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Abstract
【Background and Objectives】
Many studies on U intermetallic systems driven by the unique properties of 5f elec-
trons, have yielded a variety of fascinating research topics. Despite its extensive history,
however, a comprehensive understanding of 5f electrons remains elusive. A significant
part of the challenge stems from the unique nature of the 5f electron wavefunction,
which spatially lies between the more localized 4f and the more extended 3d electron
wavefunctions. Reflecting this feature, 5f electrons are considered to be more strongly
affected by their environment than 4f electrons through hybridization effects. As a
result, 5f electrons exhibit a duality of both itinerancy and localization, leading to the
emergence of various types of correlations between magnetism and superconductivity,
which are not typically observed in 3d or 4f electron systems. Furthermore, the mod-
erate localization in environments where spatial inversion symmetry is broken may
induce local parity mixing, potentially activating odd-parity multipoles on a single ion
site that have not yet been observed, possibly contributing to the exotic phenomena
seen in U-based systems. However, microscopic information to comprehensively dis-
cuss such hybridization effects for each specific material remains scarce. This study
aims to meticulously investigate the effects of the U-site environment, particularly fo-
cusing on the absence of local space inversion symmetry, on the hybridization of 5f
electrons.

【Contents】
In this study, we focus on UPt2Si2 and UIr2Si2 with CaBe2Ge2 type structure to explore
5f electronic states in environments lacking the local inversion symmetry. This thesis
consists of the following contents.

Resonant X-ray Scattering Experiments on UPt2Si2 (Chapter 5)
On UPt2Si2, where charge density wave (CDW) is formed by 5d electrons of Pt,

resonant X-ray scattering (RXS) experiments at the M4 absorption edge of U were
performed to investigate the effect of environmental changes at the U site, which
caused by the CDW ordering, on the 5f electronic state. We found the modulation of
5f electronic states by the CDW and analyzed their symmetries.
Neutron Scattering Experiments on UPt2Si2 (Chapter 6)

To obtain quantitative information on the modulation of the 5f electronic state by
the CDW, we performed polarized and unpolarized neutron diffraction experiments.
The structure of the magnetic modulation was determined, including its absolute value
of the amplitude.
Low Temperature Physical Properties in UIr2Si2 (Chapter 8)

magnetic field (H) versus temperature (T ) phase diagram has been constructed
from the results of detailed magnetization and specific heat measurements under mag-
netic field for an antiferromagnet UIr2Si2, in which a strong hybridization between the
conduction electrons and the 5f electrons is suggested.
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Chapter 1 describes the background of this study and the development and current
status of research on hybridization effects between conduction electrons and f electrons
(1.1) and on multipole degrees of freedom (1.2), and contains the introduction on
the interest in the 5f electronic states under the condition lacking of local inversion
symmetry (1.3). Chapter 2 introduces the family of UT 2X 2 compounds, including
UPt2Si2 and UIr2Si2. Chapter 3 summarizes the objectives of this study, and Chapter
4 describes the experimental method of these studies.

Chapter 7 and 9 provide the discussions based on the results obtained for each
material. Chapter 10 presents the conclusions and perspectives of this study.

【Conclusions】
The new insights gained from the research presented in this dissertation can be sum-
marized as follows:
UPt2Si2

• We found, from the RXS experiments, the orbital modulation of U 5f electrons
induced by the CDW, manifesting as a density wave of electric quadrupoles.
This orbital modulation exhibits an antiphase pattern between the U sublattices,
possibly reflecting the polar environment on the U site inverted between the
sublattices.

• We also found from polarized and unpolarized neutron scattering experiments,
the magnetic modulation in U 5f electrons, where the magnetic moments in
the antiferromagnetic (AFM) ordered state are canted away from the c axis.
Our quantitative analysis on the magnetic modulation have revealed that the
canting angle is approximately 20◦ at maximum, suggesting a significant coupling
between the 5f electrons of U and the 5d electrons of Pt.

These results offer insights into the effects of the U-site environment on the 5f
electronic state from two perspectives: inter-site d-f hybridization and intra-site 5f-
6d or 7s hybridization. The estimated value of the canting angle of the 5f magnetic
moment suggests a strong coupling between the U 5f electrons and the Pt 5d electrons,
i.e., an inter-site d-f hybridization effect. This scenario predicts the occurrence of an
antiphase orbital modulation between the U sublattices, which is supportively observed
in the RXS experiments. Simultaneously, this implies that the 5f electrons reflect the
absence of local inversion symmetry at the U site. That is exactly the situation where
intra-site parity hybridization can occur. Such a parity mixed state is specified by an
odd-parity multipole on a single ion site, which cannot be observed in the standard
RXS experiments.

Our quantitative and symmetry analysis of the 5f electronic states offers valuable
insights for a further microscopic understanding of hybridization effects in 5f elec-
tron systems. Future perspectives include crystallographic analysis to identify the

4



environment of the U site in more detail and further RXS experiments for the direct
observations of the Pt 5d electrons and U 6d electrons.

UIr2Si2

• We obtained the H-T phase diagram that exhibits a characteristic feature with a
phase boundary having dHc(T )/dT > 0 as T → 0 and possessing a triple critical
point. In particular, the existence of the triple critical point is a common feature
with a related material UIr2Ge2, indicating a low-dimensional spin network that
reflects the layered structure in both systems.

• Our measurements of specific heat and magnetization suggest that the 5f-electronic
states in UIr2Si2 may form heavy-fermion states at two distinct energy scales as
the temperature decreases. One arises in the high-temperature paramagnetic
region, yielding an electronic specific heat coefficient γ = 110 mJ/K2mol extrap-
olated from above the Néel temperature (TN) to T = 0. The other state emerges
in the low-temperature AFM state, with an enhanced γ value of 270 mJ/K2mol.
This transition is also evident from the drastic changes in the Curie-Weiss tem-
perature, as well as the significant enhancement of the magnetic susceptibility
at low temperatures.

The properties of UIr2Si2 revealed in this study are primarily influenced by the low-
dimensionality features of the crystal structure rather than the local breaking of spatial
inversion symmetry. The large γ value and the small AFM ordered magnetic moment
observed at low temperature indicate the itinerant nature of the 5f-electronic state. In
contrast, the magnetic responses such as the H-T phase diagram and magnetization
process can be qualitatively explained based on a localized spin model. This material
is expected to play a important role in studying how the 5f electron state is understood
under strong hybridization effects.
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Chapter 1

Introduction

1.1 Strongly Correlated System: intermetallic f-electron
systems

In f-electron intermetallic compounds, the hybridization effect between conduction
electrons and localized f-electrons, called c-f hybridization, is one of the most important
effects affecting their physical properties. This section provides the brief summary of
the development and current status of the studies on the c-f hybridization effect.

1.1.1 c-f hybridization effect

In metallic compounds containing lanthanide and actinide elements, there exists a
group of materials in which the effective mass of electrons can reach 102 to 103 times
at low temperatures. These materials are referred to as “heavy fermion (HF) sys-
tems”. Among them, Ce compounds are representative HF materials which have been
actively studied for many years as a research field of rich physical phenomena. The
overall framework of the properties of f electron systems with c-f hybridization effects
is explained by the “Doniach phase diagram” (Fig. 1.1), which is derived from the
competition between the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction and
the Kondo effect [1]. The energy scales of the Kondo effect and the RKKY interac-
tion (kBTK and kBTRKKY, respectively) are attributed to (i) the exchange coupling
constant Jcf between the conduction electron and the localized electron and (ii) the
density of states at the Fermi energy, D(εF), but their functional forms are different
(Eq. (1.1)). Reflecting this difference, the ground state of the system changes with
variations in the magnitude of Jcf . While the 4f electron behaves as a localized elec-
tron with large magnetic moment of several µB at high temperatures, the magnetic
moment is screened by the antiferromagnetically coupled spins of the conduction elec-
trons at low temperatures through the Kondo effect. At further low temperatures, the
formation of a Kondo lattice, a periodic arrangement of Kondo singlet states, leads
to a coherent state throughout the crystal with a narrow band near the Fermi energy
(HF states). In the region with small Jcf , the 4f magnetic moments are dominantly
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coupled by the RKKY interaction mediated by the conduction electrons, and the sys-
tem shows the magnetic ordering. In the vicinity of the quantum critical point (QCP),
where the RKKY interaction and the Kondo effect are competing, various physical
phenomena such as quantum phase transitions, non-Fermi liquid states, and non-BCS
superconductivity have been discovered. In the region with larger Jcf , on the other
hand, valence fluctuation phenomena are pronounced.

kBTK ∝ D(εF )
−1 exp(−1/D(εF)Jcf)

kBTRKKY ∝ J2
cfD(εF)

(1.1)

T
e
m
p
e
ra
tu
re

JcfD(εF)

TK
TRKKY
 

QCP

magnetic order Fermi liquid

Figure 1.1: The Doniach phase diagram.

The key parameter, Jcf , originates from the hybridization effect between conduction
electrons and f electrons, i.e., c-f hybridization on the basis of Anderson Hamiltonian,
and their relationship is given as follows;

Jcf ∝
V 2
cf

εF − Ef

(1.2)

Here, Vcf is the hybridization matrix element for the c-f hybridization and Ef is the
energy level of the f orbital. This means that the c-f hybridization plays more funda-
mental role in the physical properties of the HF systems.

1.1.2 c-f hybridization effect in U intermetallic systems

The above discussion primarily assumes the relatively simple electronic structure of
Ce3+(4f1). In this context, the f-electrons are assumed to be well-localized, and the
c-f hybridization effect is treated perturbatively. In the U systems, however, there are
some fundamental issues to consider when discussing the c-f hybridization effect.

First one is the spatial extent of the wave functions. As shown in Fig. 1.2, the
wave function of the 4f electron has a peak closer to the nucleus than that of the 5p
electrons of the Xe closed shell. Therefore, the localized electron model can be a good
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starting point of approximation for the 4f electrons. Similarly, the wave function of 5f
electron also has a peak inside the Rn closed shell, but it extends further outside the
closed shell compared to the 4f electrons, for which a localized electron state is a good
approximation. This suggests that the 5f electrons are more strongly influenced by the
surrounding environment than the 4f electrons. Nevertheless, the spatial extent of the
5f electrons is not as large as that of the 3d electrons, where the electron band model
is a good approximation. This intermediate nature of the spatial extent of the wave
function, between 3d and 4f electrons, makes it difficult to establish an appropriate
model to describe the behavior of 5f electrons in metals..

In addition, we have to consider many-body effects within the 5f orbital. The
electron configuration of U ion in a solid is typically considered to be U3+ (5f3) or
U4+ (5f2), with multiple electronic occupying the 5f orbital. Consequently, direct
Coulomb interactions and exchange interactions (Hund’s rule coupling) occur between
the electrons within the 5f orbital, making it a complex issue. to determine the re-
sulting electron configuration. It becomes a complex issue to determine the resulting
electronic configuration.

An example of studies addressing the issue of 5f electronic states is the theory
of “itinerant-localized duality” (Yotsuhashi-Miyake-Kusunose theory) [2]. This theory
was proposed focusing on the coexistence of the antiferromagnetic (AFM) ordering
and the superconductivity discovered in UPd2Al3. This system shows the AFM or-
dering below 14.4 K and the superconductivity below 1.9 K in the AFM ordered state
[3, 4]. The unique point is that the 5f electrons of U carry both the itinerant com-
ponent, which exhibits superconductivity, and the localized component, contributing
to anisotropic magnetism. According to the itinerant-localized duality mode [2], this
feature is explained as a consequence of the three 5f electrons being composed of an
itinerant component (5f1) and a localized component (5f2) with different amplitudes of
c-f hybridizations. Although there are theoretical considerations regarding the behav-
ior of 5f electrons in such specific systems, the properties of 5f electrons in U compounds
are diverse, as shown in the later section 1.3, and a comprehensive understanding has
not yet been achieved.

Figure 1.2: Effective radial distribution function of Ce, U and Ni [5].
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1.2 Multipole Degrees of Freedom
Some f-electron systems exhibit unique ordered states with the anisotropic electric or
magnetic order parameters which can be described by “multipoles”. These ordered
states have been found not only in insulators with the strong localized character of f
electrons, but also in the intermetallic systems with the c-f hybridization as described
above. In order to explain these phenomena, it is necessary to understand how the
entangled degrees of freedom due to their strong spin-orbit coupling interact with the
surrounding environment in crystals.

For f-electron systems, symmetry analysis is powerful way to deal with their degrees
of freedom. According to Neumann’s principle, the symmetry of any physical property
in a crystal must be higher than, or at least equal to, its crystallographic point group
symmetry. This means that the symmetry of the electronic state provides information
about the expected physical properties. Recently, based on this point, electronic states
in materials have been classified in terms of symmetry, and a complete set of multipole
basis for describing any electronic state in a crystal has been obtained. In this section,
we briefly introduce the development and current status of research on such multipole
degrees of freedom.

1.2.1 Conventional multipoles

Multipoles appear in a series expansion of scalar and vector potentials in classical elec-
tromagnetism, and symmetry of electronic states can be expressed using the concept
of multipoles. In f-electron systems, many materials have been discovered that exhibit
a spontaneous ordering of the multipoles, such as electric quadrupoles and magnetic
octupoles. Representative examples are the antiferro-electric-quadrupole ordering in
CeB6 [6] and the antiferro-magnetic-octupole ordering in Ce0.7La0.3B6 [7]. These mul-
tipoles can be arised as electronic degrees of freedom for a single orbital on a single
ion site. In such cases, their spacial inversion symmetry is restricted to even parity.
Recently, there has been a breakthrough to extend this conventional concept of mul-
tipoles for the comprehensive expression of electronic states in crystals, as described
below.

1.2.2 Augmented multipoles

Recently, four types of multipoles have been established that constitute a complete set
for representing arbitrary electric states in terms of spatial inversion symmetry and
time reversal symmetry. As listed in Fig. 1.3, they cover all the combinations of spatial
inversion symmetry and time reversal symmetry (P , T ).

A comprehensive description of the electronic state using these extended multipoles
can easily predict the possible responses of the system to various external fields, such
as electomagnetic field, electric currents, and elastic strain. This is because the various
response tensors correspond one-to-one to the symmetries of the system that can be
represented by multipoles. Figure 1.4 summarizes the relationship between multipoles
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and the expected linear responses. For example, if odd-parity magnetic multipoles
uniformly order in the system, magneto-electric effects can be observed. In this case,
applying an electric field to the system induces magnetization and the response tensor
can be described by the multipoles ordering in the system as in Eq. (1.4).

Figure 1.3: (Color online) Four types of multipoles（E: electric multipole, M: magnetic
multipole, MT: magnetic toroidal multipole, ET: electric toroidal multipole) and their
symmetries in Ref. [8]. l is the lank of multipoles.

Figure 1.4: Heckmann diagram in Ref. [9].

M = α̂(E)E (1.3)

α̂(E) =

M0 −Mu +Mv Mxy + Tz Mzx − Ty
Mxy − Tz M0 −Mu −Mv Myz + Tx
Mzx + Ty Myz − Tx M0 + 2Mu

 (1.4)
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In the following, three types of extensions made in the definition of multipoles to
realize odd-parity multipoles in real materials will be introduced.

Cluster-type multipole

When a system exhibits an electronic order, the symmetry of the entire system can
be represented by the symmetry of the ordered unit cell rather than focusing on the
individual electronic degrees of freedom on a single site. Noting this point, the cluster-
type multipoles are defined on over multiple sites [10, 11, 12].

A representative material of clustered multipoles is UNi4B. This material has a hon-
eycomb network of U. Below 20.4 K, this system shows a vortex-like antiferromagnetic
order on the network [13]. The symmetry of the magnetic structure is characterized
by the vortex-like spin network, which corresponds to a uniform order of cluster-type
magnetic toroidal dipole [10]. In fact, our group has succeeded in examining the
magneto-electric effects induced by these magnetic multipoles [14].

(a) (b)

Figure 1.5: (Color online) (a) The magnetic structure of UNi4B and corresponding the
cluster-type magnetic toroidal dipole and (b) the observed magnetization induced by
electric currents [14].

Bond-type multipole

There is another type of multipole defined across multiple sites. It is a bond-type
multipole, which is defined to represent the anisotropic modulation of electric hopping
[15]. In other words, a bond-type multipole can be regarded as off-site electronic
degrees of freedom, while a cluster-type multipole is composed of on-site electronic
degrees of freedom.

One of the candidate materials exhibiting the bond-type multipole ordering is the
5d pyrochlore metal Cd2Re2O7. This system undergoes successive phase transitions at
∼ 200 K and 120 K with the structural changes [16], which have been proposed to be
associated with electric-toroidal quadrupole orderings [17].
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Figure 1.6: (Color online) The bond-type electric toroidal quadrupole order proposed
in Cd2Re2O7 [17].

Hybrid-type multipole

In contrast to the previous two types of extended multipoles, there is another type
of multipole which is defined on a single site. This is a hybrid-type multipole, which
represents the hybridization between different orbitals in a single ion site [18, 19]. In
principle, a parity-mixing hybridization between orbitals such as s-p, p-d, and d-f is
allowed on a single site lacking local inversion symmetry in the presence of odd-parity
crystalline electronic field (CEF). It means that odd-parity multipoles can be active
even at a single site.

In f electron systems, such intra-atomoic parity-mixing effects have not been dis-
cussed so far. This is because, as explained in Section 1.1, the f electrons are well
localized in the inner shell, and the odd-parity CEF is considered to be shielded by
the outer shell electrons. However, in the case of the 5f electrons, the spatial spread
of their wavefunction suggest that the 5f electrons may contribute to the shielding
of the odd-parity CEF. The resulting interorbital (e.g. 5f-6d) hybridization states
can be precisely regarded as the odd-parity hybrid-type multipoles. We are focusing
on the possibility that this new electronic degree of freedom may play a key role in
understanding the physical phenomena mentioned in the next chapter.
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1.3 interest in 5f electronic states under lacking of
local inversion symmetry

In addition to the UPd2Al3 introduced in Section 1.1.2, several other U compounds
have been found that exhibit unique 5f electronic properties. The representative ma-
terials are summarized in Fig. 1.7.

In recent years, the coexistence of ferromagnetic ordering and superconductivity
has been studied intensively. This phenomenon has been discovered in UCoGe [20],
URhGe [21], and UGe2 [22]. As in the case of UPd2Al3, the magnetic ordering and
superconductivity coexist microscopically, and both are caused by 5f electrons. All of
these systems commonly exihibit the field-reentrant (-reinforced) superconductivities
with large upper critical fields [23]. Such properties are also found in UTe2 [24],
which was recently discovered to exhibit the superconductivity with strong magnetic
fluctuations. In each of these materials, the local space inversion symmetry at the U
site is lacking. Besides, also in HF compounds that exhibit complex superconducting
multiple phase diagrams, such as UPt3 [25, 26] and (U, Th) Be13 [27, 28, 29, 30], the
local inversion symmetry at the U sites are lacked. It should be noted that, in URu2Si2,
which shows an enigmatic “hidden order” (HO) [31, 32, 33, 34], it has been proposed
that the HO transition may occur with the breaking of the local inversion symmetry
at the U site [35, 36, 37]. Focusing on the common features of the crystal structures
in these materials, we expect that the hybrid-type odd-parity multipoles may play an
important role for understanding these peculiar phenomena.

