a, b) is not equal to ∆ℓ(G; a, b). The inclusion S(G) ⊃
∆ℓ(G; a, b) is true, however the converse S(G) ⊂ ∆ℓ(G; a, b) is not true. In fact,
for x ∈ S(G) with a path p(x) ∈ Pℓ(X; a, b) such that x ≺ p(x), there does not
necessarily exist a path p′(x) ∈ Pℓ(G; a, b) such that x ≺ p′(x). Similarly for S(H)
and S(G ∩H).

Moreover, we define the subset S ′(H) ⊂ S(H) by

S ′(H) :=

{
x = (x0, · · · , xk) ∈ S(H)

∣∣∣∣ x ∈ ∆′
ℓ(X; a, b) or there exists i ∈ {0, · · · , k}

such that xi ∈ int(H)

}
.

Lemma 5.2.2. For any a, b ∈ G and x ∈ int(H),

dX(a, b) < dX(a, x) + dX(x, b).

Proof. In this proof, the distance d means dX . First we prove g ≺ π(h) ≺ h for any
g ∈ G and h ∈ int(H). In the case of g ∈ G ∩ H, it holds. Let g ∈ int(G). If
{g, h} ∈ E(X), then {g, h} ∈ E(G) or {g, h} ∈ E(H). However, since g ∈ int(G)
and h ∈ int(H), then {g, h} /∈ E(X). Hence d(g, h) ≥ 2. Let (g, x1, · · · , xk, h)
be a shortest path on X. There exist i ∈ {1, · · · , k} such that xi ∈ G ∩ H. We
have d(g, h) = d(g, xi) + d(xi, h) = d(g, xi) + d(xi, π(h)) + d(π(h), h). Hence we have
g ≺ π(h) ≺ h for any g ∈ G and h ∈ int(H). Therefore, for any a, b ∈ G and
x ∈ int(H), d(a, x) + d(x, b) = d(a, π(x)) + d(π(x), x) + d(x, π(x)) + d(π(x), b) ≥
d(a, π(x)) + d(π(x), b) + 2 ≥ d(a, b) + 2 > d(a, b).

Lemma 5.2.3. The subset S ′(H) ⊂ S(H) is the subcomplex of ∆ℓ(X; a, b).

Proof. Let x = (x0, · · · , xk) ∈ S ′(H).

(I) In the case of L(x) < ℓ, x ∈ ∆′
ℓ(X; a, b). For any subsimplex x′ ⊂ x, x′ ∈

∆′
ℓ(X; a, b) holds since ∆′

ℓ(X; a, b) is subcomplex of ∆ℓ(X; a, b).

(II) In the case of L(x) = ℓ, there exists i ∈ {0, · · · , k} such that xi ∈ int(H).
Denote a subsimplex of x which obtained by removig xi from x by x′. By
Lemma 5.2.2, L(x′) < ℓ. Any subsimplex y ⊂ x such that L(y) = ℓ has a point
contained in int(H), we have y ∈ S ′(H). This completes the proof.

Definition 5.2.4. Define the subset S(G,H) ⊂ ∆ℓ(X; a, b) by

S(G,H) :=

{
x = (x0, · · · , xk) ∈ ∆ℓ(X; a, b)

∣∣∣∣ L(x) = ℓ and, there exists i, j ∈ {0, · · · , k}
such that xi ∈ int(G) and xj ∈ int(H)

}
.
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Remark 5.2.5. As sets of simplices, we have

∆ℓ(X; a, b) = (∆′
ℓ(X; a, b) ∪ S(G) ∪ S(H)) t S(G,H).

Lemma 5.2.6. For the subsets of ∆ℓ(X; a, b), we have the following.

(i) S(G ∩H) ∩ S ′(H) ⊂ ∆′
ℓ(X; a, b).

(ii) S(G) ∩ S ′(H) ⊂ ∆′
ℓ(X; a, b).

(iii) S(G ∩H) ∪ S ′(H) = S(H).

(iv) S(G) ∪ S(H) = S(G) ∪ S ′(H).

