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Approximate master equations for the spatial public goods game
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The spatial public goods game has been used to examine factors that promote cooperation. Owing to the
complexity of the dynamics of this game, previous studies on this model neglected analytical approaches and
relied entirely on numerical calculations using the Monte Carlo (MC) simulations. In this paper, we present
the approximate master equations (AMEs) for this model. We report that the results obtained by the AMEs
are mostly qualitatively consistent with those obtained by the MC simulations. Furthermore, we show that it is
possible to obtain phase boundaries analytically in certain parameter regions. In the region where the noise in
strategy decisions is very large, the phase boundary can be obtained analytically by considering perturbations
from the steady state of the voter model. In the noiseless region, discontinuous phase transitions occur because
of the characteristics of the function that represents strategy updating. Our approach is useful for clarifying the
details of the mechanisms that promote cooperation and can be easily applied to other group interaction models.

DOI: 10.1103/PhysRevE.109.024304

I. INTRODUCTION

The selfish behavior of individuals often leads to undesir-
able outcomes. Public goods are prone to exploitation by free
riders who reap benefits without incurring costs. This phe-
nomenon is known as a social dilemma or the “tragedy of the
commons” [1]. There is considerable interest in understanding
what promotes cooperation, and game theory has been used
to delve into this question [2]. Since network reciprocity has
been identified as a mechanism that promotes cooperation [3],
many studies have examined the effect of network structure
on cooperation [4–11]. Among others, pairwise games (e.g.,
prisoner’s dilemma games) on lattices have been studied by
numerical calculations using the pair approximation [4] or
approximations considering larger blocks of nodes [5,6] as
well as Monte Carlo (MC) simulations.

The spatial public goods game is a fundamental model for
the cooperative interactions that occur in groups on a social
network [11–16]. The game has also been studied as a statisti-
cal physics model because of its similarity to the spin model.
In previous studies [12,13], phase diagrams for this model
were derived using MC simulations. They have revealed that
cooperators can survive under conditions where they die out
in a well-mixed population, and that cooperators and defectors
can coexist, which is impossible in a well-mixed population.
However, the previous studies only involved numerical cal-
culations because of the complexity of the game dynamics,
and hence, the exact values of the transition points where the
cooperators or the defectors become extinct are not known,
and an analytical understanding is insufficient.

In this paper, we present the approximate master equa-
tions (AMEs) [17–19] for the spatial public goods game. This
method is an extension of the mean-field and the pair approxi-
mation and is more accurate than these. In addition, the AMEs
can be applied to networks other than lattices. There are two
advantages to using this equation. First, the AMEs can be a
platform for numerical calculation, and also be used to devise

analytical approaches for certain parameters. This makes it
possible to reveal the details of the mechanisms that promote
cooperation. Second, the AMEs describe the dynamics of a
network of infinite size, enabling us to study the properties of
this model in the thermodynamic limit.

II. MODEL

A. Spatial public goods game

First we explain the public goods game. We consider a
group of G agents, each adopting one of the following strate-
gies: cooperation (C) or defection (D). A cooperator pays
a cost, 1, and contributes to the public goods. A defector
incurs no cost and does not contribute. The public goods is
denoted as F (NC), a function of the number of cooperators
NC, and is divided equally among all members of the group.
In accordance with previous studies, we adopt the simplest
one: F (NC) = rNC, where the parameter r is the synergy
factor of cooperation. Therefore, the payoff of a cooperator
is �C = rNC/G − 1, while that of a defector is �D = rNC/G.

Next, we introduce a network structure into this model.
We consider a k-regular random graph with N nodes. Each
node represents an agent who plays the public goods game
in a group consisting of G = k + 1 nodes: itself and its k
neighbors. We adopt the following imitation dynamics as the
rule for strategy updating. A node x and its adjacent role
model y are randomly chosen. The node x imitates the strategy
of the role model y with a probability given by the sigmoid
function:

f (�x − �y) ≡ 1

1 + e(�x−�y )/K , (1)

where �i denotes the payoff of node i (∈ {x, y}), and K
denotes the uncertainty in the strategy adoptions (or noise).
In the limit K → 0, node x copies the strategy of node y if
and only if �x < �y. Conversely, in the limit K → ∞, the
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decision on whether to imitate the strategy of the role model
is randomly determined regardless of their payoffs.

