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Preface

The analysis of count time series has made rapid progress during the last few decades. There has been a
huge literature about the formulations of models. Among them, we focus on nonnegative integer-valued
autoregressive process of the first-order INAR(1)) and alternative dependent counting nonnegative INAR
process of the first-order (ADCINAR(1)). Both statistical models are semi-parametric in the sense that we
do not impose any distributional assumption about the innovation. The primary contribution of this thesis
is to give the closed-form expressions for higher autocumulant functions and propose the bias-corrections
of the commonly used estimators.

The first part of this thesis is concerned with stationary INAR(1) process under a general innovation.

(i) The third, fourth, fifth, and sixth autocumulant functions of the stationary INAR(1) process are

derived explicitly.
(i) An analytical bias-correction of a class of estimators is studied.

(ii1)) Asymptotic theory about the Whittle likelihood estimation is presented. Also, the Wald-type test
about the equidispersion is constructed, on the basis of the estimators for the innovation mean and

variance.

On the other hand, the second part of this thesis is concerned with stationary ADCINAR(1) process

under a general innovation.

(i) The third and fourth autocumulant functions of the stationary ADCINAR(1) process are derived

explicitly, together with the structure about arbitrary higher autocumulant functions.

(i) The two-step conditional least squares (CLS) estimator for the new parameter in the stationary
ADCINAR(1) process is revisited. Also, a nonparametric (lag window-type) bias-correction and

an analytical bias-correction of the Yule—~Walker and CLS estimators are developed.
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Chapter 1

Introduction

Analysis of count time series has been widely applied in various domains of economics, medical statistics,
etc. For instance, to enhance efficiency and improve customer satisfaction, many service companies invest
a lot of money and manpower for research of queuing systems. Park and Oh (1997) showed that, for certain
situations, the queue length process in M /M /oo system can be represented as nonnegative integer-valued
autoregressive process of the first-order (INAR(1)). Also, the survival rate of experimental animals over
time is an important metric in drug development. Some examples of time series count data are the number
of patients in a hospital at specific points in time, the failure count of machinery or equipment, and so on.

Over the last four decades, there has been a growing interest in modelling the INAR-types through the
so-called thinning operation, unlike the traditional autoregressive model (see, e.g., Brockwell and Davis
(1987)). Perhaps, the most fundamental operation is the binomial thinning due to Steutel and van Harn
(1979). We refer the readers to the review paper and book by Weil3 (2008,2018) for a huge literature
about the formulation of models, their probabilistic aspects, and estimation or hypothesis testing.

Al-Osh and Alzaid (1987) was one of the pioneers who considered the INAR(1) process with the
Poisson marginals, i.e., Y; = @ oY;_| +&;, where ao is the binomial thinning operator with @ € [0, 1), and
the innovation {&;} is a sequence of independent and identically distributed random variables according
to the Poisson distribution Po((1 — a@)u) for u > 0. They studied the Yule—Walker (YW), conditional
least squares (CLS), and (conditional or full) maximum likelihood (ML) estimators for the parameter a.
Park and Oh (1997) additionally established the asymptotic normality of the sample mean and sample
autocovariance as well as the YW and CLS estimators. Bourguignon and Vasconcellos (2015a) considered
the stationary INAR(1) process under the power series innovation, and conducted the simulations for the
YW, CLS, and conditional ML estimators for the parameter @. Yang et al. (2018) applied the empirical
likelihood method for the stationary mixed INAR(1) process under a general innovation.

Although the above-mentioned results are, of course, fundamental, there are several reasons that
motivate us to study additional asymptotic properties of some estimators in the INAR-type processes.

First, theoretical results in the literature were often discussed for the INAR process with the Poisson



marginals. It has the mathematical elegance due to the equidispersion property, i.e., the mean is equal
to the variance. However, the mean and variance of other distributions may be not the same, so that, in
practice, the overdispersed (or underdispersed) case is more important.

Second, Schweer and Weif3 (2016) derived, for any positve integer r, the (r + 1)th autocumulant
function of the INAR(1) process with the Poisson marginals. The formulas are applicable only for the
Poisson case. Considering the importance of higher cumulant functions in time series analysis, we will
derive the closed-form expressions of the third, fourth, fifth, and sixth autocumulant functions for a
non-Poisson case.

Third, the frequency domain analysis is a standard tool in the stationary processes (see, e.g., Brockwell
and Davis (1987)). Although some simulation results about the Whittle estimation in the INAR(1) process
with the Poisson marginals were given by da Silva and Oliveira (2004) (see also Zhang and Wang (2015)
for random coefficient INAR(1) process), to the best of our knowledge, there is no theoretical results
about the frequency domain analysis for the stationary INAR(1) process.

Fourth, we are interested in an alternative dependent counting nonnegative INAR process of the
first-order (ADCINAR(1)), which was recently proposed by Nasti¢ et al. (2017) (see also Risti¢ et al.
(2013)),1.e.,Y; = @<y Y;_1 +&;, where aoy is an alternative generalized binomial thinning operator with
0<a<®<1(#0),and {&} is an innovation (we do not assume its distributional form). Considering
again that higher autocumulant functions are the basic in the asymptotic theory of time series, we will
explicitly derive the third and fourth autocumulant functions of the stationary ADCINAR(1) process,
together with the structure about arbitrary higher autocumulant functions.

Fifth, Nasti¢ et al. (2017) considered the estimation of the new parameter J in the ADCINAR(1)
process under the specific innovation {&; } (see Theorem 3 in Nasti¢ et al. (2017); the marginal distribution
of {Y;} is then geometric distribution Geo(u/(1 + u)) for u > 0) and gave asymptotic normality when
other parameter (a, ) is unrealistically known. However, in practice, the distributional assumptions
on the innovation {&;} can not be specified in advance. Also, the conditional expectation is given by
E(Y:|Y:-1) = aY;_1 + E(&;), hence, « is an important parameter to be inferenced. Thus, we will revisit
asymptotic properties of an estimator for ¢ without assuming that « is known.

Finally, it is well know that the estimators are biased in a finite-sample. Some authors constructed an
analytical bias-correction in the stationary INAR(1) process (see Bourguignon and Vasconcellos (2015b)
and Weill and Schweer (2016)). One of the major results in this thesis is to derive the asymptotic
expansions of the biases of the YW and CLS estimators for the parameter « in the stationary INAR(1)
and ADCINAR(1) processes. Not surprisingly, the resulting analytical bias-corrected YW and CLS
estimators are complicated for the ADCINAR(1) case. Therefore, the primary contribution is to develop,
in a nonparametric way, lag window-type bias-corrected YW and CLS estimators, without computing the
closed-form expression for the asymptotic expansions of the biases.

The thesis consists of two parts. The first part is concerned with the INAR(1) process (Chapters 2—4).



In the second part, the ADCINAR(1) process is considered (Chapters 5 and 6). The rest of this thesis is
organized as follows.

Chapter 2 contains the definition of the INAR(1) process and describe its probabilistic aspects. We
provide the closed-form expressions for the third, fourth, fifth, and sixth autocumulant functions of the
stationary INAR(1) process under a general innovation. The asymptotic normality of sample mean and
sample autocovariance are also established. Chapter 3 discusses a class of estimators for the parameter «
which includes the YW, Burg, and method of moment estimators as special cases. We establish the strong
consistency and asymptotic normality of such a general estimator in the stationary INAR(1) process.
After deriving, explicitly, the asymptotic expansion for the bias of the general estimator, we construct
an analytical bias-corrected estimator for the parameter @ and study higher-order comparison among
different estimators, in terms of the mean squared error. Chapter 4 is concerned with asymptotic theory
about the frequency domain analysis in the stationary INAR(1) process. The strong consistency and
asymptotic normality of the Whittle estimators for a, i, and o2 are established, where . and o2 are
the innovation mean and variance. We propose the Wald-type tests about the equidispersion, on the basis
of the estimators for u. and o2.

On the other hand, Chapter 5 is concerned with the stationary ADCINAR(1) process under a general
innovation. We provide the closed-form expressions for the third and fourth autocumulant functions of
the stationary ADCINAR(1) process, together with the structure about arbitrary higher autocumulant
functions. Chapter 6 revisits two-step CLS (2CLS) estimator for the new parameter ¢. Also, the lag
window-type bias-correction and the analytical bias-correction of the commonly used YW and CLS
estimators for the parameter « are developed. The merit of the lag window-type bias-correction is that
there is no need for computing the closed-form expression of the biases and then constructing its sample
analogue.

Chapter 7 contains the real data analyses using IP count data and Download count data, available in
Weil3 (2018). We demonstrate the usefulness of two stationary INAR(1) and ADCINAR(1) processes.
Especially, we focus on (i) the equidispersion tests developed in Section 4.3, and (ii) the CLS estimation
(Section 6.2) for the stationary ADCINAR(1) process without the specific distributional form of the
innovation.

Finally, Chapter 8 concludes this thesis, together with some future issues.



Chapter 2

Probabilistic and statistical properties of

INAR(1) process

2.1 Introduction

Our main interest is the statistical analysis of count time series. Due to the limitations of the traditional
autoregressive-type models, Steutel and van Harn (1979) proposed a binomial thinning operator. Since
then, there has been a huge literature about modelling time series count data, during the last four decades.
Al-Osh and Alzaid (1987) mainly considered the nonnegative integer-valued autoregressive process of
the first-order (INAR(1)) with the Poisson marginals, i.e., Y; = @ o Y;_| + &,, where ao is the binomial
thinning operator with @ € [0, 1), and {e,} is a sequence of independent and identically distributed
(IID) random variables according to the Poisson distribution Po((1 — a)u) for u > 0. It is easy to see
that the autocorrelation function at lag u(> 0) is @*. Further, da Silva and Oliveira (2004) discussed
Yule—Walker type equation of the third raw automoment (and autocumulant) function. Schweer and Weif3
(2016) derived, for any positve integer r, the (r + 1)th autocumulant function of the INAR(1) process
with the Poisson marginals. However, to the best of our knowledge, there is no paper dealing with higher
autocumulant functions of the stationary INAR(1) process under a non-Poisson innovation. Considering
that higher autocumulant functions are fundamental, we derive them explicity.

The rest of this chapter is organized as follows. Section 2.2 gives the definition and some useful
properties of the binomial thinning operator. After the introduction of the INAR(1) process and its
basic formulas of the moment, variance, and autocorrelation function at lag u(> 0), Section 2.3 derives,
explicitly, the third, fourth, fifth, and sixth autocumulant functions of the stationary INAR(1) process
under a general innovation. Section 2.4 establishes asymptotic normality of the sample mean and sample

autocovariance. The technical proof of Proposition 2.1 is postponed to Section 2.5.



2.2 Binomial thinning operator

Before describing the INAR(1) process, we introduce the binomial thinning operator due to Steutel and
van Harn (1979). For any « € [0, 1] and nonnegative integer-valued random variable Y, we define the

binomial thinning operation by

0 Y =0,

aoY = Y
> Bjla), Y=12,..,
j=1

where {B ()}, referred to as counting series, is a sequence of IID random variables, independent of Y,

such that
P[Bj(a) =1] =1-P[Bj(a) =0] = a.
GivenY = 1,2, ..., a oY has a binomial distribution Bin(Y, @), by definition. Thus, using

1, Y =0,
Ew®Y|y) =

(I1—a+au)Y, Y=1,2,...,

the probability generating function (pgf) of @ o Y is given by
Ew®Y)=E[(1 —a+au)¥].

We list other properties of the thinning operation used repeatedly in this thesis (some of them are

found in da Silva and Oliveira (2004), with slight corrections or extensions):

Lemma 2.1. (i)0oY =0and1oY =Y.
(ii) For B,y € [0,1], Bo (y oY) d (By) oY d vyo(BoY), where g stands for equal in distribution.

Proof By definition, (i) is trivial, and (ii) is shown by means of the pgf

E[P 0N =E[(1-B+Bu)” 1 =E[(1 -y +y(1 = B+ pu)Y] = E[(1 - By + Byu)'] = E[u'PV)°"].

O
Lemma 2.2. (i) For a function G (e.g., we set G(Y) =1 0orG(Y) =Y — E(Y)),

E[G(Y)(@oY)] =aE[G(Y)Y],
E[G(Y)(aoY)?] =?E[G(Y)Y?*] +a(1 - )E[G(Y)Y],

E[G(Y)(@ oY)’ =PE[G(Y)Y’] +3a%(1 —)E[G(Y)Y?*] + a(1 — @)(1 - 22)E[G(Y)Y],

5



E[G(Y)(ao Y)Y = *E[G(Y)Y*] +6a°(1 — ) E[G(Y)Y?] + &*(1 — @)(7 = 11@)E[G(Y)Y?]
+a(1-a)(l-6a+6a>)E[G(Y)Y],

E[G(Y)(@oY)’] =®E[G(Y)Y’] +10a*(1 — @)E[G(Y)Y*] +5a°(1 — @) (5 - Ta)E[G(Y)Y?]
+50%(1 —a)(3 - 12a + 10> E[G(Y)Y?]
+a(1 —a)(1 - l4a +36a° — 240°)E[G(Y)Y],

E[G(Y)(@oY)®] = a®E[G(Y)Y®] +15¢° (1 — @)E[G(Y)Y’] + 5a* (1 — @) (13 = 17@)E[G (Y)Y}
+ 1507 (1 — @) (6 — 20 + 150*)E[G(Y)Y?]
+%(1 - a)(31 = 239a +476a% — 274a°)E[G(Y)Y?]

+a(1—a)(1 -30a + 150a% — 240a° + 120 E[G(Y)Y]

(it is implicitly assumed that the expectations in the right-hand side exist).

(ii) Also,
E[GY)(@oY —aE(Y))] =2E[G(Y)(Y - E(Y))],
hence,
Cov[G(Y),a 0 Y] = aE[G(Y)(Y — E(Y))]

(it is implicitly assumed that E{G (Y)(Y — E(Y))] exists).

(iii) Furthermore,

E[G(Y)(@ oY - aE(Y)*] = ®E[G()(Y - EW)P] +a(1 - ){E[G) (Y = E(Y)] + E[GOIEM),
E[GY)(aoY —aE(Y))’] =®E[G(Y)(Y - E(Y))*]
+3a%(1 - a/){E[G(Y)(Y ~E(Y))*] +E[G)(Y - E(Y))]E(Y)}
+a(l-a)(1 - 20){E[G)(Y = E()] + E[GOIEM)},
E[G)(aoY -aE(Y)*] = 'E[G)(Y - E(Y))*]
+6a°(1 - cy){E[G(Y)(Y —E()*] + E[G(Y)(Y - E(Y))Z]E(Y)}
+a’(1-a)(7-11a)E[GXY)(Y — E(Y))?]
+20%(1 - a)(5 - TQ)E[G(Y)(Y — E(Y))|E(Y)
+3a%(1 - )’ E[G()][E(Y)]?
+a(l-a)(1 - 6a/+6a/2){E[G(Y)(Y _EW))] +E[G(Y)]E(Y)},

E[G(Y)(aoY —aE(Y))’] = E[G(Y)(Y - E(Y))’]



+10a*(1 - a/){E[G(Y)(Y - E()*] + E[G)(Y - E()]E()]
+50°(1-a)(5-T)E[GY)(Y — E(Y))]

+10a°(1 — @) (4 = 5@)E[G(Y)(Y — E(Y))?]E(Y)

+150°(1 - @)’ E[G(Y)(Y - E(Y))][E(Y)]?

+50°(1-a)(3 - 12a + 10D E[G(Y)(Y - E(Y))?]

+50%(1 —a)(5 - 18a + 14> E[G(Y)(Y — E(Y))]E(Y)

+10a2(1 — @)*(1 = 20)E[G(Y)][E(V)]?

+a(l—a)(1 - 14a +360° - 24a3){E[G(Y)(Y _E(Y)] + E[G(Y)]E(Y)}

(it is implicitly assumed that the expectations in the right-hand side exist).

Proof (i) Let

14 i 4 4
Me(x,p) = D" p'S() Y s/ = D xd > pIS(s(h)
i=1 j=1 j=1  i=j

be a polynomial of degree £ in x (without constant term) for any p € [0, 1] and positive integer £, where
s(;.) and S (f) are the Stirling numbers of the first and second kind, respectively; for these definitions, see
Olver et al. (2010; Section 26.8). Given Y, @ o Y is distributed as the binomial distribution Bin(Y, @), so

that, for any positive integer ¢,
E[(e o Y)!|Y] = aM/(Y,a) (e.g., Johnson et al. (2005)).

The result follows from E[G(Y)(a o Y)!] = E[G(Y)E[(a o Y)!|Y]].
(i1)&(iii) Use (i) and the binomial theorem; (A + B)™ = :’;0 mCA™ B m=1,2,.... O
In addition to the moment of @ o Y, the second, third, fourth, fifth, and sixth central moments (or

cumulants) of @ o Y are derived as direct consequences of Lemma 2.2(i,iii) with G(Y) = 1.

Corollary 2.1. (i) When E(Y) exists, then,
E(aoY)=aE(Y).
(ii) The jth central moments of oY, j =2,3,4,5,6 (when E(Y7) exists), are given by

E[(@oY —E(Y))’] = E[(Y - E(Y))*] +a(l — @)E(Y),
E[(@oY —aEY))?] =E[(Y —E(Y))’] +32*(1 - )E[(Y — E(Y))?*] + a(l — a)(1 = 2a)E(Y),
E[(@oY —aE(Y))*'] =aE[(Y - E(Y))*] + 62’ (1 - @){E[(Y —E(Y))’] + E[(Y — E(Y))*]E(Y)}

+a@*(1—a)(7-11a)E[(Y — E(Y))*] +3%(1 — @)’ [E(Y)]?

7



+a(l-a)(1 -6a+6a?)E(Y),
El(@ oY —aE(¥)°] = E[(Y = EW)] +100*(1 = ) {EL(Y = E() ] + EL(Y = EQ)PIED))
+50°(1 —a)(5-Ta)E[(Y - E(Y))]
+10a°(1 — @) (4 = 5@)E[(Y — E(Y))?*]E(Y)
+50*(1 - a)(3 = 12a + 10 E[(Y — E(Y))*] + 102%(1 — @)*(1 = 2a)[E(Y)]?
+a(1-a)(1 - l4a +36a° — 24a°)E(Y),
E[(a oY —aE(Y))®] = a®E[(Y - E(Y))®] + 15a°(1 - a/){E[(Y ~E(Y))’] +E[(Y - E(Y))“]E(Y)}
+50*(1 —a)(13 - 172)E[(Y - E(Y))Y]
+10a*(1 —a)(11 = 13@)E[(Y — E(Y))*]E(Y)
+ 1503 (1 — @) (6 — 20a + 150*)E[(Y — E(Y))?]
+150° (1 — @) (12 = 36a + 250 E[(Y — E(Y))?]E(Y)
+*(1 — @)(31 - 249a + 476a% — 2740°)E[(Y — E(Y))?]
+50%(1 = @)(5 = 3la + 520 = 26 [E(Y)]?
+a(1-a)(1-30a + 150a% — 240a° + 120a*)E(Y)

+450*(1 - )2 E[(Y — E)YEM)]? + 153 (1 - a)*[E(Y)]°.
Recall that, for a random variable X with finite sixth moment,

V(X) = E[(X - E(X))’] (note Cums(X) = V(X))
Cum3(X) = E[(X - E(X))],
Cums(X) = E[(X - E(X))*] = 3[V(X)]?,
Cums(X) = E[(X — E(X))’] = 10Cum3(X)V(X),

Cume(X) = E[(X — E(X))®] = 15Cum4(X)V(X) — 10[Cum3(X)]* — 15[V (X)]°.

Here, instead of writing Cum(X, ..., X), we use the notation Cum ;(X) for the jth cumulant, where
S— X
j times
j=2,3,....

Corollary 2.2. The jth cumulants of oY, j =2,3,4,5,6 (when E(Y J ) exists), are given by

V(eoY)=a*V(¥)+a(l-a)E(Y),
Cums(a oY) = a&>Cums(Y) +3a*(1 = )V(Y) + a(l — @) (1 = 2)E(Y),
Cumg(@ oY) = a*Cums(Y) + 6> (1 — @)Cums(Y) + (1 — a)(7 - 11a)V(Y)

+a(1-a)(1—6a+6a)E(Y),



Cums(a oY) = @>Cums(Y) + 10a* (1 = @)Cums(Y) + 5¢°(1 = @) (5 = Ta)Cums(Y)
+50%(1 —a)(3 = 12a + 10H)V(Y) + a(1 — 14a + 36a° — 24a°)E(Y),

Cumg(a oY) = a®Cume(Y) +150° (1 — @)Cums(Y) + 5¢* (1 — @) (13 — 17a)Cum4(Y)

+15¢°(1 — @) (6 — 20a + 15a2)Cums(Y)
+a*(1 —a)(31 — 239a + 476a% — 274a°)V(Y)

+a(1 —a)(1 = 30a + 1500% — 240¢° + 1202 E(Y).

2.3 INAR(1) process and higher autocumulant functions

Using the binomial thinning operator ao, the INAR(1) process is defined by

Yt=a/OY,_1+8,, l‘=0,il,...,

2.1

where {&, }, referred to as an innovation, is a sequence of IID nonnegative integer-valued random variables,

such that &, and Y;_; are independent for all i > 1. Al-Osh and Alzaid (1987) gave this definition, but

mainly focused on the Poisson innovation. Bourguignon and Vasconcellos (2015a) considered the

stationary INAR(1) process under the power series (PS) innovation. In what follows, the mean, variance,

jth cumulant, and jth raw moment of &, are denoted by u. = E(&;), 02 = V(&;), kj,e = Cum (&), and

H},g =E (a{ ), respectively.

We emphasize that, throughout this thesis, except for some simulation experiments, we do not assume

the distributional form about the innovation {&,}. In this sense, we treat (2.1) to be semi-parametric.

When a € [0, 1), the INAR(1) process {Y;} is then strictly stationary and ergodic (Du and Li (1991)),

whose mean uy and variance o2

y are, respectively, given by

apg + o2
1-a?

