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Symbols and Notations

The following list describes several symbols that will be used later in this thesis.

I. Number Sets

N Natural numbers with its minimum element 1

Z Integers

Q Rational numbers

R Real numbers

C Complex numbers

T Unit circle on C {z 2 C : |z| = 1}

[n] The n point set {1, 2, . . . , n}

II. Posets and Möbius Functions

P = (P,) Partially ordered set (for short, poset), page 12

µP Möbius function defined on a poset P , page 13

(B(n), µB
n ) Boolean poset and its Möbius function µB

n , page 12

(P(n), µP
n) All partition and its Möbius function, page 12

(NC(n), µNC
n ) Non-crossing partition and its Möbius function, page 13

Kr(⇡) Kreweras complement of ⇡ 2 NC(n), page 14

III. Measures and Operations

(⌦,F ,P) Probability space; the triplet of sample space ⌦, �-algebra F and probability P.

E[X] Expectation of a random variable X

Mn(µ) Moments of a probability measure µ, see equation (0.0.1), page 1

Dc(µ) Dilation of a probability measure µ, page 1

µ� ⌫ Free additive convolution of µ and ⌫, page 4

µ⇥ ⌫ Free multiplicative convolution of µ and ⌫, page 4

n(µ) Free cumulants of a probability measure µ, see equation (2.2.1), page 16

Rµ R-transform of µ, page 16

Sµ S-transform of µ, page 16
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⌃t Free unitary normal distribution on T with parameter t, page 50

⇧t Free unitary Poisson distribution on T with parameter t, page 51

�t Multiplicative free semicircle distribution on [0,1) with parameter t, page 54

�(µ) The limit measure in Tucci’s limit theorem , see equation (4.6.1), page 55

IV. Polynomials and Operations

C[x] The set of all polynomials with complex coefficients

lead f The leading coefficient of a polynomial f , page 1

deg f The degree of a polynomial f , page 1

µJpK Empirical root distribution of a polynomial p, see equation (0.0.2), page 2

Dc(p) Dilation of a polynomial p, page 2

�↵(p) Root dilation of a monic polynomial p having non-negative roots, see equation (0.0.3),
page 2

p�d q Finite additive convolution of p and q, see equation (0.0.4), page 2

p⇥d q Finite multiplicative convolution of p and q, see equation (0.0.5), page 2

(d)n (p) Finite free cumulants of p, see equation (4.1.1), page 41

bL(�)
d (x) Normalized Laguerre polynomial, see equation (4.1.2), page 41

Hd(z, t) Unitary Hermite polynomial, see equation (4.4.1), page 49

Ld,m(z) Unitary Laguerre polynomial, see equation (4.4.3), page 51

V. Matrices and Operations

IN Identity matrix of size N

PN Projection of size N with rank N � 1

DN Diagonal matrix of size N

UN Haar unitary matrix of size N , page 32

TrN The un-normalized trace

trN The normalized trace 1
N TrN

VI. Miscellaneous

Sn Symmetric group acting on [n]

#(g) The cycle number of g 2 Sn, page 15

|g| The length of g 2 Sn, page 15

↵⇡ The multiplicative expansion for a sequence {↵n}n2N and ⇡ 2 P(n), page 2

Wg(g,N) Weingarten function on Sn with s N , page 34

µWg
n The main part of Weingarten function on Sn, page 34
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Notations
Denote by P and P+ the set of all probability measures on R and [0,1), respectively. Addi-
tionally, we define Pc and P+,c as the set of all compactly supported probability measures on R
and [0,1), respectively. The notation w�! means the weak convergence of probability measures.

Let L1�
(⌦) be the set of random variables X on ⌦ such that

E[|X|n] < 1

for all n 2 N. We always assume in this thesis that every random variable is in L1�
(⌦) unless

otherwise noted. Similarly, for a probability measure µ on C, assume
Z

C
|z|nµ(dz) < 1, n 2 N

and define
Mn(µ) :=

Z

C
znµ(dz), n 2 N (0.0.1)

called the moments of µ. Define the dilation Dc(µ)(B) := µ(c�1B) for a probability measure µ
on C, c 6= 0 and a Borel set B in C.

For a polynomial f 2 C[x] written as f(x) = adxd + · · · + a1x + a0 (ad 6= 0), we define
deg f := d and lead(f) := ad. A polynomial f 2 C[x] is said to be monic if lead(f) = 1. Also,
f 2 C[x] is said to be real-rooted if all roots of f are in R. The following subsets of C[x] are
often used in this thesis:

• C[x]0 := {f 2 C[x] : f(0) = 0};

• Pmon(d) := {p 2 C[x] : p is monic and deg p = d}.

We use the following notations for a polynomial p of degree d.

• The number ek(p) denotes the (d� k)-th coefficient of p for k = 0, 1, . . . , d, and it is often
useful to write

eek(p) :=
✓
d

k

◆�1

ek(p), k = 0, 1, . . . , d,

instead of ek(p). Then a polynomial p(x) =
Pd

k=0(�1)
kek(p)xd�k can be written as

p(x) =
dX

k=0

(�1)
k

✓
d

k

◆
eek(p)xd�k.

• The empirical root distribution of p is the probability measure

µJpK := 1

d

X

z2C
p(z)=0

mp(z)�z, (0.0.2)

where mp(z) denotes the multiplicity of the root at z.

• For c 6= 0, Dc(p)(x) := cdp(x/c) for p 2 Pmon(d).

• For a monic polynomial p(x) =
Qd

k=1(x� �k) with nonnegative roots,

�↵(p)(x) :=
dY

k=1

(x� �↵k ), ↵ > 0. (0.0.3)
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For p, q 2 Pmon(d), one defines the finite free additive convolution p�d q to be

(p�d q)(x) =
dX

k=0

(�1)
k

✓
d

k

◆ X

i+j=k

k!

i!j!
eei(p)eej(q)xd�k. (0.0.4)

For p 2 Pmon(d), p�dm denotes the m-th power of finite free additive convolution of p. One also
defines the finite free multiplicative convolution p⇥d q to be

(p⇥d q)(x) :=
dX

k=0

(�1)
k

✓
d

k

◆
eek(p)eek(q)xd�k. (0.0.5)

In particular, p⇥dn denotes the n-th power of finite free multiplicative convolution of p.
For a finite multi-set ⇤ = {�1, · · · ,�d} of complex numbers, the k-th elementary symmetric

polynomials ek(⇤) is denoted by

ek(⇤) :=
X

J⇢[d], |J |=k

0

@
Y

j2J
�j

1

A , e0(⇤) := 1,

where [d] = {1, 2, · · · , d}. In addition, we define

eek(⇤) :=
✓
d

k

◆�1

ek(⇤)

for each 0  k  d.
Throughout this thesis, for a sequence {↵n}n2N ⇢ C and a partition ⇡ of [n], we define

↵⇡ :=

Y

V 2⇡
↵|V |.

Similarly, for a permutation g 2 Sk, let Trg[A1, A2, . . . , Ak] be the product of traces accord-
ing to the cycle decomposition of g; for example if g = (1, 3, 2, 5)(4)(6, 9)(7, 8) 2 S9 then
Trg[A1, A2, . . . , A9] = Tr(A1A3A2A5) Tr(A4) Tr(A6A9) Tr(A7A8).
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Chapter 1

Introduction

Background of the research
Free probability theory is a branch of mathematics that emerged in the 1980s from the concept of
free independence introduced by Voiculescu when studying operator algebras generated by free
groups. The group von Neumann algebra L(G) is defined as the weak closure of group algebra
C[G] for a discrete group G acting on `2(G). A naive question arises here: for different free
groups Fn and Fm, are the corresponding von Neumann algebras L(Fn) and L(Fm) isomorphic
or not? It is known as the free group factor isomorphism problem and is still an open problem
in operator algebra theory. Voiculescu obtained new insights into the structure of free group
factors L(Fn) by paying attention to the property of freeness of groups and also algebras (e.g.,
see [MS17; VDN92]).

He also found the celebrated application to random matrix theory called asymptotic freeness
in [Voi91]. Roughly speaking, it states that an independent family of random matrices satisfies
the free relation as the dimensions tend to infinity. In other words, we can obtain information
about an independent family of random matrices by using free probability if the dimensions are
large enough. This discovery led to a deeper investigation of the relationship with random matrix
theory [AGZ10], e.g., large deviations and free entropy [BCG03; Voi02], BBP phase transition
[BBP05; Bel+17], additivity violation of minimum output entropy [BCN16; Has09], etc. Since
then, many researchers have studied this fruitful topic having interesting connections to other
fields of mathematics, e.g., combinatorics of noncrossing partitions [NS06], representation theory
of symmetric groups [Bia98; Bia01], quantum information theory [NC00].

One of the crucial approaches to free probability theory is to pursue the analogy of classical
probability theory, which we call the usual probability theory based on the probability space
(⌦,F ,P) to contrast the difference. There are so many probabilistic analogues between free and
classical probability theories. For example, independences, convolutions, cumulants, the law of
large numbers (LLN), the central limit theorem (CLT), normal distributions, Lévy–Khintchine
representations, entropies, and so on.

More recently, in [Mar21; MSS22], Marcus, Spielman and Srivastava investigated a relation-
ship between polynomial convolutions and the sum of random matrices related to free probability
theory. They gave the affirmative answer to the Kadison–Singer problem and the construction of
non-trivial Ramanujan graphs. Since the 2010s, this research area has been referred to as finite
free probability because there are many analogues for free probability. Recent progress in this
field includes the development of finite free cumulants by Arizmendi and Perales [AP18], which
can be used to derive various results in finite free probability using a combinatorial approach.
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Motivation
Free probability and random matrices
Let us briefly discuss free probability theory, which is not the main subject but is a motivation
for the research addressed in this thesis. The reader is referred to [MS17; NS06] for further
details.

Definition 1.0.1 (Non-commutative probability space). Let A be a C-algebra with the unit 1A
and ' : A ! C a linear map such that '(1A) = 1. We call the pair (A,') a noncommutative
probability space. Elements a 2 A are called noncommutative random variables.

We often impose more assumptions on (A,'); A is a C⇤-algebra, ' is a positive map, etc.
Then, for a selfadjoint element a 2 A, there exists a corresponding probability measure µa such
that

'(ak) =

Z

R
xkµa(dx), k 2 N

by the continuous functional calculus.

Definition 1.0.2 (Free independence). For (Xi)i2I a family of subsets of A, let Ai := alg(1A,Xi)

for i 2 I. We call (Xi)i2I freely independent if

'(a1 · · · an) = 0

whenever n 2 N, (i1, . . . , in) 2 In, ij 6= ij+1 such that i1 6= i2, . . . , in�1 6= in and aj 2 Aij such
that '(aj) = 0 for every j = 1, . . . , n.

Voiculescu introduced this concept to understand the structure of free group factors L(Fn)

and then developed another kind of probability theory; convolutions, normal distributions, the
law of large numbers, the central limit theorem, and so on. For example, we can define the free
additive (resp. multiplicative) convolution µ� ⌫ (resp. µ⇥ ⌫) for probability measures µ, ⌫ on
R as the distribution of a + b (resp. ab) where noncommutative random variables a, b are free
independent, a has the distribution µ and b has the distribution ⌫, see [Voi87] and [BV93] for
more details.

A hint for the application of free probability to random matrix theory can be traced back
to Wigner’s theorem in the 1950s. Let us take a brief look. Basically, in random matrix theory,
the main interest lies in the eigenvalue distribution. For AN an N ⇥ N hermitian matrix and
{�i}Ni=1 the eigenvalues of AN , the empirical eigenvalue distribution (EED) of AN is defined as

µN :=
1

N

NX

i=1

��i .

To understand the empirical eigenvalue distribution µN , it is basic to look at the moments

Mk(µN ) =
1

N

NX

i=1

�ki = trN (Ak
N ), k 2 N.

As an example, let AN = (aij)Ni,j=1 be a GUE (Gaussian Unitary Ensemble) random matrix,
i.e. aij = xij +

p
�1yij is a complex Gaussian random variable normalized such that

p
Naij

is a standard complex Gaussian random variable (E[aij ] = 1, E[|aij |2] = 1/N), aij = aji, and
{xij}i�j [{yij}i>j are independent. Although we can even compute precisely the density on the
space of N ⇥ N hermitian matrices and the joint distribution of the eigenvalues in the case of
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GUE, the moments are also directly calculated by using Wick’s formula and the combinatorics
of pair partitions:

E[trN (Ak
N )] =

(
0, if k is odd,
P

⇡2P2(2l)
N#(�2l⇡)�l�1, if k = 2l for some l 2 N,

for a precise discussion and notation here, see [MS17, Chapter 1]. The condition #(�2l⇡) = l+1

implies ⇡ 2 NC2(2l) and we finally obtain

lim
N!1

E[trN (A2l
N )] =

1

l + 1

✓
2l

l

◆
=

Z

R
x2lµsc(dx),

where µsc(dx) = (2⇡)�1
p
4� x21l[�2,2](x)dx is called the (standard) semicircle distribution. By

refining the discussion above, we can obtain a stronger result: the empirical distributions of AN

weakly converge to µsc almost surely. More generally, this result holds even if the random matrix
elements aij do not follow Gaussian distributions (such matrix is called a Wigner matrix) and is
widely known as Wigner’s theorem [Wig55]. One of Voiculescu’s fundamental contributions was
the discovery that the semicircle distribution plays the role of the normal distribution in free
probability theory. For instance, the free central limit theorem holds: the limit of D1/

p
n(µ

�n
)

exists and coincides with the standard semicircle distribution µsc for any probability measure
µ 2 P with mean 0 and variance 1.

It is also well known that a GUE random matrix has the density

1

ZN
exp

✓
�1

2
TrH2

◆

on the space of hermitian matrices H = (Hij)
N
i,j=1, where ZN is the normalization constant. As

can be seen easily from this, it follows that a GUE random matrix exhibits unitary invariance:
its distribution in the space of N⇥N hermitian matrices is unchanged under any unitary adjoint
action.

Definition 1.0.3 (Unitarily invariant). A random hermitian matrix AN is said to be unitarily
invariant if its distribution is invariant for any unitary adjoint action.

Definition 1.0.4 (Haar Unitary). Let UN be the N ⇥N unitary group. There exists a unique
left-invariant probability measure on UN because UN is a compact group. Let UN be a unitary
random matrix whose distribution is the left-invariant probability measure on UN and then we
call UN a Haar unitary matrix of size N .

Let AN be a unitarily invariant hermitian of size N whose eigenvalues are {�i}Ni=1. It is
known that a diagonalization AN = UNDNUN

⇤ exists, where DN = diag(�1,�2, . . . ,�N ) and
UN is a Haar unitary random matrix of size N and independent of DN (see [CM14, Proposition
6.1]).

While Wigner’s theorem is about a single random matrix sequence, let us consider such two
sequences. Then the concept of free independence naturally appears as the dimensions tend to
infinity. Note that asymptotic freeness can be applied in various settings, not only in this typical
case.

Proposition 1.0.5 (Asymptotic freeness). Let AN and BN be sequences of hermitian matrices
such that their EEDs converge in moments. Then AN and UNBNU⇤

N satisfy the free indepen-
dence asymptotically as the dimensions N tend to infinity.

A simple consequence of the asymptotic freeness means: let µ1 (resp. µ2) be the limit measure
of EEDs of AN (resp. BN ) and then the EEDs of the sum of AN +UNBNU⇤

N converge to µ1�µ2

in moments. It is a classical problem in linear algebra to describe the eigenvalues of AN +BN for
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given two hermitian matrices AN and BN , e.g. Weyl’s inequality and Horn’s conjecture [KT01].
However, if BN is at, in some sense, probabilistically the most general position for AN , then
asymptotic freeness implies that the overall behavior of the eigenvalues of the sum AN +BN is
almost determined when the dimension is large enough.

Asymptotic representation theory and the Markov–Krein correspondence
Another interesting appearance of free probability can be seen in asymptotic representation
theory initiated by Vershik et al. [LS77; VK77], which was pointed out by Biane in the 1990s
[Bia98]. Loosely speaking, the main part of the tensor representation of symmetric groups Sn

can be described by free convolution as the degree n tends to infinity.
Let � be a Young diagram of size n displayed in the Russian style. We then identify �

as a scaled piecewise linear function and equivalently as its local minimal and maximal points
described by interlacing integer sequences {xi}Ni=1 and {yj}N�1

j=1 , i.e.

x1 < y1 < x2 < · · · < xN�1 < yN < xN .

In addition, we also identify � as a signed measure ⌧� :=
PN

i=1 �xi�
PN�1

j=1 �yj and as a probability
measure m� on R called the (Kerov) transition measure of � by the Markov–Krein correspon-
dence: Z

R

1

1� zx
dm�(x) = exp

Z

R
log

1

1� zx
d⌧�(x)

�
, z 2 C \ R. (1.0.1)

The Markov–Krein correspondence generally provides a bijection between the probability mea-
sures m on R and certain Schwartz distributions ⌧ . In many examples, ⌧ is a signed measure,
and in such a case ⌧ is called the Rayleigh measure of m. In general, ⌧ is the derivative (in the
sense of Schwartz distribution) of a so-called Rayleigh function; see [Ker98] for further details.

Via this correspondence, we can consider, for example, a Markov chain of Young diagrams
following the branching rule induced from the representation theory of symmetric groups, called
the Plancherel measure. Then the almost surely limit of measures D1/

p
n(m�) is known to be the

standard semicircle distribution µsc and the corresponding limit shape of scaled Young diagrams
is also known as the VKLS (Vershik–Kerov–Logan–Shepp) curve. Moreover, given two sequences
of young diagrams �(1)n and �(2)n such that their scaled transition measures converge to measures
m1 and m2 with a few regularity conditions, then the main part of the tensor representation of
two irreducible representations corresponding to �(1)n and �(2)n is described as the free convolution
D1/

p
2(m1 � m2). In any case, it is essential to understand the moments and free cumulants of

transition measures m and Rayleigh measures ⌧ , and also their relations between them: Mk(m),
Mk(⌧), k(m), etc. This kind of research is known as the study of Kerov–Olshanski algebra
[Hor16]. In this thesis, we show a relation between the moments of a Rayleigh measure ⌧ and
the free cumulants of a transition measure µ by the combinatorics of non-crossing partitions,
see Theorem 2.3.1.

Kerov additionally investigated interlacing sequences appearing in different contexts using
the Markov–Krein correspondence: roots of two orthogonal polynomials of large consecutive
degrees [Ker93]; eigenvalues of large random matrices and those of their principal submatrices,
in the case of randomly rotated real Wigner matrices [Ker93]. Then the case of Wigner and
Wishart matrices (without random rotation) was studied by Bufetov [Buf13]. There are also
situations where the distribution ⌧ above appears as a probability measure: Poisson–Dirichlet
processes (see [Ker98, Section 4.1] and references therein); self-decomposable distributions for
monotone convolution [FHS20]; Harish-Chandra–Izykson–Zuber integral of rank one at a high
temperature regime [MP22]. The reason why the same correspondence appears in different
contexts is still unclear to the author.

In this thesis, we prove a concentration phenomenon analogous to those in [Buf13; Ker93] in
the setting of unitarily invariant hermitian random matrices. Although it seems to be a “folklore
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theorem” in random matrix theory, there is no proof, and even, only [GY23] among the literature
states it explicitly as a conjecture to the author’s best knowledge. The main result of Chapter
3 is Theorem 3.1.1, which answers to a conjecture announced by [GY23].

Finite free probability
Finite free probability is a remarkable recent development in free probability. This research
area has attracted attention since the 2010s, when Marcus, Spielmann and Srivastava, the three
founders, solved the Kadison–Singer conjecture and discovered a connection between the original
method of solving it and free probability theory. The most important findings were the following.