Initially, cooperators and defectors are distributed uni-
formly at random. The strategy is repeatedly updated to obtain
the fraction of cooperators, ρC, in the steady state. Note that
ρC = 0 and 1 are absorbing states since the strategy of a node
changes only if its strategy and the strategy of a role model are
different. The operating parameters are r and K . We define
the region where ρC = 1 in the steady state as the C phase,
the region where ρC = 0 as the D phase, and the region where
0 < ρC < 1 as the (C + D) phase.

B. Mean-field approximation

Before deriving the AMEs, we consider a differential
equation using the mean-field approximation. Since this ap-
proximation cannot represent the network structure, it is
equivalent to the dynamics in a well-mixed population. Let
ρC(t ) and ρD(t ) (= 1 − ρC(t )) denote the fractions of cooper-
ators and defectors at time t , respectively. Here, ρC increases
when a D node is chosen as the node updating its strategy and
a C node is chosen as the role model and the D node imitates
the strategy of the C node. This probability is ρDρC f (�D −
�C). Note that the strategies of (k − 1) nodes in the group
to which the D node (or the C node) belongs have not been
determined, that is, NC = (k − 1)ρC + 1. The decreasing case
is also derived similarly. Thus, the time derivative of ρC can
be expressed as follows:

d

dt
ρC = ρC

(
1 − ρC

)
[ f (�D − �C) − f (�C − �D)]

= ρC
(
1 − ρC

)
tanh

(
�C − �D

2K

)
, (2)

where

�C = r
(k − 1)ρC + 1

k + 1
− 1, �D = r

(k − 1)ρC + 1

k + 1
. (3)

Since �C < �D, ρC consistently decreases and eventually
reaches zero. In other words, cooperators cannot survive in
a well-mixed population.

III. RESULTS

A. Approximate master equation

We derive the AMEs for this model. We call a node with
strategy s(∈ {C, D}) that is adjacent to m(= 0, 1, . . . , k) co-
operators as an sm node. The payoff of an sm node is denoted
as �sm and can be expressed as follows:

�Cm = r
m + 1

k + 1
− 1, �Dm = r

m

k + 1
. (4)

We define the fraction of sm nodes at time t as ρs
m(t ). These

variables satisfy the following normalization:

∑
s∈{C,D}

k∑
m=0

ρs
m = ρC + ρD = 1. (5)

Further, note that from the two counting methods of the num-
ber of CD edges, the following relationship holds:∑

m

(k − m)ρC
m =

∑
m

mρD
m . (6)

The AMEs are differential equations in ρs
m given as follows

(see [17] and Appendix A for details):

d

dt
ρC

m = − W C→D
m ρC

m + W D→C
m ρD

m

− βC(k − m)ρC
m + βC(k − m + 1)ρC

m−1

− γ CmρC
m + γ C(m + 1)ρC

m+1,

d

dt
ρD

m = − W D→C
m ρD

m + W C→D
m ρC

m

− βD(k − m)ρD
m + βD(k − m + 1)ρD

m−1

− γ DmρD
m + γ D(m + 1)ρD

m+1, (7)

where we define ρC
−1 = ρC

k+1 = ρD
−1 = ρD

k+1 = 0, and W s→s′
m

denotes the transition probability from sm to s′
m.

W C→D
m ≡ k − m

k
〈 f (�Cm − �D)〉,

W D→C
m ≡ m

k
〈 f (�Dm − �C)〉, (8)

βC ≡
∑

m′ m′W D→C
m′ ρD

m′∑
m′ m′ρD

m′
,

γ C ≡
∑

m′ m′W C→D
m′ ρC

m′∑
m′ m′ρC

m′
,

βD ≡
∑

m′ (k − m′)W D→C
m′ ρD

m′∑
m′ (k − m′)ρD

m′
, (9)

γ D ≡
∑

m′ (k − m′)W C→D
m′ ρC

m′∑
m′ (k − m′)ρC

m′
,

where we define〈
f
(
�Cm − �D

)〉
≡

k∑
m′=0

m′ρD
m′∑k

m′′=0 m′′ρD
m′′

f (�Cm − �Dm′ ),

〈 f (�Dm − �C)〉

≡
k∑

m′=0

(k − m′)ρC
m′∑k

m′′=0(k − m′′)ρC
m′′

f (�Dm − �Cm′ ). (10)