2
P O-Y = s
since
E(Y;)=E(aoYi_1)+us=aEY;—1) + e

(use Corollary 2.1(i)) and, by independence between Y;_; and &;,

V(Y) =V(aoY,_1+&)=V(aoY,_|)+02=a’V(¥;_)) +a(l —@)E(Y,_1) + 02

(use Corollary 2.2). Here, when . exists, py exists; when ,ué’g exists (in this case, u . and o-i exist), a‘%



exists. The dispersion index is thus given by

O‘%_au5+0'§_ N 1 (o% 1)
py  (l+a)ue L+al\p, ’

where the left-hand-side is equal to 1 when 2 = u,, as in the Poisson case (with the equidispersion
property). It follows that the stationary INAR(1) process (2.1) is overdispersed (underdispersed) when
O'g > Ug (O'g < ug). This characterization is unique feature of the INAR(1) process, which enables us

to construct a novel equidispersion test of the INAR(1) process; see Chapter 4.

u—
i=

Further, for any positive integer u, Y; is independent of }’ ' o 0&;44-i, SO that, using Lemma 2.2(ii),

u—1
Cov(Yy,Y) = Cov(Yt, a“oY; + Z @' o SH,,,_,') =Cov(Y;,a" oY;) = a”a%, 2.2)
i=0

hence, the autocorrelation function at lag u of the stationary INAR(1) process is given by a“, as in the
usual stationary autoregressive process of the first-order (e.g., Brockwell and Davis (1987)).
Similarly, it is possible to compute the third, fourth, fifth, and sixth cumulants of ¥; (denoted by «; y),

as follows. Noting that
Cum;j(Y;) = Cumj(aoY;_1+&)=Cumj(aoY;_1)+Kj ¢
by independence between Y;_; and &;, and using Corollary 2.2, we have

Cums(Y;) = &> Cums(Y,_1) +3a*(1 = a)V(Y;_1) + a(1 — @) (1 = 2a)E(Y,_1) + k3.,

Cums(Yy) = a*Cumy(Y,_1) + 62> (1 — @)Cumsz(Y;—1) + @*(1 — @) (7 - 11a)V(Y,_1)
+a(l-a)(1-6a+6a>)E(Y;_))+ K4, &

Cums(Yy) = &> Cums (Y1) + 10a*(1 — @)Cumy(Y,—1) + 50> (1 — @) (5 — T)Cums3(Y;_1)
+50°(1-a)(3 - 12a + 102V (Y,_1)
+a(l —a)(1 - l4a + 36a° — 24a°)E(Y,_1) + K5, &)

Cumg(Yy) = a®Cume (Y1) + 150° (1 — @)Cums(Y;_1) + 5a*(1 — @) (13 = 17@)Cuma(Y,_;)
+150° (1 — @) (6 = 20 + 150%)Cums(Y,_)
+a?(1 - a)(31 = 239 +476a° — 2740V (Y,_1)

+a(l —a)(1 - 30a + 1500 — 2400 + 1200 E(Y;_1) + K6, ¢»

hence, by strictly stationarity of {Y;},

1

— a3

Ky = 1 {30’2(1—61’)0'%+0!(1—CZ)(I—ZO!),Uy+K3’£},
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{631 - Q)K3y +a*(1-a)(7 - 11&)0’% +a(1-a)(1 - 6a+6a’)uy +Ka,g}s

S

K5y = 1_—:/5{10054(1 —@)Kay + 5¢°(1 —a)(5 - Ta)ksy + 50%(1 —a)(3 - Ra + 10(1/2)0'%
+a(l —a)(1 - l4a +36a% - 240 uy + k5.5 },

Key = I_Laé{lscﬁ(l —@)ksy + 50 (1 —a)(13 = 17a)kqy + 15¢° (1 — @) (6 — 20a + 15¢%) k3 y
+a*(1 —a)(31 - 2390 +4760° - 274a°) o}

+a(l —a)(1 = 30a + 1500 — 2400 + 1200 py + ke, }-

Remark 2.1. If,u’J,g exists for J > 3 (in this case, g, (ri, and k; ¢, j = 3,...,J, exist), then, k; y exists

forj=3,...,J.

Before presenting the higher autocumulant functions of the stationary INAR(1) process {Y;}, we

introduce the following notations:

2
023,y = K3y — Oy,
= -3 202
024y = K4y —3Kk3)y + 20y,
2
025y =Ksyy —Okay + 11k3y — 60y,

Q26 = Koy — 10ks,y +35ks.y — S0k3y + 24073

Remark 2.2. The cumulant generating function of a random variable X that is distributed according to
a Poisson distribution with a parameter A > 0, denoted by Po(1), is given by log E[e'X] = A(e’ - 1),
hence, all cumulants of X ~ Po(A) are equal to A. Therefore, Q2.3 y = Q24y = Q2:5.y = Q2:6y = 0 for
the INAR(1) process {Y;} with the Poisson marginals, i.e., these quantities show the departure from the

Poisson distribution, parallel to the fact that all higher cumulants of the normal distribution vanish.

For the asymptotic theory of the stationary time series, the autocumulant functions, equivalently, the
central automoment functions, are fundamental. Recall that, given a stationary process {X;} with mean

Ux, the (r + 1)th central automoment function, where r is a positive integer, is defined by
r
px(uy, ... up) = E[(Xt - px) H(thi - ,ux)]
i=1

for nonnegative integers u, > --- > u; > 0. The second central automoment function is nothing but the
autocovariance function yx (-) and the third central automoment function is equal to the third autocumulant

function yx(-, ), i.e.,

Yx(ur) = ux(uy) and yx(uy,uz) = pux(ur, uz).

11



Further, the fourth autocumulant function yx (-, -, -) is given by

Yx(ur,uz, uz) = ux(ur, uz, uz) = yx(u1)yx(us —u2) — yx(u2)yx(uz —ui) —yx(us)yx(uz — uy).

Proposition 2.1. In addition to the autocovariance function yy (u) = a“o-% (see (2.2)), the third, fourth,

fifth, and sixth autocumulant functions of the stationary INAR(1) process {Y;} are, respectively, given by

vy (u,v) = @”(@"Qasy +07), (2.3)
yy (U, v, w) = @ {a " Qoay + (@ +2a") 023y + 03}, (2.4)
yy (v, w,x) = {005y + (@ + 22" + 30" ) Qo y
+ (" +2a" +4a") 023y + 03}, (2.5)
yY(M, V, W,)C, y) — ay{ax+W+V+MQ2:6’Y + (aW+V+M + 2ax+v+u + 3a,x+w+u + 4ax+W+V)Q2:5’Y
+ (@™ + 22 + 30 + 4™ + 607 +9°) 004y

+(a" +2a" +4a" +8a™)0r3y + 0'}2,} (2.6)

fory =x =w >v >u >0 (the proof is postponed to Section 2.5).

Remark 2.3. Schweer and Weif3 (2016) showed that the (r + 1)th autocumulant function of the INAR(1)
process with the Poisson marginals is given by Cum (Y, Yy, - - ., Yi4u,) = @" py for any positive integer

r and nonnegative integers u, > --- > u; > 0.

Remark 2.4. When « € [0, 1), the INAR(1) process (2.1) is strictly stationary, having the representation
Y, =27 a'og,;_; (see Al-Osh and Alzaid (1987)). Using this, we have another derivation for the mean py

and variance 0'%, as well as the second, third, and fourth automoment functions, i.e., forw > v > u > 0,

py (u) = a oy, uy(u,v) =a’(a“Qazy +0y),

py (4, v, w) = @ {@" " Qoay + (" +2a") Qo3 y + oy} + (@ 7V + 22" ) oy

2.4 Asymptotic normality of sample mean and sample autocovariance

Suppose that the observation {Y},...,Y,} of length n is generated by ¥; = @ o Y;_| + &, where we
assume that @ € [0,1) (in that case, the INAR(1) process is strictly stationary and ergodic; see Du
and Li (1991)) and that E(st]) exists for some J > 2 (see Remark 2.1). LetY = (1/n) 2y Y: and
y(hy=(/n) 2 V) Yn = Y), h=0,1,...,n— 1.

The following asymptotic normality of the sample mean and sample autocovariance is a non-Poisson
extension of Park and Oh (1997). Note that some formulas in their lemmas for the INAR(1) process with
the Poisson marginals were corrected here (the result below is, however, not intended just to make the

correction).
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Proposition 2.2. Suppose that {Y,} is INAR(1) process with a € [0, 1) and that E(g]) exists for some
integer J > 4. The following hold for a fixed positive integer m.

(i) Let y(h) = (1/n) X/, (Y; — py) Yesn — py), h=0,1,...,m. We have
VALY =y, 7(0) = yy (0), ..., 7(m) =y (m)]” 5 N(0, ),
where

= =T
=) = (yp)

[11

Eyw By

is the (m +2) X (m + 2) matrix such that Z,,) = (1 + O!)O')%/(l - @), Eyu) = (Bo, By, o BE)T s

(m + 1) x 1 vector, whose Ith element is given by

2

. l+a+a a )
dlzﬁa’ Q2:3,Y+(1_ +I)0/ Oy,
and E () is the (m + 1) X (m + 1) symmetric matrix (E77; 1,J =0,1,...,m), whose (1, J)th element,
for I > J, is given by
B = Q24Y(1+ Ha't!
Q23 Y

SH{(l+a+ad) —a(@ ™+ 1) 1 2(1+ )%’}

]_
2
Ty I
{1+I-J+a(l-1+J)}a
-a

4

+

n S{1+T1-T+*(1 -1+ D} + (1+1+T+*(1-1-T)}a].
04

. = —~ —~ d _
(i) VnlY = py,7(0) = yy (0), ..., ¥(m) — yy(m)]T = N(0,E).
Proof (i) For each integer M (> 2m), let

7™M (h) = ZM ~ iy Y = pyon). h=0.1.....m, and 7 ZYW)

where Y(M) S M,al o g _; is a truncated version of ¥, = 30, a' o &_;. Here, {YI(M)} is strictly

stationary, whose mean and autocovariance function at lag u(> 0) are, respectively, given by

1 - CZM+1
My 1) = ﬁﬂae
0, u>M,
Yy (u) = | — g2(M+1-1) |~ gMHl-u | _ g2(M+1-u)
a a2 oz { o - — a2 }yg], O<u<sM

13



since {¥,™ = iy, (5™ = pyon)? = yyon (01, ees (0 = pyan ) (V) = pyon) = yyon (m)} is
strictly stationary and (M + m)-dependent, we can use a finite-dependent central limit theorem and the
Cramér—Wold device to show that

(M) ~ ~ d _
Val¥ " = uyon, YM(0) = yyan (0), . ... 7M™ (m) = yyan (m)]T = N(0,2H)),

where

:(M) (:(M) )T
=M) _ | T (pp) v
=(M) = (M)

(yu) “(yy)

is the (m + 1) X (m + 1) matrix such that

(o)) = lim @™,
n—oo
=) = [lim nCov(@* 7)), im nCov(@™ 7 (m)))7,
N0 n—oo

and EE%)) is the (m + 1) X (m + 1) matrix (E;IJV[);I,J =0,1,...,m), whose (I, J)th element is given by

=) = Jim nCov(7™ (1.7 (1)).

On the other hand, we introduce A;M) =(Y; —uy) - (Y,(M) — Uymn), t =1,...,n, and then rewrite

— —(M) 1 ¢
(V= py) = (V) = pyon) = — 5 AN
t=1

and, forh =0,1,...,m,

Y(h) = yy (h) = {7 (h) = vy (h)}

t=1

% D1 = ) Kren = py) = M = pyan) VL = iy on)] = {yy (B) = yyon (h)}

= X,%) + Y,%) + Z,%) —{yv(h) —yyon (h)}, .7

where

n

1 1
(’ ) — (Yt( ) u (M))AE )’ Y(,h) — ﬁt( )(Yt( ) ,U (M)), and Z(’ ) — ﬁt( )ﬁ( )
t=1 t=1 =1

t+h *

It is easy to see that
n

S — 1
V[vn(Y - Y(M))] = —V( Z A;M)) — 0 (uniformly in n) as M — oo.
n

t=1

14



To verify the uniform asymptotical negligibility of (2.7) after multiplication by 4/n, we have only to show
that,for h =0,1,...,m

V[Va{y(h) - y™) (h)}]
= VXD 4y M 4 ZO00)
=nlVIXUDT+v Y01+ viZOD) + 2000 (X YD+ 2C0ov YD 200+ 2Cov [ X (M) 20|

n,h > n,h n,h > “n,h n,h > “n,h
M M M
Sn{\/V[X;E’h)]+\/V[Yrih)]+\/V[Z;5’h)]}

< 3n{V[X}5AZ)] + V[Y(M)] + V[ZIEAZ)]} — 0 (uniformly in n) as M — oo.

Thus, we can see (e.g., Brockwell and Davis (1987)) that

VALY = 1y, 7(0) = vy (0), .., 7(m) = yy (m)]” 5 N0, ),

where E = limp; 00 2 =(M)

(i1)) We have, for h =0,1,...,m

Valy(h) = ¥(h)]

. n n—h

- | D30 =)= 30 = D i = )|

1 n—h n—h _ _ 1 n
- ;(Y, — pty) (Yeun — py) — ;(Yt ~Y) (Yrun - Y)] + % ,:nz_:‘m(Yt — 1) (Vyan — p1y)
= % g{(Yz py) + Yean — pry) = (¥ = ,uy)}](Y Uy) + — \/_t ZH(Y, — uy)(Yeen — py)
=0, (1/vn)
=o0p,(1).

Then, the result follows from Slutsky’s theorem and (i). O

Poisson INAR(1) process

The stationary marginal distribution of {Y;}, if it exists, is determined by the equation of the pgf;
E[u"] = E[u®YE[u®].

(I) Suppose that the INAR(1) process (2.1), with @ € [0, 1), has the marginal Poisson distribution
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Po(4), where A > 0. The pgfs of ¥; and a o Y; are, respectively, given by

1Y
i _ N —ay _Au-1)
Elu ]—Zy!e u =e ,
y=0
oY, Y N A -1 ad(u-1)
E[u®"] = E[(1 —a+au) t]:Z—‘e (Il-a+au)’ =e ,
y=0 7"

so that

o BT acapawen
E[ug] - E[Ma/oYt] =e R ’
i.e., &; must be distributed according to the Poisson distribution Po((1 — @)A).
(IT) Conversely, if &, is distributed according to the Poisson distribution Po((1—-a)A1), where @ € [0, 1)
and A > 0, the pgf of ¥; = Z;O:o a’ o &,_;, Y, is then given by
E[u¥] = HE[u"j”"f] _ l_[ea-i(l—a)/l(u—l) = Au=1)

Jj=0 Jj=0

i.e., the marginal distribution of the stationary INAR(1) process is the Poisson distribution Po(A4).

PS distribution

Let S ¢ {0,1,...}. We say (Noack (1950)) that a random variable X is distributed according to the PS
distribution with one parameter (> 0), if its probability mass function is given by

a(x)6*

P(X=x)= co

x €S,

where a(x) > 0 depends only on x, and C(6) = ) s a(x)6*. Then, we have

6 dC(6)  dlogC(0)

E[X] = = ,
[X] Cc(6) do do
6> d’C(0 o dC(o 6 dC(0)12  ,d*logC(0)  dlogC(6
VIX] = c® . C()_[ CO)|* _ jodlogC(O)  ,dlogC(6)
C(0) do> c) do c(9) deo do? do
Also, its pgf is obviously given by
C(6u)
E[u*] = :
[u”] co)

The PS distribution, with S = {0, 1, ...}, contains the Poisson or negative binomial (NB) distributon,

as follows.

» Let 6 > 0. The Poisson distribution, denoted by Po(6), corresponds to the case a(x) = (x!)~!,
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where C(0) = e?. For X ~ Po(#), it is well known that E[X] = V[X] = 6 (equidispersion);
besides, all cuamulants of X are equal to 6, since the cumulant generating function is given by

log E[e'X] = 6(e’ - 1).

* Let 0 < 6 < 1. Given a positive integer r, the NB distribution, denoted by NB(r, 8), corresponds
to the case a(x) = I'(r + x)/[x!T'(r)], where C(8) = (1 — 8)~". It is not difficult to see that, for

X ~NB(r,6), E[X] =6r(1 —0)~! and V[X] = 6r(1 — 6) 2 (overdispersion), since

or(1-0)72 1

= =1+ > 1.
Or(1-6)-1 1-46 1-6
Moreover,
ro(1 +6) ro(1 +46 + 6°)
C X)y=—+. C X)=———F—
um3(X) 1-0) ums4(X) 1=

2.5 Proof of Proposition 2.1

Note that, for any positive integer & > 0, we have Y;,p, = al oY, + Z?;Ol @’ o &pp j» which implies that,
foru > 0and v > 0, @¥ o Y; is independent of 2;{:—01 al o &y j. For the derivation of the (r + 1)th

autocumulant function of the stationary INAR(1) process {Y; }, where r = 2,3, 4, 5, it suffices to compute
Cum(Ye,Yesuys -« - Yeuu,) = Cum(Yy, 0" oYy, . ..,a" oY), O0<u; <---<u,,

by utilizing the formulas of the cumulants in terms of the central moments (e.g., McCullagh (2018)).

Namely, this step is done through the computation of the central moment

|
el [ o1 o).

i=1

The following four lemmas (it is implicitly assumed that the expectations in the right-hand side exist),

Lemma 2.3. For B,y € [0, 1],

E[GY)(BoY =BEY))(yo(BoY)—-yBE(Y))]

= yBEIGI(Y = EW)] +98(1 = HEIGI(Y - ()] + E[GIIEY)]}.

Lemma 2.4. For 3,v,6 € [0, 1],

E[GY)(BoY —BE(Y))(yo (BoY)—yBE(Y))(§o (yo(BoY)) —yBE(Y))]
=6y’ BE[G(Y)(Y — E(Y))’]
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+6yB(1+2y = 3yA{E[GW)(Y = ()Y + E[GI)(Y - EQDIE())|

+6yB(1 = B)(1 = 2B {EIGI(Y = EX)] + EIGMIEM)}.
Lemma 2.5. For B,v,6,n € [0,1],

E[GY)(BoY —BE(Y))(yo (BoY) = yBE(Y))(5o (yo (BoY)) - SyBE(Y))
X (0 (8o (yo(BoY))) - ndyBE(Y))]

=6y’ BE[G(Y)(Y - E(Y))"]
+ 02 B3 (1 + 26 + 36y — 66yﬁ){E[G(Y)(Y —EW)’]+E[G)(Y - E(Y))Z]E(Y)}
+n8YB(B+2yB +45yB = 3y — 65y = 96y’ B> + 116y*BHE[G(Y)(Y - E(Y))’]
+nYB(B+3yB +65yB — 4y’ - 8yB* — 126y° B + 146y*B)E[G(Y) (Y — E(Y))]E(Y)
+nSyYB(YB+28YB —yB* = 26yB* = 36> B> + 36y B)EIG(I[E(Y)]
+n8yB(1 = B—2yB — 45y + 2y’ + 46y’ + 66y* B> — 66y*B’)

x {E[G(Y)(Y —E()]+ E[G(Y)]E(Y)}.
Lemma 2.6. For B,v,6,n,t€ [0,1],

E[(Y -EY))(BoY =BE(Y))(yo (BoY)=yBE(Y))(S o (yo (BoY)) - 5yBE(Y))
X(no(do(yo(BoY)))—noyBE(Y))(to(no(do(yo(BoY)))) —wméyBE(Y))]
=’ SV BE[(Y - E(Y))°]
+ 6>y BH(1 +2n + 305 +4noy - 10néyﬁ){E[(Y -E(Y))’]+E[(Y - E(Y))“]E(Y)}
+mSyB(yB’ +26y B’ + 36y B +4ndy B + 6noy’ B’ + o>y’ B> — 65y° B — 12n6y*B’°
— 1876%y*B* = 24n6°y B +3575%y BHE(Y - E(Y))"]
+moyB(yp* + 36y B> + 56y B% + 66y B + 10n6y* % + 15062y B> — 96¥* B — 18n6y*B°
—2M8*y*B° = 36n6°y B’ + 508>y BHE[(Y - E(Y)))]E(Y)
+mSyB(B +2yB+45yB + 816y B - 3yB* — 65yB* - 95y* B — 12n6yp* — 18n6y°B* - 2Tns>y*B°
+ 116y%8% + 22n6y° B + 33n6%y* B> + 44n62y> B — 50062y BHE[(Y — E(Y))?]
+mSyB(B+3yB+ 715y + 14n6yB — 4yB* — 95y B> — 145y°B* — 1896y B> — 28n6y°B* — 425°y* B
+166y°B° +32n6y* B> + 4816292 B + 64162y B> — T0n8%y > BHV(Y)E(Y)
+mSyB(SYB’ +267° B + 26y B + 495y’ B + 608y’ B = 36y’ — 95y’ - Ine*y* B’
—1278%y° B + 157> BHV (V) [E(V)]?
+moyB(1 — B —2yB — 46y B — 8ndyB + 2y B> + 45y B> + 66> 8% + 8noy B> + 12n6y> 8% + 18162y 5

- 66728 — 12n6y%B° — 18n6%y* B> — 24062y B> + 24062y BHV (V).
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We are ready to prove Proposition 2.1. Hereafter, (V) means that there are similar N terms obtained

under index permutations

Third autocumulant function

We have, forv > u > 0,

Cum(Y;,a" oY, a" oY) = E[(Y; —uy)(a” oY, —a"uy)(a’ oY, —a’uy)]
= Q'V+uK3,Y + av(l - (ZM)O')% (by Lemma 23)

=a"™(k3y — 0',%) + a/VO',z,.

Fourth autocumulant function

Using
Cov(BoY,yoBoY)=yV(BoY)=yBV(Y)+yB(1 - B)E(Y) (by Corollaries 2.1 and 2.2),
we have, forw >v > u > 0,

Cum(Y;,a" oY;,a" oYy, a" oY)

=E[(Y; —py)(@“ oY, —a"uy)(a” oY; —a"uy)(@” oY — " py)]
- [Cov(Y,, a“oY;)Cov(a’ oY;,a" o Yt)(S)]

= Q" EL(Y, — )]+ (@ 20 - 30 sy + oy)
+ (" — "™ = 22" + 22"V o

- [a”(ré (" og +a” (1 - Clv)ﬂy}<3>] (by Lemma 2.4)

w2

YR 20" (K3 y — o) + @ o

= a,w+v+u(K4’Y - 3K3’Y + 20')%) + (a

Fifth autocumulant function

Using

Cum(BoY,yoBoY,6oyoBoY)

= 6y>Cums(BoY) +6y(1—y)V(BoY) (byLemmas 2.1(ii) and 2.3)

= 6y Cums(Y) +36y°B*(1 = B)V(Y) + 6y*B(1 - B)(1 = 2B)E(Y)
+8y(1-y)B*V(Y) +6y(1 - y)B(1 - BE(Y) (by Corollary 2.2)

= 6y* B> Cums(Y) + (6yB°> + 26y B> = 36y*BHIV(Y) + (6yB — 6yB> — 26y* B> + 26y*B)E(Y),
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we have, forx >w >v>u >0,

[Cum(Y,, a“ oY, a’ oY)Cov(aW oY;,a” o Y,)(6)]
+ [Cum(a” oY, a’ oY, a" oY;)Cov(Y;,a™ o Y,)(4)]
= [te"" sy + 0" (1 - @)oo o + ¥ (1 = @)y }(6)]
+ [{ax+w+vk3’y + (@ + 20" - 3ax+w+\/)o_§ +(aF — @™ =207 4 2a/x+w+\/)’uY}a/uo_%<4>

— loalx+w+v+uK3’YO_)%

+ (ax+v+u + 2ax+w+u + 3aX+W+V _ 6ax+w+v+u)K3’YﬂY
+ 3(a,x+v+u + 2ax+w+u + 3aX+W+V _ 6ax+W+V+M)O_§

+ (ax+u + 3a,x+v + 6ax+w _ 4a,x+v+u _ 8ax+w+u _ 120x+w+v + 14a,x+w+v+u)o_§lly’
hence,

Cum(Y;,a" oY, a’ oY, a" oYy, a* oYy)

E[(Y; - py)(a" oY, —a uy)(a” oY, —a”py)(a™ oY, —a”uy)(a” oY, — a*py)]
- [Cum(Yt,a/” oY, a” oY;)Cov(a"W oY;,a” o Yt)(6>]
- [Cum(a/v oY, a" oY, a* oY)Cov(Y;,a" o Yt)(4>]
— QX+W+V+ME[(Yt _ ,UY)S]
+ (a,x+v+u + X tWHU | g Xtwiy 6ax+w+v+u){E[(Yt _ NY)4] + K3,Y,uy}
+ (a)C‘HA + zax+v + 4aX+W _ 3a,x+v+u _ 6aX+W+M _ 9aX+W+V + 11ax+w+v+u)K3’Y
+ (a,x+u + 3™ 4 605 — 4gX TV — g _ 12X WY 4 14ax+w+v+u)o_)%/lY
+ (ax — @t 205 Z 400 4 25TV 4 4 KT 4 g XtV 6ax+w+v+u)o_§
_ 10(l’x+w+v+uK3’y0'§
_ (a,x+v+u + 2ax+w+u + 3aX+W+V _ 6aX+W+V+M)K3’YMY
_ (a,x+u + 3% 4 60 — 4 X TV — N TWTU _ 12X TWHY 4 14ax+w+v+u)0_%’uY
_ 3(a,x+v+u + X twiu | g Xtwiy 6a'x+w+v+u)0';§ (by Lemma 2.5)
— aX+W+V+uK5,Y
+ (a,x+v+u + 2ax+w+u + 3ax+w+v _ 6aX+W+V+u)K4’Y
+ (aX‘Hzt + 2a,x+v + 4ax+w _ 30X+V+M _ 6ax+W+M _ 90x+w+v + llax+W+V+M)K3’Y
+ (ax — @Y 205 4 4 25TV 4 4 KT 4 g X TV 6a/x+w+v+u)0_%

@V (ks y — 6kay + 11k3y — 60’%)

X+v+u X+w+u
+ 2«

+(a +30 ) (kay — 3Ky +20%)

20



2
+ (@™ + 207 + 42" (k3 y — 0y)

x 2
+ G'Y.