Proposition 1.0.6. Let A and B be N ⇥N hermitian matrices. Then

E[det(xI �A� UBU⇤
)] = det(xI �A)�d det(xI �B), (1.0.2)

where U is a Haar unitary matrix and the expectation is taken over U . A similar statement for
the multiplication also holds:

E[det(xI �AUBU⇤
)] = det(xI �A)⇥d det(xI �B). (1.0.3)

The operation �d (resp. ⇥d) is called finite free additive (resp. multiplicative) convolution
although these operations were already defined and studied in the 1920s by Szegö and Walsh
[Sze22; Wal22]. The concept of asymptotic freeness leads to the consideration of the connection
between finite and free probability. In fact, there are various finite free versions of results in
free probability. Moreover, in many cases, taking the limit of them as the degree d tends to
infinity gives the corresponding result in free probability. In other words, the inspiration from
free probability theory makes many probabilistic analogues in this polynomial setting.

Specifically, for any polynomial p =
Qd

i=1(x � �i) with degree d, we have the law of large
numbers:

n�dp�dn(nx) ! (x� ↵)d (1.0.4)
where ↵ =

Pd
i=1 �i/d is the average of the roots of p. Similarly, for any polynomial p with degree

d having only real roots such that
Pd

i=1 �i/d = 0 and �2 =
Pd

i=1 �
2
i /d, we have the central limit

theorem:
n� d

2 p�dn(
p
nx) ! Hed

✓
x,

d�2

d� 1

◆
, (1.0.5)

where Hed(x,�2) is the Hermite polynomial of degree d:

Hed(x,�
2
) := �d

b d
2 cX

k=0

(�1)
2k

✓
d

2k

◆
(�1)

k
(2(k + 1))!!

2(k + 1)�2k
xd�2k.

That is, Hermite polynomials play the role of normal distributions in this framework.
Hermite polynomials are well known as the orthogonal polynomials for Gaussian distributions

and are utilized for the analysis of GUEs. Interestingly, the average of the characteristic poly-
nomial of the GUE (and more generally a Wigner matrix) is a Hermite polynomial [FG06]. It is
also the famous fact that Hermite polynomials have only real roots because they are orthogonal
polynomials. In addition, the limit of empirical root distributions µJHed(x, 1)K is the standard
semicircle distribution µsc [MG60]. We can easily prove this result by using finite free cumulants
{(d)n }dn=1 because the Hermite polynomial Hed(x, 1) is characterized as (d)1 (Hed(x, 1)) = 0,
(d)2 (Hed(x, 1)) = 1, and (d)n (Hed(x, 1)) = 0 for 3  n  d, see also Proposition 4.1.7.

Chapter 4 of this thesis pursues this kind of probabilistic analogy in finite free probability,
specifically in the case of multiplicative convolution. In contrast to the classical case, limit
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theorems for multiplication are not directly derived from those for addition. It is interesting to
note that even the LLN for multiplication exhibits a significant difference.

The LLN is a well-known result that a sample average of independent identically distributed
random variables with finite mean concentrates on the theoretical mean when the sample size is
sufficiently large. As an analogous result in free probability, the LLN for free random variables
was also established [LP97]. More precisely, for any µ 2 P with mean ↵, we have D1/n(µ

�n
)

w�!
�↵ as n ! 1, where µ�n is the n-th power of free additive convolution of µ.

The LLN can also be applied to the multiplication of independent positive random vari-
ables, whether classically or freely. In classical probability, the LLN for multiplication can be
easily formulated and investigated by using the exponential mapping of those random variables.
Additionally, the multiplicative CLT can also be considered, which results in the log normal dis-
tribution. This distribution is widely used in various fields of science, particularly in statistics.

However, it is not easy to consider the LLN for multiplication in free probability since
eX+Y 6= eXeY for (non-commutative) random variables X and Y . For example, we can consider
the two different limits of

(µ
1
n )

⇥n, (1.0.6)
(µ⇥n

)
1
n , (1.0.7)

where (i) ⌫↵ denotes the push-forward of a measure ⌫ by the mapping x 7! x↵ for ↵ 2 R and
(ii) µ⇥n is the n-th power of free multiplicative convolution of µ 2 P+. Interestingly, their limits
generally do not coincide.

As a matter of fact, Ho studied the CLT for multiplication and discovered that the distri-
butions (µ

1p
n )

⇥n converge to multiplicative free semicircle distribution �t if logµ has the zero
mean and variance t > 0 [Ho11]. The limit of (1.0.6) can be derived by slightly modifying Ho’s
method and the limit is the delta measure concentrated at the mean of logµ.

The limit of (1.0.7) was obtained by Tucci for a probability measure µ with bounded support
[Tuc10]. After that, the result was extended to include unbounded cases by Haagerup and Möller
[HM13]. As a result, the limit distribution of the sequence (1.0.7) always exists but surprisingly
not a delta measure except for trivial cases. For µ 6= �0, the limit measure �(µ) 2 P+ is
characterized by the S-transform, see Section 4.6 for details.

Therefore we call the convergence of (1.0.6) the LLN for multiplicative free convolution and
the convergence of (1.0.7) Tucci’s limit theorem in this thesis. We obtain finite versions of these
results, see Theorems 4.5.1 and 4.6.4 in Chapter 4.

Main results and outline of this thesis
After this introduction, we prepare technical notions in Chapter 2 for the later chapters. In
particular, the following two theorems are a part of our main results.

Theorem 2.3.1. Suppose that µ is a probability measure on R with finite moments of all orders
and ⌧ is defined by the Markov–Krein correspondence (1.0.1). Then the formula

Mk(⌧) =
X

⇢2NC(k)

(k + 1� |⇢|)⇢(µ)

holds for every k 2 N, where NC(k) is the set of non-crossing partitions of {1, . . . , k} and ⇢(µ)
is the free cumulant of µ.

The formula above will be used to prove Theorem 3.1.1 in Chapter 3. Note that this formula
is more or less known; however, we provide a different proof by observing a combinatorial
structure of non-crossing partitions.

11



Theorem 2.4.20. Suppose that fi 2 C[x]0 with deg fi = mi for each 1  i  k, and let
M =

Pk
i=1mi. Then we have

X

⇡2P(n)

kY

i=1

 
X

V 2⇡
fi(|V |)

!
µP
n(⇡, 1n) =

(
(n� 1)!nk�1Qk

i=1mi lead fi, n = M � (k � 1),

0, n > M � (k � 1),

where P(n) denotes the set of all partitions of [n] and 1n := {{1, . . . , n}} 2 P(n), and µP
n is the

Möbius function on [n], see Chapter 2 for details.

Theorem 2.4.20 plays an important role in investigating the three limit theorems below
relating finite free probability, namely Theorems 4.3.1, 4.4.2 and 4.5.2.

In Chapter 3, we show a concentration phenomenon on the empirical eigenvalue distribution
(EED) of the principal submatrix in a random hermitian matrix whose distribution is invariant
under unitary conjugacy. More precisely, if the EED of the whole matrix converges to some
deterministic probability measure µ, then the difference of rescaled EEDs of the whole matrix
and of its principal submatrix concentrates at the Rayleigh measure (in general, a Schwartz
distribution) associated with µ by the Markov–Krein correspondence. The whole statements
are based on [FH22].

Theorem 3.1.1. Let µN , ⌧N , bµN , b⌧N be defined in Section 3.1, µ be a probability measure on
R and ⌧ be related to µ by the Markov–Krein correspondence (1.0.1). Assume that

sup

N�1
E[Mk(µN )] < 1 and Mk(µ) < 1, k 2 2N

and µN converges in moments to µ in probability:

lim
N!1

P[|Mk(µN )�Mk(µ)| � ✏] = 0, k 2 N, ✏ > 0.

Then we have
lim

N!1
kMk(b⌧N )�Mk(⌧)kL2 = 0, k 2 N,

and
lim

N!1
P[|Mk(bµN )�Mk(µ)| � ✏] = 0, k 2 N, ✏ > 0.

In particular, if the moment problem for {Mk(µ)}k�1 is determinate then bµN weakly converges
to µ in probability:

lim
N!1

P
����
Z

R
f(x) bµN (dx)�

Z

R
f(x)µ(dx)

���� � ✏

�
= 0, f 2 Cb(R), ✏ > 0.

Chapter 4 of this thesis mainly focuses on limit theorems in finite free probability, which
is primarily based on [AFU23; FU23]. The field of finite free probability has made significant
progress in limit theorems for finite free convolutions and combinatorial structures, as seen in
[AGP23; AP18; Kab21; Kab22; Mar21]. This thesis aims to study further limit theorems for
finite free convolutions and their connections to the free probability theory. In the proof of
limit theorems, we use a series of combinatorial identities on sums over partitions proved in
Chapter 2. These identities allow for new proofs of the recent results by Kabluchko [Kab21;
Kab22] using purely combinatorial tools. Compared to Kabluchko’s analytical approach using
the saddle-point argument, our proof is more straightforward.

First, we study the limit of {p⇥dm
d }m2N as m ! 1 for a fixed monic polynomial pd of degree

d.

Theorem 4.2.4. Let us consider p 2 Pmon(d) with nonnegative roots.

12



(1) We have

lim
m!1

p⇥dm(x) =

8
><

>:

xd, ee1(p) < 1,

xd � dxd�1, ee1(p) = 1 and ee2(p) < 1,

(x� 1)
d, ee1(p) = 1 and ee2(p) = 1.

The limit does not exist if ee1(p) > 1.

(2) Assume that ee1(p) > 0. Then

lim
m!1

D1/ee1(p)m(p
⇥dm)(x) =

(
xd � dxd�1, ee2(p) < ee1(p)2,
(x� 1)

d, ee2(p) = ee1(p)2.

This is a preliminary result that describes the behavior of m-fold finite free multiplicative
convolution ⇥d of a monic polynomial p with nonnegative roots, as m tends to infinity. It is
different in flavor from the others, but independently interesting in its own right.

In Section 4.3, we show a finite free analogue of a result of Sakuma and Yoshida [SY13],
which is a limit theorem related to free multiplicative and additive convolution. Let us intro-
duce a detailed description of their result to formulate the problem. Let µ be a probability
measure on [0,1) that has the second moment and is not �0. Put s := 1/m1(µ) > 0 and
↵ = Var(µ)/(m1(µ))2. Then Sakuma and Yoshida in [SY13, Theorems 9 and 11] proved that
there exists a probability measure ⌘↵ on [0,1) such that

Dsm/m((µ⇥m
)
�m

)
w�! ⌘↵.

In addition, it holds for the measure ⌘↵ that

n(⌘↵) =
(↵n)n�1

n!
, n 2 N,

where n(⇢) is the n-th free cumulant of a probability measure ⇢ on R. Free cumulants are
an important combinatorial tool to treat the free additive and multiplicative convolutions (see
[NS06] for details). According to [AP18], one can also define and consider the finite free cumu-
lants (d)n (p) of p 2 Pmon(d) to treat the finite free additive convolution �d from a viewpoint
of combinatorics. The definition of finite free cumulants and their fundamental properties are
summarized in Section 4.1.

To describe the corresponding theorem, let us define

en(t, µ) := exp

✓
�t

✓
n

2

◆
2(µ)

◆
,

for n 2 N, t > 0 and a probability measure µ on R.

Theorem 4.3.1. Let us consider pd 2 Pmon(d) with nonnegative roots such that (d)1 (pd) = 1,
and let µ be a probability measure with compact support. Assume that µJpdK

w�! µ as d ! 1.
Then
(1) For n 2 N, we have

lim
m!1

m/d!t>0

(d)n

⇣
D1/m

⇣
(p⇥dm

d )
�dm

⌘⌘
=

(�1)
n�1

tn�1(n� 1)!

X

⇡2P(n)

e⇡(t, µ)µ
P
n(⇡, 1n).

(2) For n 2 N, we have

lim
m!1
m/d!0

(d)n

⇣
D1/m

⇣
(p⇥dm

d )
�dm

⌘⌘
=

(2(µ)n)n�1

n!
,

where the limit coincides with the n-th free cumulant of ⌘2(µ).
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In Section 4.4, we give alternative proofs for the results shown by Kabluchko in [Kab21;
Kab22] by using finite free cumulants and combinatorial formulas deduced from Theorem 2.4.20.

Theorem 4.4.2. (1) (Kabluchko [Kab22]) Let us define Hd(z; t) as the unitary Hermite poly-
nomial. Then we get

µJHd(z; t)K
w�! ⌃t, d ! 1,

where ⌃t is the free unitary normal distribution (see [Bia97a] and [BV92, Lemma 6.3]).

(2) (Kabluchko [Kab21]) Let us define Ld,m(z) as the unitary Laguerre polynomial. Then we
get

µJLd,mK w�! ⇧t, d ! 1,

where ⇧t is the free unitary Poisson distribution (see [Kab21] and [BV92, Lemma 6.4]).

In Section 4.5, we show the central limit theorem for finite free multiplicative convolution of
polynomials with nonnegative roots and investigate a connection to free probability.

Theorem 4.5.2. (1) Let d � 2. Suppose p(x) =
Qd

k=1(x � e✓k) such that 1
d

Pd
k=1 ✓k = 0 and

1
d

Pd
k=1 ✓

2
k = �2. Then we have

lim
m!1

�1/pm(p)⇥dm = Id

✓
x;

d�2

d� 1

◆
,

and

Id(x; t) :=
dX

k=0

(�1)
k

✓
d

k

◆
exp

✓
k(d� k)

2d
t

◆
xd�k, t � 0.

(2) As d ! 1, we have

µJId(x; t)K
w�! �t,

where �t is the multiplicative free semicircle distribution on [0,1).

Lastly, we prove the finite free analogue of Tucci’s limit theorem in Section 4.6.

Theorem 4.6.4. Consider a monic polynomial p of degree d with non-negative real roots ⇤ and
let k = k(p) be the number of zeros in ⇤. Let ⇤

(n)
:= {�(n)1 � �(n)2 � · · · � �(n)d } be the set of

non-negative real roots of p⇥dn. Then

lim
n!1

(�(n)i )
1
n =

eei(⇤)
eei�1(⇤)

, 1  i  d� k.
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Chapter 2

Combinatorics

In this chapter, we prepare technical notions. We start from basic combinatorics of finite posets
and Möbius functions defined on it. Then as concrete examples, we deal with several classes of
partitions, which will be used to define various cumulants. The last two sections form a part
of the main results. Formula (2.3.1) will be used to prove Theorem 3.1.1 in Section 3.3. The
second one (2.4.20) will play a prominent role in proving main theorems in Chapter 4.

2.1 Partially ordered sets and Möbius inversion formula
A partially ordered set (for short, poset) is a set equipped with a partial order. More precisely,
a pair P = (P,) is called a poset if P is a set and  is a relation on P , that is, reflexive,
antisymmetric and transitive. A poset P is said to be finite if the number of elements in P is
finite.

We give three examples as important posets in this thesis as follows.

Example 2.1.1. (1) Define B(n) as the set of all subsets of [n]. The set B(n) can be equipped
with the following partial order :

V  W
def() V ⇢ W (V is a subset of W )

for V,W 2 B(n). Then B(n) = (B(n),) is a finite poset. It is easy to verify that the
minimum and maximum elements of B(n) are ; and [n], respectively.

(2) We call ⇡ = {V1, . . . , Vr} a partition of the set [n] if it satisfies that

(i) Vi is a non-empty subset of [n] for all i = 1, 2, . . . , r;
(ii) Vi \ Vj = ; if i 6= j;
(iii) V1 [ · · · [ Vr = [n].

Each subset Vi is called a block of ⇡ and |Vi| denotes the number of elements in Vi, namely
the size of Vi.
Let P(n) be the set of all partitions in [n]. The set P(n) can be equipped with the reversed
refining order :

⇡  �
def() each block of ⇡ is completely contained in one of the blocks of �.

Then P(n) = (P(n),) is a finite poset. The minimum and maximum elements of P(n) (with
respect to ) are given by 0n := {{1}, {2}, . . . , {n}} and 1n := {{1, 2, . . . , n}}, respectively.
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(3) For a partition ⇡ 2 P(n), we say that ⇡ is crossing if there exists a pair of different blocks
V,W 2 ⇡ such that the following relation holds:

i1 < j1 < i2 < j2

for some i1, i2 2 V and j1, j2 2 W . If ⇡ is not crossing, ⇡ is said to be non-crossing. Define
NC(n) as the set of non-crossing partitions of P(n) with the relation  induced from P(n).
Then (NC(n),) is a sub-poset of P(n).

Remark 2.1.2. 1. Via the following bijection, B(n) can be identified as a sub-poset of
NC(n + 1), which is called the set of interval partitions and plays an important role
in boolean probability theory, see [SW97]. Given V ⇢ [n], it corresponds to a partition ⇡
of [n+ 1] such that i, j 2 [n+ 1] (i < j) are in the same block of ⇡ if and only if l 2 V for
all i  l  j � 1.

2. The cardinalities of B(n), P(n) and NC(n) are known to be 2
n, Bn, and Cn =

1
n+1

�2n
n

�
,

respectively, where the last two satisfy the following recursive relations

B0 = B1 = 1, Bn+1 =

nX

k=0

✓
n

k

◆
Bk n � 1,

C0 = C1 = 1, Cn+1 =

nX

k=0

Cn�kCk n � 1. (2.1.1)

They are called the Bell numbers and the Catalan numbers, respectively.

Let P = (P,) be a finite poset. Denote P (2)
:= {(⇡,�) 2 P ⇥ P : ⇡  �}. For F,G :

P (2) ! C, their convolution F ⇤G : P (2) ! C is defined as

(F ⇤G)(⇡,�) :=
X

⇢2P
⇡⇢�

F (⇡, ⇢)G(⇢,�).

The zeta function ⇣P : P (2) ! C of P is defined by

⇣P (⇡,�) = 1, (⇡,�) 2 P (2).

The Möbius function µP of P is defined as the inverse of ⇣P with respect to the convolution ⇤.
The following inversion principle is one of the most important properties of incidence alge-

bras.

Proposition 2.1.3 (Möbius inversion formula). Let P be a finite poset and µP : P (2) ! Z the
Möbius function associated with P . Then, for any functions f, g : P ! C, the relation

f(⇡) =
X

�⇡

g(�) ⇡ 2 P

is equivalent to the relation

g(⇡) =
X

�⇡

f(�)µP (�,⇡) ⇡ 2 P.

The following formula on the Möbius functions is often used in this thesis.

Proposition 2.1.4. Let P be a finite poset with the maximum 1P and µP the Möbius function
on P . Then the following identity holds:

X

⇡�

µP (�, 1P ) = �⇡,1P :=

(
1, ⇡ = 1P ,

0, ⇡ 6= 1P .
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Example 2.1.5. (1) Let µB
n denote the Möbius function of B(n). It is easy to verify that

µB
n (W,V ) = (�1)

|V |�|W | for W  V in B(n). In particular, we have µB
n (W, [n]) = (�1)

n�|W |

for all W 2 B(n).

(2) Let µP
n denote the Möbius function of P(n). The function µP

n can be explicitly computed as
follows: for ⇡,� 2 P(n),

µP
n(⇡,�) = (�1)

|⇡|�|�|
(2!)

r3(3!)
r4 · · · ((n� 1)!)

rn ,

where |⇡| denotes the number of blocks of ⇡ 2 P(n) and ri is the number of blocks of � that
contain exactly i blocks of ⇡. In particular, we have

µP
n(⇡, 1n) = (�1)

|⇡|�1
(|⇡|� 1)!

and
µP
n(0n,�) = (�1)

n�|�|
(2!)

t3(3!)
t4 · · · ((n� 1)!)

tn ,

where ti is the number of blocks of � of size i.