(a) (c)(b)

UTe2 UBe13

Figure 1.7: The crystal structures of representative exotic U systems: (a) UGe2,
URhGe and UCoGe[23] (b) UTe2 [38], (c) UBe13 [39].
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Chapter 2

Introduction to UT2X2

The family of RT2X2 (R: lanthanide/actinide, T : transition metal, X = Si/Ge) com-
pounds has a long history as a platform for systematic research of intermetallic f-
electron systems. A large number of compounds compounds with various have been
synthesized and their properties have been investigated extensively. Among these, the
group of compounds with R = Ce, U has been particularly intensively studied. In this
study, to investigate the 5f electronic states in environments lacking the local inversion
symmetry and to explore the effects of c-f hybridization, we focused on the group of
UT 2X 2 compounds with two different crystal structures as introduced in the following
section.
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Number of d-electrons

3d

4d

5d

UT2Si2

UT2Ge2

Ag

3d

4d

5d

Ag

Cr

Ru

Os Au

Figure 2.1: (Color online) List of ground states of UT 2Si2 and UT 2Ge2 extended on
the basis of Dr. Tabata’s Ph. D. thesis [40] and the study by Endstra et al [41]. Note
that URu2Si2 is shown with its hidden order (HO) instead of the superconducting
state. Materials with ThCr2Si2-type structure are written in black font, while those
with the CaBe2Ge2-type structure are written in white one. The dashed lines indicate
that they have not been reported.
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2.1 Crystal structures: ThCr2Si2/CaBe2Ge2-type struc-
tures

The uranium intermetallics UT2X2 form a large family of compounds having a rich
variety of novel ground states: unconventional superconductivity, metallic magnetism,
heavy fermion or non-Fermi-liquid states, coexistence among them, and so on. In
this family, only four compounds (T = Ir/Pt) have the CaBe2Ge2-type structure
(space group: No. 129, P4/nmm, D4h

7) (Fig. 2.2 (a)), while most of them crystal-
lize in the ThCrSi2-type tetragonal structure (space group: No. 139, I4/mmm, D4h

17)
(Fig. 2.2 (b)). Both structures are derivatives of the BaAl4-type structure [42]. As
shown in Fig. 2.3, they have two-dimensional characteristics, with atomic layers stacked
perpendicular to the c-axis. Comparing these two structures, there is a difference in
the stacking patterns. In the CaBe2Ge2-type structure, each U layer is sandwiched
between a T -X-T layer (hereafter referred to as Layer 1) and a X-T -X layer (Layer
2) alternately. In contrast, in the ThCr2Si2-type one, each U layer alternates stack-
ing with only Layer 2. The local inversion symmetry on U sites is present in the
ThCrSi2-type structure but not in the CaBe2Ge2-type structure. Therefore, this series
of compounds is a suitable target for studying the effect of odd parity CEF on the 5f
electronic states of U ions.

U

T

X

(a) (b)CaBe2Ge2-type ThCr2Si2-type

c

a

a

Figure 2.2: (Color online) Crystal structures of RT2X2: (a) CaBe2Ge2-type, (b)
ThCr2Si2-type. The colored shaded areas enhance the visibility of the difference be-
tween these structures.
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(a) (b)CaBe2Ge2-type ThCr2Si2-type

Figure 2.3: (Color online) The stacking patterns of the atomic layers in (a) CaBe2Ge2-
type and (b) ThCr2Si2-type structures. The bold lines represent the unit cell in each
structure. The colored shaded areas enhance the visibility of the atomic layers.

CaBe2Ge2-type structure

space group: No.129, P4/nmm (origin choice 2)

atom x y z site symmetry

R 1/4 1/4 zR 2c 4mm (C4v)

T (1) 1/4 1/4 zT 2c 4mm (C4v)

T (2) 3/4 1/4 0 2a 4̄m2 (D2d)

X(1) 3/4 1/4 1/2 2b 4̄m2 (D2d)

X(2) 1/4 1/4 zX 2c 4mm (C4v)

ThCr2Si2-type structure

space group: No.139, I4/mmm

atom x y z site symmetry

R 0 0 0 2a 4/mmm (D4h)

T 0 1/2 1/4 4d 4̄m2 (D2d)

X 0 0 zX 4e 4mm (C4v)

Table 2.1: Atomic sites in the CaBe2Ge2-type structure (upper) and the ThCr2Si2-type
structure (lower).
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2.2 Various ground states in UT2X2

As shown in Fig. 2.1, most of them exhibit AFM ordering as their ground state,
with variations in duality ranging from localized characteristics in UPd2Si2 to the
formation of spin density wave (SDW) reminiscent of itinerant magnetism in UCu2Si2
These systems are broadly understood within the framework of the Doniach model,
commonly applicable to 4f systems. In this theory, the competition between RKKY
interactions and Kondo effects due to d-f hybridization between T -ion d electrons and
U 5f electrons dictates the variety in ground states. In the “d-f hybridization model”
discussed by Endstra et al. [41], the relative change in strength of d-f hybridization
(Jdf) was evaluated to explain their ordering temperatures on the basis of the Doniach
phase diagram. They calculated relative values of Jdf by considering the variations
in U-T ion distance and d-electron number across different T elements. As shown in
Fig. 2.4, the ordering temperatures of each material appear to be roughly explained
by this model. However, the model cannot explain individual physical features, and
specific experimental data linking directly correlating d-f hybridization effects to the
ground state characteristics of each compound are still scarce.

(a)

(b)

Figure 2.4: The comparison of experimental magnetic (or HO) transition temperatures
in UT 2Si2 and UT 2Ge2 with the hybridization strength Jdf estimated by Endstra et al
[41]. The curve denotes the magnetic phase expected based on the Doniach model.

It should be emphasized here that most of these studies have focused on the systems
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with the ThCr2Si2-type structure. In the materials with CaBe2Ge2-type structures,
which we are focusing on here, no detailed studies have been conducted except for
UPt2Si2. This study, as the next step from my master’s research work on UIr2Ge2, we
performed microscopic studies by diffraction experiments on UPt2Si2 and macroscopic
measurements of the low temperature properties of UIr2Si2.
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2.3 Physical Properties of UPt2Si2
Magnetic properties

This system shows an AFM order below 34 ± 1 K(≡ TN) [43, 44, 45]. As shown in
Fig. 2.5(a), the magnetic susceptibilities along the c-axis (χc) and the a-axis (χa) show
cusp anomalies near the TN. While many UT 2X 2 compounds exhibit uniaxial magnetic
anisotropy with the c axis as the easy axis, the magnetic susceptibility of UPt2Si2 is
relatively isotropic. Above 200 K, χc follows the Curie-Weiss law, and the effective
moment and the Weiss temperature are estimated to be µeff = 3.1µB and Θp = −60
K, respectively[45]. The decrease in µeff from the values for free ions (3.62 µB for U3+,
3.58 µB for U4+) suggests the presence of CEF effects. In the magnetization process,
multiple metamagnetic increases have been observed in the region of 20 T to 40 T.
These behaviors suggest the complex magnetic structure in this system.

In the previous neutron scattering experiments, magnetic reflections developing
below TN have been observed at the forbidden positions for this crystal structure (e.g.,
(1, 0, 0), for example) as shown in Fig. 2.6 (a) [44, 43, 46]. They proposed the magnetic
structure in which the magnetic moments of U 5f electrons are aligned parallel to the
c-axis with a propagation vector of Q = 0 from their results (Fig. 2.6 (b)). The
estimated magnitude of the ordered magnetic moment varies across the references,
ranging from approximately 1.67 µB/U [44] to 2.5 µB/U [46].

B || c

B || a

UPt2Si2

TN

(b)

(a)

(c)

Figure 2.5: Data from magnetization measurements (under magnetic fields ∥ c- and
a-axes) on the single crystal of UPt2Si2[45]: (a) the temperature dependence of the
magnetic susceptibility, (b) the magnetization process, and (c) the field dependence of
the differential susceptibility derived from the data in (b).

22



(a) (b)

Figure 2.6: (a) The temperature dependence of the neutron-scattering intensity of (1,
0, 0) magnetic reflection [46] and (b) the proposed magnetic structure in the AFM
phase.

Specific heat and electric resistivity

Figure 2.7 displays the temperature dependence measured on the single crystal of
UPt2Si2. The contribution of 5f electrons in the specific heat, C5f , is estimated by
subtracting the specific heat of LaPt2Si2 as a phonon contribution. The temperature
dependence of C5f shows a lambda-type anomaly near TN, and a broad shoulder on
its high-temperature side, suggesting a Schottky anomaly associated with the CEF
splitting. The electronic specific heat coefficient is estimated to be about 32 mJ/molK2,
indicating only a slight increase in effective mass [45].

The temperature dependences of electorical resistivities along the c axis (ρc) and
the a axis are shown in Fig. 2.7 (b). In all temperature ranges, ρc is larger than ρa,
and such anisotropy is similar to that of UIr2Si2 [47] and UIr2Ge2 [86] with the same
crystal structure.

(a) (b)

Figure 2.7: (a) Temperature dependences of specific heats in UPt2Si2 and LaPt2Si2
[45]. C5f is the contribution of 5f electrons in the specific heat estimated by subtracting
the specific heat of LaPt2Si2 from that of UPt2Si2. (b) The temperature dependences
of the electorical resistivities of UPt2Si2 along the a- and c-axes [45].
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CEF analysis

Given the large ordered magnetic moment and the slightly enhanced electronic specific
heat coefficient, the magnetism in this system is basically discussed in terms of a well-
localized 5f-electron picture within the UT2X2 series. Inelastic neutron scattering
experiments have notably observed anomalies suggestive of crystalline-electronic-field
(CEF) excitations, leading to the proposal of a singlet-singlet-doublet-singlet level
scheme with J = 4 (5f2) [48, 49]. Although this level scheme qualitatively reproduces
the magnetic anisotropy and the AFM ordering of the system, the calculated ordered
moment (2.9 µB/U) significantly exceeds the experimental value. This discrepancy is
speculated to result from the screening of the magnetic moments due to the Kondo
effect. In addition, subsequent studies by inelastic scattering experiments [50] and
band calculations [51] have shown the itinerant nature of the 5f electrons. Further
discussions are needed to understand the picture of the 5f electronic state in UPt2Si2.

84 K

56 K

39 K

0 K

Γ5
(1)

Γ1
(2)

Γ1
(1)

Γ2

(a) (b) (c)

Figure 2.8: (a) The reported level scheme of CEF splitting from the calculation by
Nieuwenhuys et al. (b) The calculated magnetic susceptibilities from the level scheme
in (a). (c) The calculated magnetization processes from the level scheme in (a). [49]

76(9) K

62(2) K

50(6) K

0 K

Γ5
(1)

Γ1
(2)

Γ1
(1)

Γ2

(a) (b)

Figure 2.9: (a) The proposed level scheme of CEF splitting from the results of the
inelastic neutron scattering experiments. (b) The elastic peak observed in the inelastic
neutron scattering experiments [48].
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CDW order

Recently, the existence of another phase transition near room temperature has been
found. The temperature dependence of electrical resistivities and specific heat [52],
including the temperature region above room temperature, is shown in Fig. 2.10. Near
300 K, a lambda-shaped anomaly in specific heat and an increase in ρa are observed.

In the recent polarized neutron scattering and non-resonant X-ray scattering exper-
iments, they found the non-magnetic superlattice reflections developing below about
320 K [53]. The diffraction pattern is shown in Fig. 2.11. Their results have revealed
that the system exhibits a charge density wave (CDW) order by the 5d electrons of
Pt with a propagation vector of qCDW = (∼0.42, 0, 0) below about 320 K (≡ TCDW).
The existence of harmonic components such as 2qCDW and 3qCDW is also confirmed.
This diffraction pattern can be described by the single-q CDW ordering, with the
superposition of the qCDW ∥ a∗ domain and the qCDW ∥ b∗ domain. According to
their structural analysis, this is mainly due to the 5d electrons of Pt in the second
layer, accompanied by atomic displacements of Pt(2). Their analysis suggests that the
displacement structure can be explained mainly as a transverse displacement in the
c-plane. The results of an atomic pair-distribution-function (PDF) analysis reported
very recently also support this result [54].

(a) (b)

Figure 2.10: The temperature dependence of (a) electrical resistance and (b) specific
heat [52].

The CDW orderings found in RPt2Si2 compounds are summarized in Table 2.2.
They have the common feature that the transition temperature is about 100–300 K
and the propagation vector qCDW is parallel to the a axis with the amplitude of about
0.3–0.6a∗. In the traditional cenario, the CDW is stabilized when the energy gain of
electrons by the nesting of Fermi surfaces overcomes the loss of elastic energy. For
these systems, (i) the two-dimensional Fermi surfaces and (ii) structural instability are
thought to be responsible for the formation of CDWs. Related to (i), Fermi surfaces
have been well studied in SrPt2As2 and LaPt2Si2 which show superconductivities[55,
56]. According to their band calculations for these systems, they have cylindrical
Fermi surfaces from the Pt(2)-5d band as shown in Fig. 2.13, and these quasi-nesting
features may be responsible for the CDW transitions. The existence of a similar two-
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Figure 2.11: The diffraction patterns of fundamental lattice reflections and superlattice
reflections associated with the CDW order observed in the neutron scattering experi-
ments on UPt2Si2 [53].

dimensional Fermi surface is also suggested by band calculations for UPt2Si2 [51].
The detailed structural analysis has been performed on UPt2Si2 by neutron diffrac-

tion experiments at 400 K (> TCDW), and they revealed that the atoms in Layer 2
have a large atomic displacement parameter within the c-plane. This feature may be
related to (ii) of the reason for the stabilization of CDW in this system.

It is intriguing to note that the transverse atomic displacement occurs in association
with the CDW order. If the CDW is simply a density wave in the charge distribution,
the modulation should occur only in the direction of propagation and the associated
atomic displacement should be longitudinal. The CDW order with the transverse
atomic displacements reported in this system suggests a complex modulation of the
charge distribution.

Such transversal atomic displacements were reported in SrPt2As2 from the previous
STM study [57], and the softening in the transverse phonon mode was observed in
inelastic neutron scattering experiments on LaPt2Si2 [58]. These facts indicate that
the transversal atomic displacements a common feature of similar Pt-based systems,
irrespective of the presence or absence of f electrons.
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Figure 2.12: Relationship between CDW transition temperatures and lattice constants
of a in RPt2Si2, based on the study by Nagano et al. [59], with the addition of red
symbols. No CDW ordering is found for materials located below R = Pr (shown as
TCDW = 0).

Figure 2.13: (a) The band structure and (b) the Fermi surface obtained from first-
principles calculations performed for LaPt2Si2 [56].
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RPt2Si2

An Tc TN TCDW qCDW Lattice constant at RT Ref.

UPt2Si2 - 35 320 0.42 4.198 (a), 9.694 (c) [53, 46]

ThPt2Si2 3 K - 230 * 4.252, 9.762 **

Ln Tc TN TCDW qCDW Lattice constant at RT Ref.

LaPt2Si2 1.87 - 112 0.36 4.288, 9.833 [59, 60]

NdPt2Si2 - 1.5 300 0.323 4.230, 9.780 [59, 61]

PrPt2Si2 - - 88 * 4.243, 9.781 [62, 63]

others

Ln Tc TN TCDW qCDW Lattice constant at RT Ref.

SrPt2As2 5.2 - 420 0.62 (orthrhombic) [64]

LaPt2Ge2 0.41 - 385.8 * (monoclinic) [65, 66]

* Not reported
** Investigated by our group (private communication)

Table 2.2: A list of CDW systems (and possible CDW systems) with the CaBe2Ge2-
type structure.
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2.4 Physical Properties of UIr2Si2
Magnetic properties

UIr2Si2 is known to exhibit an AFM order with the Nèel temperature TN of 4.9–6
K [47, 67, 68]. In the magnetization process at low temperatures, a metamagnetic
transition was reported and the critical field of the AFM order µ0Hc was estimated
about 1.5–2.2 T at the lowest temperatures [47, 67, 68]. The propagation vector of
this AFM order has been identified as Q = 0 based on the previous neutron scattering
experiments [69]. The ordered moment is parallel to the c-axis as in other similar AFM
systems, but its magnitude is estimated to be only ∼ 0.1µB, which is particularly small
among 122 systems.

Specific heat and electric resistivity

The temperature dependence of specific heat shows a λ-type anomaly at TN. It has
a large specific heat (approximately 300 mJ/molK at 2 K), suggesting an increase in
the electronic specific heat coefficient. The anomaly associated with the AFM order is
gradually suppresed by the magnetic field and shifts to lower temperature. However, a
broad peak remains in C/T even above µ0Hc up to at least 5 T. The electric resistivity
shows a pronounced anisotropy between along the c-axis and a-axis. Similar to other
122 systems, the resistivity along the c-axis exhibits relatively large values below 300
K. The influence of a magnetic field on these characteristics in this system had been
largely unexplored so far. Recently, Szlawska et al. reported magnetization, specific
heat and electric resistivities measured under the magnetic fields and obtained a H-T
phase diagram as shown in Fig. 2.15.
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(a) (b)

(c)

Figure 2.14: The physical properties of UIr2Si2 reported in the previous study by
Dirkmaat et al. [47]. The temperature dependences of (a) the magnetic susceptibilities
(along the a- and c-axes), (b) the specific heat measured under the magnetic field 0–5
T and (c) the electric resistivities (along the a- and c-axes).

Figure 2.15: The magnetic field phase diagram reported in the previous study by
Szlawska et al. [68].
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Chapter 3

Purpose of Study

The present studies were carried out for the primary purpose of investigating the effects
of the U-site environment, including the lack of local space inversion symmetry, on the
hybridization effects of the 5f electrons. To achieve this purpose, we focused on UPt2Si2
and UIr2Si2 with the CaBe2Ge2-type structure from the following perspectives.

UPt2Si2 Using diffraction techniques allows for the decomposition and extraction of
CDW effects based on wave numbers, which in turn offers the potential to obtain micro-
scopic information regarding the correlation between 5f and 5d electrons in this system.
The effect of environmental changes at the U site on the 5f electrons was examined
by examining the 5f electron state under CDW order in detail. From this viewpoint,
two techniques are used in this study. One is resonant X-ray scattering, which allows
orbital-selective and symmetry-sensitive investigation of 5f electronic states. However,
this method does not provide quantitative information. Hence, another complemen-
tary technique, neutron diffraction experiments, was used to identify the magnetic
structure of this material, including its quantitativity.

UIr2Si2 For the systematic discussion of 5f electronic properties in the UT 2X 2 sys-
tems, we have investigated the low temperature properties of 5f electrons in UIr2Si2,
where only few physical properties have been reported. We have constructed the
temperature-field phase diagram from the detailed magnetization and specific heat
measurements under the magnetic field.
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Chapter 4

Experimental Methods

4.1 Sample preparation
Single crystals of UPt2Si2 were grown by the Czochralski method from a polycrystal
made by arc-melting stoichiometric amounts of U (3N), Pt (3N), and Si (5N) in a pure
argon atmosphere using a tetra-arc furnace at Hokkaido University. No additional
heat treatment was performed on the samples. The obtained sample was evaluated
by laboratory X-ray powder diffraction at the room temperature. All observed peaks
were indexed with the CaBe2Ge2-type structure, and no impurity phases were detected
within the S/N ratio of approximately 0.5%. Lattice constants were obtained as a =
4.198(7) Å and c = 9.69(2) Å, consistent with those reported in the previous study
[46] within the range of experimental error.