Sixth autocumulant function

We have, fory>x>w>v>u >0,

[COV(Y,, a“oY)Cov(a’ oY, a” oY;)Cov(a® oY;,a” o Y,)(lS)]
_ u, 2¢ x+vg 2 X ytw, 2 y 15
= | oy {a™ (oy —py) + o’ puy Ha ™ (oy — py) + @’ uy }(15)
— lsay+x+w+v+u(o_% _ #Y)ZO_%
+ 3(ay+w+v+u + QQYyTXtTVHU 3 ytxtwhu 4a,y+x+w+V)(O_% _ ,lly),uyﬂ'%

+ (a,y+w+u F2YTWHY L oYXt L g VTRV 6a,y+x+W)o_%’u%

— 15a,y+x+w+v+uo_$

+ 3(ay+w+v+u F2QYTXRVIU L 3 yEXAWRU g yEXtWEY 10(1’y+x+w+v+u)0';4,,uy
+ (a,y+w+u + 2a,y+w+v + Zay+x+u + 4a,y+x+v + 6a,y+x+w _ 3ay+w+v+u _ 6a,y+x+v+u

— QY FXFTWHU _ D ytXtWAY 15&y+x+w+v+u)o_%ll§,
[Cum(Y,, a“ oY, a’ oY) Cum(a” oY, a® oYy, a” 0Y,)(10)
_ v+u vVl = a" 2
= " k3 y +a” (1 - a")oy}

XA kg y + (@ 4207 = 3070l + (@7 — @Y = 207 + 207 uy 1(10)

_ y+x+w+v+u 2
= 10« K3y

+ (4a,y+w+v+u + QY FXTVHU | [y FXFTWHU 4 G YHXTWEY 4Oa,y+x+w+v+u)K3’Yo_%
+ (2ay+w+u + 4a,y+w+v + 4ay+x+u + 8a,y+x+v + lzay+x+w
_ 6a,y+w+v+u _ 12@y+x+v+u _ 18&y+x+w+u _ 24a,y+x+w+v + 30ay+x+w+v+u)o_;

y+v+u y+w+u

+ (a, +a + ay+w+v + za,y+x+u + 2a/y+x+v + 3a,y+x+w

_ 3a,y+w+v+u _ 6a,y+x+v+u _ 9ay+x+w+u _ 12ay+x+w+v + 20a,y+x+w+v+u)K3,YﬂY

+ (a,y+v + 3ay+W + 6a,y+x _ ay+V+M _ 3ay+W+M _ Say+W+V _ 6a,y+x+u _ 1an+x+v _ 150,y+X+W

+ 5y WVt L 1Y XTVHU 4 15yt 4 0y TXTWHY 20&y+x+w+v+u)o_%ﬂy’
[Cum(Y,, a¥ oY, a* oY, a¥ oY;)Cov(a" oY;, " oY;)(10)
— [{ay+x+wk4’y + (a,y+w + 29X = 3a,y+x+W)K3’Y + (a/y — @Y™V 2t & 2a,y+x+W)a_§}

x {@"Ma2 +a’ (1 — a")uy}(10)

— loay+X+W+V+M

K4,Y(O')% — dy)

+ (a/y+w+v+u £ QYTXIVHU | g yixtwru 4ay+x+w+V)K4,Y’uY
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+ (3a,y+w+v+u + 6TV 4 QY tXtWRU | [0 YEXWHY 30a/y+x+w+v+u)K3,Y(O_§ _ MY)

+ (2a,y+w+u F 4TV 4 4oy XN 4 YNV L QY TXIW | 3 AWV _ @ yEXtVIU _ o YEX+WU

+Xx+w+v
- 1227 )K3,y My
+ (a,y+v+u 4 @YW L g YEWAY L D o YEXRU o VEXRY g VEXEW g yEwEviu @ YU
— QY FXEWHU _ D yEXAWHY 20&y+x+w+v+u)o_)2,(o_% _ ,UY)
+ (a,y+v + 3a,y+w + 6ay+x _ 2(l’y+w+u _ 4a,y+w+v _ 4a,y+x+u _ 8ay+x+v _ 12a,y+x+w

F oYWV L g yrXtVie @ yEXtwru 8a,y+x+w+V)o_)%’uY

10gYtrtwviu K4,y0'%

+ (ay+w+v+u F oY FTXTVHU | 3 VEXAWHU | g VEXFWHY loay+x+w+v+u)K4’Y’uY

+ (3ay+w+v+u + Y txTviU 9a,y+x+w+u + [2gYTXtWHY 3oay+x+w+v+u)K3’Y0_%

+ (2a,y+w+u + 4@V WY 4 4oYtXTu 4 8a,y+x+v + 12YTXtw _ 6a,y+w+v+u — 12gYtXtviu _ 18a,y+x+w+u
_ 24ay+x+w+v + 30a/y+x+w+v+u)K3’Y’uY

+ (a,y+v+u + a,y+w+u + a,y+w+v + zay+x+u + 2a,y+x+v + Say+x+w _ 3ay+w+v+u _ 6ay+x+v+u
— Q@YTXtWHU _ {0 yEXtWEY 20&y+x+w+v+u)o_¢

+ (ay'l'\) + 3ay+W + 6a,y+x _ ay+V+M _ 3ay+W+M _ Say+W+V _ 6a,y+x+u _ 10&y+x+v _ 150y+X+W

+ Say+w+v+u + loay+x+v+u + 15&y+x+w+u + 2oay+x+w+v _ 20a,y+x+w+v+u)o_%ﬂy‘

Further, using

Cum[BoY,yo(BoY),60(yo(BoY)),no(do(yo(Bo))))]
=162y Cumy(B oY) +n6y*(1 +26 — 36y)Cums(B oY) +néy(1 —y)(1 —26y)V(BoY)
(by Lemma 2.1(ii) and (B))
= 06>y {B*Cumy (Y) + 68> (1 = B)Cum3(Y) + B*(1 = B)(7 - 11BV(Y) + B(1 - B)(1 — 68 + 68°)E(Y)}
+16y>(1+26 = 36y){B*Cums (Y) +36°(1 = B)V(Y) + B(1 = B)(1 - 2B)E(Y)}
+n6y(1-y)(1 = 26y){B°V(Y) + B(1 - B)E(Y)} (by Corollary 2.2)
= 6%y B Cuma(Y)
+ 6y +206%y* B + 306>y B — 616>y B Cums (Y)
+ (yB + 26y B + Aoy B = 3us®y’ — ey B = Ins*y’ B+ 1ns y BHV(Y)

+ (n6yB —noyB> = 206y B — 4n6>y* B + 2n6y° B +4ns>y’ B + 616>y’ B — 616>y BHE(Y),
we have
Cov(Y;,a" oY) Cum(a’ oY;,a" oY;,a” oY;,a” 0 Y;)(5)
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CL’MO'%{CL/y+x+W+vK4,y + (a,y+w+v + 2TV 4 3 ytxtw 6ay+x+w+V)K3’Y
+ (a/y+v +2aYtW 23TV L 4V Y — g Y XY — QYW lla,y+x+w+V)U_§

+ (ay _ a,y+v _ 2a,y+w + Zay+W+V _ 4a/y+x + 4ay+x+v + 6a,y+x+w _ 6ay+x+W+V)ﬂy}<5>

— 5a,y+x+w+v+uK4’Yo_)2/

+ (3&y+w+v+u + YTV L QoY XtWHU ) yHXtWEY 3oa,y+x+w+v+u)K3’Yo.)%

+ (za,y+v+u + 3ay+w+u + 4ay+W+V + 6a,y+x+u + 8ay+x+v + lzay+x+w

_ 9ay+w+v+u _ 180y+x+v+u _ 27a,y+x+w+u _ 36a,y+x+w+v + 55&y+x+w+v+u)0_é
+ (a,y+u + ay+V + ay+w + 2ay+x _ 2ay+v+u _ 3a,y+w+u _ 4ay+W+V _ 6ay+x+u _ 8ay+x+v _ 120y+x+w

+ 6a,y+w+v+u + 12Qy+x+v+u + 18(Yy+x+w+u + 24a,y+x+w+v _ 306¥y+x+w+v+u)0'%/.ly.

Then, we have, fory >x>w >v>u >0,

Cum(Y;,a" oY;,a’ oY, @ oYy, a* oYy, a” oY;)

=E[(Y; —py)(@* oY, —a"py)(a’ oY —a"uy)(@” oYy —a"uy)(@* oY — a” puy)]
- »Cov(Yt,a“ oY;)Cov(a’ oY;,a” oY;)Cov(a™* oYy, a” o Y,)(lS)]

- >Cum(Yt,a” oY, a” oY) Cum(a” oY;,a* o Y;,a” o Yt)(IO)]

—|Cum (Y, @” oY, a* oYy, oY)Cov(a® oYy, a" o Yt)(IO)]

— |Cov(Yy,a" o Yy)Cum(a’ oY, " oY;,a* oYy, a” o Y,)(S)]
L YEX+WHvtu _ 61 _ 2 2 6
=a {E[(Y; — py)"] = 15kayoy — 10k3 y — 150y}
+ (ay+W+V+M + Zay+x+v+u + 3ay+x+w+u + 4ay+X+W+V _ loay+x+W+V+M)K5 %

+ (a,y+v+u + 2a,y+w+u + 3a,y+w+v + 4a/y+x+u + 6a,y+x+v + 9a,y+x+w _ 6a/y+w+v+u _ 120y+x+v+u

_ 18ay+x+w+u _ 24a,y+x+w+v + 35ay+x+w+v+u)K4,Y
+ (a,y+u + 2071V 4407V + 8a¥ Y — 3TV _ g tWHU _ YWY _ gV tx U _ g YtXTY
_ 27a,y+x+w + llay+W+V+M + 22a,y+x+v+u + 33a,y+x+w+u + 44a,y+x+w+v _ 500y+x+W+V+M)K3’Y
+ (ay _ ay‘H/l _ za,y+v _ 4ay+W _ 8a,y+x + 2ay+v+u + 4ay+W+M + 6ay+W+V + 8a,y+x+u + 120y+x+\)
+ 18 Y TXTW _ Y tWHVHU | QY TXHVIU _ QY EXTWAU _ o f  VEXFWHY 24a,y+x+w+v+u)0_%
(by Lemma 2.6)
= @IV (ke — 10ks y + 35k y — S0k3y + 2407)
+ (a,y+w+v+u + 2ay+x+v+u + 3ay+x+w+u + 4a/y+x+w+V)(K5,Y _ 6K4,Y + 11K3,Y _ 60'%)
+ (a,y+v+u F QYT L 3 YTWEY L 4V TrTH 4 YTV 4 9a,y+x+W)(K4’Y _ 3K3,Y + 20_)%)

2
+ (@™ 4207 + 47 + 827 (k3 y — 0)
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y, 2
+ @ Uy.

Proof of Lemmas 2.3-2.6

After some tedious algebra, we obtain

E[G(Y)(BoY = BE(Y))(y o (B oY) = yBE(Y))]
=yE[G(Y)(BoY — BE(Y))?] (use the conditional expectation)
=y |[BEIGO (Y - EMP1+ B0 = HIEIGO (Y = EX)] + EIGMIEM)|| - (by Lemma 2.2(iii),
E[G(Y)(BoY = BEW)(y o (BoY) = yBE(Y)(S o (y o (BoY)) = SYBE(Y))]
= 5|V EIG) (B oY - BE())]
+y(1=PEIG) (oY = BE(W)P] + BEIG(Y)(B oY - BE(V)IE()]]
(use the conditional expectation in relation to Lemma 2.3)
= 7| BPEIGO) (Y = EW))1 +36°(1 = HIEIGI(Y = E()*] + E[G)(Y — EM)IE))|
+B(1= A1 =2 {EIGH)(Y = EX)] + EIGMIEM)} |

+6y(1=9)|BEIGO) (Y = EW)*] +B(1 - HEIGW)(Y = EW)] + E[GM]IE(Y)]

=6y’ FE[G(Y)(Y - E(Y))’]
+ 6y (1+2y = YR EIGI(Y - E(V)?] + EIGIN(Y = EXDIE)|
+6yB(1 - H(1 = 29H{EIGI(Y = EOD]+ E[GMIEW)},
E[G(Y)(BoY = BE(Y)(y o (BoY) =yBE(Y)(6 o (¥ o (BoY)) = SYBE(Y))
X (0 (80 (v o (BoY))) = nSyBE(Y))]
= 6"y E[G(Y)(BoY - BE(Y))"]
+1672(1+28 = 360{EIG( (B Y = BE() | + BEIG(Y)(Bo Y = BE()*IE(Y)
+16y*(1 =) (1 = 200 {EIG) (Bo Y = BE()] + BEIG(Y)(B oY = BE(V)]E(Y))
(use the conditional expectation in relation to Lemma 2.4)
=1 | BEIGMN(Y - EN)*|+68°(1 = BI{EIG) (Y = EW))*] + EIGIN(Y = EQX)YIE(Y))
+A2(1=B)(T - NBE[GY)(Y = E(V)*] +28°(1 = B)(5 = TBE[G(V)(Y = E(Y)]E(Y)
+362(1 - BE[GIE(M)P|
41672 (1+26 = 36N [BEIGO)(Y = E(¥))']

+362(1 = IEIGM)(Y = EMPI + E[G)(Y = EXDIE))
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+B|BEIG((Y - E(Y))?)
+B(1 = BEIGW)(Y - EX)] + EIGONIEM) | [Em)}

41672 (1 =) (1= 269) |BPEIGW)(Y = E()*] + (1 = H{EIGI)(Y - E(¥)] + EIGI)IE(Y)]

=16’y B'E[G(Y)(Y - E(Y))*]
+n8yB(yB> +26yB% +36y*B* - 66y’ BHE[G(Y)(Y — E(Y))’] + E[G(Y)(Y = E(Y))’]E(Y)}
+n8YB(B+2yB +45yB = 3y’ — 65y = 96y’ B> + 116y’ BHE[G(Y)(Y - E(Y))’]
+n8YB(B+3yB +65yB — 4y’ - 85yB* — 1267°B* + 146y B)E[G(Y) (Y — E(Y))]E(Y)
+nSyYB(YB+26YB —yB* = 26yB* = 36> B> + 36y B)EIG (NI [E(V)]?
+n8yB(1 = B—2yB — 45y + 2y’ + 46y’ + 66y* B> — 667°B°)
X {E[G(Y)(Y —E(Y)] + E[G(Y)]E(Y)},
E[(Y —E(X)(BoY =BE(Y))(yo (BoY) —yBE(Y))(5o (yo (BoY)) - yBE(Y))
X (no (60 (yo(BoY)))=néyBE(Y))(to (1o (6o (yo(BoY)))) —msyBE(Y))]
=’ SV E[(Y = E(Y))(BoY - BE(Y))’]
+ 8y (6y* +2n6y? + 3062y — 6n6°y°)
x{E[(Y = EW)(BoY - BEW)*] + E[(Y — EM)(BoY - BE(Y)'|BE(Y)]}
+ By (y + 28y +4ndy = 36y* — ndy* = Md>y* + 11n6>y )E[(Y — E(Y))(Bo Y — BE(Y))’]
+ 0y (y + 36y + 605y — 46y” - 8n6y> — 1295°y” + 14n6°y*)BE[(Y = E(Y))(Bo Y - BE(Y))*]E(Y)
+ by (8y + 208y = 6y* = 2n6y* = 3n8%y* + 306>y )BE[(Y — E(Y))(Bo Y = BE(Y))[E(Y)]?
+ 6y (1l —y — 26y — 4ndy + 26y* + 4néy? + 6n6%y* — 6n6>y>)
X {E[(Y —E(Y))(BoY —BE(Y))*] +BE[(Y - E(Y))(BoY - BE(Y))]E(Y)}
(use the conditional expectation in relation to Lemma 2.5)
= a8y | BENY - E)°1+ 1008 = B){EL(Y = EW)] + E[(Y - EQ)*IE())
+5058° — 1284 + 1B°)E[(Y — E(Y)*] + 10(4B8° = 9B8* + 5SB)E[(Y — E(Y))*|E(Y)
+5038% - 1583 + 228 —108)E[(Y —E(Y))’] + 15(8° = 28* + B )V(V)[E(V)]?
+5(58% - 238° + 328 — 148V (Y)E(Y) + up?6>y* (B — 158% + 508° — 608* +248°)V (Y)
+moy(6y* + 2n6y* + 3n6%y* — 6n62y?)
X [B*ELY = E0T+6(8° = BY{ELY - EX) 1+ EL(Y = EQ)PIEW))
+ (782 - 188° + 11BYE[(Y - E(Y))’]

+2(587 - 1283 + IBHYV(V)E(Y) + (B - T8> + 128° — 681V (Y)
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HBELY = B +362(1 = BLELY = E0)’] + VINEY)}
+B(1= B)(1 =2V (V) BE(Y))|
+mSy(y + 28y +4ndy — 36y — 6ndy* — s>y? + 11n6%y*)
< ABELY = E()*] +382(1 = BELY = EQ))’ ]+ VINEX)} + B(1 = B)(1 = 28)V (Y))
+mSy (y + 36y + 6ndy — 46y* — 8noy* — 12n6%y* + 14n6%y*)B
x{B2EL(Y = E0r)*] + (1 = HV(NEW)
+mSy(8y + 208y = 8y = 2n6y* = 3n8%y* + 308>y ) BV (V) [E(Y)]

+my(1 —y — 26y — 4ndy + 26y + 4ndy? + 606>y — 6n6>y?)

= w8y B E[(Y - E(Y))°]

+ %y B4 (1 +20+ 306 + 4ndy = 10n6yB) [EL(Y = EW) ]+ EL(Y = EO)YIE()]

+mSyB(yB* + 20y +35y* B + 4ndyp’ + 6noy* B +9ns>y* B - 66y — 1206y B°
— 1876°y°B° = 24n6°yB° + 3576% Y’ BHE[(Y - E(Y))*]

+m8yB(yB* +36yB% + 56y B2 + 6ndyp* + 10n6y> B + 1576y B> — 96> B> — 18n6y>B°
- 27p6%y* B’ = 36n6°y B +50n6°y BHE[(Y - E(Y)) | E(Y)

+mdyB(B+2yB +45yB +8noyp — 3yB> — 65yp* — 96> — 12n6yB* — 18n6y*B* - 2Tns°y* B
+116y28° + 22n6v* B> + 33n6%y* B + 440623 B2 — 50062y BHE[(Y - E(Y))?]

+mdyB(B+3yB+T5yB + 14ndyp — 4yB> — 95yB* — 146y° B> — 18n5yp* — 28n0y*B* — 42n6°y* B
+166y2B° +32n6y* B> + 481622 B> + 64n6%y> B2 — 1006y BHV(Y)E(Y)

+mSyB(6YB* + 20y B> + 26y B* + 4ndy’ B + 6967y’ B - 35y* B — 616y’ — ey’ B
- 1276°y°B° + 1576%y° BV (V) [E(Y)]?

+moyB(1 — B —2yB — 46y B — 806y B + 2yB% + 45y B> + 65> B2 + 8ndyB% + 1216y B> + 18762 y* B2

- 66728 — 12n6y2B° — 18762928 — 24n6%y> B3 + 24182y BHV (V).
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Chapter 3

Some estimators in INAR(1) process

3.1 Introduction

Al-Osh and Alzaid (1987) mainly considered the nonnegative integer-valued autoregressive process of
the first-order (INAR(1)) with the Poisson marginals, i.e., Y; = @ o Y;_ + &, where «o is the thinning
operator with @ € [0, 1), and {&;} is a sequence of independent and identically distributed random
variables according to the Poisson distribution Po((1 — a)u) for u > 0. They studied the Yule—Walker
(YW), conditional least squares (CLS), and (conditional or full) maximum likelihood (ML) estimators for
the parameter @. Park and Oh (1997) additionally established the asymptotic normality of the YW and
CLS estimators, and Freeland and McCabe (2005) pointed out that Park and Oh’s asymptotic variance
of the CLS estimator is incorrect and then showed that the CLS estimator is asymptotically equivalent to
the YW estimator. Bourguignon and Vasconcellos (2015a) considered the stationary INAR(1) process
under the power series innovation, and conducted the simulations for the YW, CLS, and conditional ML
estimators for the parameter a.

On the other hand, these estimators are biased in a finite-sample. Some authors thus studied the
bias-correction in the stationary INAR(1) process, whose autocorrelation at lag 1 is the same as the
usual stationary autoregressive process of the first-order (AR(1)). Unlike Fujikoshi and Ochi (1984)
and Kakizawa (1996), the higher-order comparison of the mean squared errors (MSEs) in the stationary
INAR(1) process is, however, not fully discussed. Indeed, Bourguignon and Vasconcellos (2015b) and
Weill and Schweer (2016) studied the INAR(1) with the Poisson marginals only. Jung et al. (2006) did
not derive the variance and MSE after the bias-correction. This chapter attempts to fill these gaps.

The rest of this chapter is organized as follows. In Section 3.2, we consider a class of estimators
for the parameter « in the stationary INAR(1) process under a general innovation. In Section 3.3, we
derive, explicitly, the asymptotic expansion for the bias of such a general estimator. We construct an
analytical bias-corrected estimator for the parameter @ and examine the MSE after the bias-correction.
In Section 3.4, we conduct the simulation experiments to demonstrate the finite-sample performances of

the estimators in the stationary INAR(1) process under the Poisson or negative binomial (NB) innovation.
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Section 3.5 concludes this chapter. The technical proofs are postponed to Sections 3.6 and 3.7.