Notice that the AMEs do not account for the loop structure,
and therefore, it corresponds to the dynamics on the Bethe
lattice. We begin with an initial state where cooperators and
defectors are randomly distributed:

ρC(0) = 1

2
,

ρC
m(0) = ρC(0)

(
k
m

)(
ρC(0)

)m(
1 − ρC(0)

)k−m
,

ρD
m (0) = (

1 − ρC(0)
)(k

m

)(
ρC(0)

)m(
1 − ρC(0)

)k−m
. (11)
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By solving the AMEs numerically, we obtain ρC(t ) =∑
m ρC

m(t ).

B. Analytical results

1. Noiseless region (K = 0)

At K = 0, the probability of adopting the strategy of the
role model described in Eq. (1) is a step function. Thus, we
can calculate

f (�Cm − �Dm′ ) = θ (�Dm′ − �Cm )

= θ

(
r

m′

k + 1
− r

m + 1

k + 1
+ 1

)

= θ

(
(m′ − m − 1) + k + 1

r

)
. (12)

Because m and m′ are nonnegative integers, f (·) takes the
same value in any r satisfying n − 1 < (k + 1)/r < n (n ∈ N)
and changes discontinuously at r = (k + 1)/n.

2. Noisy region (K � 1)

If the noise K is sufficiently large, we can approximate
Eq. (1) as follows:

f (�x − �y) ≈ 1

2
− �x − �y

4
K−1. (13)

Thus, by defining

W C→D
m,voter ≡ k − m

k
,

W D→C
m,voter ≡ m

k
,

W C→D
m,� ≡ k − m

k

〈
�Cm − �D

〉
,

W D→C
m,� ≡ m

k

〈
�Dm − �C

〉
, (14)

we can divide the transition probability into the following two
parts:

W s→s′
m = 1

2
W s→s′

m,voter + 1

4K
W s→s′

m,� . (15)

Up to the zeroth order of K−1, the dynamics of the model fol-
lows a transition rule such that each node changes its strategy
(with 1/2 probability) to that of a randomly selected neighbor.
This is essentially equivalent to the voter model [20,21]. Using
the AMEs and Eq. (6), we can confirm that the fraction of
cooperators remains constant:

d

dt
ρC =

∑
m

[
−1

2
W C→D

m,voterρ
C
m + 1

2
W D→C

m,voterρ
D
m

]

= 1

2k

[
−

∑
m

(k − m)ρC
m +

∑
m

mρD
m

]
= 0. (16)

From this result, we can express the steady state of the voter
model as ρ∗s

m (ρC) as a function of ρC.
Next, we consider the model dynamics up to the first

order of K−1. If the noise is sufficiently large, the system
first relaxes to the steady state of the voter model ρ∗s

m (ρC).

Notice that the transition based on payoffs, W s→s′
m,� /4K , is

much smaller than the transition in the voter model, W s→s′
m,voter/2.

Hence, the steady state of the voter model always holds:
ρs

m = ρ∗s
m (ρC). Thus, the time derivative of ρC can be written

as follows:
d

dt
ρC =

∑
m

[−W C→D
m ρ∗C

m + W D→C
m ρ∗D

m

]

= 1

4K

∑
m

[−W C→D
m,� ρ∗C

m + W D→C
m,� ρ∗D

m

]

= 1

2Kk
∑

m′′ m′′ρ∗D
m′′

×
∑

m

∑
m′

m(k − m′)ρ∗D
m ρ∗C

m′
(
�Cm′ − �Dm

)

= 1

2Kk(k + 1)

[
r
∑

m

[
m(k − m)ρ∗C

m − m2ρ∗D
m

]

+[r − (k + 1)]
∑

m

(k − m)ρ∗C
m

]
.

Since ρ∗s
m (ρC) satisfies (see Appendix B)∑

m

m(k − m)ρ∗C
m =

∑
m

m2ρ∗D
m , (17)

we obtain
d

dt
ρC = 1

2Kk(k + 1)
[r − (k + 1)]

∑
m

(k − m)ρ∗C
m (ρC).