(3) Let µNC
n denote the Möbius function associated with NC(n). The concrete values of µNC

n (⇡,�)
can be expressed by using the Catalan numbers (2.1.1). There are two important facts:

(a) sn := µNC
n (0n, 1n) = (�1)

n�1Cn�1 for n 2 N;
(b) For (⇡,�) 2 NC(n)(2), each chain [⇡,�] := {⇢ 2 NC(n) | ⇡  ⇢  �} has the natural

decomposition [⇡,�] ⇠= NC(1)
t1 ⇥NC(2)

t2 ⇥ · · ·⇥NC(n)tn .

Thus, µNC
n (⇡,�) = s1t1s2t2 · · · sntn . In particular, if we define µNC

n (�) := µNC
n (0n,�) then

µNC
n (�) =

Y

1ik

(�1)
|Vi|�1C|Vi|�1

for � = {V1, . . . , Vk} 2 NC(n).

Kreweras complement
The Kreweras complement of a non-crossing partition ⇡ 2 NC(n) is defined as follows. Inserting
additional points [n] := {1, 2, . . . , n} to [n], suppose that Ln = {1, 1, 2, 2, . . . , n, n} is a linearly
ordered set with the order as displayed. It is clear that NC(Ln) is isomorphic to NC(2n). Take
the maximal non-crossing partition � of [n] such that ⇡ [ � 2 NC(Ln). Then deleting bars over
the integers, we call � the Kreweras complement of ⇡ and denoted by Kr(⇡). For convenience,
we sometimes keep the bars and regard Kr(⇡) as a non-crossing partition on [n].

Example 2.1.6. If ⇡ = {{1, 7}, {2, 5, 6}, {3}, {4}, {8, 9}} then the following picture

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

shows that Kr(⇡) = {{1, 6}, {2, 3, 4}, {5}, {7, 9}, {8}}.
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Correspondence between non-crossing partitions and symmetric groups
The set of non-crossing partitions can be embedded into the symmetric group. Here we collect
needed facts. For further details, the reader is referred to [Bia97c; NS06]

The length function on symmetric groups is defined as the minimal number l for which g can
be written as a product of l transpositions. It has the following properties: for all g, h 2 Sn,

|hgh�1| = |g|,
|gh|  |g|+ |h|,
|gh| ⌘ |g|+ |h| (mod 2). (2.1.2)

The number #(g) of cycles in the cycle decomposition of g is known to satisfy

#(g) + |g| = n.

Let d be a metric on Sn defined by d(g, h) = |g�1h|. The geodesic set from the unit e to
�n := (1, . . . , n) is defined by

SNC(�n) = { g 2 Sn | d(e, g) + d(g, �n) = d(e, �n) (= n� 1) }.

For g, h 2 SNC(�n), denote by g  h if g and h are on a common geodesic and d(e, g)  d(e, h),
namely, if d(e, g) + d(g, h) = d(e, h), or equivalently, |g|+ |g�1h| = |h|.

For a partition ⇡ 2 NC(n), each block V = {i1, i2, . . . , ip} 2 ⇡ whose elements are arranged
in the increasing order associates the cyclic permutation h = (i1, i2, . . . , ip), so that ⇡ associates
the permutation P⇡ := h1h2 · · ·hl, where l = #(P⇡) = |⇡|. This embedding becomes a poset
isomorphism

P : NC(n) �! SNC(�n),

see [NS06, Proposition 23.23]. We need the following facts later: for g = P�, h = P⇡ 2 SNC(�n),

1. the relation �  ⇡ holds in NC(n) if and only if |g|+ |g�1h|+ |h�1�n| = n� 1,

2. g�1�n = PKr(�); in particular #(g�1�n) = |Kr(�)|,

3. µNC
n (�,⇡) = µWg

n (g�1h),

where µWg
n is the main part of Weingarten function, (3.1.6).

Similar results hold for �(1)n �(2)n 2 S2n instead of �2n, where

�(1)n = (1, . . . , n)(n+ 1) · · · (2n) and �(2)n = (1) · · · (n)(n+ 1, . . . , 2n).

Correspondingly, let
(1

(1)
n , 1(2)n ) := {{1, . . . , n}, {n+ 1, . . . , 2n}},

then P
(1

(1)
n ,1

(2)
n )

= �(1)n �(2)n . Via the embedding

NC(n)⇥NC(n) ⇠= [02k, (1
(1)
n , 1(2)n )] ⇢ NC(2n)

the restriction of the mapping P induces an isomorphism between NC(n)⇥NC(n) and

SNC(�
(1)
n �(2)n ) = { g 2 S2k | d(e, g) + d(g, �(1)n �(2)n ) = d(e, �(1)n �(2)n ) (= 2n� 2) }. (2.1.3)

For (⇡1,⇡2) 2 NC(n) ⇥ NC(n) and h = P(⇡1,⇡2) 2 SNC(�
(1)
n �(2)n ), the element h�1�(1)n �(2)n

corresponds to (Kr(⇡1),Kr(⇡2)) under the isomorphism P, and in particular #(h�1�(1)n �(2)n ) =

|Kr(⇡1)| + |Kr(⇡2)| = |Kr(⇡)| + 1, where ⇡ = (⇡1,⇡2) is regarded as a partition in NC(2n).
Note that this relation can be clearly understood in terms of the relative Kreweras complement;
however, we will not use this technical notion since it is not directly needed in this thesis.
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2.2 Free cumulants
This section deals with the free cumulants n associated with the non-crossing partitions NC(n).
The reader is referred to [NS06] for further details.

For a probability measure µ on R with finite moments of all orders, the free cumulants
{n(µ)}n2N of µ are determined recursively by the moment-cumulant formula

M�(µ) =
X

⇡2NC(n)
⇡�

⇡(µ), � 2 NC(n), n 2 N. (2.2.1)

Actually, it suffices to take � = 1n, n = 1, 2, 3, . . . to determine the free cumulants, and then the
above formula can be proved for all � 2 NC(n), n = 1, 2, 3, . . . . More explicitly, free cumulants
can be expressed as

⇡(µ) =
X

�2NC(n)
�⇡

M�(µ)µ
NC
n (�,⇡), ⇡ 2 NC(n), n 2 N, (2.2.2)

where µNC
n is the Möbius function on the poset NC(n).

We compute the free cumulants of free unitary normal distribution ⌃t and free unitary
Poisson distribution ⇧t introduced in Section 4.4. A calculation strategy is the use of the
Lagrange inversion theorem (see, e.g., [Com74, p. 148, Theorem A]).

Recall that, for a probability measure µ (on [0,1) or T) with nonzero first moment, we
obtain

Rµ(zSµ(z)) = z

on a neighborhood of 0, where Rµ(z) is the R-transform of µ and Sµ(z) is the S-transform of
µ, see [BV92; BV93] for details. If fµ(z) := zSµ(z) is analytic on a neighborhood of 0 and
fµ(0) = 0 and also f 0

µ(0) 6= 0, then the Lagrange inversion theorem implies that

n(µ) =
1

n!
lim
z!0

✓
d

dz

◆n�1✓ z

fµ(z)

◆n

.

Using the above strategy, the following known results are rigorously proved.

Proposition 2.2.1 (see [DGN15]). For n 2 N and t > 0, we have

n(⌃t) = exp

✓
�nt

2

◆
(�nt)n�1

n!
.

Proof. Recall that, for any t > 0,

S⌃t(z) = exp

✓
t

✓
z +

1

2

◆◆
.

Then it is easy to verify that f⌃t(z) := zS⌃t(z) is analytic on a neighborhood of 0 and f⌃t(0) = 0

and also f 0
⌃t
(0) = et/2 6= 0. The Lagrange inversion theorem implies that

n(⌃t) =
1

n!
lim
z!0

✓
d

dz

◆n�1✓ z

f⌃t(z)

◆n

=
1

n!
lim
z!0

✓
d

dz

◆n�1

exp

✓
�nt

✓
z +

1

2

◆◆

= exp

✓
�nt

2

◆
(�nt)n�1

n!
.
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Proposition 2.2.2. For n 2 N and t > 0, we get

n(⇧t) = (�1)
n�1

2
ne�2nt

n�1X

k=1

(�t)k

k!
(2n)k�1

✓
n� 2

k � 1

◆
. (2.2.3)

To show this, we use the Lagrange inversion theorem again. According to [Kab21], we have

S⇧t(z) = exp

 
t

z + 1
2

!
, t > 0.

One can see that, f⇧t(z) = zS⇧t(z) is analytic on a neighborhood of 0, and f⇧t(0) = 0 and also
f 0
⇧t
(0) = e2t 6= 0. By the Lagrange inversion theorem, we have

n(⇧t) =
1

n!
lim
z!0

dn�1

dzn�1

✓
z

f⇧t(z)

◆n

=
1

n!
lim
z!0

dn�1

dzn�1
exp

 
�nt

z + 1
2

!
.

(2.2.4)

To compute this, we prepare the following result derived from Faá Di Bruno’s formula.

Lemma 2.2.3. Let u be an analytic function on C. Then

dn

dzn
eu(z) =

0

@
X

⇡2P(n)

Y

V 2⇡
u(|V |)

(z)

1

A eu(z).

Proof. According to Faá Di Bruno’s formula, for analytic functions f and g, we have
dn

dzn
f(g(z)) =

X

⇡2P(n)

f (|⇡|)
(g(z)) ·

Y

V 2⇡
g(|V |)

(z).

Taking f(z) = ez and g(z) = u(z), and observing that f (|⇡|)
(z) = ez, we obtain the desired

result.

The complete computation is as follows.

Proof of Proposition 2.2.2. By (2.2.4) and Lemma 2.2.3, we obtain

n(⇧t) =
1

n!
(�2)

n�1e�2nt

0

@
X

⇡2P(n�1)

(�2nt)|⇡|
Y

V 2⇡
|V |!

1

A

=
1

n!
(�2)

n�1e�2nt

0

BB@
n�1X

k=1

(�2nt)k
X

⇡2P(n�1)
|⇡|=k

Y

V 2⇡
|V |!

1

CCA

= (�1)
n�1

2
ne�2nt

0

BB@
n�1X

k=1

(�t)k(2n)k�1
X

⇡2P(n�1)
|⇡|=k

Q
V 2⇡ |V |!
(n� 1)!

1

CCA .

Hence, it is enough to prove
X

⇡2P(n�1)
|⇡|=k

Q
V 2⇡ |V |!
(n� 1)!

=
1

k!

✓
n� 2

k � 1

◆
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by comparing with (2.2.3). Note that an elementary combinatorial argument shows that
X

p1,...,pn�1�0
p1+···+(n�1)pn�1=n�1

p1+···+pn�1=k

✓
n

p1, . . . , pn�1

◆
=

✓
n� 2

k � 1

◆
, 1  k  n� 1. (2.2.5)

Thus, since the number of partitions with p1 blocks of size 1, p2 blocks of size 2,. . . , pn blocks
of size n is equal to

n!

p1!p2! · · · pn!(1!)p1(2!)p2 · · · (n!)pn
,

we have
X

⇡2P(n�1)
|⇡|=k

Q
V 2⇡ |V |!
(n� 1)!

=
1

k!

X

p1,...,pn�1�0
p1+···+(n�1)pn�1=n�1

p1+···+pn�1=k

✓
n

p1, . . . , pn�1

◆

=
1

k!

✓
n� 2

k � 1

◆
,

where the last equality follows from (2.2.5).

2.3 Kreweras decomposition
The goal of this section is to prove the next theorem.

Theorem 2.3.1. Suppose that µ is a probability measure on R with finite moments of all orders
and ⌧ is defined by the Markov–Krein correspondence (1.0.1). Then the formula

Mk(⌧) =
X

⇡2NC(k)

(k + 1� |⇡|)⇡(µ) (2.3.1)

holds for every k 2 N, where NC(k) is the set of non-crossing partitions of {1, . . . , k} and ⇡(µ)
is the free cumulant of µ.

Remark 2.3.2. This formula gives an explicit combinatorial relation between two bases in the
Kerov–Olshanski algebra: the moments of ⌧ and free cumulants of µ. It can be easily proved by
combining known formulas for complete symmetric functions as follows. The moments of ⌧ and
the free cumulants of µ can be identified with the elements {pn(A)}n�1 and {(�1)

ne⇤n(A)}n�1 in
[Las09], respectively; the latter fact is noted on page 2242 of [Las09]. Combining (4.5) and the
formula right before (4.10) in [Las09] allows one to express {p⇤n(A)}n�1 in terms of {en(A)}n�1 as
a sum over integer partitions. Applying the involution gives a formula that expresses {pn(A)}n�1

in terms of {(�1)
ne⇤n(A)}n�1. This formula can be transformed into the sum over non-crossing

partitions via [NS06, Corollary 9.12], which amounts to Theorem 2.3.1.

Let us start to prove the combinatorial formula (2.3.1) by the induction on the degree k. In
this subsection, we keep the assumptions and notation in Theorem 2.3.1. To begin, the original
formula for the Markov–Krein correspondence (1.0.1) implies the recursive relation

Mk(⌧) = kMk(µ)�
k�1X

r=1

Mr(⌧)Mk�r(µ), k 2 N, (2.3.2)

which is exactly the relation satisfied by complete symmetric functions and Newton power sums
([Ker98, (3.2.4) and Section 3.4]).
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Thanks to the moment-cumulant formula (2.2.1), the RHS of the desired formula (2.3.1)
may be transformed into

X

⇡2NC(k)

(k + 1� |⇡|)⇡(µ) = k
X

⇡2NC(k)

⇡(µ)�
X

⇡2NC(k)

(|⇡|� 1)⇡(µ)

= kMk(µ)�
X

⇡2NC(k)

(|⇡|� 1)⇡(µ).

Hence, according to the recursive equation (2.3.2), Formula (2.3.1) is eventually equivalent to

X

⇡2NC(k)

(|⇡|� 1)⇡(µ) =
k�1X

r=1

Mr(⌧)Mk�r(µ). (2.3.3)

By the induction hypothesis up to the degree k�1 and the moment-cumulant formula, the RHS
of (2.3.3) can be written as

k�1X

r=1

X

⇡2NC(r)
⇡2NC(k�r)

|Kr(⇡)|⇡(µ)⇡(µ). (2.3.4)

The cardinality |Kr(⇡)| can be interpreted as the number of inserting ⇡ into ⇡ in the following
way:

(P1) pick r 2 {1, 2, . . . , k � 1}, ⇡ 2 NC(r) and ⇡ 2 NC(k � r);

(P2) pick a block B of Kr(⇡), where Kr(⇡) is interpreted as a partition on the points [r] inter-
lacing with [r];

(P3) substitute the partition ⇡ into the last point of B.

The steps (P2) and (P3) provide a way to insert ⇡ into ⇡, which yields a non-crossing
partition ⇡ 2 NC(k); see also Example 2.3.3. The sum (2.3.4) can then be expressed as

X

⇡

⇡(µ), (2.3.5)

where ⇡ runs over all the non-crossing partitions appearing as a result of (P1)–(P3). Note that
the same non-crossing partition ⇡ may appear more than once, and the sum (2.3.5) needs to
count the multiplicity. Actually, in order to have (2.3.3), we need to demonstrate that each
⇡ 2 NC(k) appears exactly |⇡|� 1 times. To achieve this, we introduce the notion of Kreweras
decomposition of a non-crossing partition, which describes the relation between ⇡,⇡ and ⇡ above.

Example 2.3.3. For the non-crossing partitions ⇡ = {{1, 7}, {2, 5, 6}, {3}, {4}, {8, 9}} and ⇡ =

{{1, 3}, {2}}, the Kreweras complement Kr(⇡) is the partition described by the dashed curves
below

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

and hence the Kreweras complement has the blocks {1, 6}, {2, 3, 4}, {5}, {7, 9}, {8}. According
to (P3) we are allowed to place ⇡ at any point of {6, 4, 5, 8, 9}. For example, if we choose 4 then
the resulting non-crossing partition ⇡ is
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Definition 2.3.4. 1. For � 2 NC(r), a Kreweras point of � is the last point of a block of the
Kreweras complement Kr(�) regarded as a partition on [r] that interlaces with [r].

2. For ⇡ 2 NC(k), a pair (⇡,⇡) of non-empty disjoint subsets of ⇡ such that ⇡ [ ⇡ = ⇡ and
the union of all elements of ⇡ is an interval of [k], that is, there exist some i < j such that

[

V 2⇡
V = [i, j] = {i, i+ 1, . . . , j}.

If the position of ⇡ is a Kreweras point of ⇡, then we call (⇡,⇡) a Kreweras decomposition
of ⇡, ⇡ an outer partition of ⇡ and ⇡ an inner partition of ⇡.

Example 2.3.5. The non-crossing partition ⇡ = {{1, 8}, {2, 3}, {4, 6, 7}, {5}, {9, 10}} can be
described as

⇡ =

1 2 3 4 5 6 7 8 9 10

and it has the four inner partitions ⇡1 = {{2, 3}, {4, 6, 7}, {5}},⇡2 = {{4, 6, 7}, {5}},⇡3 =

{{5}},⇡4 = {{9, 10}}. Any other subsets of ⇡ are not inner partitions; for example, ⇡0 = {{2, 3}}
has the support {2, 3} of interval form, but the Kreweras complement of ⇡ \ ⇡0 is described by
the dashed curves and white singletons in the picture

1 1 4 5 6 7 8 9 104 5 6 7 8 9 10

so that the position of the removed block {2, 3} was at the point 1, which was not the last point
of the block {1, 7}.

The goal is then to demonstrate that each ⇡ 2 NC(k) has exactly |⇡|�1 Kreweras decompo-
sitions. The proof is based on the induction, which depends on the following nesting structure
of inner partitions.

Lemma 2.3.6. Suppose that ⇡ 2 NC(k) and its first block which contains 1 divides [k] into
(non-empty) l segments I1, . . . , Il. Then ⇡j := ⇡ |Ij is an inner partition of ⇡ for every j, and
moreover, every inner partition of ⇡j is an inner partition of ⇡. Conversely, any inner partition
of ⇡ is some ⇡j or its inner partition.

Proof. It is clear that all ⇡j (j = 1, . . . , l) are inner partitions of ⇡. Then we take any inner
partition ⇡j of ⇡j for j = 1, . . . , l. Note that the Kreweras complement Kr(⇡j) equals Kr(⇡)
restricted to the interval Ij . Hence, since ⇡j is at a Kreweras point of the outer partition
⇡j = ⇡j \ ⇡j , ⇡j is also at a Kreweras point of ⇡ \ ⇡j .

Conversely, we take any inner partition ⇡ of ⇡. By the definition of inner partitions, ⇡ is
supported on some interval Ij . If ⇡ contains the first block of ⇡j , then ⇡ equals ⇡j . Otherwise,
the support of ⇡ is a sub-interval of Ij which does not intersect the first block of ⇡j , and since
⇡ is at a Kreweras point of the outer partition ⇡, ⇡ is also at a Kreweras point of ⇡j \ ⇡.

Proposition 2.3.7. Let k � 2. Each ⇡ 2 NC(k) has exactly |⇡|� 1 Kreweras decompositions.
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Proof. The proof runs by the induction. It is clear that the statement is true when k = 2. Then
we assume the statement is true up to k � 1 and take ⇡ 2 NC(k) (|⇡| > 1). Suppose that the
first block of ⇡ divides [k] into l segments I1, . . . , Il. Then all {⇡j = ⇡ |Ij}lj=1 are inner partitions
of ⇡. By Lemma 2.3.6, a subset of ⇡ is an inner partition of ⇡ if and only if it is one of {⇡j}lj=1
or an inner partition of some ⇡j . Therefore, by the induction hypothesis, the number of inner
partitions of ⇡ is l +

Pl
j=1(|⇡j |� 1) = |⇡|� 1.