3.2 A class of estimators for the parameter «

Suppose that the observation {Y1, ..., Y,} of length n is generated by ¥; = @ oY;_| + &;, where we assume
that @ € [0, 1) (i.e., the INAR(1) process is strictly stationary and ergodic; see Du and Li (1991)) and that
E(g]) exists for some J > 2 (see Remark 2.1). Let Y = (1/n) 21 Yi. Also, Is stands for the indicator
of the set S.

Perhaps, the YW estimator

> -V)(Yi - )
ayw = = 3.1)

i(n ~Y)?
t=1

is the simplest estimator for the parameter a, since the autocorrelation of the stationary INAR(1) process

is equal to «, as in the usual stationary AR(1) process (e.g., Brockwell and Davis (1987)). On the other

hand, the CLS method due to Klimko and Nelson (1978) is quite standard, based on the criterion

Ja,pe) = Y (Y = E[Y|Yia])? = ) (Y — ¥y — e, (3.2)
t=2 t=2

hence, the CLS estimator for the parameter « is given by

n n

n
ZYth—l —(”_1)_12171 Yio
t=2
n 2 :
PR GEECER N DAY
t=2

The method of moment (MM) estimator from the estimating equation

acrs = (3.3)

t=2

n

D IH =N =) —ati =¥ =0
t=2

is given by
n —_— _—
D=Vt -7
1=2

Apum = — . (3.4)

i(Yt—l -Y)?
t=2

We define a more general estimator @, ., for the parameter « in the stationary INAR(1) process,
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given by

D =N =Y)
t=2

Tey,er = — , c1,c220. (3.5)

(=724 Y (Y, = ¥V)? + ea(¥, - V)2
t=2
Note that, in addition to the YW estimator ayw = a;,; and the MM estimator @y = @ 0, the Burg
estimator @pyurg = @ij2,1/2 is widely used in the usual stationary AR(1) process. We consider an

analytical bias-correction of such a general estimator (3.5) and study the higher-order MSE comparison

in the stationary INAR(1) process. It should be remarked that

S0 =P -7) - [Z V- Sy e T-F=%) o 0oy,
t=2 t=2 =2

-1
t=2 n

D011 [ = ()| - S 0,00

hence, all results of @z, described below remain valid for @crs, if (c1,¢2) = (1,0).

Remark 3.1. The conditional ML method is available, when the distribution of the innovation {g,} is
known. However, we here do not assume the parametric family of the distribution of the innovation,
except for some simulation experiments. We emphasize that, in this sense, the study of this chapter can

be regarded as to be semi-parametric inference.

3.3 Analytical bias-correction

First of all, we prove the strong consistency and asymptotic normality of the general estimator @, ,, and

derive the asymptotic expansion for the bias E(@¢, ¢, — @).

Proposition 3.1. (i) @, ., SN

(i) Vn(@c, ¢, — @) 4, N(0,v/ay), where
v=_1-a){aQr3y + ao-% +(1+ a)o-é}.

Therefore, the general estimator @, c, is asymptotically equivalent, regardless of the choice of (c1, ¢2).
Proposition 3.2. The n~! bias of @, ., is given by

202 Q>.
O3y « }+0(n_1),

- 1
E(@cc, —) = —;{1 +2+c0)a+ a +0/)0'¢ 0'_}%

where ¢ = ¢y + ¢).
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Secondly, we construct an analytical bias-corrected estimator

— ~ 1 _ 202 023y Qe e
Acy,ep = Uepyep T _{1 +(2+ C)a'cl,Cz Cl - ihzcz } (3.6)
n (1+a, Cz)a' Ty

(it is also consistent and asymptotically normal, as in Proposition 3.1; the detail is omitted here), where
1< -0 = 1\ -3 1v =
=D =V Qasy = ) (Y =V~ 3 (% ~7)
t=1 t=1 t=1

converge to a‘% and 0.3,y a.s., respectively, by strictly stationarity and ergodicity of {Y;}.

Our interest here is to examine the effect of the parameter (¢, ¢3) in terms of the MSE.

Proposition 3.3. (i) The n~! bias of @¢,,c, is removed, i.e., E(Q¢,,c, — @) = o(n™h).

(ii) Also,
V(a'q Cz) - V(QO 0) = Ll = + O(n_Z)’
~ — A
MSE(@c, ;) = MSE(@0,0) = —5= +0(n”?),
where
2 Q24 Y 2 2 2 Q2:3,Y
Acjcy = [(c1 2c) + Cz) + {3((:1 2c1+¢3) + (3¢ = 2¢1 +3cy)a}—————
a'Y (I+a)oy
1
+(c+ c%)(—z + 2)]
Iy

Forthe INAR(1) process {Y; } with the Poisson marginals (Q2.4.y = Q2.3.y = 0), the choice (c1, c2) = (0,0)
is optimal, as in the usual stationary Gaussian AR(1) process (unfortunately, such a result, independent

of @, does not hold for a general innovation).

The following two propositions reveal that, even under the Poisson marginals, there is no uniform
results on the choice (cy, ¢2) of the estimator (without bias-correction) and the MSE comparison between

Aeyep AN gy iy

Proposition 3.4. We have

V(&cl ,cz) - V(alo)

1 Q24Y 023y 1 _
n [{(Cl - 1)2 +C2} 2 A2 (c1 Cz)_z +A3,(C1,Cz) + O(n 2)’

L,(c1,¢2) T A2,(cy,
Y (1+a/)0'f; oy

MSE (@, c,) — MSE(@) )
024y 023y

+{A1 (c;,cr) +4(c1+ 2 = l)a }(1 +a)0_§

= [t -2+ 12

O—Y

1
+ {AQ’(CI’CZ) + 2(C1 +cy — 1)&2}—2
9y
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+ A3, (c1en) F2(cr+c2—Da+(cr+c2—1D(cr+er+ 5)a/2 + o(n_z),
where

Al (crer) = @[2(1 = ¢ = c2) +3{(c1 - 1)2 + c%}(x +{3(cy - 1)2 +6(c1—1)+ 36‘% + 2cz}cx2],
A 1o = @[2(1 = c1 = c2) +{(c1 = D +4(c1 = 1) + ¢35 +2¢ca}e],
A3 (1o =2(1=c1 = c2) +2{(c1 = D*+3(c1 = 1) + ¢} + ca}a?.

Proposition 3.5. We have

al23y o
Q +

V(@) = V(@eyc,) = % [2c(a —1) (1 ta+ ) + A] +o(n?),

4 2
Ty Oy
- — 1 303 — . 202 —
MSE (@, ) — MSE(@e, o)) = _2[c2a2 +2c{3a2 va—1487 “)Qj'” s 2 “}
n (1+a)oy oy

220> 2
+{1+2a+&+1} +A]+o(n‘2),

(1+ a)o{; 0'%

where

1 .
+— +2}(1 —a/)(anf’Y + % +1 +a)
Oy Ty Oy

oo - e 200
(1+a)?0y
{40'2Q2:3,Y N a +3a? H2C¥2Q2:3,Y
(1+a)o';; (1+a)0')2,
6a> a'3Q2:4,Y 2 2 I+« O3y 2«
- { +a ( + + 1) +—+ a}].
(1+a)oz (1 +a+a?)oy l+a l+a+a? ol 2

Y Oy

a
(1+a)od +;+2a/}
Y Y

3.4 Simulation results

We conduct the simulations (@ = 0.2,0.5,0.8 and n = 100, 200, 300, with 2000 replications) about the
estimators @, ¢, and @, ¢, (see (3.5) and (3.6) with (cy, ¢2) = (0,0), (1/2,1/2),(1,0), (1, 1)), under the
set-up that the innovation {&;} follows the Poisson distribution Po((1 — a@)u) or negative binomial (NB)
distribution NB(r, r/{r + (1 — @)u}) (we set u = 10 and r = 10).

We observe from Tables 3.1 and 3.2 that the biases, variances, and MSEs of all estimators decrease
as the sample size n increases (the estimators have the downward biases) and that, as expected from
Proposition 3.3(i), the proposed analytical bias-correction works well. Under the Poisson innovation, the
bias-corrected estimator @ has, overall, the smallest variance and MSE (see Table 3.1), which is in
agreement with Proposition 3.3(ii).

It may be true that @, , suffers from the inflation of the variance, because of the trade-off between
the bias and the variance. But, Proposition 3.5 tells us that the uniform inferiority of MSE(a, ¢,) over

MSE(@,, ,), with respect to a, is not asserted, at least asymptotically. Indeed, comparing the upper and
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lower panels in Tables 3.1 and 3.2, it is revealed that, if @ = 0.8 (e = 0.2) is large, then, the bias-corrected
estimator @, ., is likely to outperform (underperform) the bias-uncorrected estimator @, ¢, in terms of

the MSE.

3.5 Concluding remark

After deriving the asymptotic expansion for the bias of the general estimator @, .,, we have constructed
an analytical bias-corrected estimator a., ., and examined the effect of the parameter (¢, ¢;) in terms of
the MSE. It turns out that, for the INAR(1) process with the Poisson marginals, the choice (cy, ¢3) = (0,0)
is optimal, as in the usual stationary Gaussian AR(1) process.

In Fujikoshi and Ochi (1984), Kakizawa (1996), and references therein, the so-called Edgeworth
expansion yields a refinement of normal approximation for the distributions of some estimators in the
usual stationary AR(1) process. Unfortunately, it can not be directly applied in the stationary INAR(1)

process, since the INAR(1) process is discrete.

3.6 Proof of Proposition 3.1

Before proving Proposition 3.1, we prepare two lemmas (Lemmas 3.1 and 3.2).

Lemma 3.1. Suppose that a € [0, 1) and that E(?) exists. The following hold.

(i) V(Y = py) = 0 (1).
(i)Y REEN py. Moreover, for k =0,1, {1/(n = 1)} X7 , (Y-« ~Y)(Y;_1 -Y) 25 al_k(f}%.

Proof (i) Noting that

W@ = LSV +2 3 1 Covrn)]
t=1

s,t=1

2 n
2 t—s 2
=0'Y+; Z Iiseya oy

s,t=1

o' _a(l—a”)} l+a ,

_ 2 2
_a'Y+20'Y{1_a n(l—a)? Oy,

l-a

the result follows by Brockwell and Davies (1987).
(i) For k = 0, 1, {1/(n = 1)} 51, Y-k ¥y1 == E(Y1-x¥o) and {1/(n = 1)} Xy, Yok = py, as
well as ¥ 5 Uy, by strictly stationarity and ergodicity of {Y;}, hence,

1

n—1

n n n

— — 1 1 - =2
E Yk =) (Y1 - ¥) = —— E YiekVio1 = —— § Y-k +Y-)Y +Y
=2 " =2 n =2

=5 E(Y1-iYo) — pp =yy(1- k). O
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Table 3.1: Biases, variances, MSEs of the estimators a., ., (without the bias-correction) and @, ., (with
the bias-correction) in the stationary INAR(1) process unde the Poisson innovation.

Biases (x10) Variances (x100) MSEs (x100)

a n @00 Q12,12 Q10 Q1] Q0,0 Q12,12 Q10 @1, Qo0 Qi/2,12 Q10 @11

0.2 100  -0.164 -0.183 -0.183 -0.200 1.002 0.984 0.984 0.968 1.029 1.017 1.018 1.045
200 -0.053 -0.063 -0.063 -0.072 0481 0.477 0.476 0.472 0.484 0.481 0.480 0.492
300 -0.047 -0.054 -0.054 -0.061 0.319 0.317 0.317 0.315 0.321 0.320 0.320 0.323

0.5 100  -0.227 -0.277 -0.275 -0.325 0.811 0.793 0.795 0.781 0.862 0.870 0.871 0.845
200 -0.094 -0.119 -0.119 -0.143 0.413 0.408 0.408 0.405 0422 0422 0422 0422
300 -0.069 -0.087 -0.087 -0.104 0.271 0.269 0.270 0.269 0.275 0.277 0.278 0.274

0.8 100  -0.280 -0.368 -0.369 -0.452 0.508 0.500 0.506 0.507 0.587 0.635 0.642 0.530
200 -0.133 -0.175 -0.173 -0.217 0.202 0.202 0.203 0.206 0.220 0.233 0.233 0.207
300 -0.088 -0.115 -0.115 -0.142 0.129 0.128 0.129 0.129 0.136  0.141 0.142 0.130

a n Qo0 Q12,12 QL0 Q11 Q0,0 Q1/2,1/2 Q10 Q1,1 Q0,0 Q1/2,12 Q10 @1,1

0.2 100  -0.025 -0.026 -0.027 -0.027 1.044 1.046 1.046 1.049 1.045 1.047 1.047 1.050
200 0.017 0.017 0.017 0.018 0.492 0.491 0.491 0.492 0.492 0.492 0.491 0.492
300 -0.0004 -0.001 -0.001 -0.001 0.323 0324 0.324 0.324 0.323 0.324 0.324 0.324

0.5 100  -0.027 -0.031 -0.029 -0.033 0.845 0.843 0.845 0.847 0.845 0.843 0.846 0.848
200 0.007  0.007 0.006 0.006 0422 0.421 0421 0.422 0.422 0421 0421 0.422
300 -0.001 -0.002 -0.003 -0.004 0.274 0.275 0.276 0.276 0.274 0.275 0.276 0.276

0.8 100  -0.019 -0.033 -0.033 -0.044 0.530 0.531 0.537 0.549 0.530 0.532 0.539 0.551
200  -0.001 -0.004 -0.002 -0.008 0.207 0.209 0.210 0.214 0.207 0.209 0.210 0.214
300 0.001 -0.0003 -0.001 -0.001 0.130 0.131 0.131 0.132 0.130 0.131 0.131 0.132

Table 3.2: Biases, variances, MSEs of the estimators @, ., (without the bias-correction) and @, ., (with
the bias-correction) in the stationary INAR(1) process unde the NB innovation.

Biases (x10) Variances (x100) MSE:s (x100)

a n Qo0 Q12,12 Q1,0 a1 Qo0 Q12,12 QL0 @11 @o,0 @i/2,12 @0 Q1,1

0.2 100 -0.160 -0.179 -0.178 -0.197 0.999 0.979 0.979 0.960 1.025 1.011 1.011 1.042
200 -0.077 -0.086 -0.086 -0.096 0.494 0.490 0.490 0.486 0.500 0.497 0.497 0.505
300 -0.017 -0.023 -0.023 -0.029 0.333 0.331 0.331 0.329 0.333 0.331 0.331 0.339

0.5 100 -0.194 -0.250 -0.254 -0.303 0.849 0.830 0.830 0.818 0.887 0.892 0.894 0.886
200 -0.096 -0.123 -0.124 -0.149 0.388 0.384 0.383 0.381 0.397 0.399 0.399 0.397
300 -0.064 -0.083 -0.083 -0.101 0.261 0.259 0.260 0.258 0.265 0.266 0.267 0.265

0.8 100 -0.229 -0.335 -0.353 -0.435 0.497 0.480 0.483 0.485 0.549 0.592 0.608 0.519
200 -0.102 -0.155 -0.163 -0.206 0.199 0.195 0.196 0.197 0.209 0.219 0.223 0.204
300 -0.071 -0.105 -0.111 -0.138 0.133 0.132 0.132 0.133 0.138 0.143 0.144 0.136

a n @00 Q12,12 @10 a1 Qo0 Q12,12 Q10 Q1,1 @o,0 @i/2,12 @0 Q1,1

0.2 100 -0.021 -0.022 -0.022 -0.023 1.041 1.040 1.041 1.041 1.042 1.041 1.041 1.041
200 -0.006 -0.007 -0.007 -0.007 0.505 0.505 0.505 0.506 0.505 0.505 0.505 0.506
300  0.030 0.031 0.031 0.031 0.338 0.338 0.338 0.338 0.339 0.339 0.339 0.339

0.5 100  0.007 -0.003 -0.006 -0.011 0.886 0.882 0.882 0.887 0.886 0.882 0.882 0.887
200  0.006 0.003 0.002 0.001 0.397 0.396 0.396 0.397 0.397 0.396 0.396 0.397
300  0.004 0.002 0.001 -0.0002 0.265 0.265 0.266 0.265 0.265 0.265 0.266 0.265

0.8 100 0.034 0.002 -0.017 -0.025 0.518 0.510 0.513 0.525 0.519 0.510 0.513 0.526
200  0.031 0.017 0.008 0.004 0.203 0.201 0.202 0.205 0.204 0.201 0.202 0.205
300 0.018 0.010 0.004 0.003 0.135 0.135 0.135 0.137 0.136  0.135 0.135 0.137
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Let
Mz = {Yt - O,’Yt_l - (1 - (X)/JY}(YZ_I - ﬂY), = 2, A (N
Lemma 3.2. Suppose that a € [0, 1) and that E(&?) exists. The following hold.

1 « d
i) — M, = N(0,v), wherev = (1 —a)[aQr3y +acs+ (1 +a)c?].
(i) WZZ S N(0,v) (1-a)[aQ2sy + a0t + (1 +a)ot]

1 — - — s d
(ii) —= D[ = V) ¥y =) = a(Yy = 7)*] S N(O, ),
=
Proof (i) Let %, = o{Y1,...,Y;} be a sigma-field, and let n > 2. Note that {n‘]/th,t =2,...,n}tisa
martingale difference array, since, fort =2,...,n,

E(Y,|.Z-1) = E(a oY1 +&|Fi_1) =aYi + (1 — )y, ie., E(n”'>M,|.%,_) =0.

Now, we know that E(M?) = E (M%)(< o0), by strictly stationarity of {Y;}. Then, for any & > 0, we

have
P( max |n"V2M,| > g) < > P(IM,| > Vne)
t=2,..., n )
= (n—1)P(|M>| > \ne) (by strictly stationarity of {Y;})
1 2

< SEU(ms)>yiey M
— 0 (by Lebesgue’s dominated convergence theorem),

hence,

max |n_1/2Mt| =0,(1). (3.7)
t=2,..., n
Also, we have
1 1 &
2 2 2
JE| max M7 < z;E(Mr) < E(M). (3.8)
1 v 5.
- Z M t2 N E (M22) (by strictly stationarity and ergodicity of {Y; }). (3.9)
t=2

The result is shown by martingale central limit theorem (see McLeish (1974)) and (3.7)—(3.9).

(i) Noting that
LNy Ty 7 L 1S N o
W;[(Y, Pt =F) ol =P = 2 D00 = ) Hret = ) = i = o]
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- L [—{(Y; = py) + (Yeo1 — uy) Y (¥ = py) + (¥ = py)* — a{=2(Y,—1 = uy) (¥ = pry) + (¥ = py)?}]
=2

= p(l/\/ﬁ) (by Lemma 3.1(i), together with 37" , (Y;—; — uy) = n(Y — py) + O,(1) for j=0,1)

=op(1),

the result is shown by Slutsky’s theorem and (i). O
We are ready to prove Proposition 3.1.
Proof of Proposition 3.1. The strong consistency is shown by Lemma 3.1(ii) and n~! (¥y — Y)? 2250

for # =0, 1. Also, it is easy to show that

1

N7 ;{(Yz ~V)(Yo1 =) —a(Yi - ¥)*} - %{(61 - D =Y +ea(Y, - Y)*}

\/ﬁ(al\cl,cz - CY) =

(30t =T (1 = D -T2+, - )

1
n t=2

4, N, v/ 0';4,) (use Lemmas 3.1(ii) and 3.2(ii) and Slutsky’s theorem). O
3.7 Proofs of Propositions 3.2-3.5
Let X = (1/n) Y=y X;, where X; = (Y; — uy)/oy. One can rewrite U = (mr%)‘l Y (Y ~Y)(Y;_1-Y)

and Uy = (na')z,)‘1 [c1(Y1 - Y)2 + Z:’z_zl (Y, =Y)2 +ca(Y, —Y)?] as

1 < e 1  — —
Ur=— Y XX - (1 + —)X2 + (XX +X,X),
nt:2 n n
n—1

1 = - —2
Ut = ;[cle + 3 X2+ X2+ 2(1 - e)XiX +2(1 - )X, X + (c1 + 2 —n - DX ]
t=2
1 - 2 c1+cy— 2\—=2 1 2 ) — —
== DX+ (-1 )R (e = DX+ X = 201 = DXIX —2(e2 = DX X,
t=2
respectively, hence,

1 < 1 _
U, - ongl’Cz = Z(Xt —aX; )X - [1 -a+ ;{1 +(ci1+c—2)a} X2
=2

+ %[a{—(cl ~ DX =2 X2} + {1 +2(c1 — Da} X1 X + {1 +2(c2 - Da} X, X].

Before proving Propositions 3.2-3.5, we prepare the stochastic expansions of @, ., and @, ¢,. Using

E(X;X;1)=a,E(X*) =1 (note that E[(X; — aX,_1)X;_{] = 0),

n

— 1y 1 _ 1-a"
E(XX) =~ DE(XiX,) = - Dot ———

t=1 t=1 n(l B a)
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E(X,X) = - ZE(Xt n>——Zn] :ﬁ

t=1
n

2 _ l+a 2a(1 — o)
EX) = — E(X?) + = LisenE(X:X,) = -+ — I 1= = - ,
(X)) Z (X7) ”ZI e EOGX) =45 D T = s = gy
where
n n—1
r-s _ @ n-sy _ < _ 1-a"
Zl{s<t}a _l—az(l_a )_l—a(n l—a)’
s,t=1 s=1
we have

1 p—
E(U;"?) = Z(n rei+e-2)—EX)+0(n™)

1 1
= 1+—(— T +c1+c2—2) +0(n7?)
n l-a
1
=14+-6T24+0(n"2) (say),
n

E(U) - aU?) = (1 - ) E(X) + 0(n™)

+ %[—(cl +cer—Da+{1+2(c; — Da}EX1X) + {1 +2(c2 — Da}E(X,X)]

= —%{1 +(ci+c)at+0(n™?)

|
= A2+ 0(n"%)  (say).
n
On the other hand, for # = 1, n,

1o 1 — | _ _
V(—X#X) = —Cum(X.X. Xo. Xp) + 5V (Xp)V(X) + 5 [Cov(Xe. X))
n

= ZCum(xt,Xt,X#, X)+ Z Iis<tyCum(Xs, X, Xg, Xs)

t=1 s,t=1
_ 17 <&
+ EV(X) + E[ZICOV(X#,X;)]
t=
=0(n7),

since there exists a constant C > 0 (independent of 71, € {1, ..., n}) such that

|Cum(th,Xt2,Xl,X1)| S Camax(tl,tZ)_l’

|Cum (X, Xp,, Xy Xn)| < Co"MiN(112),

Also,

) +2[V(X)]?

lal
|
|
|

V(X ) =Cum(X,
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n

1 4 <
= E Cum(XtaXt’XtaXt)+n_4 Z I{S<l‘} [Cum(XS$XS’XS9Xt)+Cum(XSaXt’Xt9Xt)]
t=1 s,t=1

6 n
+ ; Z I{S<Z}Cum(XS,XS9X[9Xt)

s,t=1

12 ¢
+ F Z I{s<t<u} [Cum (X, X;, Xy, Xyy) + Cum(Xg, Xy, Xz, X)) + Cum(X;, X, Xz, X)) ]

s,t,u=1
24
+ F Z I{s<z<u<v}Cum(Xs, Xty Xu» Xv)
s,t,u,v=1

+2[V(X)]?

_ 2(1+a)?