A single-crystalline sample of UIr2Si2 was prepared at International Research Cen-
ter for Nuclear Materials Science Institute for Materials Research in Tohoku University
by the Czochralski method as for UPt2Si2. The starting polycrystal was synthesized
by arc-melting stoichiometric amounts of U (3N), Ir (3N) and Si (5N), and the single-
crystalline sample was grown from it. No additional heat treatment was performed on
the single crystal. Also for the obtained sample of UIr2Si2, laboratory X-ray powder
diffraction measurement was performed at the room temperature. All observed peaks
were indexed with the CaBe2Ge2-type structure, and no impurity phases were detected
within the S/N ratio less than 1%. Lattice constants were obtained as a = 4.084(4)
Åand c = 9.82(1) Å. These values are almost consistent with those reported in the
previous study [69].

The crystal orientations of the obtained single crystals are identified from the Laue
photographs. The samples are cut by an electric discharge machine and shaped into
cubes or plates with their crystallographic orientations.
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[001]

[100]

Figure 4.1: (Color online) The view of growing single crystal of UPt2Si2 (top left),
the obtained single-crystalline sample of UPt2Si2 (top right) and the Laue photograph
from [010] direction.

[100]

[001]

Figure 4.2: (Color online) The view of growing single crystal of UIr2Si2 (top left), the
obtained single-crystalline sample of UIr2Si2 (top right) and the Laue photograph from
[010] direction.
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4.2 Resonant X-ray Scattering Experiment
Resonant X-ray scattering is a technique using the energy-variability and the polar-
izability of synchrotron X-rays. This technique enables element- and orbital-selective
investigation of electronic states. The principle of resonant X-ray scattering is briefly
introduced below.

4.2.1 Principle of resonant X-ray scattering experiment

Interaction between electrons and electromagnetic fields

For X-rays, the dominant contribution of scatterings in matter comes from the inter-
action with the electrons. When electromagnetic waves interact with electrons in a
single atom, the Hamiltonian of the entire system is expressed as follows:

H =
∑
i

1
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c
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−
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(4.1)
Here i is the label of each electron. The first term is the kinetic energy of the elec-
tron moving in the electromagnetic field, the second term is the potential energy the
electron receives from the nucleus, the third term is the Coulomb interaction between
the electrons, the fourth term is the magnetic interaction between the spin and the
magnetic field, and the fifth term is the spin-orbit interaction, and the sixth term
represents the energy of the electromagnetic field.

(4.2) can be summarized using the electromagnetic field potential as follows:
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(4.2)

The terms corresponding to the interactions between the electrons and the electro-
magnetic field are summarized in H′, which has been organized into four terms: the

34



first and second terms for the interaction with the electric charge, and the third and
fourth terms for the interaction with the electron spin. The H′ is a function of the
vector potential A expressed as in (4.3) using the annihilation and creation operators
for photons. a†kλ and akλ are the creation and annihilation operators of photons with
the wavenumber vector k and polarization state λ respectively. εkλ is the polarization
vector of that photon.

A =
∑
k,λ

√
2πℏc2
V ωk

(
εkλakλe

ik·r + ε∗kλa
†
kλe

−ik·r
)

(4.3)

X-ray scattering by electrons

Through the electron-electromagnetic field interaction H′ described above, the entire
system of electrons and X-rays transits from the starting state of |i⟩ to the end state
|f ⟩. In general, the transition probability w of the transition per unit time is expressed
as follows using the intermediate state |n⟩:

w =
2π

ℏ

∣∣∣∣∣⟨f |H′| i⟩+
∑
n

⟨f |H′|n⟩ ⟨n |H′| i⟩
Ei − En

∣∣∣∣∣
2

δ (Ei − Ef ) , (4.4)

where Ei (Ef ) is the energy of the entire system in the starting state (end state). The
first and second terms in the equation (4.4) are the first-order and the second-order
perturbation terms, respectively.

From here, we will consider the case of elastic scattering, which is the subject of
this study, and derive the scattering intensity. In other words, we assume that the
final state |a′⟩ of the electron system is equal to the initial state |a⟩. The number of
scattered X-ray photons per unit time is equal to the product of w and the density of
states of the final state ρ (Ef ). Therefore, the scattered X-ray intensity Irad detected
in the angle ∆Ω can be calculated in the following equation.

Irad = wρ (Ef )∆Ω

ρ (Ef ) =
V ω2

k′

(2π)3ℏc3
(4.5)

Then, the scattering cross section is obtained as follows.

d2σ

dΩdE
=

Irad
∆ΩΦin

=
wρ (Ef )

Φin

(4.6)

In our experiments, the scattered X-ray intensity is always normalized by the flux Φin

of the incident X-ray. Considering ρ (Ef ) is constant, the transition probability w is
proportional to the scattering cross section.

Here we calculate the differential scattering cross section from the transition prob-
ability w due to the interaction H′ given by the formula (4.6). The A contains the
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photon production and annihilation operator, as shown in Eq. (4.3). In the first order
terms for A in H′, the first-order perturbation brings only photon production or an-
nihilation without any scattering, but the second-order perturbation gives scattering
through intermediate states. Also, the first-order perturbation term including the sec-
ond order terms of A gives scattering by akλa†kλ, keeping the electron system invariant.
Without going into details (see the article written by Prof. Matsumura [70]), the scat-
tering cross section for the elastic scattering case is obtained by using the scattering
amplitude |F | defined below as follows:

d2σ

dΩdE
≡|F |2

=|Fc + Fmag + Freso|2
(4.7)

The first term is corresponding to non-resonant scattering (Thomson scattering), which
is a first-order perturbation of H′

1, and the second term is non-resonant magnetic
scattering by electron spin, which is a first-order perturbation of H′

2. The third term
is the second-order perturbation term of H′

3 and H′
4, which is the origin of the scattering

known as “resonant scattering”. The details of the first and second terms are as follows:
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where we use A and B defined as follows:

A = 2
(
1− k̂ · k̂′

)
(ε′∗ × ε) = 4 sin2 θ (ε′∗ × ε) = κ2

k2
(ε′∗ × ε)

B =
{
(ε′∗ × ε)−

(
ε · k̂′

)(
ε′∗ × k̂′

)
+
(
ε′∗ · k̂

)
(ε× k̂)−

(
k̂′ × ε′∗

)
× (k̂ × ε)

}
.

(4.9)
Here, due to the coefficient

(
−i ℏω

mc2

)
in the scattering amplitude Fmag of non-resonant

magnetic scattering, its intensity is only about 10−6 compared to Thomson scattering.
It is hardly observed in usual experiments.
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The scattering amplitude of resonant scattering is organized as follows:

Freso =− e2

mc2

∑
b

mω3
ba

ω

〈
a
∣∣∣∑j′ ε

′∗ · rj′
(
1− i

2
k′ · rj′

)∣∣∣ b〉〈
b
∣∣∣∑j ε · rj

(
1 + i

2
k · rj

)∣∣∣ a〉
ℏω − ℏωba + iΓb

+
ℏ2

4m

ωba

ω

〈
a
∣∣∣∑j′ ε

′∗ · ((lj′ + 2sj′)× k′)
∣∣∣ b〉〈

b
∣∣∣∑j ε · ((lj + 2sj)× k)

∣∣∣ a〉
ℏω − ℏωba + iΓb


=F (E)

reso + F (M)
reso

(4.10)
The first term corresponds to scattering caused by electrical transitions. The second
term corresponds to the scattering caused by magnetic transitions, which is caused by
magnetic interactions. The amplitude of magnetic transtion, which is also significantly
small than that of the electric transition and we do discuss below.
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Figure 4.3: (Color online) Transition processes in resonant X-ray scattering.
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4.2.2 Types of resonance processes

From here, the details of the resonance terms F (E)
reso (Eq. (4.10)) are described. The

atomic scattering factor of resonant X-ray scattering by the electrical transitions, which
is the main contribution, can be organized using multipole operators as follows:

F (E)
reso = − e2

mc2

∑
b

mω3
ba

ω

∑
α,β

ε′∗αεβ
∑
γ,δ

〈
a′
∣∣Rα − i

2
Qαγk

′
γ

∣∣ b〉 〈b ∣∣Rβ +
i
2
Qβδkδ

∣∣ a〉
ℏω − ℏωba + iΓb

,

(4.11)
where Rα corresponds to the electric dipole operator and Qαβ (α, β = x, y, z) to the
electric quadrupole operator. Equation (4.11) contains the following two types of
transition processes.

⟨b|Rα|a⟩ =
∫
ψ∗
bRαψadr

⟨b|Qαβ|a⟩ =
∫
ψ∗
bQαβψadr

(4.12)

The electric dipole and the electric quadrupole transitions are called E1 and E2 transi-
tions, respectively. For these integrals to be finite, there are constraints on the change
in orbital angular momentum ∆l between the states |a⟩ and |b⟩ derived from the
Wigner-Eckart theorem (see Ref. [71] for example).

E1 transition :∆l = ±1,

E2 transition :∆l = 0,±2.

In general, resonant X-ray diffractions use E1-E1 (E2-E2) transition, which accompany
the E1 process with ∆l = +1 (E2 process with ∆l = +2) in both of X-ray absorption
and emission processes. The atomic scattering factors for resonant X-ray scattering
corresponding to these transitions are as follows:

FE1(ω) = −e
2ω2

0

c2

∑
α,β

ε′∗αεβ
∑
b

⟨a |Rα| b⟩ ⟨b |Rβ| a⟩
ℏω − ℏωba + iΓb

FE2(ω) = −e
2ω2

0

4c2

5∑
α,β=1

Kα (k
′, ε′∗)Kβ(k, ε)

∑
b

⟨a |Qα| b⟩ ⟨b |Qβ| a⟩
ℏω − ℏωba + iΓb

(4.13)

where Kµ is defined as follows:

K1 =
1

2
{3εzkz − (εxkx + εyky + εzkz)} ,

K2 =

√
3

2
(εxkx − εyky) ,

K3 =

√
3

2
(εykz + εzky) ,

K4 =

√
3

2
(εzkx + εxkz) ,

K5 =

√
3

2
(εxky + εykx) .

(4.14)
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l E1-E1 E1-E2
(elec.)

E1-E2
(mag.) E2-E2

0 monopole (+,+) (+,+)
1 dipole (+,−) (−,+) (−,−) (+,−)
2 quadrupole (+,+) (−,+) (−,−) (+,+)
3 octupole (−,+) (−,−) (+,−)
4 hexadecapole (+,+)

Table 4.1: A list of the observable symmetries of electronic states in each experiment.
The couple of signs (++, +−, −+, and −−) represents space inversion symmetry and
time reversal symmetry (P , T ).

The energies listed as absorption edges often refer to this energy, and the values for
each element are summarized, for example, in the booklet [72]. Resonance signals are
typically observed at the absorption edge, known as the “main edge”, corresponding
to the E1-E1 transition. In some cases, signals from the E2-E2 transition can be
weakly observed at energies as low as ∼ 10 eV below the main edge, referred to as the
“pre-edge”. In addition to E1-E1 and E2-E2 transitions, resonant X-ray scatterings
can be caused by E1-E2 (E2-E1) transitions, where X-ray is absorbed in the E1(E2)
transition and emitted in the E2(E1) transition. In principle, this process is allowed
in the presence of parity hybridizations of the outer shell orbitals at the atomic site
lacking local inversion symmetry. However, there is little experimental information on
resonant X-ray scattering from this E1-E2 transition. The symmetries of the detectable
electronic states in these resonant scatterings are listed in Table 4.1.

4.2.3 Detection of multipoles by resonant x-ray scattering

When multipole ordering occurs in a crystal, it can be detected as diffraction peaks
of resonant X-ray scattering. So far we have considered scattering from a single atom.
In the following part, we will consider diffractions from crystals. We redefine the
scattering amplitude F as the atomic scattering factor Freso, j for site j as follows: F
= Freso, j, where F is the scattering amplitude of site j in Eq. (4.11) as follows:

Freso(ω) =
∑
j

Freso,j(ω)e
−iκ·rj . (4.15)

To calculate the atomic scattering factor in Eq. (4.15), we use the Nagao and Igarashi’s
method[73], which is the main method for f-electron systems. The atomic scattering
factors for resonant scattering by E1-E1 and E2-E2 transitions are obtained as follows:

FE1(ω) =
∑2

ν=0 α
(ν)
E1(ω)Σ

2ν+1
µ=1 P

(ν)
E1,µ (ε, ε

′∗)Z
(ν)
µ ,

FE2(ω) =
∑4

ν=0 α
(ν)
E2(ω)Σ

2ν+1
µ=1 P

(ν)
E2,µ (ε, ε

′∗, k, k′)Z
(ν)
µ .

(4.16)

This is the result of summing |b⟩ in Eq. (3.17) based on the assumption that the
Hamiltonian describing the intermediate state preserves rotational symmetry, which
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is considered a good approximation for strongly localized systems such as f electron
systems. Although this approximation does not allow analysis of the absolute value
of the scattering intensity, it is a widely used method because it allows us to discuss
the symmetry of the electronic state in terms of polarization dependence, for example.
Here, Z(ν)

µ is a multipole structure factor defined as∑
j

〈
z(ν)µ

〉
j
e−iκ·rj . (4.17)

z
(ν)
µ is the multipole operator of rank-ν and µ is the component (for example, µ =
x, y, z for ν = 1) of multipoles. P (ν)

E1,µ and P (ν)
E2,µ are geometric structure factors of E1-

E1 and E2-E2 transitions for z(ν)µ . In the case of E1-E1 transition, they are obtained
as follows:

P
(0)
E1,1 = (ε′∗ · ε) ,

P
(1)
E1,µ = −i (ε′∗ × ε)µ ,

P
(2)
E1,µ = Kµ (ε

′∗, ε) .

(4.18)

They are also calculated for the case of E2-E2 transition.
The coupling between P and Z in Eq. (4.16) means that the change in polarization

of X-rays before and after scattering reflects the symmetry of the ordering multipole.
In other words, the symmetry of Z(ν) can be identified by analyzing the polarization
state of the scattered X-rays with the polarized incident X-ray. Furthermore, as shown
in 4.4, its symmetry can be investigated in more detail by measuring the change in
the scattering intensity with rotating the sample around the scattering vector. This
rotational angle is defined as the azimuthal angle φ. The present analyses are based on
the method described in the textbook written by Prof. Matsumura [70]. The following
is a brief summary of the analyses.

azimuthal
angle

�
�

�′
�

�

sample

X-ray

�

�y

�x
�z

�

�

�′

�′

Figure 4.4: (Color online) The relationship between the scattering plane, polarization,
and azimuth angle. Here we introduce a coordinate system xyz. The x-axis is per-
pendicular to the scattering plane and the z direction is defined as the direction of the
scattering vector κ.
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The setting in our measurements is shown in Fig. 4.4. In this geometry, the wave
vectors and polarization vectors in the xyz coordinate system are obtained as follows.

k = k(0, cos θ,− sin θ), k′ = k(0, cos θ, sin θ),
εσ = (1, 0, 0), ε′σ = (1, 0, 0),
επ = (0,− sin θ,− cos θ), ε′π = (0, sin θ,− cos θ)

(4.19)

When the sample is rotated by azimuth angul φ, these vectors are considered to be
rotated by −φ with respect to the sample. The resulting rotated vectors are obtained
in the fixed xyz coordinate system as follows.

εσ = (cosφ,− sinψ, 0), ε′σ = (cosφ,− sinψ, 0),
επ = (− sinφ sin θ,− cosφ sin θ, cos θ), ε′π = (sinφ sin θ, cosφ sin θ, cos θ).

(4.20)

The azimuth angle dependence of the scattering amplitude is obtained by substituting
these polarization vectors into the geometric factor P for each type of scattering.

For the calculation of the azimuth angle dependence of the scattering intensity at
a certain fixed energy or the polarization state of the scattered X-rays, it is convenient
to discuss the scattering amplitude G, excluding the energy spectrum. For example,
the scattering amplitude F of the E1-E1 transition (eq. (4.16)) can be rewritten using
G as follows.

FE1(ω) =
2∑

ν=0

α
(ν)
E1(ω)G

(ν)
E1 (ε, ε

′∗) . (4.21)

Here, we introduce the scattering amplitude operator Ĝ, defined as a 2×2 matrix with
elements of scattering amplitudes for the four scattering processes: σ-σ′, σ-π′, π-σ′,
and π-π′ scattering.

Ĝ =

(
Gσσ′

Gπσ′

Gσπ′
Gππ′

)
. (4.22)

Representing the polarization state of the incident X-ray by the Stokes parameter P ,
the scattering cross section is obtained as follows.(

dσ

dΩ

)
= Tr

{
µ̂Ĝ†Ĝ

}
, (4.23)

where µ̂ is a matrix expressed as µ̂ = 1
2
(Î +P · σ̂) using the identity matrix Î and the

Pauli matrix σ̂. When scattered X-rays are detected through a polarization analyzer,
the intensity observed at the detector can be obtained using the cross section of X-ray
scattering at the sample

(
dσ
dΩ

)
.

I = K
(
dσ
dΩ

) {
1− 1

2
(1− P3A) sin

2 2θA
}
,

P3A = −P ′
1 sin 2ϕA + P ′

3 cos 2ϕA.
(4.24)

ϕA is the angle between the scattering planes of the sample and the analyzer (see
Fig. 5.2 in Chapter 5). The scattering angle of the analyzer is denoted as 2θA and it
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should be 90◦, ideally. P ′ is the Stokes parameter for scattered X-rays and has the
following relationship with the scattering amplitude.(

dσ

dΩ

)
P ′ = Tr

{
µ̂Ĝ†σ̂Ĝ

}
. (4.25)

Namely, P ′ can be obtained by dividing
(
dσ
dΩ

)
P ′ by

(
dσ
dΩ

)
. By substituting the obtained

P ′ into eq. (4.24), the φ- and ϕA-dependences of the scattering intensity were calculated
and compared with the experimental results.
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4.3 Neutron Scattering Experiment
Neutron scattering experiments can analyze periodic structures such as crystalline
structures and magnetic structures through the interaction of neutrons with nuclei
and spins. Quantitative analysis of magnetic structure is possible by measuring rel-
ative intensity of magnetic scattering to nuclear scattering. In this sense, it is a
complementary technique to magnetic structure analysis using resonant X-ray scatter-
ing. Furthermore, the use of spin-polarized neutrons allows for more detailed analysis.
In this chapter, we briefly describe unpolarized (4.3.1) and polarized (4.3.2) neutron
scattering experiments.

4.3.1 Unpolarized neutron diffraction measurement

In general, the diffraction intensity observed in the scattering vector κ is expressed by
the following equation using the scattering cross section

(
dσ
dΩ

)
.

I(κ) = KL(κ)

(
dσ

dΩ

)
, (4.26)

where K is a factor that depends on the experimental conditions, such as incident
neutron intensity and equipment, and is a common quantity within an experiment
conducted under the same conditions. L(κ) is a Lorlentz factor. The magnetic struc-
ture, including the absolute value of the magnetic moment, can be determined by
analyzing the absolute value of the magnetic scattering intensity using K evaluated
from the nuclear scattering intensity.

Nuclearscattering
Nuclear scattering is caused by the nuclear force between neutrons and nuclei in matter.
The effective potential of interaction at the neutron position r is introduced as VN
(Fermi pseudopotential) using the position of the j-th nucleus Rj.