(18)

Therefore, if the noise K is sufficiently large, the (C + D)
phase does not exist, and the boundary between the C and D
phases is r = k + 1.

3. Condition for the survival of cooperators

We roughly estimate the condition for which cooperators
can survive. The following equation is obtained from the
AMEs and Eq. (6):

d

dt
ρC = 1

k
∑

m′′ m′′ρD
m′′

k∑
m=1

k−1∑
m′=0

m(k − m′)ρC
m′ρ

D
m

× tanh

(
�Cm′ − �Dm

2K

)
. (19)

Since �Ck−1 − �D1 = r(k − 1)/(k + 1) − 1, for r < (k + 1)/
(k − 1) all the terms on the right side of the above equation be-
come negative, and the cooperators become extinct. That is,
the lower boundary for the C and (C + D) phases must satisfy
r > (k + 1)/(k − 1).

4. Condition for the survival of defectors and power relaxation

In the parameter region where defectors manage to survive,
we expect that clusters of defectors exist separated from each
other in the sea of C. We first seek the conditions under which
an isolated D cluster can survive, ignoring interactions among
D clusters. Since defectors do not contribute to the public
good, a D node has the largest payoff when it is completely
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surrounded by C nodes. Thus, no D cluster of any size can
survive under the condition where even an isolated D node
cannot survive.

Now, we consider the region where r > k + 1. In this re-
gion, the payoff of an isolated defector is larger than that of its
neighboring cooperator. In contrast, the payoff of a defector in
a cluster consisting of two or more defectors is always smaller
than that of its neighboring cooperator. If there is no noise
(i.e., K = 0), a node always imitates the strategy of a role
model if and only if the payoff of the role model is larger than
its own. Therefore, D clusters oscillate in size between one
and two. D clusters also oscillate if the noise is not negligible,
though isolated D nodes disappear with some probability.

Next, we take into account the interactions among D clus-
ters. We consider the region r > k + 1 and K = 0. In the
following discussion, we refer to a D cluster of size one or
two as a tiny D cluster. Since the node that updates its strategy
is randomly chosen, the D node in a D cluster of size two
that switches to C is also randomly determined. This implies
that each tiny D cluster moves randomly on the network like
an inchworm. When a tiny D cluster comes next to another
one, these clusters merge to form one cluster, which then
shrinks to form a tiny D cluster, with a probability larger
than zero. Therefore, the dynamics can be regarded as a co-
alescing random walk. In this case, the problem of finding
the relaxation time is equivalent to finding the coalescence
time for the corresponding coalescing random walk. On a
finite regular random graph, the coalescence continues until
there exists only one D cluster. Previous investigations [22,23]
have revealed that the coalescence time is O(N ). On an in-
finite regular random graph (or the Bethe lattice), any two
random walkers do not meet with a probability larger than
zero, and the coalescence time diverges. Therefore, in the
AMEs case also, the region r > k + 1 and K = 0 belongs to
the (C + D) phase, but the steady state is different from that
in the finite case.

We can roughly estimate the relaxation time on a finite
regular random graph for r > k + 1 and K = 0 by considering
the evolution of the number of tiny D clusters (or random
walkers), represented by x(t ). The probability that either tiny
D clusters move in one strategy updating is proportional to the
number of tiny D clusters x(t ). Furthermore, we estimate the
probability that a tiny D cluster visits a certain node in one
step as 1/N . When a tiny D cluster visits a node near another
tiny D cluster, these clusters coalesce into a tiny D cluster with
a certain probability. That is, the probability that a random
walker disappears in one step is proportional to (x(t ) − 1)/N .
Therefore, the evolution of x(t ) can be approximated as fol-
lows:

d

dt
x(t ) ≈ −αx

x − 1

N
= α

N
x(1 − x), (20)

where α is a constant. This is a logistic equation and can be
solved:

x(t ) = x(0)

x(0) + (1 − x(0))e−αt/N
≈ 1

1 − e−αt/N
. (21)

Note that we assume x(0) � 1. Since x(t ) → 1 in the limit
t → ∞, eventually only one D cluster will survive. Ad-
ditionally, the number of D clusters at time τ ≡ t/N is