Example 2.3.8. We take ⇡ 2 NC(27) to be

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

in which |⇡| = 14. The three non-crossing partitions

⇡1 =
2 3 4 5 6 7

,,, ⇡2 =
10 11 12 13 14 15

,,

⇡3 =
17 18 19 20 21 22 23 24 25 26 27

are inner partitions of ⇡ and the two inner partitions of ⇡1

3 4 5 6

,
4 5

are inner partitions of ⇡. In the same way, the three inner partitions of ⇡2

12 13 14 15

,
13

,
15

and the five inner partitions of ⇡3

18 19

, ,
21 22 23 24 25 26 27 22 23

,
25

,
26

,
26

are also inner partitions of ⇡. Thus ⇡ has 13 inner partitions: ⇡1,⇡2,⇡3 and the inner partitions
of them.

2.4 Combinatorial formula related to finite free probability
In this section, we investigate the value of

X

⇡2P(n)

kY

i=1

 
X

V 2⇡
fi(|V |)

!
µP
n(⇡, 1n) (2.4.1)

for polynomials f1, . . . , fk without constant terms. These values will play an important role in
considering the convergence of finite free cumulants in Chapter 4.

At first, we define useful polynomials rk(z) and sk(z) to understand the combinatorics behind
Formula (2.4.1)
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Definition 2.4.1. For any polynomial f(x) 2 C[x]0, define a family of functions {'n(t)}n2N
and its generating series M(t, z) as follows. For n 2 N

'n(t) := exp(f(n)t)

and
M(t, z) := 1 +

1X

n=1

'n(t)

n!
zn.

Also, we define { n(t)}n2N, {rk(z)}k2N and {sk(z)}k2N (see Remark 2.4.4) as characterizing the
following identities:

M(t, z) = ez
 
1 +

1X

k=1

rk(z)

k!
tk
!

and
log(M(t, z)) =

1X

n=1

 n(t)

n!
zn = z +

1X

k=1

sk(z)

k!
tk.

There are a lot of useful relations between them.

Proposition 2.4.2. Let {'n(t)}n2N, { n(t)}n2N, {rk(z)}k2N, and {sk(z)}k2N be defined as
above.

(1) For all n, k 2 N, we obtain

'n(t) =
X

⇡2P(n)

 ⇡(t), or equivalently  n(t) =
X

⇡2P(n)

'⇡(t)µ
P
n(⇡, 1n),

and

rk(z) =
X

⇡2P(k)

s⇡(z), or equivalently sk(z) =
X

⇡2P(k)

r⇡(z)µ
P
k (⇡, 1k). (2.4.2)

(2) For all n, k 2 N, we have

s(n)k (0) =  (k)
n (0) =

X

⇡2P(n)

 
X

V 2⇡
f(|V |)

!k

µP
n(⇡, 1n). (2.4.3)

(3) For all n, k 2 N,

r(n)k (0) =

nX

l=1

✓
n

l

◆
(�1)

n�lf(l)k. (2.4.4)

Proof. The statement (1) follows from the moment-cumulant formula. Since '⇡(0) = 1 and

'(k)
⇡ (t) =

 
X

V 2⇡
f(|V |)

!k

'⇡(t)

for k 2 N and ⇡ 2 P(n), we obtain

 (k)
n (0) =

X

⇡2P(n)

'(k)
⇡ (0)µP

n(⇡, 1n) =
X

⇡2P(n)

 
X

V 2⇡
f(|V |)

!k

µP
n(⇡, 1n).
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Because we just exchanged the order of sum, we have s(n)k (0) =  (k)
n (0) as the desired result in

(2). By the definitions of M(t, z) and rk(z),

r(n)k (0) =

nX

l=1

✓
n

l

◆
(�1)

n�l'(k)
l (0).

It is easy to verify that '(k)
l (0) = f(l)k as desired.

Example 2.4.3. Here, as the simplest polynomial, take f(x) = x. Then it immediately follows
that 'n(t) = exp(nt),  1(t) = et and  n(t) = 0 for n � 2. Hence, sk(z) = z and

rk(z) =
X

⇡2P(k)

z|⇡| (2.4.5)

for every k 2 N.

Remark 2.4.4. An easy consequence of (2.4.4) and (2.4.5) is
nX

l=1

✓
n

l

◆
(�1)

n�llk = 0 (2.4.6)

for k 2 N if n > k. Hence, for any polynomial f 2 C[x]0, corresponding rk(f) is a polynomial
because r(n)k (0) = 0 if n > k deg(f) from (2.4.6). Also, sk(f) is a polynomial due to the moment-
cumulant formula (2.4.2).

After this, to consider the cases of various polynomials f , we will emphasize the corresponding
polynomials rk(f), sk(f) just as appeared in the remark above, and the variables t and z will
not be denoted when they are unimportant.

Lemma 2.4.5. Let f, g be polynomials in C[x]0, ↵,� 2 C and k 2 N. Then

(1) r1(↵f + �g) = ↵r1(f) + �r1(g).

(2) rk(f) = r1(fk
).

Proof. Both are derived directly from (2.4.4).

Next, we will generalize the definition of polynomials rk and sk as determined by polyno-
mials {fi}ki=1 and satisfying multi-linearity. According to Lemma 2.4.5, the following can be
understood as a natural extension.

Definition 2.4.6. Let us consider f1, . . . , fk 2 C[x]0. We define

rk(f1, . . . , fk) := r1(f1 · · · fk). (2.4.7)

Likewise, for ⇡ 2 P(k),

r⇡[f1, . . . , fk] :=
Y

V={i1,...,i|V |}2⇡

r|V |(fi1 , . . . , fi|V |).

Moreover, we define
s⇡[f1, . . . , fk] :=

X

�2P(k)
�⇡

r�[f1, . . . , fk]µ
P
k (�,⇡) (2.4.8)

for ⇡ 2 P(k). In particular, sk(f1, . . . , fk) denotes s1k [f1, . . . , fk].
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Clearly, sk(f, . . . , f) = sk(f) for all polynomial f 2 C[x]0, and hence this is a generalization.
The benefits of this generalization are the subsequent properties.

Proposition 2.4.7. For k 2 N and f1, . . . , fk 2 C[x]0, we have

rk(f1, . . . , fk) =
X

⇡2P(k)

s⇡[f1, . . . , fk].

Likewise, we have
s⇡[f1, . . . , fk] =

Y

V={i1,...,i|V |}2⇡

s|V |(fi1 , . . . , fi|V |)

for ⇡ 2 P(k).

Proof. It follows from the standard discussion using the Möbius inversion formula, see [NS06,
Lectures 9–11].

Example 2.4.8. As an interesting example, we take the polynomials gm(x) = xm for m 2 N,
then consider sk(gm1 , . . . , gmk) for positive integers {mi}ki=1 and let M =

Pk
i=1mi. First, note

that g1(x) = x and also

rk(gm1 , . . . , gmk) = r1(gM )

= rM (g1)

=

X

⇡2P(M)

z|⇡|

due to Lemma 2.4.5 and Equation (2.4.5).
The map P(k) ! P(M), � 7! b�, is defined as each point {i} expanding mi-interval, e.g.,

b0k = {{1, . . . ,m1}, {m1 + 1, . . . ,m1 +m2}, . . . , {M �mk + 1, . . . ,M}}; in particular, P(k) and
[b0k, 1M ] are poset isomorphism via this map. Then we have

sk(gm1 , . . . , gmk) =

X

�2P(k)

r�[gm1 , . . . , gmk ]µ
P
k (�, 1k)

=

X

�2P(k)

rb�[g1, . . . , g1]µ
P
M (b�, 1M )

=

X

�2P(k)

X

⇡2P(M)
⇡b�

z|⇡|µP
M (b�, 1M )

=

X

⇡2P(M)

z|⇡|
X

�2P(k)
⇡b�

µP
M (b�, 1M )

=

X

⇡2P(M)

z|⇡|
X

⇡_b0k⇢

µP
M (⇢, 1M )

=

X

⇡2P(M)
⇡_b0k=1M

z|⇡|,

where we used the result of Example 2.4.3 on the second line and Proposition 2.1.4 on the fifth
line. Thus, deg sk(gm1 , . . . , gmk) = M � (k � 1) and lead sk(gm1 , . . . , gmk) = #{⇡ 2 P(M) :

⇡ _ b0k = 1M , |⇡| = M � (k � 1)}.

Let V be a vector space over C. A multi-linear map � : V k ! C is said to be symmetric if
for any permutation ◆ of [k], we have

�(x1, . . . , xk) = �(x◆(1), . . . , x◆(k)), (x1, . . . , xk) 2 V k.
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Lemma 2.4.9. The both rk and sk are symmetric multi-linear maps from C[x]k0 to C[z]0.

Proof. By the definition (2.4.7) and Lemma 2.4.5, it is clear that rk is a symmetric multi-linear
map. For sk, the multi-linearity and the invariance of symmetric action are derived from those
of rk by the moment-cumulant formula (2.4.8).

We obtain a generalized result of Formula (2.4.3) as follows.

Proposition 2.4.10. For any k, n 2 N and f1, . . . , fk 2 C[x]0, we get

s(n)k (f1, . . . , fk)(0) =
X

⇡2P(n)

kY

i=1

 
X

V 2⇡
fi(|V |)

!
µP
n(⇡, 1n)

The key to proving Proposition 2.4.10 is the following lemma.

Lemma 2.4.11 (see [Tho14]). Let V be a vector space over C, (generally, a field). If � : V k ! C
is a symmetric multi-linear map, then it is written as

�(x1, . . . , xk) =
1

k!

kX

l=1

(�1)
k�l

X

J : |J |=l

e�

0

@
X

j2J
xj

1

A ,

where e�(x) := �(x, . . . , x) for x 2 V .

Proof of Proposition 2.4.10. Note that a map (f1, . . . , fk) 7! s(n)k (f1, . . . , fk)(0) from C[x]k0 to
C is symmetric multi-linear by Lemma 2.4.9. Also, define a symmetric multi-linear map �k,n :

C[x]k0 ! C by

�k,n(f1, . . . , fk) :=
X

⇡2P(n)

kY

i=1

 
X

V 2⇡
fi(|V |)

!
µP
n(⇡, 1n).

One can see that, for any k, n 2 N and f 2 C[x]0,

s(n)k (f, . . . , f)(0) = �k,n(f, . . . , f),

due to Formula (2.4.3). Thus, Lemma 2.4.11 implies the desired result.

By Proposition 2.4.10, the problem boils down to finding the degree and leading coefficient
of polynomials sk(f1, . . . , fk). As a special family of polynomials, let us take

cm(x) :=

✓
x

m

◆
,

for m 2 N. Then the general cases are induced from them by multi-linearity of sk; see Theorem
2.4.20.

Consider rk(cm1 , . . . , cmk) for positive integers {mi}ki=1 then its coefficient is

r(n)k (cm1 , . . . , cmk)(0) = r(n)1 (cm1 · · · cmk)(0)

=

nX

l=1

✓
n

l

◆
(�1)

n�lcm1(l) · · · cmk(l)

=

nX

l=1

✓
n

l

◆
(�1)

n�l

✓
l

m1

◆
· · ·
✓

l

mk

◆
(2.4.9)

by (2.4.4). This value has a combinatorial meaning as follows.
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Proposition 2.4.12. It holds that

r(n)k (cm1 , . . . , cmk)(0) = #R(n)
(m1,...,mk)

,

where R(n)
(m1,...,mk)

:= {(W1, . . . ,Wk) 2 B(n)k : |Wi| = mi,
Sk

i=1Wi = [n]}. In particular,

(1) deg rk(cm1 , . . . , cmk) =
Pk

i=1mi =: M ,

(2) lead rk(cm1 , . . . , cmk) =
1⇣Pk

i=1mi

⌘
!

· r(M)
k (cm1 , . . . , cmk) =

1
Qk

i=1mi!
.

Proof. Equation (2.4.9) implies

r(n)k (cm1 , . . . , cmk)(0) =

nX

l=1

X

V 2B(n)
|V |=l

X

W1,...,Wk⇢V
|W1|=m1,...,|Wk|=mk

(�1)
n�l.

Define W =
Sk

i=1Wi. Exchanging the order of summations shows

r(n)k (cm1 , . . . , cmk)(0) =

X

W1,...,Wk2B(n)
|W1|=m1,...,|Wk|=mk

nX

l=1

0

BB@
X

W⇢V
|V |=l

(�1)
n�l

1

CCA

=

X

W1,...,Wk2B(n)
|W1|=m1,...,|Wk|=mk

X

W⇢V

(�1)
n�|V |

=

X

W1,...,Wk2B(n)
|W1|=m1,...,|Wk|=mk

�W,[n]

= #R(n)
(m1,...,mk)

,

where the third equation follows from Proposition 2.1.4 and Example 2.1.5 (1). The properties
(1) and (2) follow easily from the definition of the set R(n)

(m1,...,mk)
.

Similar to the polynomial rk(cm1 , . . . , cmk), we can give a combinatorial interpretation to the
coefficients of sk(cm1 , . . . , cmk) which reflects the intrinsic decomposition of R(n)

(m1,...,mk)
. Let us

prepare a few concepts to explain it.

• Define the natural map ⌧ : B(n) \ ; ! P(n) as

⌧(W ) = {W} [ {{j} : j /2 W}

for all non-empty subsets W ⇢ [n].

• An ordered partition of [n] is a tuple V = (V1, . . . , Vl) such that {V1, . . . , Vl} 2 P(n).

• There is a canonical map that makes a partition ⇡ = {V1, . . . , Vl} 2 P(n) correspond to an
ordered partition �!⇡ = (V1, . . . , Vl) such that 1 2 V1 and Vi contains the minimum number
in [n]\ (V1[ · · ·[Vi�1) for i � 2. We call �!⇡ the natural ordered partition of [n] associated
with ⇡ 2 P(n). Clearly, this map is one-to-one correspondence.

In particular, the following concept plays an important role in interpreting the coefficients
of sk(cm1 , . . . , cmk) by combinatorics.
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Definition 2.4.13. Let W = (W1, . . . ,Wk) 2 R(n)
(m1,...,mk)

.

(1) W is said to be separable when _k
i=1⌧(Wi) 6= 1n 2 P(n).

(2) W is said to be essential if W is not separable.

Let S(n)
(m1,...,mk)

denote the set of essential tuples in R(n)
(m1,...,mk)

.

The set R(n)
(m1,...,mk)

can be decomposed into its components which consist of essential tuples.
One can see that, for (W1, . . . ,Wk) 2 R(n)

(m1,...,mk)
, there are uniquely a natural ordered partition

�!⇡ = (V1, . . . , Vl) of [k] and an ordered partition U = (U1, . . . , Ul) of [n] with
W

r2Vj
⌧(Wr) =

⌧ (Uj) for each 1  j  l.

Example 2.4.14. Take (W1,W2,W3) 2 R(5)
(2,2,2), where

W1 = {1, 4}, W2 = {2, 4} and W3 = {3, 5}.

Then �!⇡ = (V1, V2) = ({1, 2}, {3}) and U = (U1, U2) = ({1, 2, 4}, {3, 5}). It is clear that
U =

�S
r2V1

Wr,
S

r2V2
Wr
�
. Moreover, ⌧(W1) _ ⌧(W2) = {{1, 2, 4}, {3}, {5}} = ⌧(U1) and

⌧(W3) = ⌧(U2).

Define

S
�!⇡ ,U
(m1,...,mk)

=

8
<

:(W1, . . . ,Wk) 2 R(n)
(m1,...,mk)

:

[

r2Vj

Wr = Uj ,
_

r2Vj

⌧(Wr) = ⌧ (Uj)

9
=

;

for a natural ordered partition �!⇡ = (V1, . . . , Vl) of [k], an ordered partition U = (U1, . . . , Ul)

of [n] and positive integers {mi}ki=1. Note that S
�!⇡ ,U
(m1,...,mk)

is isomorphic to S(|U1|)
V1

⇥ · · ·⇥ S(|Ul|)
Vl

where S(i)
V := S(i)

(mr1 ,...,mrt )
when V = {r1, . . . , rt}.

A consequence of the above one-to-one correspondence is that

R(n)
(m1,...,mk)

=

[

�!⇡=(V1,...,Vl)

[

U=(U1,...,Ul)

S
�!⇡ ,U
(m1,...,mk)

=

[

�!⇡=(V1,...,Vl)

[

i1,...,il�1
i1+···+il=n

[

U=(U1,...,Ul)
|Uj |=ij

S
�!⇡ ,U
(m1,...,mk)

and therefore

#R(n)
(m1,...,mk)

=

X

⇡={V1,...,Vl}2P(k)

X

i1,...,il�1
i1+···+il=n

✓
n

i1, . . . , il

◆ lY

j=1

#S
(ij)
Vj

. (2.4.10)

The value s(n)k (cm1 , . . . , cmk)(0) can be computed by counting the number of S(n)
(m1,...,mk)

.

Proposition 2.4.15. It holds that

s(n)k (cm1 , . . . , cmk)(0) = #S(n)
(m1,...,mk)

.

In particular, sk(cm1 , . . . , cmk) is a polynomial of degree
Pk

i=1mi � (k � 1).
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Proof. By using the induction, it is not difficult to see that there are no essential tuples in
R(n)

(m1,...,mk)
if n >

Pk
i=1mi � (k � 1), which means #S(n)

(m1,...,mk)
= 0.

Define

s̃k(m1, . . . ,mk)(z) =
1X

n=1

#S(n)
(m1,...,mk)

n!
zn.

For the conclusion, it suffices to show that sk(cm1 , . . . , cmk) = s̃k(m1, . . . ,mk), which is equiva-
lent to

rk(cm1 , . . . , cmk)(z) =
X

⇡2P(k)

s̃⇡(m1, . . . ,mk)(z) (2.4.11)

because of the Möbius inversion formula. By Proposition 2.4.12, Equation (2.4.11) is equivalent
to

#R(n)
(m1,...,mk)

=

X

⇡={V1,...,Vl}2P(k)

X

i1,...,il�1
i1+···+il=n

✓
n

i1, . . . , il

◆ lY

j=1

#S
(ij)
Vj

for n 2 N, which is exactly the same as (2.4.10).

Now, the last problem is to determine the leading coefficient of sk(cm1 , . . . , cmk), i.e., to count
S(M�(k�1))
(m1,...,mk)

where M =
Pk

i=1mi. The main strategy is to use the mathematical induction, which
requires a slight modification of S(M�(k�1))

(m1,...,mk)
.

Definition 2.4.16. Let {mi}ki=1 and {li}M�(k�1)
i=1 be sequences of positive integers and L :=

l1 + · · ·+ lM�(k�1). Define

T
(l1,...,lM�(k�1))

(m1,...,mk)
:=

(
(W1, . . . ,Wk) 2 B(L)k : |Wi| = mi,

k_

i=1

⌧(Wi) _ b0M�(k�1) = 1L

)
,

where b0M�(k�1) := {{1, . . . , l1}, {l1 +1, . . . , l1 + l2}, . . . , {
PM�(k�1)�1

i=1 li +1, . . . ,
PM�(k�1)

i=1 li}}.

It is clear from Definitions 2.4.13 and 2.4.16 that S(M�(k�1))
(m1,...,mk)

is a specific case of T (l1,...,lM�(k�1))

(m1,...,mk)
.

That is,
S(M�(k�1))
(m1,...,mk)

= T (1,...,1)
(m1,...,mk)

,

where (1, . . . , 1) is a (M � (k � 1))-tuple which consists only of 1.
Example 2.4.17. Let us look at examples for small k.