= iap 0(n™?),

since there exists a constant C > 0 (independent of ¢y, 15, 13,24 € {1, ...,n}) such that
|Cum(th , Xzz’ th’ Xt4)| < CamaX(tl,tz,t3,t4)—min(t1,l‘z,t3,t4).
It is shown that

1.— 1 -
XX = ~E(XsX) +0,(n**) =0,(n7%), #=1,n,
n n

X = LX) +0, ()] = 0, (7).

Then,
Ugl,CZ _E(UEI,CZ)
1 < — — 1
= - DXL =D+ [ = (X - EE)}+ —{(er = DX = D +ea(X3 = DY +0,p(n7)
=2
=D_p+ Dill’cz + Op(n_l)
and

Uy — aUy"? - E(U; — U5 )
= K aX )Xo = [ - (X = BT+ (e = DOG = D +ea(XE - 1)
t=2
+ %[{1 +2(c; — Da}{X 1 X - E(X1 X))+ {1 +2(cs — Da}{X, X - E(X,j)}] +o,(n?)

— C1,C2 C1,C2 -3/2
=¥ 1+ +‘P_3/2+0p(n ),
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where

1 n
D_yp= . Z(th—l -1,

DY = (X~ E(XO)} + - {(Cl—l)(X2—1)+C2(X2 D},

1
‘1‘—1/2 = Z Z(Xz -aX;—1)Xi-1,
=2

Pe = (1~ )X —EX))} - %{(c1 ~ DX =D +ca(X2 - 1)},

P = [{1 +2(c1 — Da{X1 X - E(X1X)} + {1 +2(c2 = Da}{X, X — E(X,X)}|.

In this way, we obtain the stochastic expansions

E(U; - aUy"?) +{U - aU;}"? - E(U; — aU5")}
E(U5"?) +{U5" - E(U5")}
_ Yt A2+ WD) + WL 40, (n7)
1+D_yp+(n7161¢2 + D) +0,(n71)

—

Aep,ep — X =

= ‘"P_]/z + (n_lACl €2 4 ‘“Pcl 62) + “ch/czz {\P_l/z + (n_lACI’CZ + \Pill’cz)}D_l/z

- ‘P_l/g(n_lécl’cz + Dill’cz) + lP—l/zD—l/z + op(n_3/2)

= Woip+ (1A 4 84 SR 40, (07,

~ —1Acy, c1,C 5C1,C -3/2
Qeye, —a@=Y_1p+(n" A CZ+S_‘1 2)+S_'3/22+0p(n /),

where

SN2 =W - oDy,

STy =Y - (nIATE L WDy =Wy p(n” 62 + D) + W p D

20°0Q03y  a  2a%°Qa3y o«

A2 = A2 4 1+ 2+ e+ o)at — e+ — = ——2 4 —— 42,
( 1+¢2) (1 +a/)a';4, 0')2, (1 +a/)0'3 0')2,
1 (4a/ + 2&2)Q2~3 Y 1
C1,C2 C1,C2 :3, 1
5_3/2 =S5+ {2+c1+c2+ (+aio! %}‘P 1/2
CZ Oy 1 4a’2Q23y a
[ Z{ X )}-D- 1/2] ——{— }D 1/2-

n(1 +a/)0'Y (1 +a)0'Y O'Y

Proof of Propositions 3.2 and 3.3(i). It is easy to see that

1 < 1<,
COV[; Z(Xz —-aX—1)Xi-1, Z ZX,_l]

= Z Iis<iyCov[(Xs — aXs_1)Xs-1, _1]

s,t=2
t—s . s
=— Z Iis<t) [2a2(t 5) inY LY i +202=9)-1 _ a{mzo-s)Q%’Y + “_2 +20,2(t—s)}]
s,t=2 O—Y O_Y O.Y O_Y
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1 20205
{2a Manll 2i0E Q“’ﬁ + %} 0(n?).
(I+a)oy oy

Then, we have
E(@¢pc, — @) =n 'AC2 4 E(S°%) + o(n™h

1 1 v 1 < _
= —;{1 +(c1+c)a} - Cov[; Z(X, —aX; 1) X1, - ZXZ{I] +o(n 1)
=2 =2

1 20205
:——{1+(2+cl+cz)a+&m;+%}+o(n_]),
n (I+a)oy oy

E(@ey ; — @) =n 7 A2 4 E(S) + 0(n ™)

1 (2a%0>. a 1 & 1 &
_ _{—23‘; + +2a} - COV[— 3 (X - aX,) X, —fo_l] +on)
nl(l+a)oy oy s nis

=o(nYH. O
Proof of Propositions 3.3(ii), 3.4, and 3.5. We notice that

V(@c).c,) =V(¥-172) +2Cov (W12, S47) + V(ST2) +2Cov(Woy 2, S75)7) + o(n™?),

V(@c,,c,) =V(¥-172) +2Cov(¥Y_1)2, Sill’cz) + V(S‘_'ll,cz) +2Cov(¥Y_1)2, Sil3/c§) +o(n7?).

Now, it is not difficult to see that, for # = 1, n,

1 < 1 ¢ 1
Cum[; Z(Xz —aX;-1)X;-1, o Z(Xt =3X:-1)Xi-1, ;Xé]
=2 t=2

1 n
= D Iz Cum{Xs 1 (X = aXso1), X1 (X, = 3X,1), X7}

s,t=2
n
+ = > LseryCum{Xs_ (X5 = 3X,_1), X1 (X, — @ X,-1), X5}
n s,t=2
=0(n7?),
since there exists a constant C > 0 (independent of ¢, 5, 13,24 € {1, ...,n}) such that

|Cum (X, Xy, Xpy Xy X7)| < CoMXU02o00) 71,

|Cum(Xy, Xty X, Xoys X2)| < Ca~MiN(-2.0512),
Similarly,

Cov(X{,X3) = 0(a"™),
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and, for#=0, 1,

1 v 1. 1 v
COV[_ Z(Xt -aX; 1) Xi-1, —X#X] == I{sst}COV{(Xt —aX; 1) X1, X Xy}
n =2 n n s=1 t=2
1 n
+ -3 I{s<t}C0V{(Xs - aXS—])XS—I’ XtX#}
n s,t=2
=0(n),

-2 1 1 < 1 <
Cov(X'oX3) = = 3 Hsen) CovXiXe Xp) + 5 D" sy Cum(X, X1, X5)

s,t=1 s,t=1
=0(n™),
since there exists a constant C > 0 (independent of 7, #5,¢3 € {1, ..., n}) such that

|Cov(Xy, X1y, Xy X1)| < CaMaX(ot2et3) =1

|Cov(Xs, X1ys Xps Xn)| < Co~MiN(r.12,13)

Furthermore, we have

1 1\ v

V[% i(Xt - aXt—l)Xt—l] = %i VIX: —aXi-1)Xi-1] = (— - —2)—4,
=2 =2

n n O'Y

. 30,. 1
V(X?) = Qz‘i’Y + sz’y +—+2, #=1n,
Oy Oy Oy

1 ¢ 1
COV[_ Z(Xt —aX;-1)Xi-1, —Xlz] 0,
n poy n

T+ 12 +2a} +0(n7d).
(I+a)oy oy

1 v 1 1 (22°Q:.
COV[_ Z(Xt —aX; 1) Xi-1, 2] {M
n t=2

n " n2

It follows that

V(@e,,c,) = V(ai,o)
= 2Cov(W-1/2, ¥ = Wh0) 4 v(pe) — v ()
—2Cov(¥_1/2D 10, WL = WL0) +2Cov (W_y 0, W53 - W)
_ %(ACI’CZ —~ A" Cov(¥_1/2, D_12) — 2Cov{¥_y s, (P - IPE’IO)D—I/Z}

2
= = (60 = 6OV (Wo1j2) = 2Cov{ W1y, W1 p(DE)? = DI} +0(n7?)
1 n
=2Cov| = 3 (X = aX- )X, = {(er - DX + X3
n ) n

+V[Z{(er = DXF+ X} | +2Cov| (1 - )X, S{(er = DXT + 23}

1 < 2 _ —
+ 2C0v[— (X~ aXem )Xot o {(er - DX X + chnX}]
n po;) n
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n

S|

2 1 ¢
+—(c1+cy— l)a/Cov[ (Xt—a/Xt_l)Xt_l,—Zth_l]
n n <

t=2

S

2
- ;(Cl +cp - l)V[ (X; - aXt—l)Xz—l]

t=2

S| =

1 v 1 v 1 _
- 2Cum[— Z(Xz —aX; 1) Xi-1, = Z(Xt =3aX;_1)Xi—1, —{(c1 - 1)X12 + CQX,%}] +o(n 2)
n t=2 n t=2 n

2 202 Q> 2 0o 30> 1
_ céa{ @ Q2.3,); N 12_'_20[} +{(c, - 1)2+C%}CV_2(Q2.:,Y N sz,y s +2)
n~ (I1+a)oy oy n oy oy oy
2 2020, 2 :
+—(c1+c- l)a/{&m’):L + % +2af} -+ -D(- a)(a/sz’Y + % +1 +a/) +o(n7?)
n (I +a)oy " n oy oy
1 )
- — [{(c1 1)+ cg}cﬁQz'j’Y
n Ty
+[2(1 —c1—c)a+3{(c1 — 1)2 + c%}cz2 +{3(c; - 1)2 +6(c;—1) +3c% +2cz}a/3]QL’Y4
(I+a)oy
1
+[2(1—c1—c)a+{(c1 = > +4(ci = 1) +c; +2c2}a’] —
o
Y
+2(1 —cy1—cp) +2{(c1 — 1)2 +3(c1 - 1) +c% +c2}a/2
+o(n7?).
Further,
~ - 1 40%Q». 2
(E@er.cr — )] = [E@10 - )] = (1 +.c2 - Darf2 s (5 vy e+ o22b 2004 02)
n (I+a)oy oy

Similarly, we have

V(@c,.c,) = V(o)
= 2Cov (W10, P = PO0) + V(PL2) = V(P)) = 2Cov (W1 D 10, P2 — WD)
: 2
+ 2COV(T_1/2, P2 "PO’O )+ —(c1 + Cz)V(\P_l/z)
n

-3/2 -3/2

2 .
= — (A = AM)Cov(¥1y2, D-1j2) = 2Cov{¥oiya, (P = W) Do}
2

= = (60 = 6"V (W) = 2Cov{ Wiy, Wor p(DY? = DI} +0(n7?)
1 < a 2 5
= 2Cov[— Z(X, —aXi—1)Xi-1,—— (1 X] + chn)]
n poy n
a (0% 1 & 2a — —
+ V[—{(cl X2+ czxﬁ}] - V(—Xf) + 2C0v[— (X~ aXi-) Xt (1 XX + 2 X, X)
n n n poy n

2 1« 1 v
+—(c1+ cz)aCov[— Z(Xt —aX, 1) X-1, — Z Xf_l]
n n =2 n =2

IS 1 ¢ 1 _
= 2Cum| 3 (X = aXi-) Xty (X = 3aX-) X, (@1 XE +2XD)| +o(n7)
=2 1=2
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2 2020>. 302 1
_ Cﬂ{ @ Q2'3’Z+%+2a}+{(c1 1)2+c2—1}—(Q21Y+ Q2'3’Y+—+2)
(1+a)oy o} n\ oy oy oy
2 2020».
+—2(Cl+cz)a{L2'3’};+i+20}+o(n )
(I+a)oy O'Y
3 Oo.4y ) 2 2 ) 023y 1
—[(c1 2ci +c¢ 2) pr {3(01—2c1+c2)+(3c1—2c1+3c2)a}(1+a)0_ + (¢ 1+c2)(0_ +2)]
Y Y Y

+o(n7?).

On the other hand, we additionally obtain

1 < 1< s
Cov[; Z(Xt —aX; 1) X/ -1, - in—l]

=5 Z Iis<y Cov[(Xs — Xy 1) Xsm1, X7 ]

s,t=2

= 3 g Cum(Xe 1. X, — X1 X1 X, X

s,t=2
+3Cum(Xs-1, Xy — aXs—1, Xi—1)V(X;-1)
+ 3Cum(XS - aXS—laXt—l’Xt—l)Cov(Xl—l’Xs—l)

+3CuUm(Xs—1, Xy-1, X-1)Cov(Xy — aX,_1, Xt_l)]

—a){3a3(’—5)% 622~ 5y @23,y +a/t_s}+3(1—a)a/t )
o 0.; %
+3{(1 _ a3)a,2(t—s—l)Q2:3,Y o1~ }
oy
+3{a/2(t—s) QZ:i,Y al™s }(1 ~ ) . s—l]
O'Y O-Y
3 '0x 2 1+ . 2
- { @’ Qray +a2( + @ 1)Q2.3,Y s +a} o),
noy {(1+a+a?)oy l+a l+a+a? P

where

n joonl J 1 —q/(n=D
jli-s) _ @ _ sy _ _ @ ( 1 a’—) o
Zl{s<t}a - l_a] ;(1 @ )_ l—a/J n 1 l—a-] ’J_1’2’3'

s,t=2

It follows that

V(acl,cz) - V(acl,cz)

= 2Cov(P_1/, S = §2) 4 o(n"2)

-3/2 -3/2
2 ((4a +202)0>. |
_ __{( @ +2a%)023y L L +2+c}V(\P_]/2)
n (1+a)?oy ol
2 4a’2Q2:3Y CU+3(¥2 40'2 1 n .
_{ i 2}Cov(‘l‘_l/z,D_l/z)——Cov[‘P_l/z,—ZX?_l] +o(n™?)
(1+a,)O-Y (1+C¥)O'Y n(1+a')o'y n P
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2 aQr3y @ (4a + 2&2)Q2;3’Y
:—z[c(a—l)( : +—2+1+a)—{ o)
n oy oy (I +a)oy
40°Q0r3y  a+3a? | (20°Q23y «
{ + }{ +—+ 2af}

(1+a/)0'§ (1+a/)0'§ (1+a)0';; oy

+O_L§+2}(l —a)(

6(1/2 a3Q2:4,Y 2 2 l+a Q2:3,Y
{ +a ( + + 1)

_ . - 5
(1+a)oy L (1 +a+a?)oy l+a l+a+a

Further,

[E@eres ~ OF = [E@ey s ~ ) = 51+ 2+ s
n
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202003y
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Oy Oy
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Chapter 4

Whittle estimation in INAR(1) process and

test of equidispersion

4.1 Introduction

Recall that a nonnegative integer-valued autoregressive process of the first-order (INAR(1)) is defined
by Y; = @aoY,_1 +&. Al-Osh and Alzaid (1987) and Park and Oh (1997) studied the Yule—Walker
(YW), conditional least squares (CLS), and (conditional or full) maximum likelihood (ML) estimators
for the parameter « in the INAR(1) process with the Poisson marginals. Freeland and McCabe (2005)
pointed out that Park and Oh’s asymptotic variance of the CLS estimator is incorrect and showed that the
CLS estimator is asymptotically equivalent to the YW estimator. Wei3 (2012) also proposed a squared
difference estimator for the innovation mean.

Without assuming the Poisson innovation, Drost et al. (2009) developed a semi-parametrically
efficient estimation in the stationary INAR(p) process. Zeng and Kakizawa (2022) recently considered
a class of estimators for the parameter « in the stationary INAR(1) process under a general innovation,
which includes the YW, Burg, and method of moment estimators as special cases. See Chapter 3.

There are some reasons to apply the Whittle likelihood method. Nowadays, the frequency domain
analysis is a standard tool in the stationary processes (see, €.g., Brockwell and Davis (1987)). Some
simulation results about the Whittle estimation in the INAR(1) process with the Poisson marginals were
given by da Silva and Oliveira (2004) (see also Zhang and Wang (2015) for random coefficient INAR(1)
process). However, to the best of our knowledge, there is no theoretical results about the frequency
domain analysis for the stationary INAR(1) process. A contribution of this chapter is to study the large
sample theory of the Whittle estimation in the stationary INAR(1) process under a general innovation.

Although the Poisson distribution is fundamental for the count data analysis and yields a mathematical
elegance due to its equidispersion property (i.e., the mean is equal to the variance), the mean and variance

of other distributions may be not the same, so that, in practice, the overdispersed (or underdispersed)
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case is more important. Schweer and Weil3 (2014,2016) studied some tests for the INAR(1) process with
the Poisson marginals. Another contribution of this chapter is to propose the Wald-type test about the
equidispersion, which is a competitor of the test considered by Schweer and Weil3 (2014).

The rest of this chapter is organized as follows. In Section 4.2, after a brief introduction of the
stationary INAR(1) process, the Whittle likelihood is given and the strong consistency and asymptotic
normality of the Whittle estimator for the parameter o and the innovation mean and variance (denoted
by u. and o2) in the stationary INAR(1) process. The Wald-type tests about the equidispersion are
also considered in Section 4.3, on the basis of the estimators for u, and o-2. Section 4.4 assesses the
finite-sample performances of (i) the Whittle, YW, and CLS estimators and (ii) the empirical sizes (i.e.,
type I errors) and powers of the proposed equidispersion tests, through the simulations. Section 4.5

concludes this chapter. The proofs of Propositions 4.1 and 4.2 are postponed to Section 4.6.

4.2 Whittle estimator for the parameter o and the innovation mean and

variance

We consider the INAR(1) process (Al-Osh and Alzaid (1987)), defined by
Yi=aoY_| +¢&, tr=0,+1,..., (4-1)

where ao is the binomial thinning operator with a € [0, 1), and {&;}, referred to as an innovation, is a
sequence of independent and identically distributed nonnegative integer-valued random variables, such
that &; and Y;_; are independent for all i > 1. Let x; o = Cum (&) be the jth cumulant of &,, where
Jj=34,....
We emphasize that, throughout this thesis, except for some simulation experiments, we do not assume
any distributional form about the innovation {&,}. In this sense, we treat (4.1) to be semi-parametric.
When a € [0, 1), the process (4.1) is strictly stationary and ergodic (Du and Li (1991)), whose mean

Uy, variance 0'1%, and autocovariance function at lag u > 0 are given by

2
, and  Cov(Y;,Yi) = a"op = yy(u) (say), 4.2)

respectively (see, e.g., Al-Osh and Alzaid (1987)). We derived, in Chapter 2, explicit expressions of the

third and fourth cumulant of Y;;

1
K3y = 1——a3{K3’8 +30%(1 - a)o-% +a(l —a)(1 -2a)uy},

1
Kiy = ﬁ{m,g +6a° (1 - a@)ksy +a?(1 - a)(7 - 1a)o +a(l - a)(1 - 6a +6a*)uy},
04
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respectively. Let

2 2
023y =k3y — 0y and Qoay = K4y — 3K3y +207y.

Noting that all cumulants of a Poisson distribution Po(1) are equal to 4, we see that Q23 y = Q2.4y =0
for the INAR(1) process {Y;} with the Poisson marginals (it is a particular case where the innovation {&; }
follows the Poisson distribution Po((1 — a)u) or an alternative parameterization Po(n), where u(> 0) and
n(> 0) are independent of @).

Using (4.2), the spectral density of the stationary INAR(1) process {Y;} is given by

2n[1 — a(e i1 + eit) + 2]’

1 < . o2 = . . au +02
fY(/l)zz_ Z yy(|h|)e lh/l=2_Y[1+Za,h(e l/lh+el/lh) — s' &
A — n h=1

as in the usual stationary autoregressive process of the first-order (see, e.g., Brockwell and Davis (1987)).
From now on, suppose that the observation {Y,...,Y,} of length n is generated by (4.1). On the
basis of the frequency domain approach, we consider simultaneous estimation of (a, u., 02)T = 6 (say).

LetY = (1/n) 2.~y Yi. We define the periodogram for the demeaned data by

Ty (1) = —]Z(Y, Ve =

S [y(0>+2y(h)(e-”“ e,

where Y(h) = (1/n) X1 (Y, =Y)(Yeen = Y), h=0,1,...,n — 1 (note that 52 = 7(0)).

It is easy to see that

IY(/I) —lh/l lh/l a’(e_i/l + ei/l) + a/2
L / [y(o“zy(h)(e | wotol A

_ 2x[(1+ 042)7(0) 2cv7(1)]
aps+0oz

Also,

/ log fy(1)dA = / [log(au, +02) —log2m —log{l — a(e”™* + ') + a*}]dA

T T

=2n[log(aus + oﬁ) — log 2n].

The Whittle (W) likelihood for the demeaned data is defined by

ZW(9)=—$[ [logfy(/l)+ 8 a

1 1 +a?)7(0) = 2a7(1
= [log(a//,tg+0' ) —log2n +( +ay(0) 2“7( ) (4.3)
2 QU+ 0

—% [log{(1 +a?)7(0) — 2ay(1)} —log 27 + 1]
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(the equality holds iff o2 +au . = (1+a?)7(0) —2ay(1)), so that the Whittle estimator for the parameter
@, which corresponds to the minimizer of (1 + @?)y(0) — 2ay(1), is given by y(1)/7(0) = @yw (the
YW estimator). Although the criterion (4.3) is not identifiable with respect to (i, 0'3), the formula (4.2)
enables us to see that the innovation mean p, = (1 —a)uy can be naturally estimated as i, = (1—ayw)Y,

and then the estimator for the innovation variance o2 is given by

—_—

02 = (1+@5y)7(0) = 2aywy(1) — @ywite = (1 = @yy)7(0) — Aywile.

Due to the non-identifiability of (4.3) using the demeaned periodogram, we consider

n—1
2 1 . .
= |7+ Y7 e e,
2r —

. 1 S —i
Iy () = %| Z(Yz — py)e "
P

where ¥*(h) = (1/n) 37" (Y; — pty) (Yean — py), h=0,1,...,n— 1, and

T I%(A
= — 1+ a7 (0) - 207" (1)

We emphasize that the Whittle likelihood, defined by

1y(1)
Jr (4

1
= —E[log(a/,ug +02) —log2m +

Ly, (6) = —% /_: [logfy(/l) + ]d/l

(1+a%)7°(0) - 2a%°(1)

3 4.4
Qe +0g

< —%[log{(l +a?)7°(0) - 207" (1)} — log 27 + 1]

(the equality holds iff o2 = (1 + @?)7*(0) — 2a7*(1) — au), turns out to be identifiable, unlike (4.3).
That is, the Whittle estimator for a and u., denoted by @w and ., is defined as the minimizer of

(1+a?)y°(0) — 2a7°(1) = Jy(a, ue) (say), and the Whittle estimator for o2 is given by

) ~ ~ = ﬁ;W 2
o = o0+ (7~ 222
(e n=1(=  few \2 1l(= fe - - o
— 2w |[7(1) + = (V= ) (V- (T - )+ (7 - V)| - Gwilew
n 1 —aw n 1 —aw
~2 \—~ ~ ~ -~ - 20w ) (= He: 2
= (14@3)7(0) = 2awF(1) - Twiiew +{ (1 - aw)? + =L H(7 - L2 )
n 1-aw

_ 22l’\W (7 _ ,Es;W
n

LY (T )+ (F- 1)
i

To establish the strong consistency and asymptotic normality of Oy = (@w, tLews o%;W)T, we make
the following assumptions:
(A1) {Y;} is INAR(1) process with a € [0, 1).

(A2) E(Y/) exists for some integer J > 4.
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(A3) The true parameter 6 = (o, 4 £.0)] is an interior point of the parameter space ®’. Also,
0'2’0(> 0) is the true innovation variance.