FIG. 1. Phase diagram with degree k = 4. The solid lines and the
color map are the results obtained by numerical calculations of the
approximate master equations (AMEs) using the Euler method, with
the time step 1/10, computed up to t = 5 × 103. We define ρC <

10−5 as the C phase (and the same for the D phase). The dotted lines
indicate the phase boundary obtained from the Monte Carlo (MC)
simulations. The number of nodes N = 105, 5 × 103 MCS.

independent of the number of nodes N . This result is con-
sistent with the fact that the coalescence time is O(N ). If τ

is small enough, we can estimate x(t ) ≈ α−1τ−1 and ρD(t ) ∝
x(t )/N = α−1t−1. That is, the fraction of defectors is indepen-
dent of N and decreases as t−1.

C. Numerical calculations

Figure 1 shows the phase diagrams obtained by using the
AMEs and the MC simulation. We ran the MC simulations on
a network with N = 105 and k = 4 up to 5 × 103 Monte Carlo
steps (MCS; N strategy updating per MCS). For both phase
diagrams, in the absence of noise (i.e., K = 0), the boundary
between the D and (C + D) phases is r = (k + 1)/2 = 2.5,
and defectors survive even in the limit r → ∞. As the noise
increases, the phase boundary approaches r = k + 1 = 5.
These results are consistent with those obtained analytically.
While cooperators go extinct in a well-mixed population (or
in the mean-field approximation), they can survive in some
regions when network structure is considered (network reci-
procity [2,3]). This is because structured populations allow
heterogeneous distributions, enabling cooperators to cluster.

The r dependance of ρC at K = 0 and K = 1 is shown
in Fig. 2. At K = 0, the fraction of cooperators changes dis-
continuously at r = 5, 2.5 but stays constant in the other r.
Figure 3 shows the time evolution of ρC in r > k + 1 and
K = 0. As revealed from the analytical results, ρC decreases
as t−1, independent of N , until only one tiny D cluster remains.
Conversely, no power relaxation was seen in the AMEs.

IV. SUMMARY AND DISCUSSION

We derived the AMEs for the spatial public goods game
and found that the results obtained by the AMEs are mostly
qualitatively consistent with those by the MC simulations.
Furthermore, we confirmed that discontinuous phase transi-
tions occur for K = 0 and K → ∞ and that the transition
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FIG. 2. Fraction of cooperators at K = 0 (upper) and K = 1
(lower). The orange lines and the blue lines (or marks) denote the
results obtained by the AMEs and the MC simulations, respectively.
The MCS were taken up to 5 × 103 (1.5 × 105 in K = 0 and r > 5),
and the last 103 MCS results were averaged. In addition, independent
simulations were run ten times and averaged. The error bars represent
the maximum and minimum values among all samples. At K = 0, the
variance is so small that the error bar overlaps the line of the average,
and hence, this case is not shown.

points are quantitatively consistent with the AMEs and MC
simulation results. These transition points are also consistent
with analytically obtained results. In the MC simulations, the
phase boundary is sharp around low K and r ≈ 4, but such a
sharp boundary is not seen in the AMEs results because of the
finite size effects and insufficient approximation accuracy of
the AMEs.

At K � 1, we clarified that the steady state of the voter
model drastically affects the phase boundary. We note that the
steady state of the voter model depends on whether the net-
work is finite or infinite, or on the dimension of the network.
For a finite network or an infinite network with one or two
dimensions, the initial state (rather than the synergy factor
r) makes a larger contribution to determining the absorbing
state (i.e., ρC = 0 or 1) that the system will eventually reach.
Conversely, in the AMEs that correspond to the Bethe lattice,
the system will always reach the absorbing state ρC = 1 when
r > k + 1, even if there are more defectors than cooperators
in the initial state.

FIG. 3. Time evolution of ρD in r > 5 and K = 0, and the num-
ber of nodes N = 105 (blue), 5 × 104 (orange), and 104 (green). The
solid line has a slope of −1.

We showed that the value of ρC varies discontinuously in
the noiseless region. The discontinuity is due to the shape of
the function representing the probability of strategy updating
and the discrete number of cooperators; therefore, networks
with any degree distributions or models with nonuniform
group sizes should also show discontinuities, as long as they
follow the same probability f .