• For any positive integers m1 and l1, . . . , lm1 , one has

#T
(l1,...,lm1 )
(m1)

= l1 · · · lm1 .

• For any positive integers m1,m2 and l1, . . . , lm1+m2�1, one has

#T
(l1,...,lm1+m2�1)

(m1,m2)
=

X

I⇢[m1+m2�1]
|I|=m1

 
Y

i2I
li

!
#T

(l01,...,l
0
m2

)

(m2)
,

where l01 =
P

i2I li and {l02, . . . , l0m2
} = {li | i 2 [m1 +m2 � 1] \ I}. Thus,

#T
(l1,...,lm1+m2�1)

(m1,m2)
=

X

I⇢[m1+m2�1]
|I|=m1

 
m1+m2�1Y

i=1

li

!
X

i2I
li

=

 
m1+m2�1Y

i=1

li

!✓
m1 +m2 � 2

m1 � 1

◆m1+m2�1X

i=1

li.
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Applying the counting technique used in the above example to the general case yields the
following results.
Proposition 2.4.18. Let {mi}ki=1 and {lj}M�(k�1)

j=1 be sequences of positive integers, where
M =

Pk
i=1mi. Then

#T
(l1,...,lM�(k�1))

(m1,...,mk)
=

0

@
M�(k�1)Y

i=1

li

1

A
✓

M � k

m1 � 1, . . . ,mk � 1

◆0

@
M�(k�1)X

i=1

li

1

A
k�1

. (2.4.12)

Proof. We use the induction for k as follows. Formula (2.4.12) holds for k = 1 because we
mentioned in Example 2.4.17. Assume Formula (2.4.12) holds up to k � 1. Note that

#T
(l1,...,lM�(k�1))

(m1,...,mk)
=

X

I⇢[M�(k�1)]
|I|=m1

 
Y

i2I
li

!
#T

(l01,...,l
0
m2+···+mk�(k�1))

(m2,...,mk)
,

where l01 =
P

i2I li and {l02, . . . , l0m2+···+mk�(k�1)} = {li | i 2 [M � (k � 1)] \ I}. Thus, by the
induction hypothesis (2.4.12),

#T
(l1,...,lM�(k�1))

(m1,...,mk)

=

X

I⇢[M�(k�1)]
|I|=m1

0

@
M�(k�1)Y

i=1

li

1

A
 
X

i2I
li

!✓
m2 + · · ·+mk � (k � 1)

m2 � 1, . . . ,mk � 1

◆0

@
M�(k�1)X

i=1

li

1

A
k�2

=

0

@
M�(k�1)Y

i=1

li

1

A
✓
m2 + · · ·+mk � (k � 1)

m2 � 1, . . . ,mk � 1

◆0

@
M�(k�1)X

i=1

li

1

A
k�2

X

I⇢[M�(k�1)]
|I|=m1

 
X

i2I
li

!

=

0

@
M�(k�1)Y

i=1

li

1

A
✓
m2 + · · ·+mk � (k � 1)

m2 � 1, . . . ,mk � 1

◆0

@
M�(k�1)X

i=1

li

1

A
k�2✓

M � k

m1 � 1

◆0

@
M�(k�1)X

i=1

li

1

A

=

0

@
M�(k�1)Y

i=1

li

1

A
✓

M � k

m1 � 1, . . . ,mk � 1

◆0

@
M�(k�1)X

i=1

li

1

A
k�1

.

Thus, we can get the leading coefficient of sk(cm1 , . . . , cmk) as a corollary.
Corollary 2.4.19. Let {mi}ki=1 be a sequence of positive integers and M =

Pk
i=1mi. Then

lead sk(cm1 , . . . , cmk) =
(M � (k � 1))

k�2

Qk
i=1(mi � 1)!

.

Proof. Recall that deg sk(cm1 , · · · , cmk) = M�(k�1) by Proposition 2.4.15. Then Propositions
2.4.15 and 2.4.18 imply that

s(M�(k�1))
k (cm1 , . . . , cmk)(0) = #S(M�(k�1))

(m1,...,mk)

= #T (1,...,1)
(m1,...,mk)

=

✓
M � k

m1 � 1, . . . ,mk � 1

◆
(M � (k � 1))

k�1

=
(M � (k � 1))!
Qk

i=1(mi � 1)!

· (M � (k � 1))
k�2,

as desired.
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Combining the above propositions, we show the main result of this section.
Theorem 2.4.20. Suppose that fi 2 C[x]0 with deg fi = mi for each 1  i  k, and let
M =

Pk
i=1mi. Then we have

X

⇡2P(n)

kY

i=1

 
X

V 2⇡
fi(|V |)

!
µP
n(⇡, 1n) =

(
(n� 1)!nk�1Qk

i=1mi lead fi, n = M � (k � 1),

0, n > M � (k � 1).

Proof. By Proposition 2.4.10, the statement is equivalent to the following:
• deg sk(f1, . . . , fk) = M � (k � 1);

• lead sk(f1, . . . , fk) = (M � (k � 1))
k�2 ·

Qk
i=1 (mi lead fi).

Because the family of polynomials {cm(x)}m2N is a basis of C[x]0, the polynomials {fi}ki=1 can
be uniquely expressed as linear combinations of {cm(x)}m2N:

fi(x) =
miX

j=1

a(i)j cj(x)

for 1  i  k. Here, note that cm(x) is a polynomial of degree m and the leading coefficient
1/m! and hence a(i)mi = m! lead fi. Next, by Proposition 2.4.9,

sk(f1, . . . , fk) =
m1X

j1=1

· · ·
mkX

jk=1

a(1)j1
· · · a(k)jk

sk(cj1 , . . . , cjk).

Then, by Proposition 2.4.15,
deg sk(f1, . . . , fk) = deg sk(cm1 , . . . , cmk)

= M � (k � 1).

Hence, by Corollary 2.4.19,

lead sk(f1, . . . , fk) = a(1)m1
· · · a(k)mk

lead sk(cm1 , . . . , cmk)

= lead sk(cm1 , . . . , cmk)

kY

i=1

mi! lead fi

=
(M � (k � 1))

k�2

Qk
i=1(mi � 1)!

kY

i=1

mi! lead fi

= (M � (k � 1))
k�2

kY

i=1

mi lead fi.

We give a few specific cases of Theorem 2.4.20.
Corollary 2.4.21.

X

⇡2P(n)

 
X

V 2⇡

✓
|V |
2

◆!k

µP
n(⇡, 1n) =

(
(n� 1)!nk�1, n = k + 1,

0, n > k + 1,
(2.4.13)

and
X

⇡2P(n)

 
X

V 2⇡
|V |2

!k

µP
n(⇡, 1n) =

(
2
k
(n� 1)!nk�1, n = k + 1,

0, n > k + 1.
(2.4.14)

These formulas will be used in Chapter 4.
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Finally, we conclude this section by noting that the combination of Example 2.4.8 and
Theorem 2.4.20 leads to the following result as a byproduct.

Corollary 2.4.22. For positive integers {mi}ki=1, define M =
Pk

i=1mi and b0k = {{1, . . . ,m1},
{m1 + 1, . . . ,m1 +m2}, . . . , {M �mk + 1, . . . ,M}}. Then

#{� 2 P(M) : � _ b0k = 1M , |�| = M � (k � 1)} = (M � (k � 1))
k�2

kY

i=1

mi.
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Chapter 3

Random Matrices

We prove a concentration phenomenon on the empirical eigenvalue distribution (EED) of the
principal submatrix in a random hermitian matrix whose distribution is invariant under unitary
conjugacy; for example, this class includes GUE (Gaussian Unitary Ensemble) and Wishart
matrices. More precisely, if the EED of the whole matrix converges to some deterministic
probability measure µ, then the difference of rescaled EEDs of the whole matrix and of its
principal submatrix concentrates at the Rayleigh measure (in general, a Schwartz distribution)
associated with µ by the Markov–Krein correspondence. For the proof, we use the moment
method with Weingarten calculus and free probability.

3.1 Main result
Let XN be an hermitian random matrix of size N whose distribution is invariant under conjugacy
by unitary matrices and let ⇤N = (�(N)

1  · · ·  �(N)
N ) be its eigenvalues. It is known that a

diagonalization XN = UNDNUN
⇤ exists, where DN = diag(�(N)

1 ,�(N)
2 , . . . ,�(N)

N ) and UN is a
Haar unitary random matrix of size N and independent of DN (see [CM14, Proposition 6.1]).

For the principal submatrix X̃N made by removing the last row and column of XN , Cauchy’s
interlacing law says that the eigenvalues ⇤̃N = (�̃(N)

1  · · ·  �̃(N)
N�1) of X̃N interlace with ⇤N

(see [Tao12, Exercise 1.3.14]):

�(N)
1  �̃(N)

1  �(N)
2  �̃(N)

2  · · ·  �(N)
N�1  �̃(N)

N�1  �(N)
N .

In many examples, the empirical eigenvalue distribution µN = (1/N)
PN

i=1 ��(N)
i

of the random
matrix XN converges, as N ! 1, to a non-random probability measure, and we do assume
so. Then it is not hard to see (at least with a mild assumption) that the empirical eigenvalue
distribution µ̃N of X̃N also converges to the same limit. Our main result roughly says that the
Rayleigh measure

b⌧N := NµN � (N � 1)µ̃N =

NX

i=1

�
�
(N)
i

�
N�1X

j=1

�
�̃
(N)
j

is close to the Rayleigh measure ⌧N linked to the transition measure µN by the Markov–Krein
correspondence. Note that ⌧N is of the form

⌧N =

NX

i=1

�
�
(N)
i

�
N�1X

j=1

�
⌘
(N)
j

where (⌘(N)
1  · · ·  ⌘(N)

N�1) is a sequence also interlacing with ⇤N (see [Ker98, Eq. (2)]).
Since our arguments are based on the moment method, we denote by Mk(⇣) for simplicity

the k-th moment of a measure or Schwartz distribution ⇣ when it is well defined. It should be
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noted here that if a probability measure µ has finite moments of all orders, then ⌧ defined via
(1.0.1) also has finite moments of all orders (see [AD57, Theorem A (d)] and [Ker98, Section
3.4]). Furthermore, for convenience of statements, let bµN be the transition measure associated
with the Rayleigh measure b⌧N ; then the main result can alternatively be phrased that bµN is
close to µN .

Theorem 3.1.1. Let µN , ⌧N , bµN , b⌧N be as above, µ be a probability measure on R and ⌧ be
related to µ by the Markov–Krein correspondence (1.0.1). Assume that

sup

N�1
E[Mk(µN )] < 1 and Mk(µ) < 1, k 2 2N (3.1.1)

and µN converges in moments to µ in probability:

lim
N!1

P[|Mk(µN )�Mk(µ)| � ✏] = 0, k 2 N, ✏ > 0. (3.1.2)

Then we have
lim

N!1
kMk(b⌧N )�Mk(⌧)kL2 = 0, k 2 N,

and
lim

N!1
P[|Mk(bµN )�Mk(µ)| � ✏] = 0, k 2 N, ✏ > 0.

In particular, if the moment problem for {Mk(µ)}k�1 is determinate then bµN weakly converges
to µ in probability:

lim
N!1

P
����
Z

R
f(x) bµN (dx)�

Z

R
f(x)µ(dx)

���� � ✏

�
= 0, f 2 Cb(R), ✏ > 0.

Remark 3.1.2. (i) Since the relation between the moments {Mn(µ)}n2N (resp. {Mn(µN )}n2N)
and {Mk(⌧)}k2N (resp. {Mk(⌧N )}k2N) is the same as that between complete symmetric
functions and Newton power sums (see (2.3.2) below), the convergence (3.1.2) holds if and
only if ⌧N converges in moments to ⌧ in probability.

(ii) The combination of (3.1.1) and (3.1.2) implies the convergence of moments in Lp norm for
every p 2 [1,1); see Proposition 3.2.3.

(iii) The assumptions (3.1.1) and (3.1.2) are satisfied by appropriately normalized Gaussian
Unitary Ensemble (GUE) [HP00, Theorem 4.1.5], where µ is the standard semicircle dis-
tribution (1/(2⇡))

p
4� x2 dx. For GUE (actually, more general Wigner matrices), a finer

result on the fluctuation of b⌧N from ⌧ is also known in [ES18] stated in the language of
rectangular Young diagrams; see also [Sod17].

The proof is based on Weingarten calculus and free probability which allow us to compute
the moments of the principal submatrix:

E � Tr[(X̃N )
k
] = E � Tr[DNUNPNUN

⇤DNUNPNUN
⇤ · · ·DNUNPNUN

⇤
], (3.1.3)

where PN = diag(1, 1, . . . , 1, 0).
In fact, the joint distribution of (�̃(N)

1  · · ·  �̃(N)
N�1) is explicit under the condition that

(�(N)
1  · · ·  �(N)

N ) is a constant sequence; it is proportional to the Vandermonde determinant
[Bar01, Proposition 4.2] (see also the expository paper [Far15]). Using this explicit formula
might be an alternative approach for computing (3.1.3) and hence for the proof of Theorem
3.1.1; however, the author is not sure whether this direction is promising.
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Weingarten calculus
The computation of mixed moments of Haar unitary random matrices UN and deterministic ma-
trices is called Weingarten calculus. Recall that for g 2 Sk, let Trg[A1, A2, . . . , Ak] be the prod-
uct of traces according to the cycle decomposition of g; for example if g = (1, 3, 2, 5)(4)(6, 9)(7, 8)
then Trg[A1, A2, . . . , A9] = Tr(A1A3A2A5) Tr(A4) Tr(A6A9) Tr(A7A8). Similarly, for a sequence
{↵n}n�1 ⇢ C we define ↵g to be the product of ↵n’s according to the sizes of cycles; in the above
example, ↵g = ↵4↵1↵2

2.
Let Ai, Bi (i = 1, . . . , k) be N ⇥N matrices. Then

E � Trg[A1UNB1UN
⇤, . . . , AkUNBkUN

⇤
]

=

X

g1,g2,g32Sk
g1g2g3=g

Trg1 [A1, . . . , Ak] Trg2 [B1, . . . , Bk]Wg(g3, N)

for all g 2 Sk. In particular, in the case of g = �k = (1, 2, . . . , k) the formula above specializes
to

E � Tr[(A1UNB1UN
⇤
) · · · (AkUNBkUN

⇤
)]

=

X

g,h2Sk

Trg[A1, . . . , Ak] Trh[B1, . . . , Bk]Wg(h�1g�1�k, N), (3.1.4)

see [CŚ06, Proposition 2.3]. The coefficients Wg(g,N) are called the Weingarten function. Its
asymptotic behavior for large N is known in the form

Nk+|g|
Wg(g,N) = µWg

k (g) +O
�
N�2

�
, g 2 Sk. (3.1.5)

The number |g|, called the length function, is the minimal number l for which g can be written
as a product of l transpositions, and the value µWg

k (g) above is expressed in terms of the Catalan
numbers Cn = (2n)!/(n!(n+ 1)!) as

µWg
k (g) =

Y

1jl

(�1)
|hj |C|hj | (3.1.6)

where g = h1 · · ·hl is the cycle decomposition of g; see [CM17, Theorem 2.7].

3.2 Moment convergence
Some results on the moment method for random measures are collected below. The proofs are
basic. Let p, pn, n 2 N, be random probability measures on R with an underlying probability
space (⌦,F ,P) below.

Proposition 3.2.1. Suppose that pn, p, n 2 N have finite moments of all orders almost surely,
and the moment problem for {Mk(p)}k�1 is determinate almost surely. If

lim
n!1

P[|Mk(pn)�Mk(p)| � ✏] = 0, k 2 N, ✏ > 0, (3.2.1)

then pn weakly converges to p in probability:

lim
n!1

P
����
Z

R
f(x) dpn(x)�

Z

R
f(x) dp(x)

���� � ✏

�
= 0, f 2 Cb(R), ✏ > 0. (3.2.2)

Proof. For later use, we first verify the existence of a subsequence of {pn}n�1 which weakly
converges to p almost surely. Let ⌦0 2 F be such that P[⌦0] = 1 and the moment problem for
{Mk(p!)}k�1 is determinate for all ! 2 ⌦0. For k = 1, there exists a subsequence {n(1, `)}1`=1
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of N and ⌦1 ⇢ ⌦0 such that ⌦1 2 F ,P[⌦1] = 1 and M1(p!n(1,`)) converges to M1(p!) for all
! 2 ⌦1. For k = 2, there exists a subsequence {n(2, `)}1`=1 of {n(1, `)}1`=1 and ⌦2 ⇢ ⌦1 such
that ⌦2 2 F ,P[⌦2] = 1 and M2(p!n(2,`)) converges to M2(p!) for all ! 2 ⌦2. In this way we
obtain subsequences {n(k, `)}1`=1 and decreasing subsets ⌦k of probability one for k � 1. Define
⌦̃ := \k�1⌦k and n(`) := n(`, `); then Mk(p!n(`)) converges to Mk(p!) as ` ! 1 for all ! 2 ⌦̃

and all k 2 N. Since the moment problem for the limit sequence is determinate, we conclude by
[Chu68, Theorem 4.5.5] that p!n(`) weakly converges to p! as `! 1 for all ! 2 ⌦̃.

To finish the proof, suppose to the contrary that the desired conclusion (3.2.2) is false: there
exist f 2 Cb(R), ✏, � > 0 and a subsequence of {pn}n�1, denoted by {pn0}, such that for all n0

P
����
Z

R
f(x) dpn0(x)�

Z

R
f(x) dp(x)

���� � ✏

�
� �. (3.2.3)

However, we can extract a further subsequence of {pn0} which weakly converges to p almost surely
as we discussed. For this subsequence, the LHS of (3.2.3) must tend to zero, a contradiction.

Remark 3.2.2. A similar result and proof are found in [Gre63, p. 178–180].

Proposition 3.2.3. Suppose that

sup
n�1

E[Mk(pn)] < 1 and E[Mk(p)] < 1, k 2 2N. (3.2.4)

Then the condition (3.2.1) is equivalent to

kMk(pn)�Mk(p)kLp ! 0, p 2 [1,1), k 2 N. (3.2.5)

Proof. It suffices to prove that (3.2.1) implies (3.2.5); the other direction is well known.
For p 2 [1,1) choose ` 2 2N such that ` � p. The Hölder inequality implies that |Mk(pn)|` 

Mk`(pn) and hence
kMk(pn)kLp  kMk(pn)kL`  (E[Mk`(pn)])

1
` . (3.2.6)

Combining the above and (3.2.4), as well as similar inequalities for Mk(p), yields that

sup

n2N
kMk(pn)kLp < 1 and kMk(p)kLp < 1, k 2 N, p 2 [1,1). (3.2.7)

By standard arguments we obtain

kMk(pn)�Mk(p)kpLp = E[|Mk(pn)�Mk(p)|p1{|Mk(pn)�Mk(p)|�✏}]

+ E[|Mk(pn)�Mk(p)|p1{|Mk(pn)�Mk(p)|<✏}]

 (E[|Mk(pn)�Mk(p)|2p])1/2(P[|Mk(pn)�Mk(p)| � ✏])1/2 + ✏p

 (kMk(pn)kL2p + kMk(p)kL2p)
p
(P[|Mk(pn)�Mk(p)| � ✏])1/2 + ✏p.

Applying (3.2.7) and (3.2.1) to the above finishes the proof.

Proposition 3.2.4. Suppose that (3.2.1) and (3.2.4) hold. Then

lim
n!1

E[P (M1(pn),M2(pn), . . . ,Mk(pn))] = E[P (M1(p),M2(p), . . . ,Mk(p))]

for every k 2 N and every polynomial P 2 C[x1, x2, . . . , xk].