Proof. (i) Let x = (x0, · · · , xk) ∈ S(G∩H)∩S ′(H) ⊂ ∆ℓ(X; a, b). Since x0, · · · , xk ∈
G∩H, x does not have a point in int(H). Moreover, since x ∈ S ′(H), we have
x ∈ ∆′

ℓ(X; a, b).

(ii) Clearly, S(G ∩ H) = S(G) ∩ S(H) as sets. By (i), S(G ∩ H) ∩ S ′(H) =
S(G) ∩ S(H) ∩ S ′(H) = S(G) ∩ S ′(H) ⊂ ∆′

ℓ(X; a, b).

(iii) We prove S(G ∩ H) ∪ S ′(H) ⊇ S(H). Let x = (x0, · · · , xk) ∈ S(H). If
x ∈ ∆′

ℓ(X; a, b), then s ∈ S ′(H). Consider in the case of x /∈ ∆′
ℓ(X; a, b). If x

has a point of int(H), we have x ∈ S ′(H). Otherwise, we have x ∈ S(G ∩H).
The converse inclusion is straightforward.

(iv) By (iii), S(G) ∪ S(H) = S(G) ∪ S(G ∩H) ∪ S ′(H) = S(G) ∪ S ′(H).

Proposition 5.2.7. We have the following homotopy equivalence

∆ℓ(X; a, b) ' ∆′
ℓ(X; a, b) ∪ S(G) ∪ S(H).

Moreover there exists a strong deformation retract from left-hand side to right-hand
side.

Proof. Consider the projecting matching M on ∆ℓ(X; a, b) \∆′
ℓ(X; a, b). By Propo-

sition 5.1.9, M is acyclic. Note that

S(G,H) = {x ∈ ∆ℓ(X; a, b) \∆′
ℓ(X; a, b) | x belongs to an element of M},

and
∆ℓ(X; a, b) = (∆′

ℓ(X; a, b) ∪ S(G) ∪ S(H)) t S(G,H).

Since ∆′
ℓ(X; a, b)∪S(G)∪S(H) is a subcomplex of ∆ℓ(X; a, b), by Theorem 1.2.4(a)

and Remark 1.2.6, we have the result.
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Proposition 5.2.8. We have the following.

(i)
∆ℓ(X; a, b)

∆′
ℓ(X; a, b)

' S(G) ∪ S(H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

.

(ii)
S(G) ∪ S(H) ∪∆′

ℓ(X; a, b)

∆′
ℓ(X; a, b)

≈ ∆ℓ(G; a, b)

∆′
ℓ(G; a, b)

∨ S ′(H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

.

(iii)
∆ℓ(H; a, b)

∆′
ℓ(H; a, b)

≈ ∆ℓ(G ∩H; a, b)

∆′
ℓ(G ∩H; a, b)

∨ S ′(H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

.

In general, we know the following.

Fact 5.2.9. (I) Let A be a topological space and C ⊂ B ⊂ A be subspaces.
Assume that there exists a strong deformation retract from A to B. Then it
induces the strong deformation retract from A/C to B/C.

(II) Let A1, A2 be topological spaces, and X = A1 ∪ A2, B = A1 ∩ A2. Then
X/B ≈ (A1/B) ∨ (A2/B).

(III) Let X = A∪B be a topological space and A, B ⊂ X be closed subspace. Then
A/(A ∩ B) ≈ X/B.

Proof of Proposition 5.2.8. (i) Let A = ∆ℓ(X; a, b), B = S(G)∪S(H)∪∆′
ℓ(X; a, b)

and C = ∆′
ℓ(X; a, b). By Proposition 5.2.7, there exists a strong deformation

retract from A to B. Then A, B and C satisfy the assumption of Fact 5.2.9
(I), we have the result.

(ii) First, let A = ∆ℓ(G; a, b) and B = ∆′
ℓ(X; a, b), then A∩B = ∆′

ℓ(G; a, b). Since
A, B and X = A ∪ B satisfy the condition of Fact 5.2.9 (III),

∆ℓ(G; a, b)

∆′
ℓ(G; a, b)

≈ ∆ℓ(G; a, b) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

= (⋆). (5.2.1)

For x ∈ S(G), if x /∈ ∆ℓ(G; a, b), then x ∈ ∆′
ℓ(X; a, b). Hence,

(⋆) =
S(G) ∪∆′

ℓ(X; a, b)

∆′
ℓ(X; a, b)

. (5.2.2)
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Next, let A1 = S(G)∪∆′
ℓ(X; a, b), A2 = S ′(H)∪∆′

ℓ(X; a, b). Let X = A1 ∪A2

and B = A1 ∩ A2. By Lemma 5.2.6 (iv),

X = S(G) ∪ S ′(H) ∪∆′
ℓ(X; a, b) = S(G) ∪ S(H) ∪∆′

ℓ(X; a, b).