(A4) O = [ar,ay] X [uL, uy], where 0 < ap < ay < 1and 0 < up < uy < oo,
The first assumption is our statistical setting, without any distributional form of the innovation {&;},
which ensures that the INAR(1) process {Y;} is strictly stationary and ergodic (Du and Li (1991)). The
second assumption is implied by the existence of E(&]). The third and fourth assumptions are standard
for the asymptotic theory.

In what follows, the true parameter of 6 is denoted by 6y = (@0, ts,0, o-i 0)T. Let

2
QoM e,0t+ 00

2
Oy o= —1 — (> 0),
0

He,0
1-ap’

My, 0 =

2 2
02:3,y,0 = K3,y,0 — Oy, and Qzay,0 =K4,y,0 = 3k3,y,0 + 20y ¢

where

K3Y.0= T (k3,60 + 305 (1 - 00)0')2/,0 +ao(1 = ao)(1 = 2a0)py 0},
%o

1
Kay0= T3 {Ka,6,0 + 623 (1 = @)Kz .0 + g (1 — ap) (7 - 116!0)%%,0
—%

+ao(1 = ap)(1 - 6ag + 6}y o}

(k3,¢,0 and k4 ¢ o are the true third and fourth cumulants of &;, respectively).

We state the strong consistency and asymptotic normality of the Whittle estimator Ow.

Proposition 4.1. Suppose that (Al)—(A4) hold. The following hold.
(i) By =5 .

(ii) VA(Bw — 00) > N(0, Vo), where

Waa,0 Wau,,0 Waol,0

Vo=(1-a0)|wpoa0 @Quepeo @

He 02,0
Wola o Yolp.0 “ololo
is 3 X 3 symmetric matrix, with
@0Q23y,0 @
Waa,0 = 2 +——+1+a),
9y.0 9y.0
_ @0023,y,0 . @
Wyp.a,0 = Q0 — n + ) +1+ap My 05
9y.0 9y .0
_ @0023y,0 . @
wa’%a,o - (1 - 20”0) ao — 2 + 5 +1 + @ My, 0],
y.0 .0
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a0023y,0 Qo 2 2
Wpppe,0 = ( T +——+ 1+ QO)#Y,O +(1+ CYO)O'Y,O — 2aouy 0,
Oy .0 Oy .0
3 ’ @00Q23y,0 Qo 2
wo%/lg,o_ (1+a/0+a/0)Q2;3,y,0+(1—200)( 0_4 + 3 +1+a/0 ,uy’o

Y.0 Oy

+(1+ag— 20(2))0'3’0 —2a0(1 = 2a0) uy 0,

Wg2 520 = (1+a0)(1 = ag)(Qaay.0+20y ) +3(1 + a0 + g — ) Q23.v.0

@00Q23y,0 Qo
+(1—2a'0)2( e — +1+a/o),u)2,’0
Oy .0 Oy .0

+ (1 +ap — 4(1(2) + 40'(3))0')2,’0 - 20!()(1 - 20[0)2/1)/,().
The CLS method is widely used in the INAR-type processes. Minimizing the criterion

Jenpe) = 3 (Y = EI Y1) = D (% — oYy = o), (.5)
=2 =2

the CLS estimator for a and . is defined by

n 1 n n
D YYo= == > Ve Y iy ) )
—~ ) =2 1= —~ 1 -
dcrs = - " d d and pg.crs = m(ZYt —acLs ZYt—l)
P =2

n n 2
ZY’2—1 T n-1 (ZY"I)
t=2 t=2

(see also Klimko and Nelson (1978) and Al-Osh and Alzaid (1987)). Using (4.2), the innovation variance

o2=(1- a/2)0'§ — a can be estimated as
— S L
0z.crs = (1 =@ 5)7(0) — @crsfects.

On the other hand, Zeng and Kakizawa (2022) studied a class of estimators for the parameter a in the

statioinary INAR(1) process under a general innovation, given by

D =YY =)
t=2
n—1
(Vi =Y+ (Y =Y +oa(¥, - V)
t=2

A(cy,00) = , c1,¢c2=>0

(the YW estimator ayw is a special case of ¢; = ¢ = 1). Then, using (4.2), the innovation mean u . and

2

 can be estimated as

variance o

ﬁs;(cl,cz) = (1 - a'\(cl,cz))? and O-g‘;(cl,c2) = (1 - &%cl,q))?(o) - a(cl,cz)ﬁag(q,cz)s

respectively.
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The strong consistency and asymptotic normality of the estimators §C Ls = (@cLs, He:cLS» o%;C LS)T

and ¢, .cr) = (@(cy.cr)» Hes(cr.00)s OZ%.(¢1.c,))" can be established similarly.

Proposition 4.2. Suppose that (Al) and (A2) hold. The following hold.
(l) 5CLS 2—) 90 and 5(01,62) 2—) 00.
(ii) Vn(OcrLs — 6o) 4, N(0, Vy) and \/ﬁ(é\(q,q) - 6p) 4, N(0, Vo), i.e., the estimators O¢crs and

5(61,02) are asymptotically equivalent to the Whittle estimator Bw.

As usual, we define k3y = (1/n) X7 (Y; — Y)? and kay = (1/n) S (Y = Y)* - 35’{} (we set
62;3,y =kay — 5’3 and §2:4,y =kay — 33y + 23)2,). With the replacement of a, uy, 0')%, and Q. y by
aw (or @crs, &(Cl,q)), ?, 5‘%, and Qg; iy, where j = 3,4, we naturally have a consistent estimator for

Vo, denoted by VO;W (or Vo;c LS Vo; (¢1,¢2))- The standard errors (SEs) of the estimators are given by, e.g.,

SE = ‘/(1 - Zl/\W)(;)\(nr,O;W/n for aW

4.3 Test of equidispersion

It is easy to see that the dispersion index of the process {Y;} is given by

2
£,

2 2
O—Y,O QoMe,0t+ 0'8’0 1 (O’

- — 1+ 0 _ 1),
My,  (I+ao)peo L+ a0 \peo

where the left-hand-side is equal to 1 when 0';0 = ue o (the equidispersion property of the innovation
{&:+}). Thatis, the INAR(1) process (4.1) is shown to be overdispersed (underdispersed) when a’i 0> He0
(a’i o < He,0), so that the testing problem about the equidispersion of the stationary INAR(1) process

can be formulated, as follows.

* Two-sided testing problem is given by

(I) Hop: O'io — g0 =0 against Hj: O'io —Hteo #0.

* One-sided testing problem for the overdispersed (or underdispersed) alternative is given by

(I Ho: 077y — peo=0 against Hy: 02— piz0 > 0,

(IIT) Hy: 0'2,0 — g0 =0 against Hy: 0'3:’0 —teo <0.
On the basis of the asymptotic normality of the estimators for i and o2, we can construct the Wald-type

test for the linear constraint Hy.

By Propositions 4.1 and 4.2, we state the following corollaries (without proof).
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Corollary 4.1. Suppose that (Al)—(A4) hold. Then,

)

N

- - d
[(O-E;;W - ﬂs;W) - (O—i,o - /J.E,O)] - N(O’ 1)9
where

Vo = (1 - 0’/0) (w(Tz;O'Z;,O - zwo'%llg,o + (’U.usﬂssO)

= (1-ao) [(1 +a0) (1 = ag)(Q24y.0+ 207y o) + (1 + ap +af — 3a3)Q23.v.0

> ((@0Q23,y,0 @ 2 2
+ 4%{( 2 +——+ 1 +ag Hy o+ @00y o= 2apuy o¢ |-

0,

Ty.0 Y.0

Under (Al) and (A2), the same results hold for o%;CLS — lecLs and Ug;(cl’cz) — Ue:(crc)-

With the replacement of a, uy, 0'1%, and Q».jy by aw (or @cLs, @(c,,cy))s Y, 6'%, and Qz;j,y, where
J = 3,4, we naturally have a consistent estimator for vo, denoted by vo.w (or Vo.cLs, V0:(ci.c2))- BY
Corollary 4.1 and Slutsky’s theorem, we immediately have the following corollary, which is the key result

for the above-mentioned test of the equidispersion.

Corollary 4.2. Suppose that (Al)—(A4) hold. Then,

\/ﬁ

[~

Vo.w

5 — d
[(O-g;W - lls;W) - (0-3;,0 - MS,O)] - N(O, 1)-

Under (Al) and (A2), the same results hold for Gﬁ;CLS — He:cLs and a'g;(cl,cz) — Hei(cr,cn)r U Vow B8

replaced by vo.crs and Vo, (¢, ,¢,), respectively.

The Wald-type statistics for testing the hypothesis Hy : ai o — Me,0 = 0 are defined by

_ \/Z(O-g,W - ﬁs;W)

T e
Zeps = W(;Z;CLS - ﬁs;CLS),
VVvo.cLs
\/E(Ug;(cl,q) - ﬁe;(q,cz))
Zicrier) =

VV0i(e1,0)

(especially, let Zyw = Z(1,0)). For a given significance level a, the notation z(a) stands for the upper
a percentile of the standard normal distribution N(0,1). After computing the z-value zw (say), the null
hypothesis Hy is rejected if |zw| > z(a/2) for the two-sided problem (I). Similarly, reject Hy if zw > z(a)

for the one-sided problem (II) (reject Hy if zyw < —z(a) for the one-sided problem (II1)).
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Remark 4.1. For the INAR(1) process with the Poisson marginals, Schweer and Wei3 (2014) proved that

{%}m(?—l) SN,

Thus, other statistics

n(l —a?),1/2,62
(—j‘)} (TY - 1), #=W.CLS.YW, (4.6)
2(1+a3)

Zswu = { =

are available to test the equidispersion hypothesis a'% /uy = 1.

4.4 Simulation results

Performances of the estimators for «, y., and o2

We first report the simulation results (n = 100, 200, 300, with 2000 replications) about the Whittle (W),
YW, and CLS estimators for @, i, and o2, under the set-up that the innovation {&,} follows the Poisson
distribution Po((1 — @)y) or negative binomial (NB) distribution NB(r, r/{r + (1 — a@)u}), where the
second parameter r/{r + (1 — @)u} is the success probability in each trial (we set r = 10). In the
simulations, we fix (1 —a)u = 5. The parameter « to be estimated is @ = 0.2, 0.5, 0.8, and the innovation

mean and variance to be estimated are given, as follows.
» For the Poisson case, u. = 02 = 5.
* For the NB case, u, = 5and o2 = 5(1 +5/r).

In view of Tables 4.1 and 4.2, the biases, variances, and mean squared errors (MSEs) of the respective
estimators decrease as the sample size n increases. The biases of @c s and iz.cps are overall smallest,
whereas the bias of ;Z;W is smallest when @ = 0.8. On the other hand, if « is small, the variance and
MSE of §W are smallest. In summary, @y outperforms @yw and @crs in terms of the variance and MSE
when @ = 0.2 and n = 100, whereas the performances of @, a@yw, and @c s are almost the same when

n = 200, 300 (this finding is in agreement with Proposition 4.2).

Performances of the equidispersion tests

We next report the empirical type I errors and powers about two-sided tests of the equidispersion having
the rejection regions |z4| > z(a/2) (thick lines) or |zsw #| > z(a/2) (thin lines) for # = W,YW,CLS,
with the significance level @ = 0.1,0.05,0.01 (10000 replications).

For the type I error (n = 100, 200, 300, 400), we generate the innovation {&; } according to the Poisson

distribution Po((1 — @) ), under the set-up that (1 —a)u = 5 and @ = 0.2,0.5,0.8. Figure 4.1 indicates
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that, as the sample size n increases, the empirical type I errors of the tests proposed tend to the significance
level (these tests are liberal), except that the Whittle-based test is oversized when @ = 0.8. The tests using
(4.6) are conservative (liberal) when a = 0.2 (@ = 0.8).

For the power (we consider n = 300 only), we generate the innovation {&;} according to the NB
distribution NB(r, r/{r + (1 — a@)u}, where (1 —a)u =5, =0.2,0.5,0.8and r =2/, for j = 1,...,7.
Figure 4.2 indicates that smaller r becomes (this case is far away from the null hypothesis of equidispersion,
since 02 — . = 25/r), higher the power of the test is. The proposed tests are reasonable. The simulation

reveals, however, that the tests using (4.6) are likely to be more powerful.

4.5 Concluding remarks

We have mainly considered asymptotic theory about the frequency domain analysis in the stationary
INAR(1) process. We have pointed out that the Whittle likelihood from the demeaned data (see (4.3)) is
not identifiable with respect to (i, 0'3), whereas a variant of the Whittle likelihood (4.4) is identifiable.
We have shown that the Whittle estimator Oy maximizing the criterion (4.4) is strongly consistent
and asymptotically normal, together with asymptotic equivalence among the estimators Ow, OcrLs, and
0, (¢1,c,)- Furthermore, we have proposed the Wald-type tests about the equidispersion, on the basis of the
estimators (ie;w, ;Z;W)T’ (He:cLs O’—E;CLS)Ts and (e (cy,c1)» ;—2;(c1,cz))T°

Although the CLS method is fundamental and widely used in the time series analysis, the criterion
(4.5) is free of the innovation variance 0'3 so that additional estimation tool is needed (e.g., Karlsen and
Tjgstheim (1988)). The YW estimator ayw (more generally, a class of estimators @ (¢, ,,)) is a kind of
the method of moment estimator but the construction of the estimator (i.(¢,,¢,)> o/-z;( e cz))T, being the
sample analogues of (4.2), is ad-hoc. In conclusion, the use of the identifiable Whittle likelihood (4.4)
makes simultaneous inference of (a, i, 0"2) possible; besides, this approach is applicable even if any

parametric assumption about the innovation {&;} is not assumed, unlike the ML method.

4.6 Proofs of Propositions 4.1 and 4.2

Before proving Proposition 4.1, we prepare the following lemma.

Lemma 4.1. Suppose that (Al)—(A4) hold. Then,
sup |Gy (e, ) — qla, pe)| = 0,
0'c®’

where

q(a, ) = (1= 2ea0+®)oy o+ (1 - @) (uy.0 — py)*.
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Table 4.1: Biases, variances, and MSEs (2000 replications) of @y, [ ¢4, and (;'2;#, #=W,YW,CLS, in
the stationary INAR(1) process under the Poisson innovation.

Biases Variances MSEs

n aw ayw acLs aw ayw acLs aw ayw acLs

a=02 100 -0.0191 -0.0205 -0.0187 0.0089 0.0095 0.0097 0.0093 0.0099 0.0100
200 -0.0095 -0.0096 -0.0088 0.0049 0.0050 0.0050 0.0050 0.0051 0.0051

300 -0.0071 -0.0071 -0.0065 0.0032 0.0032 0.0032 0.0033 0.0033 0.0033

0.5 100 -0.0318 -0.0325 -0.0274 0.0079 0.0078  0.0080 0.0089 0.0089 0.0087
200 -0.0149 -0.0151 -0.0127 0.0040 0.0040 0.0040 0.0042 0.0042 0.0042

300 -0.0122  -0.0123 -0.0105 0.0027 0.0027 0.0027 0.0028 0.0028 0.0028

0.8 100 -0.0328 -0.0451 -0.0365 0.0061 0.0049 0.0050 0.0072 0.0070  0.0063

200 -0.0165 -0.0203 -0.0162 0.0022 0.0020 0.0020 0.0024 0.0024 0.0022

300 -0.0126 -0.0143 -0.0116 0.0015 0.0014 0.0014 0.0016 0.0016 0.0015

(/Js:S) n /js;W ﬁs;YW /js;CLS ﬁs;W ﬁa;YW ﬁs;CLS ﬁe;W ﬁs;YW ﬁa;CLS

a=02 100 0.1167 0.1260 0.1157 0.3970 0.4177 0.4238 0.4107 0.4336 0.4371
200 0.0587 0.0592 0.0537 0.2153 0.2166 0.2188 0.2188 0.2201 0.2217

300 0.0417 0.0419 0.0381 0.1416 0.1417 0.1422 0.1433 0.1435 0.1436

0.5 100 0.3187 0.3237 0.2730 0.8084 0.8045 0.8177 0.9100 0.9093 0.8922
200 0.1533 0.1552 0.1315 0.4092 0.4075 0.4094 0.4327 0.4316 0.4267

300 0.1270  0.1283 0.1110 0.2719 0.2717 0.2732 0.2880 0.2881 0.2855

0.8 100 0.7934 1.1086 0.8959 3.8760 3.0621 3.0918 4.5055 4.2911 3.8944
200 0.4019 0.5010 0.3981 1.3664 1.2299 1.2247 1.5279 1.4809 1.3832

300 0.3129 0.3540 0.2869 0.9033 0.8651 0.8626 1.0012 0.9904 0.9449

2 _ 2 2 2 2 2 2 2 2 2
(cz=5 n Oe:w Osyw Og,CLS Ogw  Ogyw OgCLS Ogw  Ogyw OgCLS

a=02 100 0.0299 0.0384 0.0268 0.8506 0.8640 0.8683 0.8514 0.8655 0.8690
200 0.0147 0.0153  0.0098 0.4429 0.4436 0.4441 0.4431 0.4439 0.4442

300 0.0113 0.0114 0.0073 0.2914 0.2915 0.2914 0.2915 0.2916  0.2915

0.5 100 0.0039  0.0065 -0.0440 1.1600 1.1618 1.1523 1.1600 1.1618 1.1543
200 -0.0049 -0.0045 -0.0287 0.5528 0.5532 0.5507 0.5528 0.5532 0.5515

300 0.0217 0.0217  0.0040 0.3993 0.3994 0.3970 0.3997 0.3999 0.3970

0.8 100 -0.2711 -0.4098 -0.6075 3.1594 2.7902 2.5255 3.2329 2.9582 2.8946
200 -0.1624 -0.2078 -0.3059 1.3262 1.2575 1.2005 1.3526 1.3007 1.2941

300 -0.1199 -0.1373 -0.2036 0.9184 0.9020 0.8707 0.9328 0.9209 0.9122

54



Table 4.2: Biases, variances, and MSEs (2000 replications) of @y, [ ¢4, and (3’2;#, #=W,YW,CLS, in
the stationary INAR(1) process under the NB innovation.

Biases Variances MSEs

n aw ayw acrLs aw ayw acLs aw ayw acrLs

a=0.2 100 -0.0197 -0.0216 -0.0199 0.0086 0.0094 0.0096 0.0090 0.0098 0.0099
200 -0.0112 -0.0113 -0.0104 0.0045 0.0045 0.0046 0.0046 0.0046 0.0047

300 -0.0062 -0.0062 -0.0055 0.0032 0.0032 0.0033 0.0033 0.0033 0.0033

0.5 100 -0.0287 -0.0308 -0.0260 0.0077 0.0074 0.0076 0.0085 0.0084 0.0083

200 -0.0146 -0.0152 -0.0127 0.0039 0.0039 0.0039 0.0041 0.0041 0.0041

300 -0.0095 -0.0098 -0.0081 0.0025 0.0025 0.0025 0.0026 0.0026 0.0026

0.8 100 -0.0356 -0.0440 -0.0352 0.0055 0.0047 0.0048 0.0067 0.0067 0.0060

200 -0.0200 -0.0224 -0.0183 0.0022 0.0020 0.0020 0.0026 0.0025 0.0024

300 -0.0126 -0.0137 -0.0111 0.0013 0.0013 0.0013 0.0015 0.0015 0.0014

(/1825) n ﬁs;W ﬁs;YW ﬁs;CLS ﬁs;W ﬁs;YW ﬁs;CLS ﬁs;W ﬁa;YW ﬁs;CLS

a=0.2 100 0.1688 0.1723  0.1237 0.4137 0.4506 0.4578 0.4422 0.4803 0.4731
200 0.0903 0.0866 0.0617 0.2107 0.2132 0.2154 0.2189 0.2207 0.2192

300 0.0516 0.0487 0.0322 0.1492 0.1502 0.1509 0.1519 0.1525 0.1520

0.5 100 0.4335 0.3891 0.2657 0.8330 0.8523 0.8675 1.0210 1.0036 0.9381
200 0.2232  0.1940 0.1313 0.4217 0.4287 0.4320 04715 0.4664 0.4492

300 0.1411  0.1199 0.0790 0.2679 0.2715 0.2730 0.2878 0.2859 0.2792

0.8 100 0.8792  1.0908 0.8693 3.4608 3.0198 3.0392 4.2339 4.2095 3.7949
200 0.4993  0.5624  0.4590 1.3533 1.2841 1.2897 1.6027 1.6005 1.5003

300 0.3163  0.3458 0.2803 0.8380 0.8148 0.8110 0.9381 0.9344 0.8895

2 _ 2 2 2 2 2 2 2 2 2
(=15 n Tesw  Teyw T, CLS Oesw  Oeyw  OgCLS Oesw  Oeyw UOegCLS

a=0.2 100 0.1157 0.1294 0.1234 2.0510 2.0647 2.0686 2.0643 2.0814 2.0838
200 0.0780 0.0797 0.0764 0.9940 0.9946 0.9951 1.0001 1.0010 1.0010

300 0.0440 0.0448 0.0423 0.6413 0.6414 0.6422 0.6433 0.6434 0.6440

0.5 100 0.4884 0.5285 0.4958 2.6552 2.6770 2.6656 2.8938 2.9564 29113
200 0.2443  0.2637 0.2490 1.2515 1.2560 1.2549 1.3112 1.3255 1.3169

300 0.1725 0.1852 0.1756 0.8432 0.8450 0.8457 0.8729 0.8793 0.8766

0.8 100 -0.4097 -0.4857 -0.7736 44315 4.2408 3.7012 4.5993 4.4767 4.2998
200 -0.2158 -0.2412 -0.3813 2.0397 2.0043 1.8866 2.0863 2.0624 2.0320

300 -0.1401 -0.1519 -0.2418 1.2644 1.2539 1.2075 1.2840 1.2769 1.2660
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Figure 4.1: Empirical type I errors (10000 replications) of equidispersion tests having the rejection regions
|z#| > z(a/2) (thick lines) or |zsw #| > z(a/2) (thin lines), with the significant level @ = 0.1, 0.05,0.01,
where # = W(solid), YW (dashed), CLS(dotted). The upper, middle, and lower three panels correspond
toa =0.2,0.5,0.8, respectively.
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Figure 4.2: Empirical powers (10000 replications) of equidispersion tests having the rejection regions
|z#| > z(a/2) (thick lines) or |zsw #| > z(a/2) (thin lines), with the significant level @ = 0.1, 0.05,0.01,
where # = W(solid), YW (dashed), CLS(dotted). The upper, middle, and lower three panels correspond
toa =0.2,0.5,0.8, respectively.

57



Note that q(a, pe) > (@0, pz0) = (1 = ag)oy  (the equality holds iff (@, ) = (o, fts,0)):

Proof. For 7 =0, 1, we have

sup |7’y(h) Qo O'Y o~ (uy,0— ﬂY)2|
0’c®’
1 n
< |_ Z Y; - My, 0)(Yi—n —,UYO) a’OO'YO|
n t=1+h
n

1
+ ( sup |uy,0 — #Yl)’_ Z (Y: —pyo+Yi—n - ,UY,O)‘
0’ce’ v

h
( sup (uy,0 — My) )
0’ cor

2750 (by the strictly stationarity and ergodicity of {Y;}).