Proof. This is a consequence of Proposition 3.2.3 and the following standard fact: if random
variables Y, Z, Yn, Zn, n 2 N satisfy Yn ! Y in Lp and Zn ! Z in Lp for all p 2 [1,1), then
YnZn ! Y Z in Lp for all p 2 [1,1).
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3.3 Proof of the main result
In this section, we follow the notation in Theorem 3.1.1. The index N is omitted for readability
when no confusion occurs. The main part of the proof of Theorem 3.1.1 is the following.

Theorem 3.3.1. Assume that

sup

N�1
E[Mk(µN )] < 1, k 2 2N. (3.3.1)

Then, for every k 2 N and ` 2 {1, 2}, it holds that

E[Mk(b⌧N )
`
] = E[Mk(⌧N )

`
] +O

�
N�1

�
.

Remark 3.3.2. Whether the above result holds for ` � 3 is unknown.

Proof. Note first that the assumption (3.3.1) implies that

sup

N�1
E[|Mg(µN )|] < 1, g 2 Sk

for every k 2 N, thanks to the iterative use of Schwarz inequality and (3.2.6).

(i) ` = 1. A key of the proof is the calculations of

N�1X

j=1

E[�̃jk] = E � Tr[(PU⇤DUP )
k
], (3.3.2)

where P = diag(1, . . . , 1, 0). The RHS of (3.3.2) is calculated into

E � Tr[(PU⇤DUP )
k
] = E � Tr[(DUPU⇤

)
k
]

=

X

g,h2Sk

E � Trg[D, . . . ,D] Trh[P, . . . , P ]Wg(h�1g�1�k) (3.3.3)

=

X

g,h2Sk

E � Trg[D, . . . ,D] Trh�1�k [P, . . . , P ]Wg(g�1h)

=

X

g,h2Sk

N#(g)E � trg[D, . . . ,D](N � 1)
#(h�1�k)Wg(g�1h), (3.3.4)

where (3.1.4) was used on the second line and the change of variables h 7! h�1�k was employed
on the third line.

On the other hand, if the projection P is replaced by the identity I in (3.3.3), then the same
calculations lead to

NX

i=1

E[�ik] = E � Tr[Dk
] = E � Tr[(DUIU⇤

)
k
]

=

X

g,h2Sk

N#(g)E � trg[D, . . . ,D]N#(h�1�k)Wg(g�1h). (3.3.5)

Taking the difference of (3.3.4) and (3.3.5) provides

E[Mk(b⌧N )] =

NX

i=1

E[�ik]�
N�1X

j=1

E[�̃jk]

=

X

g,h2Sk

N#(g)E � trg[D, . . . ,D]#(h�1�k)N
#(h�1�k)�1

�
1 +O(N�1

)
�
Wg(g�1h).
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Here we use the asymptotic expansion (3.1.5) of the Weingarten functions to get

E[Mk(b⌧N )] =

X

|g|+|g�1h|+|h�1�k|=k�1

#(h�1�k)E[Mg(µN )]µWg
k (g�1h) +O

�
N�1

�
. (3.3.6)

Using the isomorphism explained in Section 2.1, we may rewrite (3.3.6) in terms of non-crossing
partitions:

E[Mk(b⌧N )] =

X

�⇡2NC(k)

|Kr(⇡)|E[M�(µN )]µNC
k (�,⇡) +O

�
N�1

�

=

X

⇡2NC(k)

|Kr(⇡)|E[⇡(µN )] +O
�
N�1

�
, (3.3.7)

where the cumulant–moment formula (2.2.2) was used in the last line. Combining (3.3.7) and
Theorem 2.3.1 implies the desired conclusion.

(ii) ` = 2. Taking the expectation of Mk(b⌧N )
2
= (Tr[Dk

] � Tr[(DUPU⇤
)
k
])
2 with Weingarten

calculus yields

E[Mk(b⌧N )
2
]

= E � Tr
�
(1)
k �

(2)
k
[(DUIU⇤

)
k, (DUIU⇤

)
k
]� E � Tr

�
(1)
k �

(2)
k
[(DUIU⇤

)
k, (DUPU⇤

)
k
]

� E � Tr
�
(1)
k �

(2)
k
[(DUPU⇤

)
k, (DUIU⇤

)
k
] + E � Tr

�
(1)
k �

(2)
k
[(DUPU⇤

)
k, (DUPU⇤

)
k
]

=

X

g,h2S2k

N#(g)E[Mg(µN )]Tk(h)Wg(g�1h) (3.3.8)

where

Tk(h) := Tr
h�1�

(1)
k �

(2)
k
[Ik, Ik]� Tr

h�1�
(1)
k �

(2)
k
[Ik, P k

]� Tr
h�1�

(1)
k �

(2)
k
[P k, Ik] + Tr

h�1�
(1)
k �

(2)
k
[P k, P k

].

Note that, for readability, we use the abbreviation Trg[Ak, Bk
] = Trg[A1, . . . , Ak, B1, . . . , Bk]

when A = A1 = · · · = Ak and B = B1 = · · · = Bk.
By using the evident decomposition I = P + Q with Q = diag(0, . . . , 0, 1), we have the

following expansion

Tr
h�1�

(1)
k �

(2)
k
[Ik, Ik]

= Tr
h�1�

(1)
k �

(2)
k
[Ik, Ik�1, P +Q]

= Tr
h�1�

(1)
k �

(2)
k
[Ik, Ik�1, P ] + Tr

h�1�
(1)
k �

(2)
k
[Ik, Ik�1, Q]

= Tr
h�1�

(1)
k �

(2)
k
[Ik, Ik�2, P +Q,P ] + Tr

h�1�
(1)
k �

(2)
k
[Ik, Ik�1, Q]

= Tr
h�1�

(1)
k �

(2)
k
[Ik, Ik�2, P, P ] + Tr

h�1�
(1)
k �

(2)
k
[Ik, Ik�2, Q, P ] + Tr

h�1�
(1)
k �

(2)
k
[Ik, Ik�1, Q]

· · ·

= Tr
h�1�

(1)
k �

(2)
k
[Ik, P k

] +

kX

j=1

Tr
h�1�

(1)
k �

(2)
k
[Ik, Ik�j , Q, P j�1

]. (3.3.9)

In the same way,

Tr
h�1�

(1)
k �

(2)
k
[P k, Ik] = Tr

h�1�
(1)
k �

(2)
k
[P k, P k

] +

kX

j=1

Tr
h�1�

(1)
k �

(2)
k
[P k, Ik�j , Q, P j�1

]. (3.3.10)

40



Combining (3.3.9) and (3.3.10) together we get

Tk(h) =
kX

j=1

⇣
Tr

h�1�
(1)
k �

(2)
k
[Ik, Ik�j , Q, P j�1

]� Tr
h�1�

(1)
k �

(2)
k
[P k, Ik�j , Q, P j�1

]

⌘
.

Again, a similar argument yields

Tk(h) =
kX

i=1

kX

j=1

Tr
h�1�

(1)
k �

(2)
k
[Ik�i, Q, P i�1, Ik�j , Q, P j�1

].

When we decompose h�1�(1)k �(2)k into cycles, the contribution of the cycle which contains Q
is at most 1 in Tr

h�1�
(1)
k �

(2)
k
[Ik�i, Q, P i�1, Ik�j , Q, P j�1

]. Therefore, we get the upper bound

Tk(h) = O
⇣
N#(h�1�

(1)
k �

(2)
k )�1

⌘
= O

⇣
N2k�|h�1�

(1)
k �

(2)
k |�1

⌘
. (3.3.11)

Here we also use the asymptotic expansion (3.1.5) of the Weingarten functions and two elemen-
tary facts about the length function in symmetric groups S2k: |g|+|g�1h|+|h�1�(1)k �(2)k | � 2k�2

and |g| + |g�1h| + |h�1�(1)k �(2)k | 6= 2k � 1 since |g| + |g�1h| + |h�1�(1)k �(2)k | ⌘ |�(1)k �(2)k | ⌘ 2k � 2

(mod 2) by using the length property (2.1.2). Applying those facts and (3.3.11) to (3.3.8) reveals
that

E[Mk(b⌧N )
2
] =

X

g,h2S2k

|g|+|g�1h|+|h�1�
(1)
k �

(2)
k |=2k�2

N�|g|�|g�1h|E[Mg(µN )]Tk(h)µWg
2k (g�1h) +O

�
N�1

�
.

By using the isomorphism (2.1.3), the last expression can be rewritten in terms of non-crossing
partitions:

E[Mk(b⌧N )
2
] =

X

�,⇡2NC(2k)
�⇡(1k(1),1k(2))

E[M�(µN )]µNC
2k (�,⇡)

Tk(P⇡)

N |Kr(⇡)|�1
+O

�
N�1

�

=

X

⇡2NC(2k)
⇡(1k(1),1k(2))

E[⇡(µN )]
Tk(P⇡)

N |Kr(⇡)|�1
+O

�
N�1

�

=

X

⇡1,⇡22NC(k)

E[⇡1(µN )⇡2(µN )]
Tk(P(⇡1,⇡2))

N |Kr(⇡1)|+|Kr(⇡2)|�2
+O

�
N�1

�
.

Note that

Tk(P(⇡1,⇡2)) =

kX

i=1

kX

j=1

Tr(Kr(⇡1),Kr(⇡2))[I
k�i, Q, P i�1, Ik�j , Q, P j�1

]

= N |Kr(⇡1)|+|Kr(⇡2)|�2|Kr(⇡1)||Kr(⇡2)|+O
⇣
N |Kr(⇡1)|+|Kr(⇡2)|�3

⌘
. (3.3.12)

This is because the contribution of a cycle is 0 if it contains both P and Q, and is 1 if it
contains Q and no P ; from those observations, the main contributions appear when both Q’s
are at Kreweras points of ⇡1 and ⇡2, respectively, and so (3.3.12) follows. Hence we arrive at
the formula

E[Mk(b⌧N )
2
] =

X

⇡1,⇡22NC(k)

|Kr(⇡1)||Kr(⇡2)|E[⇡1(µN )⇡2(µN )] +O
�
N�1

�
.

Applying Theorem 2.3.1 to the RHS finishes the proof.
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Remark 3.3.3. Note that the calculations for ` = 1 are similar to those in [NS06, pp.379-393]
where asymptotic freeness is proved for matrices rotated by independent Haar unitaries.

Proof of Theorem 3.1.1. According to Theorem 2.3.1 , Mk(⌧N )
` is a polynomial on {Mn(µN )}n2N,

so that Proposition 3.2.4 allows us to pass to the limit:

lim
N!1

E[Mk(⌧N )] = Mk(⌧) and lim
N!1

E[Mk(⌧N )
2
] = Mk(⌧)

2, k 2 N.

Combining the above and Theorem 3.3.1 yields that

lim
N!1

E[Mk(b⌧N )] = Mk(⌧) and lim
N!1

E[Mk(b⌧N )
2
] = Mk(⌧)

2, k 2 N,

which readily implies kMk(b⌧N ) �Mk(⌧)kL2 ! 0. In particular, Mk(b⌧N ) converges to Mk(⌧) in
probability for every k 2 N. Since Mk(bµN ) and Mk(µ) are respectively expressed by a common
polynomial evaluated at {Mk(b⌧N )}k�1 and {Mk(⌧)}k�1, it follows that Mk(bµN ) converges to
Mk(µ) in probability. Finally, if the moment problem for {Mk(µ)}k�1 is determinate then we
conclude that bµN weakly converges to µ in probability by Proposition 3.2.1.
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Chapter 4

Finite Free Probability

In this chapter, we provide various limit theorems in finite free probability. To begin with, we
introduce basic notions and results in finite free probability. The most essential concepts in this
theory are finite free additive and multiplicative convolutions of polynomials. In particular, we
pay more attention to multiplicative convolution in this thesis.

First, we study the limit of {p⇥dm
d }m2N as m ! 1 for a fixed monic polynomial pd of degree d.

In the second, we give the finite free analogue of Sakuma and Yoshida’s limit theorem, that is, the
limit of {D1/m((p⇥dm

d )
�dm)}m2N as m ! 1 in two separate regimes; (i) m/d ! t for some t > 0,

and (ii) m/d ! 0. As the third result, we give alternative proofs of Kabluchko’s limit theorems
for the unitary Hermite polynomial and the unitary Laguerre polynomials via combinatorial
identities. The fourth result is the central limit theorem for finite free multiplicative convolution
and a discovery related to the multiplicative free semicircle distributions. Lastly, we provide a
finite free analogue of Tucci’s limit theorem in Section 4.6. Moreover, we study the empirical
root distributions of the limit polynomials when their degree tends to infinity.

4.1 Preliminaries
In this section, we introduce some concepts and preliminary results on finite free probability
that are used in the remainder of this thesis; see [AGP23; Mar21; MSS22] for more details on
finite free probability.

For any p, q 2 Pmon(d), one defines the finite free additive convolution

(p�d q)(x) =
dX

k=0

(�1)
k

✓
d

k

◆ X

i+j=k

k!

i!j!
eei(p)eej(q)xd�k.

For p 2 Pmon(d), a polynomial p�dm denotes the m-th power of p with respect to finite free
additive convolution. Note that, if p, q 2 Pmon(d) are real-rooted, then so is p �d q 2 Pmon(d)
(see [MSS22, Theorem 1.3]). The finite free additive convolution plays an important role in
studying the characteristic polynomials of the sum of (random) matrices. For a d ⇥ d real
symmetric matrix A, �A denotes the characteristic polynomial of A. Then we obtain

(�A �d �B)(x) = EQ det[xId �A�QBQ⇤
],

where the expectation is taken over unitary matrices Q distributed uniformly on the unitary
group of degree d (see [MSS22, Theorem 1.2]). Moreover, the finite additive convolution is closely
related to the free additive convolution � which describes the law of sum of freely independent
non-commutative random variables (see [BV93; Maa92; Voi86] for detailed information on free
additive convolution). For example, Marcus [Mar21] obtained typical limit theorems (LLN,
CLT and Poisson’s law of small numbers, etc.) for finite free additive convolution. According
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to the evidence above, we can treat finite free probability as a discrete approximation of free
probability.

Proposition 4.1.1. (see [AP18, Corollary 5.5]) Suppose that pd, qd 2 Pmon(d) are real-rooted
and µ, ⌫ are probability measures on R with compact support. If µJpdK

w�! µ and µJqdK
w�! ⌫ as

d ! 1, respectively, then µJpd �d qdK
w�! µ� ⌫ as d ! 1.

Similarly, for p, q 2 Pmon(d), the finite free multiplicative convolution p⇥d q is defined by

(p⇥d q)(x) =
dX

i=0

(�1)
i

✓
d

i

◆
eei(p)eei(q)xd�i.

For p 2 Pmon(d), we denote by p⇥dm the m-th power of p for finite free multiplicative convolution.
Note that, if p has only nonnegative roots and q is real-rooted, then p⇥dq has only real roots (see,
e.g., [Mar66, Section 16, Exercise 2]). If p, q have only roots located on T := {z 2 C : |z| = 1},
then so is p ⇥d q (see, e.g., [Sze22, Satz 3]). According to [MSS22, Theorem 1.5], the finite
free multiplicative convolution describes the characteristic polynomial of the product of positive
definite matrices. More precisely, if A and B are d⇥ d positive definite matrices, then

(�A ⇥d �B)(x) = EQ det[xId �AQBQ⇤
].

Furthermore, it is also known that ⇥d is closely related to free multiplicative convolution ⇥
which describes the law of multiplication of freely independent random variables (see [BV93] for
further details on free multiplicative convolution).

Proposition 4.1.2. (see [AGP23, Theorem 1.4]) Let us consider pd, qd 2 Pmon(d) in which pd
has only nonnegative roots and qd is real-rooted. Further, consider probability measures µ, ⌫ on
R with compact support, in which µ is supported on [0,1). If µJpdK

w�! µ and µJqdK
w�! ⌫ as

d ! 1, respectively, then µJpd ⇥d qdK
w�! µ⇥ ⌫ as d ! 1.

Also, according to [Kab21, Proposition 2.9], the same statement holds when pd, qd have only
roots located on T and µ, ⌫ are probability measures on T.

There is a useful concept to understand finite free additive and multiplicative convolutions
by combinatorics. For p 2 Pmon(d), the finite free cumulant of p is defined by

(d)n (p) :=
(�d)n�1

(n� 1)!

X

⇡2P(n)

ee⇡(p)µP
n(⇡, 1n), (4.1.1)

for n = 1, 2, . . . , d (see [AP18, Proposition 3.4] for details).

Example 4.1.3. (1) Let us set p(x) = xd � dxd�1. Since ee1(p) = 1 and eei(p) = 0 for all
i = 2, . . . , d, it is easy to see that (d)n (p) = dn�1 for n = 1, 2, . . . , d.

(2) Consider � > 0. We define the normalized Laguerre polynomial

bL(�)
d (x) =

dX

i=0

(�1)
i

✓
d

i

◆
(d�)i
di

xd�i, (4.1.2)

where (↵)i := ↵(↵ � 1) · · · (↵ � i + 1). Then the finite free cumulants of L̂(�)
d are given by

(d)n (bL(�)
d ) = � for n = 1, 2, . . . , d (see [AGP23]).

According to [AP18, Proposition 3.6], the finite free cumulant linearizes the finite free addi-
tive convolution:

(d)n (p�d q) = (d)n (p) + (d)n (q)
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for p, q 2 Pmon(d). In particular, we have

(d)n (p�dm) = m(d)n (p), m 2 N.

In the following, we give a formula for finite free cumulants of p⇥dm for p 2 Pmon(d) and
m 2 N. First, the following is directly derived from the definition of finite free multiplicative
convolution.

Lemma 4.1.4. For a family {pi}mi=1 ⇢ Pmon(d), one has

eej(p1 ⇥d · · ·⇥d pm) =

mY

i=1

eej(pi) (j = 1, . . . , d).

In particular, if all pi = p for some p 2 Pmon(d), then

eej(p⇥dm) = eej(p)m.

Second, it is also known that

(d)n (p⇥d q) =
(�d)n�1

(n� 1)!

X

�,⌧2P(n)
�_⌧=1n

d|�|+|⌧ |�2nµP
n(0n,�)µ

P
n(0n, ⌧)

(d)
� (p)(d)⌧ (q)

by [AGP23, Theorem 1.1]. In particular, if p = q, then

(d)n (p⇥d2) =
(�d)n�1

(n� 1)!

X

�1,�22P(n)
�1_�2=1n

 
2Y

i=1

d|�i|�nµP
n(0n,�i)

(d)
�i

(p)

!
.

In general, the following holds.

Proposition 4.1.5. For a family {pi}mi=1 ⇢ Pmon(d), we have

(d)n (p1 ⇥d · · ·⇥d pm) =
(�d)n�1

(n� 1)!

X

⇡2P(n)

mY

i=1

X

�i⇡

d|�i|�nµP
n(0n,�i)

(d)
�i

(pi)µ
P
n(⇡, 1n)

=
(�d)n�1

(n� 1)!

X

�1,...,�m2P(n)
�1_···_�m=1n

 
mY

i=1

d|�i|�nµP
n(0n,�i)

(d)
�i

(pi)

!
.

In particular, if all pi = p for some p 2 Pmon(d), then

(d)n (p⇥dm) =
(�d)n�1

(n� 1)!

X

⇡2P(n)

0

@
X

�⇡

d|�|�nµP
n(0n,�)

(d)
� (p)

1

A
m

µP
n(⇡, 1n)

=
(�d)n�1

(n� 1)!

X

�1,...,�m2P(n)
�1_···_�m=1n

 
mY

i=1

d|�i|�nµP
n(0n,�i)

(d)
�i

(p)

!
.