VN(rj) =
2πℏ2

mN

bjδ(rj). (4.27)

The Fourier transform this potential is calculated as follows:
mN

2πℏ2
VN(κ) =

∑
j

bj exp (iQ · κ) . (4.28)

Using this, the scattering cross section is obtained as follows:(
dσ

dΩ

)el

coh

=N
(2π)3

v0

∑
G

|FN(κ)|2 δ(κ−G). (4.29)

G is the reciprocal lattice point where the fundamental lattice reflection is observed.
The scattering amplitude per unit cell of the nucleus is introduced as

FN(κ) =
∑
d

b̄d exp (−Wd) exp(iκ · d), (4.30)
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where d is the atomic positions in the nuclear unit cell. The b̄ is the nuclear scattering
length, a quantity unique to each atom. The values summarized in this paper [74] are
used in this analysis. N is the number of nuclear unit cells in the sample and v0 is
the volume of nuclear unit cell. The W is a factor due to thermal fluctuations of the
atomic positions (Debye-Wallar factor), but since all the experiments are performed
in the low temperature region below 50 K, all the analyses are performed with W =
0. FN(κ) becomes 0 at κ = τ where τ = (h, k, 0) with h+ k = odd.

Magnetic scattering
Magnetic scattering of neutrons is caused by the dipole interaction between the neutron
spin and the magnetic moment in the sample. The interaction potential and its Fourier
transform are obtained as follows:

VM(r) = −µN ·B(r),(
2πℏ2

mN

)
Vm(κ) =

γr0
µB

σ ·M⊥(κ).
(4.31)

Here, M⊥(κ) refers to the projection of M (κ) onto the plane perpendicular to κ,
defined as M⊥(κ) ≡ κ×M (κ)×κ. M (κ) is the component of the Fourier-transformed
magnetic-moment distributions with respect to κ.

The scattering cross section at the scattering vector κ is obtained using M⊥(κ) as
follows. (

dσ

dΩ

)el

coh

= M ∗
⊥(κ)M⊥(κ),

M⊥(κ) ≡
∑
l,d

(−2.7µ⊥(l,d)fd(κ)exp(iκ · (l + d))) ,
(4.32)

where l is the position of the nuclear unit cell. µ⊥(l,d) is the projection of the ordered
moment at l+d. M⊥(κ) includes the factor of −2.7, which is the magnetic scattering
length per Bohr magneton. The further calculations depend on the assumed magnetic
structure, but in general, as in the case of nuclear scattering, the magnetic structure
factor |Fm(κ)| per nuclear unit cell can be defined. The subsequent calculations de-
pend on the type of magnetic structure, but in general, one can define a magnetic
structure factor |Fm(κ)| per nuclear unit cell, as in the case of nuclear scattering.
However, in the case of a commensurate structure, magnetic unit cells can be defined
to simplify calculations. Hereafter, we calculate the magnetic structure factors for the
commensurate and incommensurate structures, respectively.

(i) Commensurate order
Assuming the magnetic unit cell isX times larger than the nuclear one (X: an integer),
its magnetic structure factor can be calculated in the same way as nuclear scattering.
In such cases, µ⊥(l,d) can be simplified to µ⊥(d

′) using l′ and d′ for the magnetic
unit cells instead of l and d. The magnetic structure factor for the magnetic unit cell
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is as follow.
dσ

dΩ
= Nm

(2π)3

vm0

|Fm(κ)|2δ(κ−Gm),

|Fm(κ)| ≡ (2.7)

∣∣∣∣∣
′∑
d

µ⊥(d
′)fd′(κ)exp(iκ · d′)

∣∣∣∣∣ .
(4.33)

Gm is the reciprocal lattice vector defined on the bases of the translational symmetry
of the magnetic unit cell. In this equation, Nm(= N/X) represents the number of
magnetic unit cells in the system, and vm0(= Xv0) is the volume of a magnetic unit
cell. The obtained structure factor is further transformed to use the same scale factor
as nuclear scattering as follow.

dσ

dΩ
= N

(2π)3

v0

∣∣∣∣Fm(κ)

X

∣∣∣∣2 δ(κ−Gm) (4.34)

Here, we assume the AFM order of Q = 0 in UPt2Si2 for the calculation. In this case,
two U ions in the nuclear unit cell have magnetic moments antiparallel to each other:
µ⊥(d) = µ⊥ (for U ion 1) and −µ⊥ (for U ion 2). Consequently, the cross section for
this specific magnetic structure is determined as

dσ

dΩ
= N

(2π)3

v0
|Fm(κ)|2δ(κ−Gm),

|Fm(κ)| ≡ (2.7)|µ⊥|fU(κ)A(κ).
(4.35)

The phase factor A(κ) for this structure is as follow.

A(κ) =

∣∣∣∣∣∑
d

(
µ⊥(d)

|µ⊥|

)
exp(iκ · d)

∣∣∣∣∣ . (4.36)

It would be 2 for κ = τ and 0 elsewhere.

(ii) Incommensurate order
As an example, the calculation for the case of a sinusoidal magnetic modulation in the
c-plane with a propagation vector of q is presented below. The magnetic distribution
µ is described as follow.

µ⊥(l,d) = δµ⊥ sin (q · (l + d)) . (4.37)

The scattering cross section for this modulation is given as

dσ

dΩ
= N

(2π)3

v0
{|F+

m(κ)|2δ(κ− q −G)

+ |F−
m(κ)|2δ(κ+ q −G)},

(4.38)

where G represents the reciprocal lattice vector, and F±
m denotes the magnetic struc-

ture factor corresponding to the superlattice reflection at G ± q, which is calculated
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as
|F±

m′(κ)| ≡ bmag
|δµ⊥|
2

fU(κ)A
±(κ),

A±(κ) =

∣∣∣∣∣∑
d

exp (i(κ∓ q) · d)

∣∣∣∣∣ . (4.39)

In this case, the phase factor A±(κ) becomes 2 at κ = G ± q except for the case
of G = τ and 0 elsewhere. The magnetic structure factors incorporate the factor of
N (2π)3

v0
, which is also present in the nuclear structure factor.

4.3.2 Polarized neutron diffraction measurement

As seen in Eq. (4.28) and (4.31), nuclear scattering is independent of the neutron spin,
whereas magnetic scattering is dependent on the spin state of the neutron. Using
spin-polarized neutrons, detailed information of the scatterer in the sample can be
obtained by analyzing the spin state of the scattered neutrons. Here, we introduce
the method called “uniaxial polarization analysis” and briefly explain its principle.
In uniaxial polarization analysis, the spin of the incident neutron is polarized in a
certain direction, and the polarization of the scattered neutron is analyzed only in
that direction. Namely, spin-flip (SF) signals, in which the spin state of the incident
neutron is inverted by the scattering, and non-spin-flip (NSF) signals, in which the spin
state remains unchanged, are detected separately. In the following, the relationships
between the SF/NSF signals and their respective scatterers are explained for two
settings.

(i) Pzz setting
In this setting, the spin of the incident neutron is polarized in the direction perpen-
dicular to the scattering plane (z direction in the Fig. 4.5). In the case of nuclear
scattering, the spin state does not change. Thus all of nuclear scattering contributions
are observed as the NSF signal. In magnetic scattering, on the other hand, the incident
(scattered) neutron spin state is s (s′), and the scattered intensity is as follows:

I ∝ |⟨s, k|Vm|s′, k⟩|2 ∝ |⟨s|σ ·M⊥(κ)|s′⟩|2. (4.40)

Separating the NSF and SF signals, the respective scattering intensities are obtained
as follows:

I↑↑ ∝ |⟨↑ |σ ·M⊥(κ)| ↑⟩|2

= |⟨↑ |σyM⊥y(κ) + σzM⊥z(κ)| ↑⟩|2 = |⟨M⊥z(κ)⟩|2 (NSF),
I↑↓ ∝ |⟨↑ |σ ·M⊥(κ)| ↓⟩|2

= |⟨↑ |σyM⊥y(κ) + σzM⊥z(κ)| ↑⟩|2 = |⟨M⊥y(κ)⟩|2 (SF).

(4.41)

This means that the scattering by the component M⊥z(κ) perpendicular to the scat-
tering plane is observed as NSF signal and the scattering by the component M⊥y(κ)
within the scattering plane is observed as SF signal.
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(ii) Pxx setting
In this setting, the spin of the incident neutron is polarized in the direction parallel
to the scattering vector κ (x direction in the Fig. 4.5). All of nuclear scattering
contributions are observed as the NSF signal as in Pzz setting. The magnetic scattering
intensities of the NSF and SF signals are obtained in the same way for Pzz setting.

I↑↑ ∝ |⟨↑ |σ ·M⊥(κ)| ↑⟩|2

= |⟨↑ |σ′
yM⊥y(κ) + σ′

zM⊥z(κ)| ↑⟩|2 = 0 (NSF),
I↑↓ ∝ |⟨↑ |σ ·M⊥(κ)| ↓⟩|2

= |⟨↑ |σ′
yM⊥y(κ) + σ′

zM⊥z(κ)| ↑⟩|2 = |⟨M⊥y(κ)⟩|2 + |⟨M⊥z(κ)⟩|2 (SF).

(4.42)

Note that, in this setting, the direction of the neutron spin quantization axis corre-
sponds to the x axis direction. In this case, all the magnetic contributions are observed
as SF scatterings and only the nuclear contribution is observed as NSF scattering.

The relationship between the SF/NSF signal and the corresponding scatterers in
the Pzz and Pxxsettings obtained from the above calculations are summarized in the
table 6.1. Together, the results obtained in these two setting patterns allow us to
distinguish three different signals: nuclear scattering, magnetic scattering from My,
and magnetic scattering from Mz.

Pxx Pzz

SF M⊥y, M⊥z M⊥y

NSF nuclear nuclear, M⊥z

Table 4.2: The relationship between signal types and their origins in polarized neutron
diffraction measurements with Pxx or Pzz setting. Non-spin-flip (NSF) scattering refers
to the case where the spin of the scattered neutron does not invert from the incident
neutron spin state, while spin-flip (SF) scattering refers to the case where the spin
of the scattered neutron inverts from the incident neutron spin state. M⊥z denotes
the component of the magnetic moment that is perpendicular to the scattering plane,
while M⊥y denotes the in-plane component, which is perpendicular to κ.

Pzz-mode Pxx-mode

NSF (↑↑) ⋯ nuc. + ��

SF (↑↓) ⋯ ��

NSF (↑↑) ⋯ nuc.
SF (↑↓) ⋯ �� , ��

� (∥ x)

sample

x

z

y	

coil

� (∥ x)

sample
coil

x

z

y
	

Figure 4.5: (Color online) The geometric configulations in the Pzz and Pxxsettings.
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4.4 Magnetization and Specific heat measurements
For magnetization measurements of UIr2Si2, we used SQUID magnetometers of MPMS-
2 MPMS-3 manufactured by Quantum Design Inc. The data were obtained in the
temperature range from 2 K to 300 K under the magnetic field of 0.1-7 T.

Specific heat of UIr2Si2 was measured using a thermal relaxation technique by a
PPMS, also manufactured by Quantum Design Inc. The measurements were performed
in the temperature range from 2 to 60 K under the magnetic fields up to 12 T. The
applied fields were parallel to the c-axis.
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Chapter 5

Resonant X-ray Scattering
Experiments on UPt2Si2

5.1 Experimental Procedure
We performed the RXS experiments at BL-11B of KEK Photon Factory on single-
crystalline samples of UPt2Si2 using an in-vacuum two-circle diffractometer [75] (Fig.
5.1). The crystal was shaped into two rectangular parallelepipeds of ∼ 1×3×3 mm3

with polished wide planes of (100) and (001) for the measurements in the scattering
plane of (hk0) and (h0l), respectively. The measurements were performed in tempera-
ture range of 6–300 K by using 4He-flow cryostat. The incident beams were monochro-
matized with Si (111) double crystals and tuned around the energy of 3.72 keV (U
M4-edge: 3d3/2 ↔ 5f dipole (E1) transition).

�

Figure 5.1: (Color online) The schematic
view of an in-vacuum two-circle diffrac-
tometer.

Figure 5.2: (Color online) The
schematic view of a polarization
analyzer at ΦA = 0 (upper) and
90◦ (lower).

The polarization of the incident beam ε is π (linearly polarized within the scattering
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plane). We performed polarization analyses for the scattered X-ray in the configuration
shown in the Fig. 5.2 using Al [111] analyzer (d = 2.338 Å, 2θA = 90.8◦ at E = 3.722
keV). The polarization of the scattered X-ray ε′ can be analyzed by rotating the
polarizer scattering plane by angle ΦA; the detectable polarization component of the
scattered beam is switched σ′ to π′ by rotating ΦA from 0 to 90◦.

5.2 Results

5.2.1 Q = 0 magnetic reflections

Firstly, we searched the magnetic reflections with Q = 0, which have been reported
in previous neutron scattering studies [44, 46], at ∼ 10 K using the resonant energy
without a polarization analyzer. In the AFM phase, we observed a series of reflections
(h, k, 0) (h+k = odd), which are forbidden positions for this crystal structure with the
space group P4/nmm. The peak profile for one of those reflections, (1, 0, 0), is shown in
Fig. 5.3 (a). As shown in Fig. 5.3 (c), the energy dependence of this reflection intensity
shows a clear resonant spectrum with a peak at 3.722 keV. This energy corresponds
to the U M4 absorption edge, as checked in the fluorescence spectrum of UPt2Si2
(Fig. 5.3 (b)). This result indicates the existence of order by U 5f electrons, which
breaks the n-glide symmetry of the crystal structure. We then performed a polarization
analysis on the (1, 0, 0) reflection intensity at 10 K. The results are shown in Fig. 5.4.
The scattering intensity clearly shows a behavior with a minimum value of almost
zero in the σ′ channel (ΦA = 0) and a maximum in the π′ channel (ΦA = 90◦). The
observed ΦA dependence is well reproduced by calculations using scattering amplitudes
of F ππ′ ̸= 0 and F πσ′

= 0, as shown by the solid line in Fig. 5.4. It is also observed that
the intensity of ππ′ scattering decreases with increasing temperature and disappears
at TN (Fig. 5.4 inset).

According to the formalism proposed by Nagao and Igarashi [73] (see Appendix for
details), the scattering amplitude for the E1 resonance originating from the magnetic
dipole moment m can be written as

FE1,mag ∝ −i(ε′ × ε) ·m. (5.1)

This means that the component of magnetic moment perpendicular to the scattering
plane contributes to ππ′ scattering, while the in-plane component contributes to πσ′

scattering. In the present scattering configuration, the experimental results of F ππ′ ̸= 0
and F πσ′

= 0 shows that the ordered magnetic moments are aligned along the c-axis.
Thus, we confirmed by RXS measurements the existence of Q = 0 component of
AFM order, which is consistent with the previous reports based on neutron diffraction
[44, 46]. In this case, a strong magnetic signal is expected to appear also at a “nearly
forbidden” reciprocal lattice point in the (h0l) plane, where h + l = odd. Indeed, the
magnetic signal was observed at (1, 0, 4) with a intensity 20 times larger than the
lattice contribution.
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Figure 5.3: (Color online) (a) Peak profile of (1, 0, 0) reflection. Energy dependences
of the scattering intensity of (a) fluorescence and (b) (1, 0, 0) reflection of UPt2Si2
near the U M4 absorption edge.

Figure 5.4: (Color online) Polarization dependence of (1, 0, 0) reflection intensity. The
solid line is the model with magnetic moments parallel to the c-axis. The inset shows
the temperature dependences of reflection intensity in π′-channel (blue filled circles)
and σ′-channel (red open circles).
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5.2.2 Search for superlattice reflections

Secondly, we investigated superlattice reflections corresponding to the period of the
CDW in the AFM phase at the energy of 3.722 keV. Scanning along the h direction
between the (2, 0, 0) fundamental lattice reflection and the (2, 1, 0) magnetic reflection,
we found several reflections as shown in Fig. 5.5(a). The most prominent one, (2, 0.42,
0), can be indexed as (2, 0, 0) +qCDW. Here qCDW = (0, ∼0.42, 0), which corresponds
to one of the two q-domains with qCDW ∥ [100] and ∥ [010] confirmed by previous
study [53]. In addition, small reflections were observed at (2, 0.83, 0) and (2, 0.75, 0),
which can also be indexed using qCDW as (2, 0, 0) + 2qCDW and (2, 2, 0) − 3qCDW,
respectively. The presence of harmonic components of 2qCDW and 3qCDW in the CDW
has been confirmed by Lee et al [53]. Besides these reflections around the fundamental
lattice reflections, this line scan also shows the presence of qCDW reflection, (2, 0.58,
0), around the magnetic reflection, which has not been reported previously.
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Figure 5.5: (Color online) (a) k-scan from (2, 0, 0) to (2, 1, 0) and (b) h-scan from (0,
0, 4) to (1, 0, 4) in the AFM phase with the energy of U M4 absorption edge. Insets
show magnified views around satellite peaks of 2qCDW and 3qCDW.
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A similar diffraction pattern was also found in the (h0l) scattering plane. Fig-
ure 5.5(b) displays the result of the h-scan between (0, 0, 4) and (1, 0, 4). As observed
in the k-scan, there is a prominent first satellite and weak second and third satellite
peaks from the fundamental lattice reflections, (0, 0, 4) and (2, 0, 4). There is also
a weak first satellite peak from the main peak of (1, 0, 4). Note that (1, 0, 4) is
the nearky forbidden position where the strong magnetic signal was observed, while
(0, 0, 4) is a large fundamental lattice reflection. In the following, the 1st satellite
peak around the positions of (h, k, 0) for h + k = odd and (h, 0, l) for h + l = odd,
where the magnetic signal corresponding to the AFM order with Q = 0 is observed, is
distinguished and denoted as τM+qCDW reflection. The results of investigations of the
features for the qCDW reflections, the 2qCDW and 3qCDW reflections, and τM + qCDW

reflections will be presented separately in the following.
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5.2.3 qCDW reflections

The polarization analyses were performed for (2, 0.42, 0) reflection in the energy range
near the U M4-edge. Figure 5.7 shows the polarization dependences of the scattering
intensity at the resonant energy (3.722 keV) in the AFM phase and the PM phase. In
the AFM phase, we observed strong intensities in the π′ channel and significant signals
in the σ′ channel. As shown in Fig. 5.7(a), the energy dependence in π′ channel shows
an absorption of about 50% at 3.722 keV. This is typical behavior for non-resonant
signals derived from crystal lattices near an absorption edge. The scattering intensities
in π′ channel at resonant and non-resonant energy do not show significant change
around TN, as shown in Fig. 5.7(c). The scattering observed in the π′ channel can
therefore be attributed to Thomson scattering due to the crystal lattice modulation
by the CDW order with the atomic displacements confirmed by Lee et al. [53].

By contrast, the energy spectrum of the intensity in σ′ channel exhibits a resonance-
like enhancement at the absorption edge energy in the AFM phase as shown in
Fig. 5.7(c). Scattering with a change in the polarization state of X-rays (from π
to σ′) is an inherent feature of RXS, suggesting the presence of magnetic dipoles or
higher-order multipoles. Here we note that the finite signal intensity was also ob-
served at off-resonance energies such as 3700 eV, due to a small contamination of the
σ-polarized incident X-rays causing a σσ′ scattering (Thomson scattering) from the
crystal lattice.