As described above, our approach is useful for analyzing
the model in detail. Additionally, our method can be applied
to other models (see Appendix C). It can be easily extended
to models that follow another public goods function F (NC) or
to models with multiple strategy update rules (e.g., Javarone
et al. [24]). The method can also be applied to complex
many-body interaction models that depend on strategies of the
next-nearest nodes or more distant nodes. Furthermore, the
AMEs have been formulated for arbitrary degree distributions
[17]. Thus, this method can be applied to models on hetero-
geneous networks where extended mean-field approximations
considering blocks of nodes [5,6] are not available.
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APPENDIX A: DERIVATION OF THE AMES

The time evolution of the fraction of sm nodes is expressed
as follows (see Fig. 5):

d

dt
ρC

m(t ) = −W (Cm → Dm)ρC
m + W (Dm → Cm)ρD

m

− W (Cm → Cm+1)ρC
m + W (Cm−1 → Cm)ρC

m−1

− W (Cm → Cm−1)ρC
m + W (Cm+1 → Cm)ρC

m+1,

(A1)
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FIG. 4. Schematic showing the Cm node imitating the strategy of
the Dm′ node. The dotted enclosure represents the group containing
the Cm node.

d

dt
ρD

m (t ) = −W (Dm → Cm)ρD
m + W (Cm → Dm)ρC

m

− W (Dm → Dm+1)ρD
m + W (Dm−1 → Dm)ρD

m−1

− W (Dm → Dm−1)ρD
m + W (Dm+1 → Dm)ρD

m+1,

(A2)

where W (sm → s′
m′ ) is the transition probability from sm to

s′
m′ . We first derive the expression of W (Cm → Dm) (see also

Fig. 4). When a Cm node is chosen as the node that updates
its strategy, a defector is chosen as the role model with proba-
bility (k − m)/m and the Cm node imitates the strategy of the
role model with probability f :

W C→D
m ≡ W (Cm → Dm)

= k − m

k
〈 f (�Cm − �D)〉

= k − m

k

k∑
m′=0

pD
C(m′) f (�Cm − �Dm′ ), (A3)

FIG. 5. Schematic of transitions in the AME.

where we give the probability f by the expected value, and
denote ps′

s (m′) as the probability that a node is s′
m′ under

the condition that it adopts strategy s′ and is adjacent to the
s node:

pC
C(m′) = m′ρC

m′∑
m mρC

m

,

pD
C(m′) = m′ρD

m′∑
m mρD

m

,

pC
D(m′) = (k − m′)ρC

m′∑
m(k − m)ρC

m

,

pD
D(m′) = (k − m′)ρD

m′∑
m(k − m)ρD

m

. (A4)

We approximated ps′
s (m′|m) by ps′

s (m′) in Eq. (A3), where
ps′

s (m′|m) is the probability that a node is s′
m′ under the con-

dition that it adopts strategy s′ and is adjacent to the sm node.
If m and m′ are correlated, they are not equal. In networks
with a large average clustering coefficient, there is a positive
correlation between m and m′ because there are nodes adjacent
to both nodes. Therefore, this approximation is more accurate
for networks with fewer loops. Similarly, we derive

W D→C
m ≡ W (Dm → Cm)

= m

k
〈 f (�Dm − �C)〉

= m

k

k∑
m′=0

pC
D(m′) f (�Dm − �Cm′ ). (A5)

We define βC (γ C) as the probability that a defector (coopera-
tor) adjacent to a cooperator changes the strategy to C (D):

βC =
∑

m′
pD

C(m′) W D→C
m′ , γ C =

∑
m′

pC
C(m′) W C→D

m′ . (A6)

We can express the transition probability as follows:

W (Cm → Cm+1) = βC(k − m),

W (Cm−1 → Cm) = βC(k − m + 1),

W (Cm → Cm−1) = γ Cm,

W (Cm+1 → Cm) = γ C(m + 1). (A7)

We define βD and γ D similarly. By using these terms, we can
derive the AMEs for the public goods game, Eq. (7).
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APPENDIX B: RELATION SATISFIED IN THE STEADY STATE OF THE VOTER MODEL