Proof. By the definition of finite free cumulant (4.1.1) and Lemma 4.1.4, we obtain

(d)n (p1 ⇥d · · ·⇥d pm) =
(�d)n�1

(n� 1)!

X

⇡2P(n)

ee⇡(p1 ⇥d · · ·⇥d pm)µP
n(⇡, 1n)

=
(�d)n�1

(n� 1)!

X

⇡2P(n)

mY

i=1

ee⇡(pi)µP
n(⇡, 1n). (4.1.3)

45



According to [AP18, Proposition 3.4], since

ee⇡(p) =
X

�⇡

d|�|�nµP
n(0n,�)

(d)
� (p),

for any p 2 Pmon(d), the first equality holds by (4.1.3).
The second equality is proved as follows:

X

⇡2P(n)

mY

i=1

X

�i⇡

d|�i|�nµP
n(0n,�i)

(d)
�i

(pi)µ
P
n(⇡, 1n)

=

X

⇡2P(n)

0

@
X

�1,...,�m⇡

mY

i=1

d|�i|�nµP
n(0n,�i)

(d)
�i

(pi)

1

AµP
n(⇡, 1n)

=

X

�1,...,�m2P(n)

mY

i=1

d|�i|�nµP
n(0n,�i)

(d)
�i

(pi)

0

@
X

�1_···_�m⇡

µP
n(⇡, 1n)

1

A

=

X

�1,...,�m2P(n)
�1_···_�m=1n

 
mY

i=1

d|�i|�nµP
n(0n,�i)

(d)
�i

(pi)

!
,

where we used Proposition 2.1.4 on the third line.

Example 4.1.6. By using the first equation in Proposition 4.1.5, we get

(d)n

⇣
(bL(1)

d )
⇥dm

⌘
=

(�d)n�1

(n� 1)!

X

⇡2P(n)

0

@
X

�⇡

d|�|�nµP
n(0n,�)

1

A
m

µP
n(⇡, 1n)

because (d)n (bL(1)
d ) = 1 for all n. The formula implies that

(d)2

⇣
(bL(1)

d )
⇥dm

⌘
= d

⇢
1�

✓
1� 1

d

◆m�

and

(d)3

⇣
(bL(1)

d )
⇥dm

⌘
= d2

⇢
1� 3

2

✓
1� 1

d

◆m

+
1

2

✓
1� 1

d

◆m✓
1� 2

d

◆m�
.

According to [AP18, Theorem 5.4], it is known that the finite free cumulants approach free
cumulants introduced by Speicher. A consequence of this is the following criteria for convergence
in distribution.

Proposition 4.1.7. Let us consider pd 2 Pmon(d) and a probability measure µ with compact
support. The following assertions are equivalent.

(1) µJpdK
w�! µ as d ! 1.

(2) For all n 2 N, limd!1 (d)n (pd) = n(µ).

4.2 Simple limits for p⇥dm as m ! 1
In this section, we investigate the relatively simple limits of p⇥dm for p 2 Pmon(d) having
nonnegative roots. In order to study it, we give some properties of a sequence {eei(p)}di=0. First,
let us recall Newton’s inequality and Maclaurin’s inequality (see, e.g., [HLP52, Section 2.22]).
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Proposition 4.2.1 (Newton’s inequality). Let p 2 Pmon(d) be a monic polynomial with real
roots. Then

eei+1(p)eei�1(p)  eei(p)2, i = 1, 2, . . . , d� 1.

The equality holds if and only if its roots are the same ↵ in which case eei(p) = ↵i for i =

1, 2, . . . , d.

Proposition 4.2.2 (Maclaurin’s inequality). Let p 2 Pmon(d) be a monic polynomial with
positive roots. Then

ee1(p) � ee2(p)
1
2 � · · · � eed(p)

1
d (4.2.1)

with equality if and only if its roots are the same ↵.

Remark 4.2.3. The inequality (4.2.1) itself holds even when p has zero roots. More precisely,
if p has exactly k zero roots then ee1(p) > · · · > eed�k(p)

1
d�k and eed�k+1(p) = · · · = eed(p) = 0.

Recall that, for p 2 Pmon(d) and c 6= 0,

Dc(p)(x) = cdp(x/c),

and hence the definition of finite free cumulants implies

(d)n (Dc(p)) = cn(d)n (p). (4.2.2)

Theorem 4.2.4. Let us consider p 2 Pmon(d) with nonnegative roots.

(1) We have

lim
m!1

p⇥dm(x) =

8
><

>:

xd, ee1(p) < 1,

xd � dxd�1, ee1(p) = 1 and ee2(p) < 1,

(x� 1)
d, ee1(p) = 1 and ee2(p) = 1.

The limit does not exist if ee1(p) > 1.

(2) Assume that ee1(p) > 0. Then

lim
m!1

D1/ee1(p)m(p
⇥dm)(x) =

(
xd � dxd�1, ee2(p) < ee1(p)2,
(x� 1)

d, ee2(p) = ee1(p)2.

Proof. For each i, we get

eei(p⇥dm) = eei(p)m
m!1����!

8
><

>:

0, eei(p) < 1,

1, eei(p) = 1,

1, eei(p) > 1.

Accordingly, it does not converge in the case ee1(p) > 1.
Next, we consider the case ee1(p)  1.

• If ee1(p) < 1, then eei(p) < 1 for i = 2, . . . , d by Maclaurin’s inequality. Then we get

p⇥dm(x) =
dX

i=0

(�1)
i

✓
d

i

◆
eei(p)mxd�i m!1����! xd.

• If ee1(p) = 1, then ee2(p)  1 by Maclaurin’s inequality. There are two possible cases.
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(i) If ee2(p) < 1, then eei(p) < 1 for i = 2, . . . , d, and therefore

p⇥dm(x) =
dX

i=0

(�1)
i

✓
d

i

◆
eei(p)mxd�i m!1����! xd � dxd�1.

(ii) If ee2(p) = 1, then eei(p) = 1 for i = 2, . . . , d by Proposition 4.2.1. It means p(x) =

(x� 1)
d. Thus we have

p⇥dm(x) = (x� 1)
d m!1����! (x� 1)

d.

For the latter part, assume ee1(p) > 0. The condition ee2(p) < ee1(p)2 means that eei(p) < ee1(p)i
for all i = 2, . . . , d by Maclaurin’s inequality. Then

D1/ee1(p)m(p
⇥dm)(x) =

1

ee1(p)md
· p⇥dm(ee1(p)mx)

= xd +
dX

i=1

(�1)
i

✓
d

i

◆
eei(p)m · ee1(p)�imxd�i

= xd � dxd�1
+

dX

i=2

(�1)
i

✓
d

i

◆✓
eei(p)
ee1(p)i

◆m

xd�i

! xd � dxd�1,

as m ! 1 because eei(p) < ee1(p)i for all i = 2, . . . , d.
If ee2(p) = ee1(p)2, then eei(p) = ↵i for some ↵ by Proposition 4.2.1. Then a similar way to

the above computation shows

D1/ee1(p)m(p
⇥dm)(x) = (x� 1)

d.

4.3 Finite free analogue of Sakuma–Yoshida’s limit theorem
In this section, we study the finite free analogue of the limit theorem by Sakuma and Yoshida
[SY13] as already mentioned in Introduction. More precisely, our purpose in this section is to
investigate the limit behavior of the sequence of finite free cumulants of

D1/m((p⇥dm
d )

�dm),

as m ! 1 for pd 2 Pmon(d) with nonnegative roots, such that (d)1 (pd) = 1. Recall that,
Sakuma and Yoshida investigated the asymptotic expansion of S-transform, in contrast to that,
Arizmendi and Vargas [AV12] gave another proof by focusing on the combinatorial structure of
the non-crossing partitions. Here, we will take the latter approach, i.e., the convergence of finite
free cumulants.

Suppose first that degree d is fixed. According to (4.2.2) and Theorem 4.2.4, we have

(d)n

⇣
D1/m((p⇥dm

d )
�dm)

⌘
=

1

mn�1
(d)n (p⇥dm

d )
m!1����! 0

for n = 2, . . . , d. In this case, we get D1/m((p⇥dm
d )

�dm)(x) ! (x� 1)
d as m ! 1; hence this is

not an interesting result. In order to obtain a non-trivial limit of finite free cumulant, we consider
the following two situations of m ! 1 with (i) m/d ! t for some t > 0, or (ii) m/d ! 0.

In the later discussions, we consider pd 2 Pmon(d) with nonnegative roots. Additionally, we
assume that
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(A-1) (d)1 (pd) = 1, that is, ee1(pd) = 1;

(A-2) there exists a probability measure µ with compact support such that µJpdK
w�! µ as d ! 1.

We define
en(t, µ) := exp

✓
�t

✓
n

2

◆
2(µ)

◆
, t > 0

for n 2 N. Note that, for ⇡ 2 P(n),

e⇡(t, µ) =
Y

V 2⇡
exp

✓
�t

✓
|V |
2

◆
2(µ)

◆
= exp

 
�t
X

V 2⇡

✓
|V |
2

◆
2(µ)

!
.

We summarize our results as follows.
Theorem 4.3.1. Let us consider pd 2 Pmon(d) with nonnegative roots such that (d)1 (pd) = 1,
and let µ be a probability measure with compact support. Assume that µJpdK

w�! µ as d ! 1.
Then
(1) For n 2 N, we have

lim
m!1

m/d!t>0

(d)n

⇣
D1/m

⇣
(p⇥dm

d )
�dm

⌘⌘
=

(�1)
n�1

tn�1(n� 1)!

X

⇡2P(n)

e⇡(t, µ)µ
P
n(⇡, 1n).

(2) For n 2 N, we have

lim
m!1
m/d!0

(d)n

⇣
D1/m

⇣
(p⇥dm

d )
�dm

⌘⌘
=

(2(µ)n)n�1

n!
,

where the limit coincides with the n-th free cumulant of ⌘2(µ).

Case of m/d ! t for some t > 0

We firstly consider the case when a ratio of a number m of finite free multiplicative convolution
and degree d of polynomials converges to some t > 0 as m ! 1 (and hence d ! 1), that is,
m/d ! t as m ! 1.
Proposition 4.3.2. Let us consider pd 2 Pmon(d) satisfying (A-1) and (A-2). For n 2 N,

(d)n

⇣
D1/m((p⇥dm

d )
�dm)

⌘
! (�1)

n�1

tn�1(n� 1)!

X

⇡2P(n)

e⇡(t, µ)µ
P
n(⇡, 1n),

as m ! 1 with m/d ! t for some t > 0.
Proof. By Lemma 4.1.4, we have

een(p⇥dm
d ) = een(pd)m =

 
(d)1 (pd)

n �
✓
n

2

◆
(d)1 (pd)n�2(d)2 (pd)

d
+O(d�2

)

!m

.

Since (d)1 (pd) = 1 by (A-1) and (d)2 (pd) ! 2(µ) as d ! 1 by (A-2), we then get

een(p⇥dm
d ) =

 
1�

✓
n

2

◆
(d)2 (pd)

d
+O(d�2

)

!m

=

8
<

:

 
1�

✓
n

2

◆
(d)2 (pd)

d
+O(d�2

)

!d
9
=

;

m
d

! exp

✓
�t

✓
n

2

◆
2(µ)

◆
,

(4.3.1)

as m ! 1 with m/d ! t.
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Let us denote by {n(t, µ)}n�1 the above limit of finite free cumulants.

Proposition 4.3.3. For n 2 N, we have

lim
t!0+

n(t, µ) =
(2(µ)n)n�1

n!
.

Proof. It is easy to see that limt!0+ e⇡(t, µ) = 1. Note that
X

⇡2P(n)

µP
n(⇡, 1n) = 0

and
@k

@tk
e⇡(t, µ) =

 
�
X

V 2⇡

✓
|V |
2

◆
2(µ)

!k

e⇡(t, µ).

Due to L’Hôpital’s theorem, Proposition 4.3.2 and Equation (2.4.13), the following result is
obtained:

lim
t!0+

n(t, µ) =
(�1)

n�1

(n� 1)!

X

⇡2P(n)

8
><

>:
lim
t!0+

⇣
�
P

V 2⇡
�|V |

2

�
2(µ)

⌘n�1
e⇡(t, µ)

(n� 1)!

9
>=

>;
µP
n(⇡, 1n)

=
2(µ)n�1

((n� 1)!)2

X

⇡2P(n)

 
X

V 2⇡

✓
|V |
2

◆!n�1

µP
n(⇡, 1n)

=
(2(µ)n)n�1

n!
.

Example 4.3.4. For simplicity, we assume that (d)2 (pd) = 1. Then it also satisfies that 2(µ) =
1. Then the first four cumulants are computed as follows.

• 1(t, µ) = 1 and limt!0+ 1(t, µ) = 1.

• 2(t, µ) =
et � 1

t
and limt!0+ 2(t, µ) = 1.

• 3(t, µ) =
e3t � 3et + 2

2t2
and limt!0+ 3(t, µ) =

3

2
.

• 4(t, µ) =
12et � 3e2t � 4e3t + e6t � 6

6t3
and limt!0+ 4(t, µ) =

8

3
.

Case of m/d ! 0 as m ! 1

Our goal is to show the next one.

Proposition 4.3.5. Let us consider pd 2 Pmon(d) satisfying (A-1) and (A-2). It satisfies that

(d)n

⇣
D1/m((p⇥dm

d )
�dm)

⌘
! (2(µ)n)n�1

n!
, n 2 N

as m ! 1 with m/d ! 0.
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Proof. By Proposition 4.1.5,

(d)n (p⇥dm
d ) =

(�d)n�1

(n� 1)!

X

⇡2P(n)

ee⇡(pd)mµP
n(⇡, 1n)

=
(�d)n�1

(n� 1)!

X

�1,...,�m2P(n)
�1_···_�m=1n

 
mY

i=1

d|�i|�nµP
n(0n,�i)

(d)
�i

(pd)

!

=:
(�d)n�1

(n� 1)!

1X

l=0

ql(m)

dl
,

where, on the third line, we define the polynomials {ql(m)}1l=0 as the coefficients of the expansion
with respect to d�l. We immediately know that ql(m) = 0 (l = 0, . . . , n � 2) from the second
line. One can verify that the degree of ql(m) is less than or equal to l.

Look at the first line and (4.3.1), and then consider the coefficients of the expansion of
een(pd)m (n 2 N) with respect to d�1. Then it follows that its degree is less than or equal to the
degree of its denominator dl. Also, it is true about ee⇡(pd)m for ⇡ 2 P(n).

Thus, what to prove is that the leading coefficient of qn�1(m) equals (�2(pd))n�1nn�2. The
coefficient polynomial of dn�1 in the expansion of

ee⇡(pd)m =

Y

V 2⇡

 
1�

✓
|V |
2

◆
(d)2 (pd)

d
+O(d�2

)

!m

is computed as
X

l1,...,l|⇡|�0
l1+···+l|⇡|=n�1

✓
m

l1

◆
· · ·
✓
m

l|⇡|

◆✓
�(d)2 (pd)

✓
|V1|
2

◆◆l1

· · ·
✓
�(d)2 (pd)

✓
|V|⇡||
2

◆◆l|⇡|

+O(mn�2
),

so its leading coefficient is
X

l1,...,l|⇡|�0
l1+···+l|⇡|=n�1

1

l1! · · · l|⇡|!

✓
�(d)2 (pd)

✓
|V1|
2

◆◆l1

· · ·
✓
�(d)2 (pd)

✓
|V|⇡||
2

◆◆l|⇡|

.

Hence the leading coefficient of qn�1(m) equals to

(�(d)2 (pd))
n�1

X

⇡2P(n)
⇡={V1,...,Vr}

8
>><

>>:

X

l1,...,lr�0
l1+···+lr=n�1

1

l1! · · · lr!

✓
|V1|
2

◆l1

· · ·
✓
|Vr|
2

◆lr

9
>>=

>>;
µP
n(⇡, 1n)

=
(�(d)2 (pd))n�1

(n� 1)!

X

⇡2P(n)

 
X

V 2⇡

✓
|V |
2

◆!n�1

µP
n(⇡, 1n)

= (�(d)2 (pd))
n�1nn�2,

where the last equality holds due to Equation (2.4.13). Finally, we obtain

(d)n

⇣
D1/m((p⇥dm

d )
�dm)

⌘
=

(�d)n�1

mn�1(n� 1)!

1X

l=0

ql(m)

dl

=
((d)2 (pd)n)n�1

n!
+O

⇣m
d

⌘
,

as desired.
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4.4 Alternative proof of Kabluchko’s limit theorems
In this section, we give alternative proofs for Kabluchko’s two limit theorems by using the
combinatorial formulas in Chapter 2.

Kabluchko’s limit theorem for unitary Hermite polynomial
Let us define Hd(z; t) as a polynomial on C by setting

Hd(z; t) :=
dX

k=0

(�1)
k

✓
d

k

◆
exp

✓
� tk(d� k)

2d

◆
zd�k, z 2 C, t > 0. (4.4.1)

The polynomial Hd(z; t) is called the unitary Hermite polynomial with parameter t > 0. By
[Kab22, Lemma 2.1], all zeroes of the polynomial Hd(z; t) are located on the unit circle T. It is
known as the limit polynomial of the Central Limit Theorem (CLT) for finite free multiplicative
convolution of polynomials with roots located on T by Mirabelli [Mir21, Theorem 3.16]. For the
reader’s convenience, we prove this result directly from the definition of finite free multiplicative
convolution.

Proposition 4.4.1. Let d � 2. Suppose p(z) =
Qd

k=1(z � ei✓k) such that

1

d

dX

k=1

✓k = 0 and 1

d

dX

k=1

✓2k = �2.

Then
lim

m!1
�1/pm(p)⇥dm(z) = Hd

✓
z;

d�2

d� 1

◆
.

Proof. First, note that

0 =

 
dX

k=1

✓k

!2

= d�2 + 2

X

1j1<j2d

✓j1✓j2 (4.4.2)

by the assumptions. It follows that

eek(�1/pm(p)) =

✓
d

k

◆�1 X

1j1<···<jkd

exp

✓
ip
m
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✓
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where we used the assumptions and (4.4.2) on the third line. Thus, eek(�1/pm(p))m goes to
exp(�k(d � k)�2/2(d � 1)) as m ! 1 for k = 0, . . . , d. It means limm!1 �1/pm(p)⇥dm(z) =

Hd(z; d�2/(d� 1)).

Kabluchko [Kab22, Theorem 2.2] proved that the empirical root distribution of Hd(z; t)
converges weakly on the unit circle to the free normal distribution ⌃t on T with parameter t > 0

as d ! 1, where ⌃t was introduced by [BV92] and studied by [Bia97a; Bia97b; Zho14; Zho15].
Moreover, a matricial model in which the moments of (unitary) matrix-valued Brownian motion
at time t converge to ones of ⌃t as the matrix size goes to infinity, was constructed by [Céb16].
Further, the free cumulant of ⌃t was known (see [DGN15]). We already computed the free
cumulant of ⌃t in Section 2.2.

We give another proof of this theorem by showing that the finite free cumulant of Hd(z; t)
converges to the free cumulant of ⌃t, in which the combinatorial formula (2.4.14) is essential.
Theorem 4.4.2. Consider t > 0. As d ! 1, we have

µJHd(z; t)K
w�! ⌃t,

that is,

(d)n (Hd(z; t)) ! exp

✓
�nt

2

◆
(�nt)n�1

n!
= n(⌃t).

Proof. By the definition of Hd(z; t), we have

eek(Hd(z; t)) = exp

✓
� tk(d� k)

2d

◆
, k = 0, 1, . . . , d,

and therefore for ⇡ 2 P(n),

ee⇡(Hd(z; t)) =
Y

V 2⇡
exp

✓
� t|V |(d� |V |)
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(
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|V |2

!)
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◆
exp

 
t

2d

X

V 2⇡
|V |2

!
.