The scattering intensity at the resonance energy decreases with increasing temper-
ature and almost disappears above TN while the scattering intensity at non-resonance
energy does not show temperature variation as shown in Fig. 5.7(d). As apparent from
the energy spectrum of the PM phase in Fig. 5.7, the remaining signal above TN is
a contamination of the non-resonant σσ′ scattering. From these results, the resonant
πσ′ scattering observed only in the AFM phase is considered to be a magnetic signal.
In this case, given from Eq. (1), the magnetic signal must be derived from the c-plane
component of the magnetic moments of 5f electrons. This means that the magnetic
structure of this system has not only a Q = 0 component where the magnetic moments
parallel to the c-axis form the staggered ordering, but also a component of magnetic
modulation with the propagation vector of qCDW where the c-plane components of the
magnetic moments are spatially distributed.

To identify the structure of this c-plane magnetic modulation, we also performed
the polarization analyses on another qCDW superlattice reflection, (0.42, 0, 4), with the
scattering angle 2θ = 90.0◦ at the resonant energy in the AFM phase. This specific
diffraction condition allows us to extract only magnetic signals because the intensity
of Thomson scattering in the ππ′ channel is proportional to sin22θ and it becomes
∼ 0 at this reflection condition. Consequently, in this scattering configuration with
the scattering plane of (h0l), the c-plane component of the magnetic moment can be
detected separately into the a-axis and b-axis components as πσ′ and ππ′ scattering
signals, respectively. Figure shows the polarization dependence of the scattering inten-
sity and it is apparent that the scattered X-ray is purely π′ polarized. This π′ signal
shows the clear resonant peak at the absorption edge as shown in the inset of Fig. 5.8.
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Figure 5.6: (Color online) The polarization dependence of (2, 0.42, 0) reflection at the
resonant energy. The filled and blank symbols represent the date in the AFM phase
at 10 K and the PM phase at 43 K, respectively. The bold and dashed lines are the
fitting results assuming the combination of π′ and σ′ signals.

Figure 5.7: (Color online) Energy dependences of (2, 0.42, 0) reflection intensity at 10
K (filled circles) and 43 K (blank circles) of (a) π′ signal and (b) σ′ signal. Temperature
dependences at the resonant energy (filled triangles) and non-resonant energy (blank
triangles) of (2, 0.42, 0) reflection intensity in (c) π′-channel and (d) σ′-channel.
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(0.42, 0, 4)

E = 3.722 keV

T = 10 K

�' ch.

�' ch. 10 K

Figure 5.8: (Color online) The polarization dependence of (0.42, 0, 4) reflection at the
resonant energy. The bold line is the fitting result for the magnetic components along
the [010] direction. The inset shows the energy dependence at π′-channel.

In this scattering configuration, ππ′ scattering is caused by the b-axis component of
magnetic moment which is perpendicular to qCDW and the absence of πσ′ means that
the c-plane magnetic modulation has only a transversal component.
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5.2.4 2qCDW and 3qCDW reflections

Further, polarization analyses have been performed also for higher harmonics com-
ponents (2qCDW, 3qCDW). The polarization dependence of 2qCDW reflection intensity,
(2, 0.83, 0), at the resonant energy in the AFM phase is shown in Fig. 5.9(a). It is
well-fitted by the model assuming the fully σ′-polarized scattered X-rays. As presented
in Fig. 5.9(b) and (c), the energy dependence of this πσ′ scattering intensity shows a
clear resonance peak at the absorption edge and this signal can be observed only below
TN. These energy spectrum and the temperature variation of the signal intensity are
similar to those of other magnetic signals, and in this configuration this is a resonance
signal corresponding to the c-plane component. In addition, a non-resonant ππ′ scat-
tering signal was observed in the (2, 0.42, 0) reflection, which is the 1st satellite peak,
but no such contribution was observed in this 2nd satellite peak.

In addition to this 2qCDW superlattice reflection, we also checked another 2qCDW

reflection, (0.83, 0, 4). The polarization dependence of the scattering intensity is
shown in Fig. 5.10(a) and it takes maximum at ΦA = 0 and non-zero minimum at
ΦA = 90◦. The signal of πσ′ also shows a clear resonant energy spectrum while the
ππ′ signal shows the typical non-resonant energy spectrum (Fig. 5.10(b) and (c)). The
Latter one can be regarded as the charge contribution caused by the CDW order as
observed at (2, 0.42, 0). This non-resonant signals was not observed in the other
2qCDW reflection, (2, 0.83, 0), suggesting the complexity of the diffraction pattern of
the CDW reflections. Contrarily, the magnetic resonant siganls are observed in both
2qCDW reflections as πσ′ scattering signals. This indicates that the signals originate
from the parallel component of the magnetic moment to the qCDW. Namely, the
structure of the c-plane magnetic modulation has not only a transverse component
with qCDW but also a longitudinal component with 2qCDW.

Such a contribution of magnetic modulation was also observed in the 3qCDW reflec-
tion, (0.75, 0, 4). The measured polarization dependence of the scattering intensity
indicates that the scattered X-rays are fully polarized in π′-state (Fig. 5.11(a)). Fig-
ures 5.11(b) and (c) display the energy spectrum of this reflection and the temperature
dependence of the scattering intensity at 3.722 keV, measured without polarization
analyzer. These results show that this is clearly a magnetic resonant signal which
develops below TN, with no significant non-resonant signal. This magnetic resonant
signal of ππ′ scattering observed in the (h0l) plane is different from the magnetic res-
onant signal of πσ scattering observed at (0.83, 0, 4), which originates from the [010]
component of the magnetic moment perpendicular to the qCDW vector. In other words,
this signal suggests the presence of transverse magnetic modulation in the c-plane that
was observed in the qCDW reflection.

57



TN

�' ch.

BG
(a)

(b)

(c) (2, 0.83, 0)�' ch.

(2, 0.83, 0)

E = 3.722keV

T = 10 K

(2, 0.83, 0)

T = 10 K

�' ch.

E = 3.722keV

250

200

150

100

50

0

In
te

g
ra

te
d
 I
n
t.
 (

a
rb

. 
u
n
it
)

50403020100

T (K)

250

200

150

100

50

0

In
te

n
s
it
y
 (

c
p

s
)

37403730372037103700

Energy (eV)

250

200

150

100

50

0

In
te

g
ra

te
d
 I
n
t.
 (

a
rb

. 
u
n
it
)

1209060300-30

ΦA (deg.)

Figure 5.9: (Color online) (a) Polarization dependence of (2, 0.83, 0) reflection intensity
at the resonant energy in the AFM phase. (b) Energy dependence of (2, 0.83, 0)
reflection intensity in σ′ channel at 10 K. The black circles are background (off-Bragg)
data. (c) Temperature dependence of (2, 0.83, 0) reflection intensity in σ′ channel.
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Figure 5.10: (Color online) (a) Polarization dependence of (0.83, 0, 4) reflection in-
tensity at the resonant energy in the AFM phase. Energy dependence of (0.83, 0, 4)
reflection intensity (b) in σ′ channel at 11 K and (c) in π′ channel at 13 K. The black
circles are background (off-Bragg) data.
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Figure 5.11: (Color online) (a) Polarization dependence of (0.75, 0, 4) reflection in-
tensity at the resonant energy in the AFM phase. (b) Energy dependence of (0.75,
0, 4) reflection intensity at 10 K (blue filled circles) and 40 K (blue opened circles)
without the polarization analyzer. The black circles are background (off-Bragg) data.
(c) Temperature dependence of (0.75, 0, 4) reflection intensity without the polarization
analyzer.

59



5.2.5 τ + qCDW reflections

The most surprising finding is the resonant signal at qCDW superlattice reflections
around (2, 1, 0) forbidden reflection, (2, 0.58, 0). The results of the polarization
analyses on (2, 0.58, 0) reflection performed to investigate the origin of this signal
are summarized in Fig. 5.12. The polarization dependence of the scattering intensity
shows that the ππ′ scattering signal was observed as the dominant contribution in the
AFM phase, while a finite πσ′ scattering contribution was also observed. Each signal
exhibits a distinct peak in the AFM phase (Figs. 5.12(a) (b)). In these peaks, the
πσ′ scattering signal appears to remain even above TN, while the ππ′ scattering signal
disappears. The continuous temperature variations are shown in inset in Fig. 5.12.
The ππ′ signal disappears toward TN, whereas the πσ′ signal does not show significant
change around TN. As shown in Fig. 5.13, the energy spectrums of these signals
are both clear resonance signals with peaks at the absorption edge. While this ππ′

resonant signal can be derived from the c-axis component of magnetic moments, the σ′

polarized resonant signal seems not to be magnetic one. Since spherically symmetric
electronic states do not change the polarization of X-ray, this resonant signal of πσ’
scattering is considered to be caused by anisotropic 5f electronic states such as electric
quadrupoles.

Such a non-magnetic signal was also found in the (h0l) plane as the satellite from
the main peak of (1, 0, 4), (0.58, 0, 4) reflection. The polarization dependence of
this signal in the AFM phase is shown in Fig. 5.14. This result indicates that this
signal is perfect πσ′ scattering with no ππ′ scattering contribution within experimental
accuracy. This πσ′ signal is apparently a resonant signal, where the energy spectrum
shows a resonant peak near the absorption edge (Fig. 5.15 (a)). As the temperature
increases to the PM phase, the intensity decreases slightly, but the distinct peak is
largely retained even in the PM phase. This slight deviation can be attributed to the
magnetic contribution associated with the c-axis component of the magnetic moments
observed as ππ′ scattering signal at (2, 0.58, 0). The remaining resonant signal above
TN is similar to the signal observed at (2, 0.58, 0).

To investigate the properties of this remaining signal, we performed some measure-
ments on the (2, 0.58, 0) reflection in higher temperature region above 50 K without
the polarization analyzer. Figure 5.16 (a) shows the k-scans from (2, 0.56, 0) to (2,
0.62, 0) at temperatures ranging from 50 K to 280 K. The intensity gradually de-
creases with increasing temperature and almost disappears at 280 K. For the data at
each temperature, we performed Gaussian-fitting and calculated integrated intensities.
The obtained temperature dependence of integrated intensity and peak position are
plotted in Fig. 5.16 (b) and (c), respectively. The peak position k is shifted ∼ 0.58 to
∼ 0.60 above near 180 K which is reported as the lock-in temperature of qCDW [53].

To identify the origin of this resonant signal, we performed the azimuthal angle
dependence measurement using a sample with a wide plane perpendicular to the scat-
tering vector of κ =(2, 0.58, 0). Figure 5.17 shows the azimuthal angle dependence
of (2, 0.58, 0) reflection intensity in PM phase (40 K) at the resonant energy with
the polarization analyzer fixed at πσ′-channel. The intensity shows a complex depen-
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Figure 5.12: (Color online) (a) K-scan profiles throungh (2, 0.58, 0) reflection in
(a) σ′ and (b) π′ channel. Red filled circles and blue blank circles denote the data
measured at 12 K and 40 K, respectively. (c) Polarization dependences of (2, 0.58,
0) reflection intensity at 12 K (red filled circles) and 40 K (blue blank circles) at the
resonant energy. Solid-line and dashed-line are fitting results for the data at 12 K and
40 K, respectively. The inset shows temperature dependences of the intensities of πσ′

scattering (filled circles) and ππ′ scattering (blank circles) at the resonant energy.

dence on φ-angle, taking a local minimum around φ = 0 and the maximum around
φ = −45◦. This behavior cannot be explained by a 2-fold rotationally symmetric
component alone, suggesting the presence of a 4-fold rotational symmetry component
arising from the presence of electric quadrupoles. We performed curve-fitting with
a model assuming the quadrupole density wave (QDW) with the period of qCDW by
using eq. (9) in Appendix. The bold line in Fig. 5.17 is the fitting result assuming the
density wave of Oyz and Ozx quadrupoles with the multipole structure factors ZA (for
A-sublattice) and ZB (for B-sublattice) as follows:

ZA =

{∑
j O

0
zx sin(qCDW · rj)eiκ·rj∑

j O
0
yz sin(qCDW · rj)eiκ·rj

ZB =

{∑
j −O0

zx sin(qCDW · rj)eiκ·rj∑
j −O0

yz sin(qCDW · rj)eiκ·rj

(5.2)
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Figure 5.13: (Color online) Energy dependences of (2, 0.58, 0) scattering intensity in
(a) σ’channel and (b) π’ channnel measured at 12 K and 40 K. The solid lines are
Lorentzian-fitting for the data.

where rj is the position of j-th ion in the unit cell, κ is the scattering vector, O0
zx and

O0
yz are the amplitudes of the QDW for each quadrupole component, which are the

fitting parameters in this calculation. The obtained fitting result is O0
zx : O0

yz = 1 :
0.056(7) and it shows good agreement with the experimental data. We also checked
the consistency of the model with the polarization dependence of this reflection in-
tensity. As shown in Fig. 5.18 (a), we observed the rotation of polarization plane of
the scattered X-rays with φ-rotation. Around φ = −30◦ to −45◦, the polarization
plane rotated by ∼ 20◦ and the intensity reaches maximum. Turning φ further, the
polarization plane can be seen to return to σ′ state with decreasing intensity. We
calculated the polarization dependence at each φ from the model for the fitting of φ
dependence at σ′-channel and plotted in Fig. 5.18 (b). Comparison with experimental
results shows that this model can successfully explain the features mentioned above.
The Ozx-type quadrupole, which provides the dominant component in this model, cor-
responds to a charge distribution extending in the plane perpendicular to the direction
of qCDW. The imbalance between O0

zx and O0
yz here means the breaking of the four-fold

rotational symmetry in the U 5f electronic state as the CDW is formed. Note that only
modulation of the charge distribution with qCDW can be detected in our experiments,
and the observed QDWs correspond to deviations from the electronic state under the
tetragonal symmetry. Futhermore, the obtained QDW model also well explains the
presence of the πσ′ scattering contribution and the absence of the ππ′ scattering con-
tribution in the (0.58, 0, 4) reflection. It is also important to note that this reflection
belongs to the domain with qCDW ∥ [100], while the (2, 0.58, 0) reflection belongs to
the another domain with qCDW ∥ [010]. Namely, for the (0.58, 0, 4) reflection, the
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Figure 5.14: (Color online) The h-scan profiles throungh (0.58, 0, 4) reflection in (a) σ′

and (b) π′ channel. Red filled circles and blue blank circles denote the data measured
at 12 K and 40 K, respectively. (c) Polarization dependences of (0.58, 0, 4) reflection
intensity at 12 K (red filled circles) and 40 K (blue blank circles) at the resonant
energy. Solid-line is the fitting results for the data at 12 K assuming only σ′ polarized
scattered X-rays.

observed resonant signals of πσ′ scattering and the absence of the ππ′ scattering sig-
nal can be explained consistently with the obtained QDW model, where Oyz is the
dominant contribution for qCDW ∥ [100].
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Figure 5.15: (Color online) Energy dependences of (0.58, 0, 4) reflection intensity of
(a) πσ′ and (b) ππ′ at 12 K and 40 K.

Figure 5.16: (Color online) (a) k-scan profiles of (2, ∼0.58, 0) reflection at the resonant
energy without polarization analyzer system. The base lines are shifted for clarity. The
bold lines are Gaussian-fitting curves at each temperature. Temperature dependences
of (b) the integrated intensity and (c) the peak position obtained from the Gaussian-
fitting. The curved line in (b) is guide to the eye.
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Figure 5.17: (Color online) Azimuthal angle (φ) dependences of (2, 0.58, 0) reflection
intensity in σ’ channel measured at 40 K. The inset shows the sample setting at φ =
0, where c∗ is perpendicular to the scattering plane. The solid line is the fitting result
assuming the combination of Ozx and Oyz type QDWs.

Figure 5.18: (Color online) (a) Polarization dependences of (2, 0.58, 0) reflection
intensity at φ = 0 to −80◦. (b) Calculation of the polarization dependences of (2,
0.58, 0) reflection intensity at each φ for the model assuming the combination of Ozx

and Oyz type QDWs.
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5.2.6 Short summary of results in RXS experiments

We performed RXS experiments using the energy of U M4 absorption edge to ob-
tain the information of 5f electronic states under the CDW order by Pt 5d electrons.
The observed resonant signals in our experiments are summarized in Table 5.1. It is
revealed that the magnetic structure of this system is modulated with the same peri-
odicity to the CDW order including its higher harmonics components. The observed
mangetic components are summarized in Fig. 5.19. We found the c-plane magnetic
modulation, which consists of three components: the transverse components (δµ with
qCDW, δµ′′ with 3qCDW and the longitudinal component (δµ′ with 2qCDW). Inad-
dition, the magnetic modulation alond the c-axis (δµ′′′) is also found. Moreover, it
is also found that the resonant signals in the PM phase indicating the modulation
of electronic distributions of 5f electrons as the Oyz and Oyz-types of QDWs. This
electronic modulation is antiphase between the two sublattices of U as mentioned in
Chapter 7.

b
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Main component

Q = 0

Magnetic structure of UPt2Si2

(qCDW)

b

c

a

c

b

a

+

Modulation by the CDW order

in the c-plane

along the c-axis
(qCDW)��′′′

��′

��

�� +

��′′′� +

� || c

(2qCDW)��′

Figure 5.19: (Color online) Illustration of the magnetic structure determined from the
reluts of these RXS experiments including the magnetic modulations.

.
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Figure 5.20: (Color online) Illustration of the QDW determined from the reluts of
these RXS experiments. Note that it is shown for the domain with qCDW||a∗.

Table 5.1: The summary of the observed signals associated with the AFM order, the
CDW order and the CDW-induced magnetic modulations (δµ, δµ′, δµ′′ and δµ′′′) and
QDW.

Propagation
vector Reflection Pol. Energy de-

pendence
Observed
temp. range Origin

Q = 0 (1, 0, 0) ππ′ reso. T < TN µ (∥ c)

qCDW (2, 0.42, 0) πσ′ reso. T < TN δµ

ππ′ non-reso. T < TCDW charge

(0.42, 0, 4) ππ′ reso. T < TN δµ

2qCDW (2, 0.83, 0) πσ′ reso. T < TN δµ′

(0.83, 0, 4) πσ′ reso. T < TN δµ′

ππ′ non-reso. T < TCDW charge

3qCDW (0.75, 0, 4) πσ′ reso. T < TN δµ′′

τ + qCDW (2, 0.58, 0) πσ′ reso. T < TCDW QDW

ππ′ reso. T < TN δµ′′′ (∥ c)

τ + qCDW (0.58, 0, 4) πσ′ reso. PM (40 K) QDW

πσ′ reso. AFM (12 K) δµ′′′ (∥ c)
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Chapter 6

Neutron Scattering Experiments on
UPt2Si2

6.1 Experimental Procedure
The rod-shaped single-crystalline sample, grown along the c-axis, was synthesized using
the Choklarzky method at Hokkaido University. The neutron diffraction experiments
were performed by using the polarized neutron triple-axis spectrometer PONTA in
Japan Research Reactor 3 (JRR-3). The schematic view of the spectrometer is illus-
trated in Fig. 6.2. The measurements were performed in the following two modes.
The first, “unpolarized mode”, utilized neutrons with the energy of E = 34.06 meV
(λ = 1.550 ), without spin polarizationpyrolytic graphite (PG) crystals served as both
the monochromator and analyzer. The second, “polarized mode”, employed neutrons
with E = 14.7meV（λ = 2.359 ) monochromized and polarized by a Heusler crystal.
Simultaneously, the spin state of scattered neutrons is analyzed in the polarization
direction of the incident neutrons using another Heusler crystal. In this mode, to
determine the change in the neutron spin state before and after scattering, the spin
polarity of the incident neutrons is controlled by turning on and off the spin flipper.
The device is positioned just before the sample, as illustrated in Fig. 6.3. When the
flipper is activated, a spin flip (SF) signal is detected, indicating that the neutron spin
flips from down to up during the scattering. Conversely, when the flipper is deacti-
vated, a non-spin flip (NSF) signal is observed, signifying that the spin state remains
up throughout the scattering process. The direction of spin polarization at the sample
position is controlled by the magnetic field (∼1 mT) generated by the Helmholtz coil.
In the present study, we used two configurations: the Pxx setting, which polarizes the
neutron spin parallel to the scattering vector, and the Pzz setting, which polarizes
the neutron spin perpendicular to the scattering plane. Here, we adopt a coordinate
system with the x-axis parallel to the scattering vector, and the z-axis perpendicular
to the scattering vector, as depicted in Fig. 6.2.