By Lemma 5.2.6 (ii), We have B = ∆′
ℓ(X; a, b). By applying Fact 5.2.9 (II),

S(G) ∪ S(H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

≈ S(G) ∪∆′
ℓ(X; a, b)

∆′
ℓ(G; a, b)

∨ S ′(H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b))

.

Therefore, by (5.2.1), (5.2.2), this completes the proof.

(iii) First, we show S(H) \ ∆ℓ(H; a, b) ⊆ ∆′
ℓ(X; a, b). For any x ∈ S(H), we

prove x satisfies x ∈ ∆ℓ(H; a, b) or x ∈ ∆′
ℓ(X; a, b). Let x = (xi0 , · · · , xik) ∈

S(H), then there exists a path (a, x1, · · · , xℓ−1, b) ∈ Pℓ(X; a, b) such that x ≺
(a, x1, · · · , xℓ−1, b). Denote the path by p(x). If L(x) < ℓ, then x ∈ ∆′

ℓ(X; a, b).
We consider in the case of L(x) = ℓ. Note that xi0 = a and xik = b. If the
path p(x) has a subpath (xim , xim+1, · · · , xim+1) (m ∈ {0, · · · , k}) such that the
ends points xim , xim+1 ∈ G ∩ H and others xim+1, · · · , xim+1−1 ∈ int(G). By
x ∈ S(H), xim+1, · · · , xim+1−1 does not belong to x. By L(x) = ℓ, we have
dX(xim , xim+1) = im+1 − im. Since G ∩ H is convex in X, dG∩H(xim , xim+1) =
im+1 − im. It means there exists a path on G ∩ H from xim to xim+1 with
length im+1 − im. We replace th subpath (xim , xim+1, · · · , xim+1) of p(x) with
the path on G∩H, and we continue such replacement then we obtain the path
p̃(x) ∈ Pℓ(G ∩ H; a, b) such that x ≺ p̃(x). Hence x ∈ ∆ℓ(H; a, b). Now we
have

S(H) \∆ℓ(H; a, b) ⊆ ∆′
ℓ(X; a, b). (5.2.3)

Let A1 = S(G∩H)∪∆′
ℓ(X; a, b) and A2 = S ′(H)∪∆′

ℓ(X; a, b). Let B = A1∩A2

and X = A1 ∪ A2. Then, B = ∆′
ℓ(X; a, b) and

X = S(G ∩H) ∪ S ′(H) ∪∆′
ℓ(X; a, b)

= S(H) ∪∆′
ℓ(X; a, b)

= ∆ℓ(H; a, b) ∪∆′
ℓ(X; a, b).

The second equation holds by Lemma 5.2.6 (iii), and third equation holds by
(5.2.3). Therefore, by Fact 5.2.9 (II),

∆ℓ(H; a, b) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

≈ S(G ∩H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

∨ S ′(H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

.

(5.2.4)
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By Fact 5.2.9 (III), the left-hand side of (5.2.4) is

∆ℓ(H; a, b) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

≈ ∆ℓ(H; a, b)

∆′
ℓ(H; a, b)

.

For the former part of right-hand side of (5.2.4), by (5.2.3) and Fact 5.2.9 (III),

S(G ∩H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

≈ ∆ℓ(G ∩H; a, b) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

≈ ∆ℓ(G ∩H; a, b)

∆′
ℓ(G ∩H; a, b)

.

This completes the proof.

Proof of Theorem 5.2.1. By Proposition 5.2.8 (i) and (ii),

Mℓ(X; a, b) ' Mℓ(G; a, b) ∨ S ′(H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

.