It follows that

sup |Jy (@, pe) — g(a, ps)|
0’c®’

= sup |(1+ @) [73(0) = {07 o + (pay0 = i)} = 22 [73(1) = {2003 o + (.0 - ) 1Y

0’ c®’

< sup [(1+2)F30) = 0~ (uv0 — sy} + sup PatF3(1) = a0 = (ur0 — sy}
0’ e®’ 0’ e®’

250, o

Proof of Proposition 4.1. (i) By Lemma 4.1, we know (e.g., van der Vaart (1998)) that the Whittle

estimator for 6’ is strongly consistent, i.e., (@w, Ze.w)” RSN 6. Then,

—_—

2 a.s. 2 2 _
Oew — (1- a’o)o'y’o —Qolg,0 =0

(ii) The first-order conditions for @y and ..y are given by

a;ji’(aw’ ﬁE;W)

0=
('ia/
_ 2 2 m e
- (Yr ) e ) (e - )
nz:l l—CYW
2#8'W [ —~ —~ = /vT.S'W ﬁSW
L 1+ (Y— )—2 (Y+ i )+ (Y+Y— 2l )]
(1—aW)2n( aw); ; W; T aw(Y o
0= aLTY(EY\WJ’IS;W)

Oue

—~

2 —~ & Hew
=—-—F|(1+ (Y - —
(1 —aw)n [( aw); "ol-aw

n = 27
)_Z&WZ(Yt_ ﬂg;‘iv )+&W(Y1+Yn—lu;;w)],
=1
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respectively. Then, we have

aw Tew \2 173
2 5 (- Ey -8 -
n o 1 -aw n

t=1

0 n n-1 R
= Y ! y v —~ 1\ /= ) 2
- TWZ(YI - Y)2 - ;Z(Yf Y)Y -Y) + (aw -1+ ;)(Y_ M&XV )

,17 W
) (e -5
l—a/W

I—CVW
4o (Y1+Y —2Y)(Y— e )
— . a 20 .
0=Y - ”S’XV b v (Y1+Yn— ’u‘S;W)
l-aw (1-aw)?n 1 - aw
Using
= aw(1+Y,) aw(2Y —Y; - Y,)
T 1 —aw)? _ T 1 —aw)?
fow __ Uoowin ey few (0w g ),
l—a’W 2aW l—aW " 2a’W
(1 - &W)Zn (1 — 5w)2n
we get

—~ n n—-1
a — 1 — — B
0="% > (1 =1) == 5 (V= ¥)(Yis1 = ¥) + 0 (n7?),
t=1 t=1
which yields @w = @yw + 0, (n72).
Now, by Proposition 2.2(ii), we have

_ . - d _
ValY = py 0.7(0) = o3 4. 7(1) = agay 41" = N(0,Ey),

where & is the true 3 X 3 matrix corresponding to E (here, we set m = 1). Noting that

~ Y1)

19} -2
aw = (0) +0,(n"7)
- | _
= ag — ~2—{7(0) = 0% o} + —— {F(1) — agog o} + 0 (n71),
Y.,0 9y.0

Ija;W =(1- &W)?‘*' Op(n_l)

= oo+ (1= @) (Y — py,0) — py,o(@w — ao) + Op(”l_l)
,UYo

=teo+ (1—a)(Y —uyp) +
YO O'YO

02w = (1-a%,)7(0) — Qwilew + 0, (n7%)

70) - 02 0} = 2245(1) — a0 o} + 0, ("),

4.7)

=020 — (2a00y o + pe0) (@w — @) + (1 = @) {¥(0) — 07 o} — ao(Hew — He0) +Op(n™")

= ao(1 = 2a
= 02— ao(1 ~a0) (T~ uy.0) + {1 + a3+ 200 Li500) - 02 )

O'Y,o

1 -2a —~ _
- (200 + a0 [T -~ a0} o} + 0 (07,
.0
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we have

— n p— — Y _
Vi(Ow — 6p) = %Ao [V = 1ty 0.7(0) = oy 0, (1) = ooy o]" + 0, (n~"73),
Y.0
where
0 —Q 1
Ao=| (1-ap)ay, Qopy,0 —Hy,0

—ao(1-ag)oyy (1+ag)ay o +ao(l —2a0)uyo —{2a00y o+ (1 - 2a0)uy o}

This, together with (4.7), enables us to establish the asymptotic normality of Oy, with the asymptotic
covariance matrix AgZoA¢" /oy ;. O

Proof of Proposition 4.2. By @(c, ¢,) £, a (see Proposition 3.1(i)), we have

—_—

— a.s. _ 5 a.s. PN )
Hei(cr,e2) > (1 —ao)py,0 = He,0, Tei(cr,er) and (1- a/O)O-Y,O — Qo0 = 0

Since

n YN Y = Y) (Y = )
LY (Y =Y)2 4 (e - DY - Y)2 40 (e - 1) (Y, - Y)?

A(ci,c0) =

&YW +Op(n_1)7
ﬁs;(c1,6‘2) = (1 - a\)7‘/‘/')74-0]7(’1_1)’

—_—

02 ey = (1= @yy)¥(0) — @yw (1 — @yw)Y + 0,(n"),

the asymptotic normality of 5( c1,¢2) 18 the same as that of Bw; see the proof of Proposition 4.1(ii).

Similarly, by the strictly stationarity and ergodicity of {Y;}, we can show that

a.s. E(YIYZ) _#%,0
E(le) _#;0

P P a.s.
acLs =ap and [gcrs — Hy,0 — QoMy,0 = He 05

hence,
"E a.s. ) 2
0z.crs — (1 - CL/O)O'Y’O — QOpe,0 = T -
Also, we know that
—~ =~ 0 )
acrs = a(1,0) + 0p(n~7),

I’l?—Yl
n-—1

—~ o nY =Y,
—{@,0)+0p(n 2)}Tln

He,CLS =

=(1=Q(1.0)Y +0p,(n7h),
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ohers = (1= 4)7(0) = @1.0)(1 = @(1,0)Y + O p(n7").

The asymptotic normality of 5(; Ls 18 the same as that of 5(1,0). O
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Chapter 5

Probabilistic and statistical properties of

ADCINAR(1) process

5.1 Introduction

A nonnegative integer-valued autoregressive process of the first-order (INAR(1)) was proposed by Al-Osh
and Alzaid (1987), based on the binomial thinning operator due to Steutel and van Harn (1979). Since
then, there has been huge basic and interesting works for statistical inference of time series count data
(see Weil3 (2008,2018)).

On the other hand, considering that such a binomial thinning operator was defined through the
independent counting series, Nasti¢ et al. (2017) (see also Risti¢ et al. (2013)) recently attempted
to change it into a dependent counting series and then introduced an alternative generalized binomial
thinning operator. In this way, they defined an alternative dependent counting nonnegative INAR process
of the first-order (ADCINAR(1)). However, to the best of our knowledge, higher autocumulant functions,
except for the autocovariance function, have not been discussed so far, for such an ADCINAR(1) process.
As an extension of Chapter 2, we derive, explicitly, the third and fourth autocumulant functions of the
stationary ADCINAR(1) process under a general innovation, together with the structure about arbitrary
higher autocumulant functions.

The rest of this chapter is organized as follows. Section 5.2 gives the definition and some useful
properties of the generalized binomial thinning operator. After the introduction of the ADCINAR(1)
process and its basic formulas of the moment, variance, and autocorrelation function at lag u(> 0),
Section 5.3 discusses higher autocumulant functions of the stationary ADCINAR(1) process. The

technical proofs of Propositions 5.1 and 5.2 are postponed to Section 5.4.
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5.2 Generalized binomial thinning operator

In Chapter 2, we introduced the binomial thinning operator ao, which consists of independent counting
series. Although such a counting series is fundamental, an alternative dependent formulation will be
important for modelling the time series count data.

Given 0 < @ < < 1(# # 0), we construct a sequence of random variables {S;(a, ¢)} such that
Sj(a,9) = B;(#)B(a/D),

where {B (%)} is a sequence of independent and identically distributed (IID) Bernoulli random variables,
which is independent of B(a/?¥). An alternative generalized binomial thinning operator was recently

introduced by Nasti¢ et al. (2017), as follows. Given a nonnegative integer-valued random variable Y, let

0 Y =0,

CyOﬁY: Y
Zsj(a,ﬂ), Y=12...,
j=1

where {B;(})} and B(a/#) are independent of Y. Using

with probability 1 — %,
B;(9)B(a/?) =

Bj(#). with probability %,
the probability generating function (pgf) of S;(a, ¢#) is given by
E[uBiBlal®)] =1 _ % + %E[uBf(ﬂ)] =1-24 g(1 —9+%u)=1-a+au,

9 0

so that S;(a, ?) is distributed as the Bernoulli distribution Bin(1, ), whereas {S,(a, )} is, in general,

a dependent sequence, i.e., for i # J,
E[Si(a.9)S;(a,9)] = E[B;(9)]|E[B;(#)E[B*(a/9)] = a9,
hence,
Cov[Si(a,9), S;(, )] = (D — a).

The following basic results (Lemmas 5.1 and 5.2) of the generalized binomial thinning operation are

repeatedly used (Lemma 5.1 was shown by Nastié et al. (2017)).

Lemma 5.1. (i) ForO <y < 1,00, Y =0and1o,Y =Y.
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(ii) The pgf of a o Y is given by
E[u®?Y] :1—%+%E[(l—ﬁ+ﬂu)y].
(iii) ForO < <y < l(y #0)and0 <6 <n < 1(n #0),
d d
5077 (ﬁ Oy Y)= (ﬁd) C(yn) Y :ﬁoy (6 on Y),

where = stands for equal in distribution (it is implicitly assumed that the operations [3o,, and 6¢,, are

performed independently, which are independent of Y ).

Proof By definition, (i) is trivial. On the other hand, noting that

0, with probability 1 — =,
a <y Y = 9

9o, with probability %,

and that, given Y, 9 o Y (= Z};l B;(19)) is distributed as the binomial distribution Bin(Y, ©#), (ii) follows

from

(use the law of total expectation). Then, (iii) is verified by means of the pgf

5 6
E[M(So,,(ﬁoyY)] =1-—-4 —E[(l -n +77M)BQYY]

non
§ 6

_1-2,° 1_E+EE[{1—y+y(1—n+nu)}Y]
n onl oy vy
5B 6B

=1- 21 ZE[(1 - gy +gyu)’]
ny my

= E[u(éﬁ)o(ln)y]. O
Let

4 i 14 14
Me(x,p) = ) p 'S Y s = Y7 ) pIS(Ds())
i=1 Jj=1 Jj=1  i=j

be a polynomial of degree £ in x (without constant term) for any p € [0, 1] and positive integer £, where
s(;) and S(f) are the Stirling numbers of the first and second kind, respectively; for these definitions,

see Olver et al. (2010; Section 26.8). Given Y, Z};l B;(19) is distributed as the binomial distribution
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Bin(Y, ), so that, for any positive integer £,
Y ¢
E[{ >'B j(ﬁ)} |Y] — 9M,(Y,9) (e.g., Johnson et al. (2005)). (5.1)
j=1

Lemma 5.2. (i) For a function G (e.g., we set G(Y) = 10orG(Y) =Y — E(Y)),

E[G(Y)(a oy Y)] =aE[G(Y)Y],
E[G(Y)(aogY)?] = a{ﬂE[G(Y)YZ] +(1 - ﬁ)E[G(Y)Y]},
E[G(Y)(aogY)] = a{ﬂzE[G(Y)W] +390(1 =NE[GY)Y?] + (1 = (1 =29 E[G(Y)Y] }

E[G(Y)(a oy Y)']

a{ﬂ3E[G(Y)Y4] +692(1 = 9)E[G(Y)Y?]

+9(1 -7 - 1INHE[GX)Y* ]+ (1 -9 (1 - 69+ 6192)E[G(Y)Y]}

(it is implicitly assumed that the expectations in the right-hand side exist).

(ii) Also,
E[GY)(@opY —aE(Y))] =aE[GY)(Y - E(Y))],
hence,
Cov[G(Y),a 09 Y] = aE[G(Y)(Y — E(Y))]

(it is implicitly assumed that E{G(Y)(Y — E(Y))] exists).

(iii) Furthermore,

E[G(Y)(aogY - aE(Y))*]
= adE[GY)(Y - E(Y))*] +a(1 - ﬂ){E[G(Y)(Y —E(X)] + E[G(Y)]E(Y)}
+a(® - @) REIGI(Y - EQ)IEY) + E[GMIEM)I},
E[G(Y)(aogY —aE(Y))’]
= aPE[GY)(Y - E(Y))*] + 3ad(1 - ﬂ){E[G(Y)(Y —EW))*] +E[G)(Y - E(Y))]E(Y)}
+a(1-9)(1- Zﬂ){E[G(Y)(Y - E()]+E[GIEW)]
+a(?-a) [319E[G(Y)(Y —~E()*E(Y) +3(83 - a)E[G(Y)(Y - E(Y))][E(Y)]*
+(8 = 20 E[GOIEMT +3(1 = ) {EIG) (¥ - EQO)] + EIGIIEW)P) ],
E[G(Y)(aoy Y —aE(Y))*]

= aPE[GY)(Y - E(Y))*] + 6a9*(1 — ﬂ){E[G(Y)(Y —EX))1+E[GY)(Y - E(Y))Z]E(Y)}
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+ad(1-9)(7T - NINE[GY)(Y — E(Y))?] +2a8(1 = 9)(5 - THE[G(Y)(Y — E(Y))|E(Y)
+a(l1-9(1-69+ 6192){E[G(Y)(Y —EX))]+ E[G(Y)]E(Y)} +3a9(1 - 9)2E[G(V)][E(Y)]?
+a(d - a){4192E[G(Y)(Y —E(Y))’1E(Y) + 120(1 = )E[G(Y)(Y — E(Y))*]E(Y)
+69(8 — a)E[G(Y)(Y — E(Y))?][E(Y)]? +49(1 = 9)(1 = 20)E[G(Y)(Y — E(Y))]E(Y)
+6(1 = 9)(39 - )E[GY)(Y = EXDIEM)]* +4(8 - )’ E[G(V)(Y - EX)I[E(X)]
+4(1=9)(1 =29 E[GMIEM)]* +6(1 = 9) (3 - ) E[G)I[E(Y)]

+ (9% = 309 + 302 E[G(Y)] [E(Y)]4}

(it is implicitly assumed that the expectations in the right-hand side exist).

Proof (i) For any positive integer ¢,
Y Y
E[{ Y s, 19)}£|Y] = E[B (o/DIE[{ ) Bj(ﬂ)}f|Y] = aM,(Y,9) (by (5.1)).
j=1 j=1

The result follows from E[G(Y)(a o9 Y){] = E[G(Y)E[(a o9 Y)!|Y]].
(ii)&(iii) Use (i) and the binomial theorem; (A + B)™ = 3" mCiA™ B m=1,2,.... O
In addition to the moment of & ¢ Y, the second, third, and fourth central moments (or cumulants) of

a oy Y are derived as direct consequences of Lemma 5.2(i,iii) with G(Y) = 1.

Corollary 5.1. (i) When E(Y) exists, then,
E(aogY)=aE(Y).
(ii) The jth central moments of @ o9 Y, j = 2,3,4 (when E(Y/) exists), are given by

E[(aosY —aEY))*] = adE[(Y —EX))*]+a(1 -NEY) +a(d - a)[EX)]%
E[(aog Y —aE(Y))’] = a9?E[(Y — E(Y))’] +3a9(1 = DE[(Y — E(Y))*] +a(1 =) (1 =29)E(Y)
+a(9 - a){SﬁE[(Y —EY))’IE®Y) +3(1 =9 [EX)]* + (I - 2) [E(Y)P},
El(@oyY — aE(Y)*] = a9E[(Y = E(Y))*] + 6a9%(1 - ﬂ){E[(Y —E()’]+E[(Y - E(Y))Z]E(Y)}
+a9(1 —9)(7 - 119E[(Y - E(Y))?] +3ad(1 — 9)?[E(Y)]?
+a(l-9)(1 - 69 +69>)EY)
+a(d- a){4192E[(Y —EW))’E®Y) + 120(1 = DE[(Y — E(Y))?]E(Y)
+60(9 — @)E[(Y — E(Y))*][E(Y)]* +4(1 - 9) (1 = 29)[E(Y)]?

+6(1=-N - )[EX)]? + (9 - 320 + 3a2)[E(Y)]4}.
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Recall that, for a random variable X with finite fourth moment,

V(X) = E[(X — E(X))?] (note that Cum»(X) = V(X)),
Cums(X) = E[(X - E(X))?],

Cumy(X) = E[(X - E(X))*] - 3[V(X)]*.

Here, instead of writing Cum(X, ..., X), we use the notation Cum ;(X) for the jth cumulant, where
————
j times
j=2,3,....

Corollary 5.2. The jth cumulants of @ o9 Y, j =2,3,4 (when E(Y/) exists), are given by

VieogY)=adV(¥)+a(l —DEQX) +a(d-a)[EX)]%,
Cumsz(a oy Y) = a®*Cums(Y) +3a9(1 =)V (Y) + a(1 = #)(1 - 20)E(Y)
+a(d- a){sﬂV(Y)E(Y) +3(1=D[EDM)]> + (9 - 20) [E(Y)]3},
Cums(@ oy Y) = a9 Cums(Y) + 6a9%(1 = 9)Cums(Y) + a9(1 = 9)(7 — 119)V(Y)
+a(l1-9)(1-69+69°)E(Y)
+a(® - a){4ﬁ20um3(Y)E(Y) +392[V(Y)]? + 189(1 — 9)V(Y)E(Y)
+ 69 (9 - 20) VI [EW)]> + (1 = (7 - 11D [EX)]?

+6(1=9)(& - 2a)[E(Y)]? + (9% - 69 + 6a2)[E(Y)]4}.

We further prepare the following lemmas.

Lemmas3. For0 <<y <1l(y+#0),0<6<n<1(n+0),and0 <<« <1(xk#0),

E[G(Y)(B oy Y = BE())(6 0y (B oy ¥) = SBE(Y))]
= SBYEIG)(Y = EQ)*1 + (1= N{EIGI(Y = EQ@)] + EIGMIEM))
+ (= BEIG(Y - EMIEW) + EIGIIEMIP}], (52)
E[G(Y)(Boy Y = BE(Y))(8 oy (Boy ¥) = SBE(Y)) (o (805 (Boy Y)) = SFE(Y))]
= 6B EIGI)(Y = EW)P] +y(1+20 = 3mE[G(N(Y = E(Y))?]
+yGny =np =26 E[GX)(Y - E(Y)))]E(Y)
+(L+ny =308~y =0y’ +30BY)E[G(Y)(Y ~ E(Y))]
+(2y = B+ 3nf =268+ 1y + 267 = 29y = 3yE[G(N)(Y — EM)IE(Y)
+ (3ny? =48y - Py + 367 E[G(X)(Y - EWD][E(Y)]?

+(1 =y =2ny +2py")E[G(Y)]E(Y)
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+(y = B+2ny =268 +nyB +26yB - 3ny?)E[G(Y)][E(Y)]?

+(ny* = 1yB+ 268> = 2BV EIGNE(Y) '} (53)

(it is implicitly assumed that the operations 3¢, 6¢,, and 1o, are performed mutually independently,
4 7

which are independent of Y, and that the expectations in the right-hand side exist).

Proof In this proof, let u = E(Y). We can easily prove (5.2) via the conditional expectation (given ¥ and

all operations from o), i.e.,

E[G(Y)(Boy Y = Bt} (6 0y (B oy ¥) = 6]
=SE[G(Y)(Boy Y — Bu)*]
= 5|BYEIGON (Y = 1] + B = N{EIGM(Y - ] + EIG(Y) I

+B(y = DREIGM(Y - i+ EIGW)1K2} | (by Lemma 5.2(i)).

Similarly, to prove (5.3), we use the law of total expectation after taking the conditional expectation (given
Y and all operations from 3o, ; note that E( o, Y) = Su), in relation to (5.2) with (8, v, d,n) replaced

by (0,1, t, k). In this way, we obtain, after some tedious algebra,

E[G(Y)(Boy Y = Bu) (6 o (Boy ¥) = 6Bu) oy (6.0 (Boy ¥)) = 16Bp)]
= W|IEIG) (B oy ¥ = B)*] + (1 = {EIG)(B oy ¥ = B)*] + EIGI) (B oy ¥ - )] (B}
+ (=) REIG) (B oy Y = B)* (Bo) + EIG(Y) (B oy ¥ = Bl (B0} |
= 61| BYEIGIN(Y = ) +38y(1 - N{EIGIY = ] + E[GI)(Y - )]}
+B(1 =) (1= 2{EIGO(Y = )] + EIG(Y)] e}
+3By(y - BEIGM)(Y - 1)’ 1u+3B(y - BPEIGI)(Y - p)lys?
+B(y = By = 2DEIGMi* +3B(1 = 1)y = HEIGI(Y = 0] + EIGM1i}]
+15(1 =) |BYEIGO) (Y = 1] + B = N{EIGI(Y - )] + EIG(Y) luf
+B(y = HREIGO (Y = wlu+ EIGW) 112} |
+0p*(1-mE[GX)(Y - w)]p
+28p(n - 8) [BYEIGO)(Y = ] + B(1 = N{EIGI(Y = )] + EIG(V)] e}

+B(y = HPREIGIY = )+ E[GW)]1} |u

We use the notation ’*) in such way that ’(®) stands for “without prime”, ’(!) stands for prime, ’(*)

stands for double prime, and so on. By definition, given 0 < 8 < y < 1(y # 0), for any positive integer
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m and nonnegative integer-valued random variables X, X’ ..., X’(™) it should be indicated explicitly
that

m X'

m X
Boy (X4 2 X'0) =Y BinBEBIM+ Y. > B 0BBY)
=1

i=1 J i=l j=1

m
=Boy X+ Z,B o;(i) X' (say),

i=1

where B;.(i) (7v)’s are independent copies of By (7y). Similarly to (5.1), it is easy to see that, for any positive

integers O pm) (here, m = 0 is allowed),
= i ) = ;
E[[ [ es? x D) 1xr @, x| =y ] Moy (X', 9). (5.4)
j=0 j=0

Lemma 5.4. Suppose that nonnegative integer-valued random variables X, X', and X" are not necessarily
independent. For 0 < B <y < 1(y # 0), assume that the operations Bo,, 3¢, and B’ are independent
of (X, X’,X"), in which the same Bernoulli random variable B(B/y) is used for Bo,, B, and 7,
whereas an IID Bernoulli sequence {B;(y)} for Boy, an IID Bernoulli sequence {B;(y)} for p¢),, and an

1ID Bernoulli sequence {B}' (y)} for By are mutually independent. Then, in addition to

E(B ¢, X|X) = BX, (5.5)
E[(Boy X)(B), Y)IX,Y] = ByXY, (5.6)
E[(Boy X)(Bo, Y)(Bo) 2)|X.Y, Z] = By*XY Z, (5.7)

the following hold.