In polarized neutron diffraction measurements, three distinct signals can be differ-
entiated: nuclear scattering, magnetic scattering from the y component of magnetic
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moment (My), and magnetic scattering from the z component of magnetic moment
(Mz). This distinction can be achieved by analyzing the SF and NSF signals in the two
aforementioned settings [76]. The relationships between the SF/NSF signals and their
respective scatterers in the Pxx and Pzz settings are concisely summarized in Table
6.1. In the present experimental setup, the spin polarizations of the neutron beam
were estimated to be P0 = 0.8842 in the Pxx setting and P0 = 0.9116 (in Pzz setting),
These values were measured using (2, 0, 0) nuclear Bragg reflection of the sample. We
used a 3He 0-dimensional detector in both modes. The temperature at the sample
position was controlled by a closed-cycle GM (Gifford-McMahon) refrigerator, with a
range spanning from 2.3 K to 50 K.

c-axis

Figure 6.1: (Color online) The sample used for this neutron diffractin measurements.

2�′

Monochromator

Analyzer

Detector

Spin flipper
(pol. mode)

Helmholtz coil
(pol. mode) Sample

2�′
Scattering
vector (�)

�

�
�

Neutron

beam

Figure 6.2: (Color online) A Schematic view of a triple-axis spectrometor (PONTA).
The Cartesian coordinate xyz is introduced with the z-axis perpendicular to the scat-
tering plane and the x-axis parallel to the scattering vector κ.
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(Heusler)
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polarized

incident beam NSF SF

NSF
Detector

spin flipper

(OFF)

NSF SF

SF Detector

spin flipper

(ON)

Spin flipping

1. detection of NSF signal

2. detection of SF signal

Figure 6.3: (Color online) A schematic view of the selective detection of SF and NSF
signals using the spin flipper.

Pxx Pzz

SF M⊥c M⊥c, M∥c
NSF nuclear, M∥c nuclear

Table 6.1: The relationship between signal types and their origins in polarized neutron
diffraction measurements with Pxx or Pzz setting. Non-spin-flip (NSF) scattering refers
to the case where the spin of the scattered neutron does not invert from the incident
neutron spin state, while spin-flip (SF) scattering refers to the case where the spin
of the scattered neutron inverts from the incident neutron spin scate. Mz denotes
the component of the magnetic moment that is perpendicular to the scattering plane,
while My denotes the in-plane component, which is perpendicular to κ.
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6.2 Experimental Results

6.2.1 Q = 0 magnetic reflections

As reported in previous studies [44, 43, 46], we observed diffraction peaks in the AFM
phase at the positions τ = (h, k, 0) (h + k = odd) that are forbidden for this crystal
structure. Figure 6.4 shows typical peak profiles obtained from rocking curve mea-
surements at the (1, 0, 0) and (2, 1, 0) reflection positions at 2.3 K and 50 K in the
AFM and paramagnetic (PM) phases, respectively. Clear reflections were observed in
the AFM phase at both positions, and their intensities significantly decreased upon
heating to 50 K. The residual signals at 50 K are attributed to nuclear reflections of
2τ , caused by the higher order contamination (λ/2) in the incident neutrons. By sub-
tracting this extrinsic contribution at 50 K as background, we analyzed the intrinsic
magnetic scattering intensities that develop at low temperatures. The net scattering
profiles at 2.3 K are shown with black symbols and the solid lines in Fig. 6.4.

Figure 6.4: (Color online) The peak profiles measured in the unpolarized mode for (a)
(1, 0, 0) and (b) (2, 1, 0) reflections. The dashed lines with red symbols correspond
to the data in the AFM phase at 2.3 K, and the dashed lines with blank blue symbols
represent the data in the PM phase at 50 K. The data represented by the solid lines
with black symbols are the results of subtracting the PM phase data from the AFM
phase data.

The integrated intensity, Imag, of a magnetic profile at the scattering vector κ is
proportional to the square of M⊥(κ). Here, M⊥(κ) refers to the projection of M (κ)
onto the plane perpendicular to κ. M (κ) is the component of the Fourier-transformed
magnetic-moment distributions with respect to κ (see section 4.3). Imag is expressed
by the following equation:

Imag(κ) = KL(κ) |Fm(κ)|2 , (6.1)

where K is the scale factor typically estimated from nuclear scattering intensities, L(κ)
is the Lorentz factor, and Fm(κ) is the magnetic structure factor per nuclear unit cell,
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Figure 6.5: (Color online) The values of |µ|·fU estimated from the integrated intensities
of magnetic reflections with Q = 0, where |µ| represents the amplitude of magnetic
moments, and fU is the form factor of U. The curved lines are the fitting results to the
experimental data. The thin solid and dashed black curves are based on assumptions
for U4+ and U3+ ions, respectively. The bold red cuve represents the fitting result
using the parameters of |µ| and g∗ with the calculated functions of ⟨j0(κ)⟩ and ⟨j2(κ)⟩
for U4+.

defined as
|Fm(κ)| = bmag · |µ⊥| · fU(κ) · A(κ). (6.2)

Here, bmag is the factor that converts the magnitude of the magnetic moment to the
scattering length, a constant corresponding to the scattering length per 1µB (2.7 fm).
A(κ) represents the phase factor, and |µ⊥| is the magnitude of the projected vector
of µ onto the plane perpendicular to κ. For the AFM order with Q = 0, where the
ordered moments are parallel to the c-axis, these values are calculated as A(κ) = 2
and |µ⊥| = |µ|, respectively. The magnetic form factor of U, fU(κ), is a function that
can be approximated by expanding it using an l’th order basis jl(κ) of spherical Bessel
functions as follows:

fU(κ) = ⟨j0(κ)⟩+ g∗ ⟨j2(κ)⟩ , (6.3)

where g∗ is defined as:

g∗ =
J(J + 1) + L(L+ 1)− S(S + 1)

3J(J + 1)− L(L+ 1) + S(S + 1)
. (6.4)

In this formula, j0(κ) is the term derived from the spin and orbital angular momen-
tum of the electron, and ⟨j2(κ)⟩ is the term derived purely from the orbital angular
momentum. These terms have been calculated using the Dirac-Fock method for the
free ion model of U4+ (g∗ = 1.50) and U3+ (g∗ = 1.75 [77].
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These calculations are based on the assumption of isotropic electronic states. How-
ever, in actual crystals, anisotropic electronic states may arise due to CEF effects,
which necessitate consideration. In our analysis, following the approach commonly
used for many f-electron systems, the magnetic form factor for this system experi-
mentally estimated using g∗ as a fitting parameter. The magnetic scattering intensity
observed at each reflection is converted into the product of µ and fU(κ) using the Eqs.
(6.1) and (6.2). The resulting values are then plotted against κ, as shown in Fig. 6.5.
The thin solid and dashed black curves represent the fitting results using the calcu-
lated values of fU(κ) for U4+ and U3+, respectively, with |µ| being the only parameter
in the calculations. There are no significant differences between the two models, and
reproduce the experimental results quite well. To further improve the agreement with
the experimental data, fU(κ) was experimentally determined by fitting both of |µ| and
g∗ as parameters, taking into account the anisotropy of the electronic state. The result
is shown in Fig. 6.5 with a red bold curve. For this fitting, jl(κ) (l = 0, 2) for U4+ was
used. The obtained value of µ is 1.93(5) µB (g∗ = 1.1(2)), which is consistent with the
variation in values previously reported (1.67–2.5 µB/U) [44, 43, 46].

To ascertain the direction of the moment, these signals were also investigated in
polarized mode. Figure 6.6 displays representative profiles from rocking curve mea-
surements at the (1, 0, 0) reflection. Specifically, Fig. 6.6 (a) and (b) present the
peak profiles measured at 2.3 K (in the AFM phase) and 50 K (in the PM phase) in
the Pxx setting. In this setting, nuclear and magnetic scatterings can be distinctly
observed as NSF and SF signals, respectively. Regarding the SF signal, a prominent
peak was observed in the AFM phase, which nearly vanished when the temperature
reached the PM phase. In contrast, no clear NSF signal was observed in either AFM
and PM phases. We extracted the magnetic scattering contribution by subtracting
the PM phase data, serving as background, from the AFM phase data, using the same
approach as in the unpolarized mode. The resulting magnetic signals are shown in
Fig. 6.6 (c). A distinct temperature-dependent variation is evident in the SF signal,
while the NSF signal shows no such change. This indicates that the observed variation
in reflection intensity with temperature is solely attributed to magnetic scattering.

Rocking curve measurements for this reflection were also performed in the Pzz

setting to differentiate between the in-plane and c-axis components of the magnetic
moment. Figure 6.6 (d), (e) and (f) display their profiles in the AFM and PM phases,
along with the extracted temperature differences, respectively. Contrary to the results
in the Pxx setting, a clear temperature difference was observed only in the NSF mode.
The magnetic signal of SF scattering, corresponding to the c-plane component of the
magnetic moment, was not detected within the experiment accuracy (≲ 0.01 µB), which
implies that, for the Q = 0 component, the magnetic moments are aligned parallel to
the c-axis. These observations are consistent with the results from previous neutron
scattering experiments [44, 43, 46] and our RXS experiments. Similar measurements
performed on other reflections, such as (0, 1, 0), (1, 2, 0), and (2, 1, 0), also yielded
consistent results.
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Figure 6.6: (Color online) The peak profiles of SF and NSF scatterings for (1, 0, 0)
reflection, measured in the polarized mode. (a) (d) Data of SF signal (represented
by red ▲ symbols) and NSF signal (blue △ symbols) measured at 2.3 K in the Pxx

and Pzz settings. (b) (e) Data of SF signal (red ▼ symbols) and NSF signal (blue ▽
symbols) measured at 50 K in the Pxx and Pzz settings. (d) (f) Data of SF signal (red
● symbols) and NSF signal (blue 〇 symbols) obtained by subtracting the PM phase
data from the AFM phase data in the Pxx setting and Pzz settings.
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6.2.2 qCDW reflections

Next, we performed h, k scans around the reciprocal lattice point (2, 0, 0) to search
for superlattice reflections due to the CDW, in the unpolarized mode at 3 K. Figure
6.7 displays clear superlattice reflections observed at (2, qCDW, 0) and (2−qCDW, 0, 0).
There is a marked difference in the scattering intensities of these reflections, the latter
being less than one-tenth the intensity of the former. Upon raising the temperature
to the PM phase, the already low scattering intensity of the (2−qCDW, 0, 0) reflection
diminishes further, while the higher scattering intensity of (2, qCDW, 0) largely persists
in the PM phase.

Figure 6.8 presents the detailed temperature dependence of the integrated inten-
sities for these reflections, obtained through θ-2θ scans. The scattering intensity of
(2−qCDW, 0, 0) is observed to continuously increase below TN with a distinct bend.
This increase in the intensity is considered to be due to a magnetic scattering result-
ing from the modulation of the AFM order, similar to the magnetic signal from U 5f
moments observed in our previous RXS measurements.

Although the data for the (2, qCDW, 0) reflection is somewhat noisy, a similar
increase in intensity below around TN is apparent. This reflection position of (2, qCDW,
0) is, however, precisely where it would be affected by multiple scattering from the
strong magnetic reflection at (1, 0, 0) as shown in Fig. 6.9 (a). Additionally, no signal
was observed within the accuracy of experiments performed in the polarized mode
using different incident wavelengths as refered in the following part. We can thus
conclude that the observed weak temperature variation in the intensity at (2, qCDW,
0) is not intrinsic.

The scattering intensities observed in the PM phase (blank blue circles in Figs.
6.7(a) and 6.7(b)) are notable. This is especially significant at (2, qCDW, 0) but very
weak at (2−qCDW, 0, 0). In fact, we have ascertained that the latter is an extrinsic
signal resulting from multiple scatterings of the nuclear reflection at (3, 1, 0) as shown
in Fig. 6.9 (b). Thus, it can be stated that around (2, 0, 0), CDW satellite reflections
are observed only in the k direction. This result aligns with Lee et al.’s observations
[53], where satellites are detected in the k direction for (h, 0, 0) (h ̸= 0) and in both
h and k directions for (h, k, 0) (h ̸= 0, k ̸= 0).

To identify the magnetic modulation structure, we performed rocking curve mea-
surements on the superlattice reflections within the accessible range in the (h, k, 0)
plane and made a quantitative analysis of the magnetic contributions to their inte-
grated intensities. The magnetic scattering intensities observed can be transformed
into magnetic structure factors per nuclear unit cell using Eq. (6.1), simular to the
Q = 0 case. For the magnetic modulation with qCDW, the magnetic structure factor
is calculated as follows:

|Fm′(κ)| = bmag · |δµ⊥| · fU(κ) (6.5)

(refer to section 4.3 for the details). Here, the amplitude of the magnetic modulation
with qCDW is denoted as |δµ|, and the magnitude of its projected component onto the
plane perpendicular to κ is |δµ⊥|.
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Figure 6.7: (Color online) The diffraction peak profiles for (a) k-scan and (b)
h-scan measured around the nuclear reflection of (2, 0, 0) in the unpolarized
mode. The filled red symbolds denote the data in the AFM phase at 3 K and
the blank blue symbols represent the data in the PM phase at 50 K. Note
that the vertical axis of graph (b) is scaled to 1/10 of that in (a).

Figure 6.8: The temperature dependence of the integrated intensities obtained in θ-2θ
scans for the (2, 0.42, 0) reflection (upper) and the (1.58, 0, 0) reflection (lower).
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Figure 6.9: (Color online) The Ewald spheres on the (hk0) plane associated with the
reflections at (a) (2, 0.42, 0, 0) and (b) (1.58, 0, 0) in the unpolarized mode (λ =
1.55 , k = 4.05 −1) are represented by blue solid-line circles. The blue thin arrows
indicate the wave vectors of the incident (ki) and scattered (kf) neutrons in the Bragg
conditions for the target reflections. The scattering vectors are denoted by the black
bold arrows. The red circle in each panel denotes a reflection present on the Ewald
sphere besides the target reflection. Scattering from ki to both kf and k′

f occurs
simultaneously. Additionally, k′

f can cause multiple scattering in the sample, such as
diffracting to kf or diffracting back to ki and then to kf . These processes can lead to
a non-essential enhancement of the scattering intensity in the target reflections.
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To find the orientation of δµ, we first evaluated the variation of |δµ⊥| inferred
from each reflection intensity with respect to the scattering vector κ. Figure 6.10 (a)
displays the data for |δµ⊥|, derived from the observed magnetic scattering intensities,
and plotted as a function of the angle α. This angle, α, is defined as the angle between
the ordered wavenumber vector qCDW and the scattering vector κ at each reflective
position, as illustrate in Fig. 6.10 (b). The α dependence of |δµ⊥| provides insights into
the orientation of the magnetic moment relative to the qCDW vector. By comparing the
calculations for different magnetic modulation structures, we can identify the actual
magnetic structure. For example, in transverse modulation structures within the c-
plane, |δµ⊥| is proportional to cosα, whereas it’s proportional to sinα in longitudinal
magnetic modulations. If we consider a transverse wave modulation structure where
only the c-axis component of magnetic moments undergoes modulation, or a cycloidal
structure in the c-plane, |δµ⊥| remains constant. Moreover, more intricate structures,
like conical modulations, can be understood as combinations of these three scenarios.
Our observations show that |δµ⊥| significantly decreases in a manner consistent with
cosα as α increases, aligning well with the transverse magnetic modulation model in
the c-plane. This suggests that the magnetic structure of this system incorporates a
transverse magnetic modulation component in the c-plane, with a periodicity of qCDW,
leading to a deviation of moments from the c-axis. This conclusion is consistent with
the structure proposed from our RXS experiments.

Figure 6.11 displays a comparison between the structure factor derived from the
experimental data and that calculated for the c-plane transverse magnetic modulation
structure. The experimental values, extracted from the observed magnetic scattering
intensities, show a good agreement with the calculated ones. This analysis reveals the
amplitude of the magnetic modulation to be |δµ| = 0.72(2) µB/U. Notably, this value
exceeds one-third of the amplitude for the Q = 0 component, which is 1.93(5)/3 µB/U
as determined in this study. This suggests that the ordered magnetic moments are
canted from the c-axis at a maximum angle of approximately 20◦.
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Figure 6.10: (Color online) (a) The α dependence of the |δµ⊥|. The red symbols
represent data derived from the intensities of magnetic scatterings. The filled sym-
bols and the blank symbols correspond to the reflections of h-domain and k-domain,
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superlattice reflections of h-domain and k-domain.
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Figure 6.11: (Color online) Comparison of the observed magnetic structure factor
Fobs, derived from magnetic scattering intensities, with the calculated Fcalc⊥ assum-
ing the transversal magnetic modulation. Filled symbols and blank symbols repre-
sent the reflections of h-domain and k-domain, respectively. The dashed line denotes
Fobs/Fcalc⊥ = 1.
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To further confirm the determined magnetic modulation structure, rocking curve
measurements in the polarized mode were performed for several reflections. Figure
6.14 features a representative profile of the (0.42, 0, 0) reflection. In the Pxx setup, a
broad NSF signal without intensity change across TN and a sharp SF signal observable
only in the AFM phase are noted (Fig. 6.14 (a)). As per Table 6.1, the former is
attributed to nuclear scattering, and the latter to magnetic scattering in this setup.
To distinguish between the magnetic modulation contributions along the c-axis and
in the c-plane in the observed magnetic scattering, the Pzz setting was employed.
Here, NSF signals correspond to c-axis modulation, while SF signals indicate c-plane
modulation. As Fig. 6.14 (b) shows, both NSF and SF signals exhibit no difference
from those in the Pxx setting. The temperature dependence of integrated intensities
of these signals is detailed in Fig. 6.14 (c). The SF signal is present only below
TN, while the NSF signal shows no notable temperature variation around TN. These
observations confirm that the magnetic modulation predominantly involves the c-plane
component of the magnetic moments, with negligible c-axis component contribution
within the experimental accuracy (≲ 0.01 µB). Similar results are obtained for other
qCDW superlattice reflections like (0.58, 1, 0) and (1.58, 0, 0).
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Figure 6.12: (Color online) The peak profiles and the temperature dependence of SF
and NSF signals of the (0.42, 0, 0) reflection measured in the polarized mode. (a) The
profiles measured in the Pxx setting at 2.3 K (▲ and △) and at 50 K (▼ and ▽).
(b) Theprofiles measured in the Pzz setting at 2.3 K (▲ and △). (c) The temperature
dependence of the integrated inensity measured in the Pzz setting. The red symbols
are the data for SF signals and the blank blue symbols are the data for NSF singals.
The black curved line is the fitting result for the SF scatteing intensity near the TN
with the equation of * (β = 0.3).