Moreover, by Proposition 5.2.8 (iii), we have

Mℓ(G ∩H; a, b) ∨Mℓ(X; a, b) ∨ S ′(H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

' Mℓ(G; a, b) ∨Mℓ(H; a, b) ∨ S ′(H) ∪∆′
ℓ(X; a, b)

∆′
ℓ(X; a, b)

,

for any a, b ∈ X. This completes the proof.

Corollary 5.2.10 ([8], Theorem 6.6). Assume that the graph X = G ∪ H satisfies
the condition(∗). Then, there exists the following short split exact sequence.

0 → MHℓ
k(G ∩H) → MHℓ

k(G)⊕MHℓ
k(H) → MHℓ

k(X) → 0.

5.3 Sycamore twist

In this subsection, the setting is also the same as §5.1. Denote the set of biased
points by

H∗ := {x ∈ H \ iH(K) | x projects to iH(K)},

and the set of non-biased points by

H0 := H \ (iH(K) tH∗).
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Definition 5.3.1 (Sycamore twist). Let α : K → K be a isometry. Assume that

dH(h, k) = dH(h, α(k)), (5.3.1)

for any h ∈ H0 and k ∈ K. Define a new graph X by G t H identified iG(k) and
iH(k) for each k ∈ K. Another new graph Y is defined by G t H identified iG(k)
and iH(α(k)) for each k ∈ K. Then, X and Y are called graphs differ by a sycamore
twist.

Remark 5.3.2. Under the above setting, note that H projects to iH(K) if and only
if H0 = ∅. Therefore, if H0 = ∅, then (G,H,X,K) and (G,H, Y,K) satisfy the
condition(∗) in §5.2 respectively. Hence, by Theorem 5.2.1, Mℓ(X) ' Mℓ(Y ) for
ℓ ≥ 0.

Example 5.3.3 (Whitney twist). Let G and H be graphs. Let g+, g− be vertices
of G, and h+, h− be vertices of H. A new graph X is defined by G t H identified
g+ ∼ h+ and g− ∼ h−. Define another new graph Y by G t H identified g+ ∼ h−
and g− ∼ h+. Then, X and Y are called graphs differ by a Whitney twist, and it
is a special case of a sycamore twist. In [12], it is proved that the magnitudes of X
and Y coincide under the assumption that {g+, g−} ∈ E(G) and {h+, h−} ∈ E(H).

Theorem 5.3.4 ([17], Theorem 5.20.). Let X and Y be graphs differ by a sycamore
twist. Then, there exists a bijection between Tℓ(X) and Tℓ(Y ) which preserves the
dimensions of critical elements.

Proof. We can prove in a similar manner as [14, Proposition 5.6]. First let us define
maps τG, τH : X −→ Y as follows (see also Figure 5.1). (Note that, here, X and Y
are defined as G t H/ ∼, where ∼ is certain equivalence relation. Therefore, any
point in X can be expressed as x with x ∈ GtH. One can easily check the following
is well-defined on iG(K) t iH(K).)

τG(x) =


x, if x ∈ Gr iG(K),

x, if x ∈ iG(K),

x, if x ∈ H r iH(K),

iH(α(i
−1
H (x))), if x ∈ iH(K),

τH(x) =


x, if x ∈ Gr iG(K),

iG(α−1(i−1
G (x))), if x ∈ iG(K),

x, if x ∈ H r iH(K),

x, if x ∈ iH(K).

(5.3.2)

By Proposition 5.1.7, x ∈ Tℓ(X) can be expressed as a concatenation

x = x1 ∗ x2 ∗ · · · ∗ xm, (5.3.3)
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K

α

G

H

X

1

2 3

4
Y

2 3

1

4

τG(1) = τH(1) = 1

τG(2) = 2, τG(3) = 3, τH(2) = 3, τH(3) = 2

τG(4) = τH(4) = 4

Figure 5.1: The maps τG and τH [17, Figure 13.].

of flat sequences xi such that each point of concatenation is contained in H0. If xi

is contained in G∪H0, then by the assumption (5.3.1) of the sycamore twist, τG(xi)
has the same length with xi. Define τ(xi) by

τ(xi) :=

{
τG(xi) (x ⊂ G ∪H0),

τH(xi) (otherwise),
(5.3.4)

and

τ(x) := τ(x1) ∗ · · · ∗ τ(xm). (5.3.5)

This gives a desired bijection Tℓ(X) −→ Tℓ(Y ).