To obtain the AMEs for the voter model, we only replace W s→s′
m with W s→s′

m,voter. We calculate

d

dt

∑
m

mρC
m = −1

k

∑
m

m(k − m)ρC
m + 1

k

∑
m

m2ρD
m

− 1

k

∑
m′ m′2ρD

m′∑
m′ m′ρD

m′

∑
m

m(k − m)ρC
m + 1

k

∑
m′ m′2ρD

m′∑
m′ m′ρD

m′

∑
m

m(k − m + 1)ρC
m−1

− 1

k

∑
m′ m′(k − m′)ρC

m′∑
m′ m′ρC

m′

∑
m

m2ρC
m + 1

k

∑
m′ m′(k − m′)ρC

m′∑
m′ m′ρC

m′

∑
m

m(m + 1)ρC
m+1

= −1

k

∑
m

m(k − m)ρC
m + 1

k

∑
m

m2ρD
m

− 1

k

∑
m′ m′2ρD

m′∑
m′ m′ρD

m′

∑
m

m(k − m)ρC
m + 1

k

∑
m′ m′2ρD

m′∑
m′ m′ρD

m′

k−1∑
m′′=0

(m′′ + 1)(k − m′′)ρC
m′′

− 1

k

∑
m′ m′(k − m′)ρC

m′∑
m′ m′ρC

m′

∑
m

m2ρC
m + 1

k

∑
m′ m′(k − m′)ρC

m′∑
m′ m′ρC

m′

k∑
m′′=1

(m′′ − 1)m′′ρC
m′′

= −1

k

∑
m

m(k − m)ρC
m + 1

k

∑
m

m2ρD
m + 1

k

∑
m′ m′2ρD

m′∑
m′ m′ρD

m′

∑
m′′

(k − m′′)ρC
m′′ − 1

k

∑
m′ m′(k − m′)ρC

m′∑
m′ m′ρC

m′

∑
m′′

m′′ρC
m′′

= 2

k

[∑
m

m2ρD
m −

∑
m

m(k − m)ρC
m

]
, (B1)

where we use Eq. (6). Since the left side is zero in the steady state, we obtain∑
m

m(k − m)ρC
m =

∑
m

m2ρD
m . (B2)

Likewise, from

d

dt

∑
m

m2ρC
m + d

dt

∑
m

m2ρD
m = 0 (B3)

in the steady state, we can obtain

0 =
∑

m

m2ρD
m

[∑
m m2ρD

m∑
m mρD

m

−
∑

m m2ρC
m∑

m mρC
m

+ 1

]
+

∑
m

m(k − m)ρD
m

[∑
m m(k − m)ρD

m∑
m(k − m)ρD

m

−
∑

m m(k − m)ρC
m∑

m(k − m)ρC
m

+ 1

]
. (B4)

APPENDIX C: APPLICATIONS TO OTHER MODELS

Previous studies [12,13] have examined the model in which each node belongs not only to a group in which the center node
is itself but also to k groups in which the center node is its neighbor. The overall payoff of each node is the sum of the payoffs in
each group. In this case, we replace the expected value of f with

〈 f (�Cm − �D)〉 =
k∑

m′=0

k∑
{mx}=0

k∑
{my}=0

pD
C(m′)

(
m∏

i=1

pC
C(mxi )

)⎛
⎝ k−1∏

j=m+1

pD
C(mx j )

⎞
⎠

⎛
⎝m′−1∏

s=1

pC
D(mys)

⎞
⎠(

k−1∏
t=m′

pD
D(myt )

)

× f [�C(2m + m′ + mx1 + · · · + mx(k−1) + 1) − �D(2m′ + m + my1 + · · · + my(k−1))], (C1)

〈 f (�Dm − �C)〉 =
k∑

m′=0

k∑
{mx}=0

k∑
{my}=0

pC
D(m′)

(
m−1∏
i=1

pC
D(mxi )

)⎛
⎝k−1∏

j=m

pD
D(mx j )

⎞
⎠

⎛
⎝ m′∏

s=1

pC
C(mys)

⎞
⎠

⎛
⎝ k−1∏

t=m′+1

pD
C(myt )