As mentioned above, the unpolarized mode, using neutrons with shorter wave-
lengths, is more prone to multiple reflections and scatterings compared with the polar-
ized mode. Therefore, our discussion on the diffraction patterns of both nuclear and
magnetic scatterings in this system primarily relies on the polarized mode results. The
obtained patterns are shown in Fig. 6.13(a), with panels (b)–(e) displaying the profiles
of the superlattice reflections identified in Fig. 6.13(a). All of these profiles, measured
in the Pxx setting, enable us to distinguish between nuclear (NSF) and magnetic (SF)
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Figure 6.13: (Color online) (a) Map of the diffraction pattern in the (hk0) plane, drawn
on the basis of the results in the polarized mode. The black and red circles indicate
the nuclear and magnetic reflections, respectively. (b)–(e) Peak profiles of SF and NSF
signals at the superlattice reflections characterized by qCDW, measured in the polarized
mode with the Pxx setting. The profiles of the reflections around (1, 1, 0) and (2, 0,
0) nuclear Bragg peaks are shown in panels (b), (c) and (d), (e), respectively.

scatterings. Around the (1, 1, 0) reflection, at 2.3 K, there are qCDW superlattice re-
flections in both h and k directions. These contain both NSF and SF signals, as shown
in Figs. 6.13(b) and 6.13(c). In contrast, the (1.58, 0, 0) reflection (Fig. 6.13(d))
shows only the SF signal, indicating magnetic scattering without nuclear scattering
contributions within the experimental accuracy. Conversely, the (2, 0.42, 0) reflection
(Fig. 6.13(e)) presents a strong NSF signal but no detectable magnetic scattering. This
absence of the magnetic signal is reasonable, since the condition of large values of α
(∼ 76◦) and κ makes it difficult to detect the c-plane transverse magnetic modula-
tion. The diffraction pattern of nuclear scatterings is consistent with that reported
by Lee et al [53]., as mentioned in the main text. In conclusion, the polarized mode
confirmed the extrinsic nature of (i) the magnetic signal in the (2, 0.42, 0) reflection
and (ii) the non-magnetic contribution in the (1.58, 0, 0) reflection, likely caused by
multiple scatterings in the unpolarized mode.
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6.3 Short summary of results in neutron scattering
experiments

In this study, we performed the detailed magnetic structure analysis in the AFM phase
of UPt2Si2 and examined the reported magnetic modulation by the CDW. As a result,
the signal of magnetic scattering by the c-plane transverse magnetic modulation with
the period of the CDW was observed, which reproduces the result of our previous RXS
experiments. From the quantitative analysis of the magnetic scattering intensities, it
was found that its amplitude is 0.72(2) µB. This value means that the magnetic
moments of U are tilted about 20◦ from the c-axis by the CDW. As discussed in later
chapters, this result suggests a strong hybridization effect between the 5f electrons of
U and the 5d electrons of Pt.

�� 0.72(2)�

(qCDW transverese)

� ��

� ∼ 20°(max)
c-axis

� = 1.93(5)�B
(Q=0)

c

b

a

Figure 6.14: (Color online) The obtained structure of the magnetic modulation.
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Chapter 7

Discussion – UPt2Si2

7.1 Diffraction patterns and modulation types
In this section, the types of satellite reflections observed in the RXS and neutron
scattering experiments and the types of corresponding modulations are summarized.
To begin with, the symmetry of the crystal structure and the diffraction pattern of the
fundamental reflection should be mentioned. The CaBe2Ge2-type structure belongs to
the space group P4/nmm, which has a primitive tetragonal unit cell. As illustrated
in Fig. 7.2(a), it contains two U ions related by the n-glide symmetry (A- and B-
sublattices). In the case of nuclear reflection, the scattered waves from these two
sublattices cancel each other for the scattering conditions of κ = (h, k, 0) for h +
k = odd. Therefore, so the reciprocal lattice points such as (2, 1, 0) are forbidden.
Scattered waves from other elements are also cancelled out in the same way, so that
reciprocal lattice points such as (2, 1, 0) are forbidden. This is a reflection condition
arised from the presence of the n-glide plane perpendicular to the c-axis.

Here we provide simple examples of magnetic ordered states and explain expected
diffraction patterns arising in this structure as a result of electronic orderings and
modulations on them. In the case of FM ordering, the reflection condition is main-
tained because the scattered waves from the two sublattices are in-phase as in the
nuclear scattering. Therefore, magnetic scattering contributions are observed on the
fundamental lattice reflections (Fig. 7.2(b), top). On the other hand, in the staggered
AFM ordering as illustrated in Fig. 7.2(c), the phase of the scattered wave from each
sublattice is inverted, thus magnetic reflections are observed at the forbidden positions.
When modulation with the wave vecotr of q occurs for these ordered states, satellite
peaks appear at different positions. Namely, in the case of modulation on the FM
ordered state, satellite peaks with the wavevector q appear around the fundamental
lattice reflections. Conversely, for the modulation on the AFM ordered state, they
appear around the forbidden positions, where the magnetic reflections arise.

In this study, all the signals of the c-plane magnetic modulation with qCDW (and
2qCDW, 3qCDW) are observed as satellite peaks around the fundamental lattice reflec-
tions. Whereas, all signals related to QDW (and c-axis magnetic modulation) are
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observed as satellite peaks around forbidden reflections. An interesting point is that
only satellite peaks of QDW are observed in the PM phase. No resonance signal is
found at the forbidden positions where the signals of staggered electronic states, which
corresponds to the ±m magnetic distribution in the example in Fig. 7.2(c), should be
observed.

One possible reason for this is the presence of odd-parity electronic states, as ex-
plained below. The polar point group symmetry of C4v at U site means the presence of
an odd-parity CEF, which allows local parity hybridizations as mentioned in Chaper
1. Since the A and B sublattices are connected by an n-glide symmetry operation,
the odd-parity CEFs are inverted between the sublattices. If such parity hybridiza-
tions occur in this structure, the resultant odd-parity electronic states should also be
staggered. Note that standard RXS experiments, including this study, utilize E1-E1
transitions, where such odd-parity electronic states are unobservable. This means that
only the even-parity component of the 5f electronic state in this system is observed as
the QDW, and there may be underlying odd-parity electronic states. It is necessary to
perform further RXS experiments using the E1-E2 transition to examine this scenario
through direct observations of the parity mixed state.
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Figure 7.1: (Color online) (a) Schematic drawings of the crystal structure of UPt2Si2
and the diffraction pattern of the fundamental lattice reflections. The bold rectangles
indicates the primitive unit cell in this crystal structure. The magnetic oredered states
and the modulation on them with the propagation vector of q are shown for the case
of (b) FM order and (c) AFM order. The expected diffraction peaks in each case are
also depicted together.
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Figure 7.2: (Color online) Schematic drawings of the observed QDW and the diffraction
pattern.

Figure 7.3: (Color online) Illustration of the antiphase QDW observed below TCDW and
the possible underlying parity mixed states. Pink hatchings schematically illustrate
the parity mixed states.
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7.2 Origin of modulation in 5f electronic states by
CDW

Now, we discuss how the CDW induces magnetic modulation in UPt2Si2. Similar
phenomena have been observed in the 4f electron system of TbTe3[78, 79]. As well as
UPt2Si2, TbTe3 has a quasi-two-dimensional layered structure, with the 5p electrons of
Te forming a CDW order below ∼ 330 K and the 4f electrons of Tb undergoing an AFM
order below ∼ 6.6 K. The AFM structure is modulated with the same period as the
CDW, causing the principal axis of the magnetic moment to tilt by up to sim 5◦. This
magnetic modulation is considered to be attributed to the spatial modulation of the
CEF levels, impacting the well-localized 4f electrons in Tb. Specifically, the amplitude
of modulation in the CEF level splitting is estimated to be about 5 meV, from the RXS
measurements [78]. This CEF modulation, involving changes in the shape of the 4f
electron orbitals, results in the modulation of the direction of the magnetic moments.
Namely, the CDW induces an orbital order of the 4f electrons, which, through spin-
orbit interaction, also modulates the magnetic order. The essential element of this
scenario is the CEF modulation, which is presumed to arise from the displacement of
Te ions and an approximate 0.3% change in the Te-Tb interionic distance associated
with the CDW order.

In the case of UPt2Si2, a similar scenario might be applicable when viewed from a
localized perspective. According to the studies by Lee et al. [53], although based on
a two-dimensional analysis of limited scattering plane data, the primary displacement
in Layer 2 is of Pt(2) atoms, induced by the CDW. The direction of this displacement
is mainly in the direction perpendicular to the CDW propagation direction ([100] or
[010]), with an amplitude estimated at ∼ 0.15 Å. This results in a maximum change
of about 3.0% in the U-Pt(2) bond length. However, assuming the valence of Pt ions
remains unchanged, the displacement of Pt causes a disarray of at most 2◦ in the
principal axis direction at the U site, which seems insufficient to explain the observed
tilt of 20◦. Therefore, to explain the experimental results with a CEF model based on
effective point charges, a significant reconfiguration of charge among Pt ions adjacent
to the qCDW in a perpendicular direction is anticipated. However, no such additional
CDW induction in this direction has been observed. By contrast, in TbTe3, although
no quantitative discussion has been made regarding the relationship between the CEF
modulation and the tilt angle, the emergence of CDW coexisting and orthogonal to
the main CDW wave vector at low temperatures is noteworthy.

On the other hand, it is noteworthy that the observed tilt angle of the magnetic
moment is roughly aligned with the angle ∼ 40◦ formed by the bond between Pt(2)
and U with the crystallographic c-axis. As depicted in Fig. 10.1, the U ions in UPt2Si2
are in close proximity to four Pt(2) ions located within the same ac and bc planes,
and to four Pt(1) ions positioned at a 45-degree offset. The bond lengths for both are
approximately 3.2 Å. Our observations indicate that the magnetic moment tilts from
the c-axis towards the b-axis in response to the qCDW aligned along the a-axis. In the
CDW state, the displacement of one of the two Pt(2) ions, aligned in the b-axis direc-
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tion, towards U [53] suggests a selective bonding of the U 5f orbital with this particular
Pt. This selective bonding, while competing with the primary AFM correlations, can
naturally explain the substantial tilt of the principal axis. The experimental results
imply that the d-f hybridization between the four Pt(2) ions and U deviates from the
fourfold symmetry of the crystal, favoring a spontaneous bond formation with one
specific U-Pt(2) pair.

The above discussion emphasizes the role of hybridization not just as a perturbation
but as a crucial component of molecular orbitals, based on the nature of 5f electrons
having spatially more extended wavefunctions than 4f electrons. As conceptually il-
lustrated in Fig. 10.1, the d-f hybridization lowers the energy of 5d orbitals to form
bonding orbitals, while raising the energy of 5f orbitals to form anti-bonding orbitals.
Consequently, the 5f orbitals tend to spread in a direction orthogonal to the U-Pt(2)
bond, contributing to stabilization and, as a result, inclining the magnetic moments
towards the bond’s direction. The actual tilt angle seems to be determined by the
competition between this effect and the main antiferromagnetic correlations. Such
behavior in solids, akin to molecular orbitals, is often observed in d-electron systems
with more extensive wavefunctions, resembling what is known as nematic order. For
example, in IrTe2 [80], the CDW induced by Te 5p electrons modulates the 5d orbitals
of Ir through the hybridized bonding orbitals with Te 5p, resulting in the modulation
of 5d orbitals (stripe order), similar to the behavior observed in UPt2Si2.

a

b

c

Pt(2)

Pt(1)

Si(2)

Si(1)

qCDW

dU-Pt(2) ∼ 3.20 Å

dU-Pt(1) ∼ 3.20 Å

5f orbital

Figure 7.4: (Color online) The environment of U site. The Colored shaded area around
the U ion schematically depicts the modulated 5f orbital.

Moreover, it raises a compelling question: does the selective bonding between U
and Pt(2) enhance or conflict with the RKKY interaction derived from d-f hybridiza-
tion? In a localized model, magnetic interactions that establish Q = 0 order are
typically linked to RKKY interactions. However, the specific orbitals of conduction
electrons mediating this process remains elusive, even in first-principles calculations
[50]. Conversely, the presence of CDW order points to nesting instabilities in the
Fermi surface of 5d electrons, thereby fostering favorable conditions for the formation
of a spin density wave (SDW) at the same qCDW wave number. This phenomenon
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is exemplified in the 4f electron system of GdNiC2 [81], where a phase shift in spin
density under CDW order gives rise to SDW, possibly correlating with the 4f electron
magnetism. Future research, particularly employing RXS of Pt 5d electrons (including
under magnetic fields), to explore the existence of SDW associated with Pt 5d and
their magnetic interplay with 5f electrons, will offer intriguing insights.

Finally, from the perspective of the itinerant model, the hybridization between
U 5f and Pt 5d is interpreted as band hybridization. According to first-principles
calculations [50], the 5f orbitals exhibit itinerant characteristics near the Fermi energy,
while the 5d electrons of Pt form a valence band centered around -4.5eV, but also
hybridize with the 5f electrons, contributing to the density of states at the Fermi
level. The Fermi surface formed by these hybridized bands reflects the two-dimensional
nature of the layered structure. These theoretical calculations were conducted before
the discovery of CDW order and do not account for the nesting instabilities of the
CDW wave number nor the spontaneous breaking of symmetry in the 5f-5d orbital
hybridization. Future studies exploring whether more stable electronic and crystal
structures exist near this crystal structure will be a fascinating direction of research.
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7.3 Atomic displacements
We mention here the relationship between the information on atomic displacements
reported in the past and the electron modulation observed in the present study. The
atomic displacements in this system have also been discussed in recent pair potential
density analyses by Petkov et al [54]. According to their study, consistent with the
previous reports by Lee et al.[53], the primary atomic displacements are attributed
to Pt(2), with the magnitude of displacement being approximately 0.15 Å. There are,
however, new observations: Firstly, not only Pt(2) but also U undergoes an in-plane
displacement of about 0.03 Å. The direction of displacement is not [100] but [110],
and although small compared to the in-plane displacement, there is also displacement
perpendicular to the plane. Most notably, the displacement, in which the sheets of
Pt(2) and U alternately shift in the [110] direction, occurs uniformly at higher tem-
peratures than the CDW, with the CDW further increasing the displacement of Pt
ions. No displacements of other atoms have been detected, suggesting that the bond
between U and Pt within this crystal structure partially breaks the fourfold symme-
try, leading to a partial structural instability. While the details of atomic displacement
require further elucidation through precise structural analysis, their analysis supports
our inference that the selective bonding between U and Pt(2) brings about the local
structural instability.

We also note that the polarized neutron scattering profile at qCDW shown in
Fig. 6.14 reveals a significant difference in the peak widths between the SF and NSF
scattering modes. This implies that while the NSF signal includes nuclear scattering
from all atoms, the SF signal reflects contributions solely from the U atomic layer, in-
dicating that the U layer is relatively undisturbed, whereas the Pt layer forms multiple
domain structures, significantly disturbing periodicity. Thus, the experimental results
also support the notion that partial structural changes are occurring in UPt2Si2. The
FWHM of the NSF scattering peak suggests a coherence length perpendicular to qCDW

(along the b-axis direction) of about 160 Å(∼ 40a), while the coherence length corre-
sponding to the U atomic layer inferred from SF scattering is estimated to be at least
∼ 500 Å(> 125a).

7.4 Higher harmonics components in the magnetic
modulation

In addition, we would like to mention one distinctive feature of UPt2Si2: the pattern of
modulated charge/spin texture with qCDW, 2qCDW and 3qCDW. As summarized at the
end of Chapter 5, the transversal magnetic modulation occurs in the odd-harmonics
(qCDW, 3qCDW) while the longitudinal one occurs in the even-harmonics (2qCDW).
These components are not anticipated in typical nonparallel magnetic structures, such
as a fan-type, conical-type or helical-type ordering. Such a complexed magnetic mod-
ulation with higher harmonics components may rather be described by an analogy of
skyrmion crystals which shows CDW order within magnetic ordered states. For ex-
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ample, in GdRu2Si2, the modulations of the charge density are observed with in their
magnetic ordered phases including the skyrmion phase in the spectroscopic-imaging
scanning tunneling microscopy measurements [82]. The observed modulation of charge
density can be described with the second harmonics of the periodicity of its magnetic
ordering. Hayami et al. have investigated that such a CDW can be induced by the
SDW in itinerant systems from the exchange coupling term of charge and localized-spin
in the Kondo lattice model [83]. It is possible that this phenomenon occurs univer-
sally in some skyrmion crystals such as EuAl4 [84]. Conversely, it is also suggested
that SDWs can be induced by a CDWs through this coupling. The possibility of this
scenario in the formation of complex spin structures under CDW ordering in UPt2Si2
is an interesting point to be discussed further in the future.
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Chapter 8

Low Temperature Physical Properties
in UIr2Si2

8.1 Magnetization measurements
The temperature dependences of magnetizations measured in a magnetic fields (0.5 T)
parallel to the a-axis and c-axis, converted to magnetic susceptibility χ ≡ M/H, are
shown in Fig 8.1. The magnetizations were measured during heating processes after
zero-field-cooling (ZFC). Above 50 K, the magnetic susceptibilities along the a- and
c-axes (χa, χc) exhibit comparable values. Both of them show cusp anomalies at 6 K
(≡ TN) and χc greatly exceeds than χa below 30 K. These results reproduce previous
reports, and indicate that AFM ordering with the ordered moments parallel to the
c-axis occurs below the Néel temperature of 6 K in this system.

Figure 8.2 (a) and (b) show the inverses of χc and χa, respectively. We performed
the curve fittings on data in the PM phase using the modified Curie-Weiss law (MCW),
with a temperature independent term, as in the following equation.

χ =
C

T −ΘW

+ χ0. (8.1)

χ0 is a temperature independent term which is considered to include the contributions
of Pauli paramagnetism of conduction electrons, diamagnetism of core electrons, and
a Van-Vleck term of 5f electrons. The effective moment can be calculated from the
value of the Curie constant C in the equation from the following relation,

C =
NA

3kB
µeff

2. (8.2)

The solid curves in Fig8.2 represent the fitting results for the data within the remper-
ature range of 100-300 K. It is evident that a single law cannot accurately describe the
entire PM region. Whereas, the results of MCW fittings in a low-temperature region
(< 150 K), shown as the dashed curves, explain their behaviors well. The obtained
parameters from MCW fittings are listed in Table 8.1, and it appears that each MCW
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parameter varies with temperature, suggesting that the magnetic properties may cross
over at around 150 K. The effective moments, estimated from the obtained Curie con-
tants, to be only 2.32 µB (for H ∥ a) and 1.68 µB (for H ∥ c) are much smaller than the
values for magnetic U ions: 3.62 µB (U3+) and 3.58 µB (U4+). It suggests a reduction
on the total orbital magnetic moment due to a splitting in the 5f electronic states, such
as CEF splittings for example. The negative ΘW values in the high temperature region
mean the presence of AFM correlations in this system. In the low temperature region,
its magnitude becomes smaller and even positive for H||c. This implies the presence
of the FM correlations and complexed competing of the magnetic correlations.