Due to (2.4.14), a straightforward computation shows that
X

⇡2P(n)
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P
n(⇡, 1n)
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Therefore we have

(d)n (Hd(z; t)) =
(�d)n�1

(n� 1)!

X

⇡2P(n)

ee⇡(Hd(z; t))µ
P
n(⇡, 1n)

= exp

✓
�nt

2

◆
(�nt)n�1
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✓
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◆
,

which implies

lim
d!1

(d)n (Hd(z; t)) = exp

✓
�nt

2

◆
(�nt)n�1

n!
.

Combining with Proposition 2.2.1, we obtain the desired result.

Kabluchko’s limit theorem for unitary Laguerre polynomial
Let Ld,m be the unitary Laguerre polynomial, that is,

Ld,m(z) =
dX

k=0

(�1)
k

✓
d

k

◆✓
1� 2k

d

◆m

zd�k. (4.4.3)

In [Kab21, Theorem 2.7], if m/d ! t > 0 for some t > 0 as d ! 1, then the empirical root
distribution of Ld,m(z) converges weakly on T to the free unitary Poisson distribution ⇧t with
parameter t, see [BV92; Kab21] for details on ⇧t. We give a strict statement and an alternative
proof of Kabluchko’s limit theorem for free unitary Poisson distribution as follows.

Theorem 4.4.3. As d ! 1 with m/d ! t for some t > 0, we get

µJLd,mK w�! ⇧t,

equivalently

(d)n (Ld,m) ! (�1)
n�1

2
ne�2nt

n�1X

k=1

(�t)k

k!
(2n)k�1

✓
n� 2

k � 1

◆
= n(⇧t),

where we understand (d)1 (Ld,m) = e�2t.

Proof. Consider m/d ! t for some t > 0 as d ! 1. By the definition of the finite free cumulants,
we have

(d)n (Ld,m) =
(�d)n�1

(n� 1)!
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As d ! 1, we get
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Let td := m/d then td ! t as d ! 1 by the assumption. Then

(d)n (Ld,m) =
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For short, we write fl(x) := (2x)l/l, and then
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Recall that, for each n 2 N and l1, · · · , lk 2 N,
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By Theorem 2.4.20, if
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i=1 deg fli+1 � k < n� 1, that is,
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Thus, we get
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Combining with Proposition 2.2.2, we have obtained the result as d ! 1.
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4.5 LLN and CLT for finite free multiplicative convolution on
P+

In this section, we prove the Law of Large Numbers (LLN) and Central Limit Theorems (CLT)
for finite free multiplicative convolution of polynomials with nonnegative roots. Moreover, we
investigate a relation between the limit polynomial from the CLT and the multiplicative free
semicircle distribution on [0,1).
Theorem 4.5.1. Let p(x) =

Qd
k=1(x� e✓k). Assume that

1

d

dX

k=1

✓k = ↵.

Then
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m!1
�1/m(p)⇥dm(x) = (x� e↵)d.

Proof. A simple computation shows that

eek(�1/m(p)) =
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This implies that
lim

m!1
eek(�1/m(p))m = e↵k,

and therefore
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�1/m(p)⇥dm(x) =
dX

k=0

(�1)
k

✓
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k

◆
e↵kxd�k

= (x� e↵)d.

We then investigate the central limit theorem for polynomials with non-negative roots and
their limits as the degree goes to infinity. As a remarkable notice, their proofs are parallel to
those in Section 4.4.
Theorem 4.5.2. (1) Let d � 2. Suppose p(x) =

Qd
k=1(x � e✓k) such that 1

d

Pd
k=1 ✓k = 0 and

1
d

Pd
k=1 ✓

2
k = �2. Then we have
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�1/pm(p)⇥dm = Id
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d�2

d� 1
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,

and

Id(x; t) :=
dX

k=0

(�1)
k
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k

◆
exp

✓
k(d� k)

2d
t

◆
xd�k, t > 0.

(2) As d ! 1, we have

µJId(x; t)K
w�! �t,

where �t is the multiplicative free semicircle distribution on [0,1).
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Proof. A similar argument to the proof of Proposition 4.4.1 shows that

eek(�1/pm(p)) = 1 +
k(d� k)

2(d� 1)m
�2 +O(m� 3

2 ).

Thus, eek(�1/pm(p))m goes to exp(k(d � k)�2/2(d � 1)) as m ! 1 for k = 0, . . . , d. It means
limm!1 �1/pm(p)⇥dm(z) = Id(z; d�2/(d� 1)).

For the latter part, a similar argument to proof of Theorem 4.4.2 also shows

(d)n (Id(x; t)) = exp

✓
nt
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(nt)n�1

n!
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�
.

This implies that
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d!1

(d)n (Id(x; t)) = exp

✓
nt

2

◆
(nt)n�1

n!
= n(Det/2(⌘t)),

as desired.

Remark 4.5.3. The multiplicative free semicircle distribution �t on [0,1), introduced in
[Bia97a, Proposition 5]. Note that �t coincides with Det/2(⌘t), where ⌘t is the probability
measure on [0,1) appeared in [SY13]. Indeed, the n-th moment mn(�t) is given by

exp

✓
nt

2

◆ n�1X

k=0

nk�1

k!

✓
n

k + 1

◆
tk, t > 0.

A similar argument to the proof of Proposition 2.2.1 shows that

n(�t) = exp

✓
nt

2

◆
(nt)n�1

n!
= n(Det/2(⌘t))

for all n 2 N, and therefore �t = Det/2(⌘t) for t > 0.

4.6 Finite free analogue of Tucci’s limit theorem
Tucci’s limit theorems for Free multiplicative convolution
In this section, we introduce free multiplicative convolution and its characterization via the
S-transform (see [BV93] for more details). For a probability measure µ 6= �0 on [0,1), we define

 µ(z) :=

Z 1

0

tz

1� tz
µ(dt), z 2 C \ [0,1).

It is known that its inverse function  �1
µ exists in a neighborhood of (µ({0}) � 1, 0), and then

we define the S-transform of µ as

Sµ(z) :=
z + 1

z
 �1
µ (z), z 2 (µ({0})� 1, 0).

According to [BV93], for probability measures µ, ⌫ 6= �0 on [0,1), the free multiplicative con-
volution µ⇥ ⌫ is characterized by

Sµ⇥⌫(z) = Sµ(z)S⌫(z),

for all z in the common interval where all three S-transforms are defined. Note that the common
interval is not empty since (µ⇥ ⌫)({0}) = max{µ({0}), ⌫({0})} (see [BV93, Lemma 6.9]).

Some kind of limit theorem for free multiplicative convolution of a probability measure on
[0,1) was obtained by Tucci [Tuc10] and Haagerup and Möller [HM13].
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Proposition 4.6.1. Let us consider µ 2 P+. As n ! 1, the sequence of (µ⇥n
)
1
n converges

weakly to the measure �(µ) 2 P+ characterized by

�(µ)

✓
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1

Sµ(t� 1)

�◆
= t, t 2 (µ({0}), 1)

�(µ)({0}) = µ({0}).
(4.6.1)

Moreover, the support of the measure �(µ) is the closure of the interval
 ✓Z 1

0
t�1µ(dt)

◆�1

,

Z 1

0
t µ(dt)

!
⇢ [0,1).

Example 4.6.2. (1) Let MP be the (standard) Marchenko-Pastur distribution which is defined
as

MP(dt) =

p
t(4� t)

2⇡t
1(0,4)(t) dt.

Then �(MP) is the uniform distribution U(0, 1) on the open interval (0, 1), see [Ued21].

(2) Consider µ =
1
2(�0 + �1). Then we have

�(µ) =
1

2
�0 +

1

2(1� t)2
1(0,1/2)(t)dt,

since Sµ(t) = (2 + 2t)/(1 + 2t), t 2 (�1/2, 0) implies that �(µ)([0, t]) = 2
�1

(1� t)�1 for all
1/2 < t < 1.

Finite free analogue of Tucci’s limit theorem
In this section, we provide the finite free analogue of Tucci’s limit theorems. First, we calculate
the n-th power of finite free multiplicative convolution of polynomials that have only non-
negative real roots. Let ⇤

(n) be the multi-set of roots of p⇥dn for n � 1 and a monic polynomial
p of degree d with non-negative real roots. We put ⇤ := ⇤

(1), for short.

Lemma 4.6.3. Let p be a monic polynomial of degree d with non-negative real roots ⇤. Then
we have

eei(⇤(n)
) = eei(⇤)n, 0  i  d. (4.6.2)

In particular, p and p⇥dn have the same multiplicity of zeros.

Proof. Note that

p(x) =
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and then by the definition

p⇥dn(x) =
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i

◆
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This is equivalent to (4.6.2). The last assertion holds because the number of zeros in ⇤ is equal
to k if and only if

ed�k(⇤) > 0 and ed�k+1(⇤) = 0,

where we understand ed+1(⇤) = 0.
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Due to the relation (4.6.2), we obtain the following limit for roots of finite free multiplicative
convolution of polynomials.

Theorem 4.6.4. Consider a monic polynomial p of degree d with non-negative real roots ⇤ and
let k = k(p) be the number of zeros in ⇤. Let ⇤

(n)
:= {�(n)1 � �(n)2 � · · · � �(n)d } be the multiset

of non-negative real roots of p⇥dn. Then
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Similar to the estimation above, we obtain
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and therefore, by using (4.6.3),
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Taking the n-th root of each value in the above inequality, we get
✓

d

i� 1

◆� 1
n eei(⇤)
eei�1(⇤)

 (�(n)i )
1
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Hence, we obtain (�(n)i )
1
n ! eei(⇤)/eei�1(⇤) as n ! 1.

For a positive number ↵ > 0 and a monic polynomial p(x) =
Qd

i=1(x��i) with non-negative
real roots, we define

p(↵)(x) :=
dY

i=1

(x� �↵i ).

Remark 4.6.6. According to Theorem 4.6.4, if p is a monic polynomial of degree d with non-
negative real roots ⇤ and k is the number of zeros in ⇤, then
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� 1
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�
(x) = xk

d�kY
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◆
.

Thus, this is the finite free analogue for Tucci’s limit theorem.

Remark 4.6.7. Let p be a monic polynomial of degree d with non-negative real roots ⇤ =

{�1 � · · · � �d}, k the number of zeros in ⇤, and �(n)i the i-th real root of p⇥dn for 1  i  d.
By Newton’s inequality (see, e.g., [HLP52]), we have

eei(⇤)
eei�1(⇤)

� eei+1(⇤)

eei(⇤)
, 1  i  d� k � 1, (4.6.4)

where the equality holds if and only if �1 = · · · = �d. However, the inequality (4.6.4) can be
directly proven by Theorem 4.6.4 due to �(n)i � �(n)i+1.

Consequently, we find the following remarkable phenomenon; except for trivial cases, the
limit roots of (p⇥dn)

� 1
n

�
, not being zero, are all distinct.

In particular, we apply Theorem 4.6.4 to the (normalized) Laguerre polynomial and a poly-
nomial with two real roots.

Example 4.6.8 (Case of the normalized Laguerre polynomial). Consider d � 1. Recall the
normalized Laguerre polynomial (4.1.2):

bL(�)
d (x) =

dX

i=0

(�1)
i

✓
d

i

◆
(d�)i
di

xd�i.

Let ⇤ be the set of positive real roots of p = bL(1)
d . Note that

eei(⇤) =
d

d
· d� 1

d
· · · d� i+ 1

d
, 1  i  d

and hence p has no zero roots since p(0) = eed(⇤) 6= 0.
Suppose that �(n)1 � · · · � �(n)d are non-negative real roots of p⇥dn. By Theorem 4.6.4, we

obtain

lim
n!1

(�(n)i )
1
n =

eei(⇤)
eei�1(⇤)

=

d
d · d�1

d · · · d�i+1
d

d
d · d�1

d · · · d�i+2
d

=
d� i+ 1

d

for 1  i  d, where note that ee0(⇤) = 1.
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Example 4.6.9 (Case of a polynomial with two roots). Given d � 1, consider the following
monic polynomial p of 2d degree:

p(x) = xd(x� 1)
d, d � 1,

and put ⇤ = {1, · · · , 1| {z }
d times

, 0, · · · , 0| {z }
d times

} as the set of roots of p. Then we get

eej(⇤) =
�d
j

�

�2d
j

� , 0  j  d,

and eej(⇤) = 0 for d+1  j  2d. Suppose that �(n)1 � · · · � �(n)d are positive real roots of p⇥dn.
By Theorem 4.6.4, we have

lim
n!1

(�(n)i )
1
n =

d� i+ 1

2d� i+ 1
,

for all 1  i  d.

Remark 4.6.10 (Rate of Convergence). According to the proof of Theorem 4.6.4, it is easy to
see that

log(�(n)i )
1
n = log

✓
eei(⇤)
eei�1(⇤)

◆
+O

✓
1

n

◆
,

as n ! 1.
We demonstrate an example in which the rate of convergence is of order 1/n and it is optimal.

Consider d = 2 in Example 4.6.8, that is, p(x) = x2 � 2x + 2
�1. As a consequent result of a

proof of Lemma 4.6.3, we obtain p⇥2n(x) = x2� 2x+2
�n for n 2 N. Hence (positive) real roots

of p⇥2n are given by

�(n)1 = 1 +

p
1� 2�n, �(n)2 = 1�

p
1� 2�n.

It is easy to see that limn!1(�(n)1 )
1
n = 1, limn!1(�(n)2 )

1
n = 1/2 and also

n
⇣
log(�(n)1 )

1
n � log 1

⌘
! log 2, n

✓
log(�(n)2 )

1
n � log

1

2

◆
! � log 2,

as n ! 1. Consequently, the order 1/n is optimal.

Further, we investigate how the empirical root distributions of the limit polynomial obtained
by Theorem 4.6.4 (or Remark 4.6.6) converge weakly as d ! 1. For the reason above, we
henceforth emphasize their degree as follows.

Let pd be a monic polynomial of degree d with non-negative real roots ⇤d = {�1,d � · · · �
�d,d} and let kd be the number of zeros in ⇤d. Denote by Ri(⇤d) the limit roots of (p⇥dn

d )

� 1
n

�
as

n ! 1 for 1  i  d, that is,
Ri(⇤d) =

eei(⇤d)

eei�1(⇤d)
,

as provided in Theorem 4.6.4. In the following, we investigate relationships between the empirical
root distributions:

µd :=
1

d

dX

i=1

��i,d
, and ⌫d :=

1

d

dX

i=1

�Ri(⇤d).

Lemma 4.6.11. Let pd be a monic polynomial of degree d with non-negative real roots ⇤d.
Assume that kd = 0 (equivalently, �d,d > 0 or Rd(⇤d) > 0). Then we have

Z 1

0
(log t)µd(dt) =

Z 1

0
(log t) ⌫d(dt).
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Proof. Note that the integrals
R1
0 (log t)µd(dt) and

R1
0 (log t) ⌫d(dt) are finite since kd = 0. A

direct computation shows that
Z 1

0
(log t) ⌫d(dt) =

1

d

dX

i=1

logRi(⇤d)

=
1

d

dX

i=1

log
eei(⇤d)

eei�1(⇤d)
(by Theorem 4.6.4)

=
1

d
log eed(⇤d) (since ee0(⇤d) = 1)

=
1

d
log

dY

i=1

�i,d

=
1

d

dX

i=1

log �i,d =

Z 1

0
(log t)µd(dt).

We study how the empirical root distributions ⌫d =
1
d

Pd
i=1 �Ri(⇤d) behave as d ! 1 when

µd =
1
d

Pd
i=1 ��i,d

converges weakly to some probability measure on [0,1).

Proposition 4.6.12. Let pd be a monic polynomial of degree d with non-negative real roots
⇤d. Assume that there exist µ 2 P+,c and a compact set K in [0,1), such that the measures
µd and µ are supported on K for all d � 1, and such that µd

w�! µ as d ! 1. Then we obtain

R1(⇤d) !
Z 1

0
t µ(dt)

as d ! 1. In addition, if 0 /2 K, then it satisfies that

Rd(⇤d) !
✓Z 1

0
t�1µ(dt)

◆�1

and
Z 1

0
(log t)⌫d(dt) !

Z 1

0
(log t)�(µ)(dt)

as d ! 1, where �(µ) is defined in Proposition 4.6.1.

Proof. By the assumptions and Theorem 4.6.4, we get

R1(⇤d) = ee1(⇤d) =
1

d

dX

i=1

�i,d =

Z 1

0
t µd(dt) !

Z 1

0
t µ(dt),

as d ! 1.
Moreover, we assume that 0 /2 K in the following statement. Note that the functions t 7! t�1

and t 7! log t are bounded and continuous on K. We then obtain

Rd(⇤d) =
eed(⇤d)

eed�1(⇤d)
=

 
1

d

dX

i=1

��1
i,d

!�1

=

✓Z 1

0
t�1µd(dt)

◆�1

!
✓Z 1

0
t�1µ(dt)

◆�1

as d ! 1. It follows that kd = 0 from 0 /2 K. By Lemma 4.6.11, we obtain
Z 1

0
(log t)⌫d(dt) =

Z 1

0
(log t)µd(dt) !

Z 1

0
(log t)µ(dt).

According to [HM13, Proposition 1], the last integral equals to
R1
0 (log t)�(µ)(dt), and therefore

we get the convergence.
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We give examples of the weak limit laws of empirical root distributions 1
d

Pd
i=1 �Ri(⇤d) as

d ! 1.

Example 4.6.13. (1) In Example 4.6.8, it was shown that Ri(⇤d) =
d�i+1

d when we consider
pd = bL(1)

d . with non-negative real roots ⇤d for each d � 1. It is easy to see that

1

d

dX

i=1

� d�i+1
d

w�! U(0, 1) = �(MP),

as d ! 1, where the last equality holds due to Example 4.6.2 (1).

(2) In Example 4.6.9, we obtained that Ri(⇤2d) =
d�i+1
2d�i+1 for 1  i  d when pd(x) = xd(x�1)

d

with non-negative real roots ⇤2d. For any bounded continuous functions f on [0,1), we get
Z 1

0
f(t)

"
1

2
�0 +

1

2d

dX

i=1

� d�i+1
2d�i+1

#
(dt) =

1

2
f(0) +

1

2d

dX

i=1

f

✓
d� i+ 1

2d� i+ 1

◆

=
1

2
f(0) +

1

2d

dX

`=1

f

✓
`

d+ `

◆

=
1

2
f(0) +

1

2d

dX

`=1

f

 
`
d

1 +
`
d

!

! 1

2
f(0) +

1

2

Z 1

0
f

✓
t

1 + t

◆
dt

=
1

2
f(0) +

1

2

Z 1/2

0

f(u)

(1� u)2
du,

where the last equality holds by changing variable to u = t/(1 + t), and therefore

1

2
�0 +

1

2d

dX

i=1

� d�i+1
2d�i+1

w�! 1

2
�0 +

1

2(1� t)2
1(0,1/2)(t)dt = �

✓
1

2
(�0 + �1)

◆
,

as d ! 1, where the last equality holds due to Example 4.6.2 (2).

According to Proposition 4.6.12 and Example 4.6.13, it is natural to conjecture as follows.

Conjecture 4.6.14. Let pd be a monic polynomial of degree d with non-negative real roots
⇤d = {�1,d � · · · � �d,d}. Let us further consider µ 2 P+,c. Assume that the empirical root
distributions of pd, that is, 1

d

Pd
i=1 ��i,d

converge weakly to µ as d ! 1. Then we obtain

1

d

dX

i=1

�Ri(⇤d)
w�! �(µ)

as d ! 1.
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