Corollary 5.3.5 ([14], Theorem 6.5). Let X and Y be graphs differ by a sycamore
twist. Then, the magnitudes of X and Y coincide.

Proof. By Theorem 1.1.5,

#X =
∑
ℓ≥0

(∑
k≥0

(−1)k rankMHℓ
k(X)

)
qℓ

=
∑
ℓ≥0

(∑
k≥0

(−1)k rankMCℓ
k(X)

)
qℓ.

(5.3.6)
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By the definitions of MCℓ
k(X), ∆ℓ(X; a, b) and ∆′

ℓ(X; a, b),

rankMCℓ
k(X) =

∑
a,b∈X

|∆k,ℓ(X; a, b)|, (5.3.7)

where ∆k,ℓ(X; a, b) is the set of all k-simplices of ∆ℓ(X; a, b) \ ∆′
ℓ(X; a, b). For any

a, b ∈ ∆ℓ(X; a, b) \∆′
ℓ(X; a, b) such that a ` b, we have dim(a) + 1 = dim(b). Hence,

by (5.3.6) and (5.3.7), we have

#X =
∑
ℓ≥0

(∑
k≥0

(−1)k

(∑
a,b∈X

|∆k,ℓ(X; a, b)|

))
qℓ

=
∑
ℓ≥0

(∑
k≥0

(−1)k|Tk,ℓ(X)|

)
qℓ,

where Tk,ℓ(X) is the set of all k-simplices of Tℓ(X). Similarly, we have

#Y =
∑
ℓ≥0

(∑
k≥0

(−1)k|Tk,ℓ(Y )|

)
qℓ.

Therefore, by Theorem 5.3.4, #X and #Y coincide.

Remark 5.3.6. Let {g+, g−} ∈ E(G) and {h+, h−} ∈ E(H), and X, Y be as in
Example 5.3.3. Denote by K a subgraph {g+, g−} of X (or Y ). By Corollary 5.3.5,
#X = #Y . It is still open whether magnitude homology groups are isomorphic
or not. However, if either the following (i) or (ii) holds, then magnitude homotopy
types are equivalent.

(i) H∗ := {x ∈ H \K | x projects to K} = ∅, or

(ii) H0 := H \ (K ∪H∗) = ∅.

In the case of (i), X and Y are isomorphic as graphs. In the case of (ii), H projects to
K. Then, by Mayer-Vietoris type theorem (Corollary 5.2.10), MHℓ

∗(X) ∼= MHℓ
∗(Y )

for ℓ ≥ 0. Moreover, by Theorem 5.2.1,Mℓ(X) ' Mℓ(Y ) for ℓ ≥ 0.

Example 5.3.7. Let X and Y be graphs differ by a Whitney twist such as Figure
5.2. Then X and Y satisfy neither condition (i) nor (ii) in Remark 5.3.6. We do not
know whether MHℓ

∗(X) and MHℓ
∗(Y ) are isomorphic or not.
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X Y

Figure 5.2: Graphs differ by a Whitney twist.

Example 5.3.8. LetX and Y be graphs differ by a Whitney twist such as Figure 5.3.
Then X and Y satisfy neither condition (i) nor (ii) in Remark 5.3.6. However, in this
case, we can show that MHℓ

∗(X) ∼= MHℓ
∗(Y ) and Mℓ(X) ' Mℓ(Y ). In fact, X and

Y have another decomposition (G′, H ′) in Figure 5.3 such that G′ projects to G′∩H ′.
Then both of MHℓ

∗(X) and MHℓ
∗(Y ) are determined only by MHℓ

∗(G
′), MHℓ

∗(H
′) and

MHℓ
∗(G

′ ∩H ′). Hence, MHℓ
∗(X) ∼= MHℓ

∗(Y ). Similary, we have Mℓ(X) ' Mℓ(Y ).

G

H

X Y

G′

H ′

Figure 5.3: Graphs differ by a Whitney twist which have another decompositions.
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