Table 8.1: The results of MCW-fitting on UIr2Si2 with the fitting range (a) 100 K <
T < 300 K and (b) 8 K < T < 150 K.

(a) 100 K < T < 300 K

H ∥ c H ∥ a
µeff (µB) 1.68(1) 2.32(2)
ΘW (K) −42(2) −93(2)
χ0 (10−4 m3/mol) 1.48(2) 1.03(2)

(b) 8 K < T < 150 K

H ∥ c H ∥ a
µeff (µB) 1.200(3) 1.74(1)
ΘW (K) 3.34(8) −41.2(5)
χ0 (10−4 m3/mol) 2.27(1) 2.04(3)
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Figure 8.1: (Color online) Magnetic susceptibilities converted from the measured mag-
netizations under the magnetic field of 0.5 T parallel to the c- and a-axes. The inset
shows an enlarged view of the magnetic susceptibilities around TN.

The magnetic field variations in magnetic properties were investigated in the region
of 0.4–7 T. Figure 8.3 (a) displays the temperature dependences of the magnetizations
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Figure 8.2: (Color online) Inverse magnetic susceptibilities along (a) the c-axis and
(b) the a-axis. The solid and dashed curves in each panel are the fitting results for the
fitting range of 100–300 K and 8–150 K, respectively.

under the magnetic field parallel to the c-axis (Mc(T )), measured in heating processes
after ZFC. The cusp anomalies associated with the magentic phase transitions are
suppressed to low temperatures by the magnetic field and completely disappear above
2 T. At 1.8 T, just below the critical field for the AFM order, a characteristic behavior
with two local maxima at 2K and 5K was observed. In the region of 1.2–1.85 T,
very slight but significant temperature hystereses were observed below TN as shown
in Fig. 8.3 (b). This suggests that this magnetic transition is characterized by a first-
order transition in a part of its phase boundary. The temperature dependences of
magnetization under the magnetic field along the a-axis are shown in Fig. 8.4 (a), and
they are smaller than Mc(T ) in all the regions of 0.5–7 T. As displayed in Fig. 8.4 (b),
χa under 0.5 T exhibits a cusp anomaly at 6.2 K and it hardly changes with increasing
the magnetic field.

Figure 8.5 shows the magnetization processes measured in isothermal processes
at 1.8–6.5 K. Metamagnetic anomalies are observed in the isothermal magnetization
process at low temperatures at 1.68 T (≡ µ0Hc) with the magnetization jump about
0.1 µB/U, as already reported in the previous studies. This value is similar to the
estimated ordered moment from the previous neutron diffraction measurements. Mag-
netization shows no saturation even at 7 T and continues to increase gradually. Careful
examination reveals that very narrow magnetic-field hysteresis are observed within the
AFM phase (Fig. 8.5 (b)), and this hysteresis disappears at 3.5–4 K. This hystere-
sis region appears to correspond to the region where the temprature hysteresis was
observed in Mc(T ).
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Figure 8.3: (Color online) (a) Temperature dependences of the magnetization under
the magnetic field of 0.4–7 T along the c-axis, measured in a heating process after ZFC.
The triangle marker indicates TN under each magnetic field, which is evaluated as the
temperature of the local maximum in the magnetization. (b) Enlarged magnetizations
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magnetic field along the c-axis. (b) Enlarged magnetization processes below 2 T. The
open symbols represent the data measured in the sequence of the decreasing magnetic
field. The data are vertically shifted for clarity.
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8.2 Specific heat measurement
The temperature dependence of specific heat of UIr2Si2 C(T ) shown in Fig.8.6 exhibit
a clear λ-anomaly at TN. The specific heat of non-5f system ThIr2Si2 reported in the
previous study [85] is also shown together in the figure. In the PM phase, the obtained
C(T ) can be described by the sum of the T -linear and T 3-contributions below ∼ 30 K,
as shown in the C/T vs T 2 plot (Fig. 8.7(b)), and we obtained the Debye temperature
of about 250 K and the electronic specific heat coefficient γ = 110(6) mJ/K2mol.
The value of γ is enhanced to about 100 times lager than the value for typical free
electrons, suggesting the formation of the HF state. This large specific heat remains
even below TN as shown in Fig. 8.7 (a). A linear extrapolation below 2 K gives γ ∼
250 mJ/K2mol, implying the coexistence of the magnetic ordering and the HF state
with a further enhanced effective mass.
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Figure 8.6: (Color online) Temperature dependences of the specific heat measured
under zero magnetic field. The solid symbols represent the data of UIr2Si2 that we
measured and the open symbols are the data of ThIr2Si2 from the previous report by
K. Domieracki et al. [85]

The 5f electronic contribution in the specific heat of UIr2Si2 C5f was estimated
by subtracting the data of ThIr2Si2, and it is plotted in Fig. 8.8 as C5f/T versus T .
In addition to the λ-anomaly, we also found the broad hump-shaped residual specific
heat on the high temperature side of TN. This specific heat may be associated to
the Schottky anomalies resulting from the splitting of the 5f electronic state and the
enhancement in γ value. The integration of C5f (T )/T gives the 5f electronic entropy
S5f (TN) ∼ 2.05 J/Kmol (0.37Rln2) (Fig. 8.8). This small entropy change associated
with the AFM order is also reported in the similar U intermetallic systems, such as
UIr2Ge2 (∼ 0.16Rln2) [86] and UIrSi3 (0.14Rln2) [87]. The small values of magnetic
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Figure 8.7: (Color online) Specific heat of UIr2Si2 divided by temperature shown in
the temperature ranges of (a) <∼ 8 K and (b) <∼ 28 K.

entropy and the large γ value suggest itinerant aspect of the 5f electronic state, which
is consistent with the reduced µord. Even at the highest temperature 60 K, S5f is still
about Rln2, which indicates the splitting in the 5f electronic states.
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Figure 8.8: (Color online) Contributions of 5f electrons to the specific heat divided by
temperature, C5f/T (open symbols, left axis), and to the entropy, S5f (bold line, right
axis).

To investigate the magnetic field effect on the magnetic transition, we measured
the specific heat under magnetic fields (0–12 T) parallel to the c-axis. Figures. 8.9(a)
and 8.9(b) display the values of C(T )/T . As shown in Fig. 8.9(a), the λ-anomaly
shifts to lower temperature with increasing magnetic field up to 2 T. However, even
at 2 T, which exceeds µ0Hc estimated from magnetization, it remains as a symmetric
and broad anomaly. It is moreover broadend and shifted to higher temperature with
increasing magnetic field and remains even under 12 T (Fig. 8.9(a)).

The data C(H) converted from the data of C(T ) under the magnetic field of 0–12
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T are shown in Fig. 8.9. The critical magnetic field of AFM order corresponds well
with the field at the maximum value in C(H) (▼ in the figure). In addition, another
local maximum appears on the high field side of the anomaly at the critical field above
5.6 K (▽ in the figure). These anomalies appear to correspond to the point of the
local maximum in C(T )/T .
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Figure 8.9: (Color online) Specific heats derived by temperature under the magentic
field of (a) 0–2 T and (b) 0–12 T. (c) Magnetic field dependences converted from the
measured C(T ) under the magentic field of 0–12 T applied along the c-axis. The data
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From the anomalies observed in the specific heat and the magnetization, we con-
stracted a H-T phase diagram for the magnetic field applied parallel to the c-axis as
shown in Fig. 8.10. Both anomalies are well consistent in the region below 2 T, and
the phase boundary of the AFM phase is estimated to be as shown in Fig. 8.10(a).
Slight temperature and magnetic field hystereses are found in the magnetization at
low temperatures and low magnetic field regions, suggesting a first-order magnetic
transition. Based on the temperature range where the magnetic field histeresis was
observed in the magnetization process, its region is denoted by the yellow shaded area
in Fig. 8.10(a). This suggests the existence of a tri-critical point (TCP) at the position
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indicated by the yellow symbol in the figure, which separates the second-order phase
transition and the first-order transition. Figure 8.10(b) also shows the temperatures
of the anomalies observed as the broad peaks in specific heat under the magnetic field
above 2 T. The origins of some of the features found in this phase diagram are discussed
in the next chapter.
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Chapter 9

Discussion – UIr2Si2

9.1 Tri-critical point on the AFM phase boundary
We have previously confirmed that UIr2Ge2, which has the same crystal structure
as UIr2Si2, exhibits similar behavior with an AFM phase boundary having a triple
critical point. Our measurements of the physical properties for a single crystal of
UIr2Ge2 have revealed that it shows an AFM order below TN = 18 K [86] and The
H-T phase diagram shown in Fig. 9.1. UIr2Ge2 also shows a hysteresis phenomenon
in physical quantities in the low-temperature and low-field region, similar to UIr2Si2,
suggesting that the antiferromagnetic-paramagnetic phase transition is of first order
in that region. Another point to note is that the magnetic field dependence of TN in
the presence of a magnetic field is better explained by the 2D Ising model rather than
the 3D Ising model.

Figure 9.1: (Color online) The magnetic phase diagram of UIr2Ge2 constructed from
specific heat, magnetization, and electrical resistivity measurements on a single crystal
by our group [86, 88].

On the basis of the observed propeties, we propose that the presence of a 2D spin
network reflecting the layer strucgure in CaBe2Ge2-type crystal structureis the origin
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of the TCP in these systems. According to the studies of Ising spin systems by Slotte
et al. [89] and Jäger et al. [90], it is known that a TCP can exist on the AFM phase
boundary in a system with a spin-network system on a 2D square lattice as shown in
Fig. 9.2(a). Although UIr2Si2 and UIr2Ge2 have different magnetic structures, we can
find such a spin network in each system. As mentioned in Chapter 2, UIr2Si2 has the
magnetic structure with the propagation vector of Q = 0, where ferromagnetic layers
are alternately stacked along the c-axis direction. On the other hand, inUIr2Ge2, the
propagation vector has been found to be Q = (0, 0, 1/2), where ferromagnetic layers
are stacked along the c-axis in an up-up-down-down pattern [88]. In each magnetic
structure, by extracting a bilayer structure consisting of two U layers and projecting
it onto the c-plane, it can be regarded as the 2D spin network exactly as shown in
Fig. 9.3. Although it is unclear whether the U bilayer structure includes a Layer1 or
Layer2, it is believed that both have strong magnetic interactions (J1 and J2) within
the bilayer structure. It is suggested that the difference in the magnetic structures of
the two materials arises from the difference in the interaction (J3) between the bilayer
structures, which can be either weak antiferromagnetic or ferromagnetic interactions.
This suggests that Layer 1 and Layer 2 have significantly different properties, even
though they are composed of the same elements.

spin network on 2D sq. lattice phase diagram

up spin

down spin TTCP = −J2/0.4407kB

staggered

mag. field

T

1st order

2nd order

�0Hc

TN

�0H

(a) (b)

Figure 9.2: (Color online) (a) The spin network on a 2D square lattice discussed in the
previous theoretical studies [89, 90]. (b) A schematic drawing of the expected phase
diagram for the 2D spin network shown in (a).

9.2 5f electronic states in UIr2Si2
In this section, we discuss the interesting features found in the 5f electronic properties.
The first is the HF state and its features under the magnetic field. As shown in the
previous chapters, the increase in γ was observed, which suggests the formation of
a HF state. It is notable that its value appears to increase from the PM phase to
the AFM phase. To investigate the properties of the HF state in UIr2Si2, the data
of C(T )/T at the lowest temperature plotted against the magnetic field are shown in
Fig. 9.4. Above the critical field, it decreases with increasing magnetic field, as seen in
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Figure 9.3: (Color online) Spin network in the bilayer structures in UIr2Si2 and
UIr2Ge2.

other typical HF systems. Such behavior can be qualitatively understood in terms of
the Zeeman splitting of the Kondo resonance. Here, we assume a simple 2-level system
with level spacing E, which can be roughly estimated to be ∼ 2µzB as a result of the
Zeeman splitting. The γ value is then expected to show a Lorentz-functional magnetic
field dependence as shown in Eq. (9.1) at low temperature limit on the basis of the
phenomenological model [91, 92].

γ =
π

3

∆

∆2 + E2
k2BNA, (9.1)

where ∆ is the width of the Kondo resonance peak. The present experimental data
can be qualitatively explained by the following equation with the additional term γ0 =
110 mJ/K2mol (solid line in Fig. 9.4).

γ = A
∆

∆2 + E2
+ γ0, (9.2)

where A is a scale factor and γ0 is a field-independent contribution. This result implies
that the HF state with γ ∼ 300 mJ/K2mol was suppressed by the magnetic field,
leading to anoteher HF state with γ ∼ 110 mJ/K2mol in the higher magnetic field
region. These two HF states appear to correspond to the values of γ in the AFM and
paramagnetic phases estimated from C(T )/T under zero magnetic field.

This increase in effective mass at low temperature and low magnetic field region
could be related to the characteristic temperature dependence of the critical magnetic
field in the region of the first-order transition. For the first-order phase transition, the
Clausius-Clapeyron relationship yields the following equation describing the tempera-
ture variation of the critical magnetic field.

µ0
dHc

dT
= − ∆S

∆M
= − SPM − SAFM

MPM −MAFM

, (9.3)
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where SPM (SAFM) means the entropy in the PM (AFM) phase and MPM (MAFM)
means the magnetization in the PM (AFM) phase. This means that the increase
in µ0dHc with increasing temperature suggests that SAFM is larger thanSPM. In a
standard paramagnetic transition, the magnetic entropy should decrease in the phase
transition from the AFM oredered state to the PM state. However, in the case of
UIr2Si2, it is possible that SAFM > SPM reflecting an increase in the effective mass in
the low-temperature and low-field region.

Another feature is the broad peak anomaly observed in C(T )/T above the critical
magnetic field. The temperature which the peak occurs, Tmax, was increases almost lin-
early with the magnetic field, and the characteristics of the free-spin Schottky anomaly.
Here again, we assume a simple 2-level system and discuss the Zeeman effects on the
level splitting. The energy gap between these levels Egap can be approximately es-
timated from Tmax, using the relationship of Egap ∼ 3Tmax. Assuming that Egap is
caused by the Zeeman effect, the magnetic field change in Egap is estimated to be
∆Egap = 2µz∆B. On the basis of the field dependence of Tmax in the high field region
above 8 T, the value of µz is roughly estimated as

µz ∼
3

2
(∆Tmax/∆B) ∼ 0.8µB. (9.4)

This value is comparable to the value of µeff estimated from the MCW-fitting (1.2–1.7
µB), but appears to be smaller. This deviation suggests a decrease in the observed
value of Tmax compared to that for the free spin model, which is an expected result for
the Kondo model, as discussed in HF AFM systems such as CeAl2 [93]. The observed
Schottky-like anomaly is considered to be associate with the crossover between the
Kondo singlet state and the Zeeman split state under magnetic fields.
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Chapter 10

Concluding remarks

In this work, using diffraction experiments for the decomposition and extraction of
CDW effects, we investigated the 5f electronic states in UPt2Si2 to obtain microscopic
information of the environmental effects on the 5f electrons.

Firstly, we performed RXS experiments at the M4 absorption edge of U on UPt2Si2
and observed two distinct types of resonance signals from 5f electrons, manifesting as
superlattice reflections associated with qCDW. The first is a magnetic signal that devel-
ops below TN around the fundamental lattice reflection. The second is a non-magnetic
signal appearing below TCDW around the forbidden positions for this crystal structure,
which does not show any temperature variation around TN. Detailed measurements of
polarization-dependence and azimuth angle-dependence of these signals have revealed
that the first signal arises from a transverse magnetic modulation, where the magnetic
moments are canted to induce a c-plane component with the period of the CDW. The
latter signal, on the other hand, is attributed to an orbital modulation of 5f elec-
trons, corresponding to attributed to a modulated electric distribution of 5f electrons,
including a component of quadrupole density wave.

Secondly, in the study of neutron diffraction experiments on UPt2Si2, we thor-
oughly investigate the magnetic structure of its AFM phase. We reconfirmed the
previously reported Q = 0 AFM order with the ordered magnetic moment estimated
to be 1.93(5) µB/U, aligned parallel to the c-axis within an experimental accuracy
of ∼ 0.01 µB/U. Moreover, we observed nuclear scattering corresponding to atomic
displacements induced by the CDW order and magnetic modulation waves occurring
at the same periodicity as the CDW. These findings are in line with our previous RXS
experiments. A significant new insight gained was the amplitude of the magnetic mod-
ulation, determined to be 0.72(2) µB/U, suggesting a tilting of U magnetic moments by
about 20◦ due to the CDW influence. The CDW-induced average structural changes
in the Pt(2) atoms are found to be small, suggesting that the tilting of 5f electron
orbitals cannot be simply explained.

Based on these results, we propose that selective hybridization between U 5f elec-
trons and adjacent Pt(2) 5d electrons spontaneously breaks the fourfold symmetry of 5f
orbitals, significantly tilting their principal axis. In addition to such inter-site mixing
effects, we also propose the possibility of intra-site hybridization effects. The observed
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antiphase orbital modulation in the RXS experiments is expected as a result of this
selective inter-site hybridization with only Layer 2 of the two layers sandwiching the
U-layer. This means that, simultaneously, the 5f electrons ‘feel’ the polar environment
at the U site lacking the local inversion symmetry. That is precisely the situation where
parity mixed states on a single ion site, which have not been found in the f-electron
systems, can appear through an intra-site hybridization.

The detailed and microscopic information obtained in this study is expected to
contribute to the advancement of future research on hybridization effects. Specifically,
the information on symmetry is important for group theory considerations, and the
quantitative data is important for comparison with model calculations, including first-
principles calculations.

In terms of future experimental work, precise structural analysis using hard X-
ray is necessary. In adittion, direct observation of Pt 5d and U 6d electron orbitals
through RXS, including the high-temperature range above TCDW, are anticipated to
provide further insights. Particularly, direct observation of intra-site parity hybridiza-
tion is unprecedented and challenging, but it is expected to provide important new
information on 5f electronic states in solids.

c

a

b

c

a

b

(a) (b)

Figure 10.1: (Color online) The Schematic illustrations of (a) the magnetic modulation
and (b) the orbital modulation.

In addition to UPt2Si2, the 5f electronic state in UIr2Si2, which has the same crys-
tal structure, was investigated in detail by means of magnetization and specific heat
measurements under magnetic fields, and the H-T phase diagram of this system was
obtained. The results reveals that the AFM phase boundary shows a characteristic
feature with dHc(T )/dT > 0 as T → 0, posessing a TCP at ∼ 4 K (∼ 2 T). From com-
parison with a similar system, UIr2Ge2, we discussed the possibility of the formation
of a 2D spin network reflecting the layer structure in the CaBe2Ge2-type structure.

One of the intriguing features of UIr2Si2 is the formation of HF states with two
distinct energy scales as the temperature decreases. The temperature dependence
of the specific heat shows an increases in the effective mass of conduction electrons,
from thecorresponding γ value, of 110 mJ/K2mol in the paramagnetic phase to 280
mJ/K2mol in the AFM phase. The specific heat at the lowest temperature decreases
with magnetic field, suggesting the suppression of the HF state by magnetic field. The
observed broad peak anomalies in the specific heat above 2 T imply a competition
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between the Kondo effect and the Zeeman effect under the magnetic field in this
system. The origin of these characteristics in the HF states still remains unclear. It
is necessary to discuss these issues in detail by investigating the 5f electronic states in
this system using microscopic techniques similar to the studies conducted on UPt2Si2.
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