⎞
⎠

× f [�D(2m + m′ + mx1 + · · · + mx(k−1)) − �C(2m′ + m + my1 + · · · + my(k−1) + 1)], (C2)

where

�C
(
Nall

C

) ≡ r
Nall

C

k + 1
− (k + 1), �D

(
Nall

C

) ≡ r
Nall

C

k + 1
. (C3)
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In this model, the points of discontinuity at K = 0 are r = (k + 1)2/n (n ∈ N). At K � 1, we can obtain

d

dt
ρC = k + 1

2Kk(k − 1)
[r − (k + 1)]

∑
m

(k − m)ρ∗C
m (C4)

by using (17) and (B4). Thus, as the noise increases, the phase boundary approaches r = k + 1. Further, the lower boundary
for the C and (C + D) phases must satisfy r > (k + 1)/(k − 1). Even an isolated D node cannot survive in (k + 1)2/3 < r, and
the coalescing random walk occurs in (k + 1)2/4 < r < (k + 1)2/3 and K = 0. We confirmed that the above analytical results
are correct by computing the AMEs numerically and the MC simulations. Furthermore, these analytical results are mostly
consistent with the results of previous studies that employed square lattices as networks. However, Szolnoki et al. [12] identified
the powerfully relaxing region [i.e., (k + 1)2/4 < r < (k + 1)2/3 and K = 0] as the C phase instead of the (C + D) phase.

The public goods game models group interactions, while the prisoner’s dilemma game models pair interactions. In the latter
model, a cooperator pays a cost, 1, and gives its partner a benefit, r. A defector incurs no cost and gives no benefit. Thus, the
payoff matrix can be expressed as follows: (

r − 1 −1
r 0

)
. (C5)

Since 0 > −1 and r > r − 1, it is rational for every agent to choose to defect (i.e., the prisoner’s dilemma). Each node plays the
prisoner’s dilemma game with all its neighbors. We can derive the AMEs for the model by replacing the payoff as the overall
payoff �Cm = rm − k, �Dm = rm. In this model, the points of discontinuity at K = 0 are r = k/n (n ∈ N), and we can obtain

d

dt
ρC = − 1

2K

∑
m

(k − m)ρ∗C
m < 0 (C6)

at K � 1. Thus, when the noise is sufficiently large, cooperators become extinct at any r. Further, the lower boundary for the C
and (C + D) phases must satisfy r > k/(k − 2).

Javarone et al. [24] have investigated the spatial public goods game in the presence of two types of agents. Conformity-driven
agents (CDAs) and fitness-driven agents (FDAs) update their strategies according to the transition rules of the voter model and
Eq. (1), respectively. Let qc (q f ) denote the fractions of CDAs (FDAs) (qc + q f = 1). Assume that each agent does not change
its behavior (i.e., conformity driven and fitness driven). We can derive the AMEs for this model. Let ρs

c,m (ρs
f ,m) be the fraction

of sm nodes in CDAs (FDAs). They satisfy the following relations:

∑
s∈{C,D}

k∑
m=0

ρs
c,m =

∑
s∈{C,D}

k∑
m=0

ρs
f ,m = 1, (C7)

ρs ≡
∑

x∈{c, f }
qx

k∑
m=0

ρs
x,m. (C8)

We replace ps′
s (m′) by the following:

pC
C(m′) =

∑
x qxm′ρC

x,m′∑
x qx

∑
m mρC

x,m

, pD
C(m′) =

∑
x qxm′ρD

x,m′∑
x qx

∑
m mρD

x,m

,

pC
D(m′) =

∑
x qx(k − m′)ρC

x,m′∑
x qx

∑
m(k − m)ρC

x,m

, pD
D(m′) =

∑
x qx(k − m′)ρD

x,m′∑
x qx

∑
m(k − m)ρD

x,m

. (C9)

We define the transition probabilities as

W D→C
c,m ≡ W D→C

m,voter, W D→C
f ,m ≡ W D→C

m , βC =
∑

x∈{c, f }
qx

∑
m′

pD
C(m′) W D→C

x,m′ , γ C =
∑

x∈{c, f }
qx

∑
m′

pC
C(m′) W C→D

x,m′ . (C10)

We define βD and γ D similarly. Deriving Eq. (7) for ρs
c,m and ρs

f ,m, respectively, gives the AMEs for this model.
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