(i) Cov(Boy X,B ), Y|X,Y) =B(y - BXY.
(i) V(Boy XIX) = B{(y = B)X* + (1 = )X}
(ifi) Cum(B oy X,Boy X, B, Y|X,Y) = By = B){(y = 2B)X°Y + (1 - y)XY}.
(iv) Cum(Boy X,B), Y, BoY ZIX,Y,Z) = By - B)(y —2B)XYZ.
(v) Cov[(Boy X)*, B, YIX,Y] = B(y = BI{yX?Y + (1 - y)XY}.
(vi) Cov[(Boy X) (B, Y),Boy XIX,Y] = By{(y = B)X°Y + (1 - y)XY}.

(vii) Cov[(Boy, X)(B<),Y), B0 Z|X,Y,Z] = By(y - B)XYZ.
Proof Using (5.4), (i)—(iv) follow from

Cov(H\, H|*) = E(H\Hz|*) — E(H\|*)E (Hz|*),
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3 3
Cum(Hy, Ho, Hsl) = E( [ | Hil ) = E(H Hal) E(Hal)3) + 2 | | E(H,19)
i=1 i=1

(hereafter, (N) means that there are similar N terms obtained under index permutation).

On the other hand, (v)—(vii) are direct consequences of (i)—(vi), since

Cov[(B oy X)2, B <>2/ Y|X,Y] =Cum(Bo, X,Bo, X, <>’y Y|X,Y)
+2Cov(B oy X,ﬁo’7 Y|IX,Y)E(Bo, X|X,Y),
Cov[(B o, X)(,Bo’y Y),Boy X|X,Y] =Cum(Bo, X,B0, X,,Bo’y Y|X,Y)
+V(Boy XIX,Y)E(B, Y|X,Y)
+Cov(B oy X,,8<>’7 YIX,Y)E(B o, X|X,Y),
Cov[(Boy, X)(B <>’7 Y),B <>’7f Z|X,Y,Z] = Cum(B oy X, <>'7 Y,B <>’7’ Z|X,Y,Z)
+Cov(Boy X, B ZIX,Y,Z)E(BY, YIX,Y,Z)

+Cov(B o, Y,B) ZIX,Y,Z)E(Boy X|X.Y,Z). O

5.3 ADCINAR(1) process and higher autocumulant functions

Nastié et al. (2017) defined the ADCINAR(1) process, as follows:
Yt=a’<>,9Y,_1+8t, l‘=0,il,..., (58)

where @y is an alternative generalized binomial thinning operator with 0 < @ < ¢ < 1(# # 1), and
{&,}, referred to as an innovation, is a sequence of IID nonnegative integer-valued random variables, such
that £, and Y,_; are independent for all integer ¢ and positive integer i (it is implicitly assumed that the
operations a¢y at different times are performed mutually independently, which are also independent of
{Y;} and {&,}). Given a recursive definition (5.8), Lemma 5.1(iii) enables us to see that, for any positive
integer A,

h-1
Yeen £ @’ ogn ¥, U ogi Erani 5.9
t+h = @ Ogn It + @ Ogi Etrh—i, (5.9)

i=0
where Y; is independent of Zf’:_ol at o9i €r+h—i- In what follows, the mean, variance, jth cumulant, and
jth raw moment of &; are denoted by . = E(&;), 02 = V(s&;), Kj,e = Cumj(g;), and y;.,a = E(s{),
respectively. Also, Is stands for the indicator of the set S.
We emphasize that, throughout this thesis, except for some simulation experiments, we do not assume
the distributional form about the innovation {&;}. In this sense, we treat (5.8) to be semi-parametric.

As mentioned in Nastié et al. (2017), the ADCINAR(1) process {Y; } is strictly stationary and ergodic

70



when 0 < a < 9 < 1(¢ # 0), whose mean uy and variance o2

y are given by

O—g +ape +a(d—a)A(a, ug)
1 -ad ’

He

—— and a%:
1-«a

Hy = (5.10)

respectively, where

U He \?
Moo ==+ (725)

since
E(Y;)=E(aoyYi-1) +E(g) = aE(Y;1) + e
(use Corollary 5.1(i)) and, by independence between a ¢y Y;_ and &;,

V(Y;) =V(aoy Yi—1) +V(er)

=adV (¥ ) +a(l =NEY, 1) +a(d - a)[E(Y;_1)]* + o2

(use Corollary 5.2). Here, when . exists, uy exists; when y, _ exists (in this case, u . and o2 exist), 0'%
exists. Further, using (5.9) and Lemma 5.2(ii), the autocovariance function at lag # > 0 of the stationary
ADCINAR(1) process {Y;} is given by

u—1

Cov(Y:, Y1) = Cov(Yt, " ogu Yy + Iyuso Z a' ogi SHM_[)
i=0

= Cov(Y;, " ogu ;) = @02, (5.11)

hence, the autocorrelation function at lag u(> 0) of the stationary ADCINAR(1) process {Y; } is given by
a", as in the usual stationary autoregressive process of the first-order (e.g., Brockwell and Davis (1987)).
Similarly, it is possible to compute the third and fourth cumulants of ¥; (denoted by «; y), as follows.

Noting that
Cumj(Y;) = Cumj(a oy Y;_1) + Cum;(g;)

by independence between a ¢ Y;_1 and &;, and using Corollary 5.2, together with strictly stationarity of

{Y;}, we obtain

Ky = 3,6 +3a0(1 — 9)os +a(l —9)(1 - 20)uy

1
1 - a9? [
+a/(19—a/){319/1y0'§+3(1 —ﬁ)u%+(ﬁ—2a/),u;}], (5.12)

1
Ky = —[K4 o +6a02(1 - sy +ad(1 - 9)(7 - 119)02
YT s :
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+a(1-9)(1 - 69 +69%)uy
+a(d - a){4ﬂ2m/<3,y +30%% + 189(1 - )y ol
+69(9 — 2a)up o + (1= 9) (7T - 1195

+6(1 = 9)(9 ~2a)pa) + (F ~ 6ot + 602 )b | (513)
It is worth noting that, if ,u’J’g exists for J > 3 (in this case, g, 02, and Kj.e»J =3,...,J, exist), then,
Ky exists for j =3,...,J.

Remark 5.1. (i) By similar computations of the (unconditional) expectations given in Section 5.2, we

see that
E(aopY|Y)=aY and E[(aog Y)?|Y] = a{9Y? + (1 - 9)Y},
hence,
E[(aog Y —aY)?|Y] = a{(¥ - a)Y* + (1 - 9)Y}.
For the stationary ADCINAR(1) process {Y;} (see (5.8)), we have

E(Yi|Y;-1) = Yy + pg,
E[(Y; =Yy —uo)? Vil = E[(@ o9 Yoy — aYi1)*Yioi] + E[(8 — ue)?|Yi]

=a(¥ - cy)Ytz_1 +a(l -0)Y,_ +02.

(i) If ¢ = a(e (0,1]), the operator a¢s under consideration reduces to the binomial thinning
operator « o Y, which means that the INAR(1) process given by Y; = @ o Y;_1 + &; is a special case of the
ADCINAR(1) process. The expressions of uy, 0'1%, and )y, j = 3,4 (see (5.10), (5.12), and (5.13)) are

extensions of those in Chapter 2.

For asymptotic theory of the stationary time series, the autocumulant functions (equivalently, the
central automoment functions) are fundamental. Recall that, given a stationary process {X;} with mean

ux, the (r + 1)th central automoment function (if it exists), where r is a positive integer, is defined by
r
s sr) = E[ (X = 10 | | e = 1230
i=1

for nonnegative integers u, > --- > u; > 0. The second central automoment function is nothing

but the autocovariance function yx(-) and the third central automoment function is equal to the third
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autocumulant function yx(-, -), i.e.,

yx(u1) = px(ur) and yx(ui, uz) = px(ur, uz).
Further, the fourth autocumulant function yx(-, -, ) is given by

Yx (Ui, uo,uz) = px(ur, uz, uz) — yx(u1)yx(us —uz) — yx(u2)yx(uz —ur) — yx(u3)yx(us — uy).

The following result is an extension of Proposition 2.1 to the ADCINAR(1) case.

Proposition 5.1. In addition to the autocovariance function yy (u) = a”o-% (see (5.11)), the third and
Sourth autocumulant functions of the stationary ADCINAR(1) process {Y;} are, respectively, given by, for

nonnegative integers w > v > u > 0,

-9 a-a*
-9 1—a)]G§“Y’ (.14

vy (u,v) = a’9"Qrsy + aV(T% +2a” [19” -a"+(1- a)(
yy (u,v,w) = @9V Qoay + @ (9" +29V) 023y + a/WO'%
o ({0 - a0 + 208" - ) @2y + )
@ = a4 97 42042 - 9@ - 0 Loy
+3(9" - a“){(ﬂv —2a") o2l + (9 - ﬂv—“)ag}

+ 6y (u, v)], (5.15)

where Q23 y = K3y — 0'% and Q2.ay = K4y —3Kk3y + 20')2, (when 9 = a(€ (0, 1)), the terms of the square

brackets in yy (u,v) and yy (u, v, w) vanish).

Complicated formula 8y (u, v), depending on «a, ¢, uy, 0')%, k3y,and K4y, is given, as follows:

Oy (u,v) =61 (u,v) +262(u,v) + 265(u, v) + 64(u, v), (5.16)
where
-9V l—a" ™"\ -09" a—-a"
_ Ry _ _ 2,2
O1(u,v) =21 - @) (ﬁ -9 Y1 a )(1—19 1—a)UY“Y

a/v—u)(ﬁZ_ﬁu ) a2 — ot

5 gv—u
-ofl(o 2 -
-0 (07— - o) (55 - 5=5)
gv—u (azﬁz—a”ﬂ” ﬁ4—ﬁ2”) ¥ U a,2192_a,uﬁu (1’4—(12'4
al )

TTo9\ T 1mas -2 /T Toa\ a9 1-a?
+ V_u{az_au( = ? )"‘ 1 o?0? - o 1 a/4—0/2u}] vy
@ B - o
l-a \1—-a 1-9 1-9 1-ao l—a 1-a2 Yy My
92 =9 @ — ot
+ u( - ){(1_019)@;—@(1—ﬁ)a%uy—a(ﬂ—a)ggﬂg
9-9" a-a" ad — a9t 92— 9
1- { - ﬂv_"‘( _ )} 2
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92 — 92 aﬁ—a“ﬂ“) 20["‘“(012_0[2“ aﬁ—a”ﬂ“)} ) 2

1_ Z{ﬁv—u( _ _
+(1-a) -2 [~ ad - a2 —a0 JI7rHY

9 —gu-! a—at ! at ™M a’ (9=l a—a*!
- (0 e ) (T - o) Tl -
(1-a) -9 ¢ 1o e T 9/ T1-a\T1oy -«
. 9 (ﬁv—u ﬁZ _ ﬁZ(u—l) ~ av—u ald — a,u—lﬁu—l )
1-9 1 -2 1-a®
.\ a ( v_uaZ_a,Z(u—l) ~ v_ua,ﬂ_a,u—lﬂu—l)
l1-a 1-a? 1-a?
+av—u+](a,2_a,2(u—]) a”l?‘—(lu_lﬁu_l)} 5 5
l-a 1-a? 1-ad TyHy>
6o(u,v) = (" —a" ) {(1 - aﬁ)a‘é —a(l - 19)0'}2,;11/ —a(® - cx)oﬁ,u%}
1-9vu l1-a" "/ -9 a-a"
IEOR G [ e
(- (0T e = Ty ~7=4 JorH
gy-u ¥ ,02 —Ju a,Z — "
(=P | (17— - e )= - =)
-~ Ty~ 7T-a
s gv—u (0202 — atoH 04 _ 0214) . a’ U (0,2,02 — ot (1’4 _ a,2u)
1-9 1 -ad 1-92 l-a 1-ad 1-a?
(@t -a" ) «a ) 1 a?9? - oo™ 1 a*-a®\ , ,
re S (o o) - fori
l-a \I-a 1-9/ 1-9 1-a¥ l-a 1-a2 Yry
_ 97— 9 _ ) — atoH
+ (19” “1_—192 -av ”W){(l - m?)of; —a(l - 19)0'%/11/ —a(d- a)o-%u%}
g -9 92— at —a** o - a"
-l (G - ) e - e
+(1-a) -9  1-9 T—ad  1-a JJTYHY
92 =9 @ — o oM a?-a® - ot
+(1 - 2{0v—u( _ )+2 v—u( _ )} 2.2
(1-a) 1-92 1 —ad S R T—an )YHY
.\ (1 )z{ﬂv—bﬁl (192 _ ﬂ2(u—1) ad — a,u—lﬂu—l)
_a —
1-9 1-92 1-at
. Za,v—u+l (0’2 _ a,2(u—l) at — au—lﬁu—l)
1-«a 1-a? 1-—at
+(2a/V o )(19—19“‘1 —a_au_l)}a'2y2
l-a 1-9/\ 1-9 -« Yry:
-9 a-a’
53(,7) = (1= o) (55 = = | (9" Q2 + 07 +2(8" — a*)oruy by
V(Z—a’u_l?—ﬂu 2 2:|
+2a(1_a l_ﬂ)(fy,uy,

-9 _a—a“
1-9 l-a

64(u,v) = (1 - a) )9 02ay + 0 +2(0” = 20) o pay Yy

Remark 5.2. Note that §;(u,v) = clj(u,v)(r;‘, + czj(u,v)(r)%,uy + C3j(u,v)(f)%,u)2,, j = 1,2, where
cij(u,v)’s heavily depend on @ and ©*. However, the re-arrangement of (5.16) is not made here, since it

would not be practically important.

Remark 5.3. (i) Especially, we have, forw > v > 1,

yy(0,v,w) =a" [ﬂva,Y +(1+20%)Q03y + 0y

+2(0" — a")(Qaa.y iy + Tppty + 0y)

-9 a-a”
+2(1—0/)( 9 1-4 )(QZ:S,Y,UY"'O')%,UY) ,
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yy(L,v,w) =@ [0 0oy + (9 +20V) 003y + 0p
+{(® - )P + 209 — ")} Q23 vy +Ty)
+{(-a)2+9" D) +202 - N —a" ) }oguy
+3(8 — ) {(9" = 2a")opus — (1 - Dod}

+29" =" {1 - aﬂ)o{f —a(l - 1?)0')2,;1)/ —a(d - oz)a'}%,uf,}
9 -9 B a—-a’
1-9 1-a

+2(1 - a)( ){ﬁQ2:3,Y,UY +oyuy +2(9 - a)oyuy}|.

(i1) Subsection 6.3.2 below needs

py (1, k, k) — apy (0, k, k) = a* [2(1 —a)a*Qrsy + (1 —a)oy +2(1 —a?)a* oy

+ (9~ )9 Qoay +{0 @ +2(1 — ) (9" ~ ")} Q25 ¥
9 —a
m{(l +2a = 30)9" +2(8 - @)} Q23 yuy

?—a

+

7 ﬁ{(2a0—1—ﬁ)ﬁk-l+2(2—a—ﬁ)}a§yy
ﬂ_
+5 ;{(mﬁ — 20— 9 = 30%)0% ! +4(9 — @) ol

+3(0 - a) (9 - NO* 1o

+{(% - a)(39 - 2a)0* ' +2(1 = *) (9 - @F)}op |,

where k =1,2,....

By Proposition 5.1, it is easy to understand that, for » = 1, 2, 3, the (r + 1)th autocumulant function of
the stationary ADCINAR(1) process is proportional to " when u,, > --- > u; > 0. Note that this fact
is correct up to r = 5, for the stationary INAR(1) process under a general innovation (see Chapter 2). The
following result proves this structure about higher autocumulant functions of the stationary ADCINAR(1)

process (the proof is postponed to Section 5.4).

Proposition 5.2. Given a positive integer r, suppose that €, has the (r + 1)th moment. Consider the
stationary ADCINAR(1) process {Y;}, given by (5.8). Then, for any integer t and nonnegative integers

uy > --- > uy 20, there exists a constant C, > 0 (independent of t and u, . . ., u,) such that
|Cum(Yta Yt+u1, R} Y[+M,«)| < Craur‘

Remark 5.4. Forr = 4,5, .. ., the closed-form expression of the (r + 1)th autocumulant function would

be unrealistically not available for the stationary ADCINAR(1) process.

Suppose that the observation {Y1, ..., Y,} of length n is generated by (5.8). Define the sample mean,
variance, and cumulants by Y = (1/n) DIAED 8 8)% =1/n) X0 (Y — Y)?, Ky = (1/n) 2 (Y = Y)3,

and ka,y = (1/n) X7, (Y; — Y)* - 3’(};, respectively
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We prepare two lemmas, which will be used in the next chapter.

Lemma 5.5. Suppose that 0 < @ <9 < 1(9 # 0). The following hold.
(i) IfE(sf) exists, then, ¥ — Uy, 5‘% L5, O'%, and kjy £5, Kiy, J =34

(ii) Let J be a positive integer. IfE(s,J”) exists, then,

nu[

—Z(Y, Y)I—I(YHMJ V) L5 uyus )

for fixed nonnegative integers 0 < uy < --- <wup(€=1,2,...,J).

a.s.

ProofFori =1,2,3,4, (1/n) X7_, Y} I L FE (Y‘) by strictly stationarity and ergodicity of {Y; }. Similarly,
fort=1,2,....,J,(1/n) 27" Y, szl Yitu, L, E(1; ]_[j:1 Y14u;). We thus have (i) and (ii). ©

Lemma 5.6. Let Z, = Y, — uy. Suppose that 0 < a < 9§ < 1(9 # 0) and that E (%) exists. Then,
1l &
— 22\ Z] - E(Z_\Z)]1 = 0,(1), 0<i+j<4,j=0,1((G]) # (0,0).
=)

Proof According to Proposition 5.2, we see that |C0v(Z_§_lZ£, Z;_lZf)l < C,-ja“‘S' for some constant
Ci; > 0, independent of s and 7, if 0 < i+ j < 4,j =0,1((i, j) # (0,0)), using McCullagh’s (2018)
table of complementary set partitions (7 = 1|2, T = 12|34, 7 = 123|456, and 7 = 1234|5678). The result

follows from

n

1 , . , .
v(% z;_lz,f) {ZV(ZZ 1 r)+22 I{y<y|Cov(Z 1z;,z;_lz,f)|}=0(1). O
=2 s,t=2

5.4 Proofs of Propositions 5.1 and 5.2

We emphasize that, for the proofs of Propositions 5.1 and 5.2, the time at which the operation is performed

should be indicated, in such a way that ¥; = « og) Yi_1+&,t=0,%1,..., where

0 Yt—l :0’
( )Yz 1= Yt 1
Zs<’>(a &), Y1 =1,2,...,

with S;t) (a,9) = B;t) (9B (a/9). Here, {B;t) ()} is a sequence of IID Bernoulli random variables at
time ¢, which is independent of Bernoulli random variable B*) (/1) at time ¢ (these generating random
variables at different times are mutually independent); besides, {B;.t) (9)} and {B) (a/®)} are mutually
independent of {Y;} and {&;}.

Additionally, we must give a more precise expression for Y;., (rather than (5.9)) involving the

()

operations a¢ " at different times. For this purpose, it is natural to introduce the {-times repeated
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operation, as follows. For any integers i and j, let (l.j) ={i,...,j}ifi < j, and (lj) =0ifi > j. If we

t+f

t11) (€ is a positive integer), where 7 is an

consider all operations at times from ¢ + 1 to 7 + ¢, given by (

arbitrary integer, we define

0, Yt = Oa
a/(;:f) o9 Y = (a og+€) e 059”2) @ og“))Yt =% 1+l ) 5.17)
_ Z l_[Sj (@,9), Y, =12,...,
¢ times j=1 v=t+1

t+l
t+1

t+f

b )| = € corresponds

. d
for which we can use the fact a(‘*) oy Y, = af og¢ Y See Lemma 5.1(iii), where |(
to the length of times from 7 + 1 to ¢t + £. It is convenient for us to use the conventional notation

a(0)oy = 1oy (in this case, let |0] = 0).

Remark 5.5. The meaning of the repeated operation (5.17) is clear from the birth-and-death interpretation.
That is, suppose that there are Y; objects (parents) at time ¢, and that every descendant of the jth object
produces SE.V) (a, ) objects randomly for any time v(> ¢). Then, the number of the descendant at time

t + ¢, starting at time ¢, is given by (5.17).

We can prove inductively that, for any positive integer 4,

h-1
Yien = (i) o0 Yo+ Y an-i(ih ) 09 Soenis 1=0,%1,... (5.18)
i=0
(with Cl’h(;:Z+l)<>ﬂ = lo1), once we define, fori = 1,...,h— 1 (when i > 1),
0, Et+h—i = 09
Wni ([T i11) 09 Eren—i = Sgnes 1+ (5.19)

1—[ Sij’l’z—l(a’ ﬁ)’ Et+h—i = 19 27 L ]

j=1 v=t+h—-i+l

where

st

(@) =BY)_ (9B (a/D),

with Bi.viz_l. (9)’s being independent copies of B (). Such a notation is rather cumbersome, but there will
be no confusion, since the time at which the operation is performed and the independence of the Bernoulli
random variables B;"Iz_l.(ﬁ)’s (over Y; and &,45—;’s) are indicated by superscript of parenthesized index

and subscript “h — i, respectively.

Remark 5.6. In order to make the expression (5.18) clear, we regard the ADCINAR(1) process as a
birth-and-death process with immigration, in which the innovation {&;} is a sequence of the numbers of
the immigration (at time s). In this setting, if the counting is started at time ¢ where there are ¥; objects

(parents), and furthermore, if, at each time v(> f), there are possibly immigrations which can produce

7



the objects randomly, then, (5.18) denotes the number of the descendant at time ¢ + 4. Note that (5.19)

denotes the number of the descendant at time ¢ + &, produced from the immigration at time ¢ + h — i.

Remark 5.7. We mention some useful properties of the repeated operation a/(j:f’)oﬁ , as follows (similar

properties hold for a,_; It:z_m)oﬁ). By definition,
h h +h +h
a(5ip) oo Ys = (@(Glp, 141) 00 'a(§+h12+1) o a((") 09)Y;
m times

. o o« e . +h +h
for a given decomposition (m-disjoint sets of times); (gj:{’) = (jjj:mil RYLISAERY. (j N hf Y (j .1 )> where the
repeated operations at disjoint sets of times are performed independently, which are mutually independent
of {Y;} and {&;}. Also, commutative and associative properties hold. For instance,

a0y Yy = (@(1) 09 a(512) 09)Ys = (a(313) 09 a(513) 09)Y;

and
aC) oo Yo = (@) oo a(§D)on)a(Cl]) o0)Ys = (@(R) o9 (@) oo aH]) 09))Ys.
Outline?! of the proof of Proposition 5.1. By Lemma 5.3, we can derive
Cum(Y;, " ogu Yy, ...,@" oguc Y;) = Cy 1(uy,...,ug) (say), independent of 7,
where £ = 2, 3. It suffices to compute

Cum(Yl’ Yl+u, Yl+v) - CY,I(M’ V) = AY(M$ V; t) (SaY),

Cum(Yta Yt+ua Yt+v, Yt+w) - CY,] (l/l, vV, W) = AY(M’ v, W7 t) (SaY)-

Note that they obviously vanish for the INAR(1) process. Below, w > v > u > 1 is assumed.

Using the expression (5.18), we start with

u-—1 v—1
Ay (u,v;t) = Cum(Yt, Z a' ogi Erpu—is Z a’l oy; 8t+v—j)
i=0 j=0
v—1
t+u I+v
+ Cum{Yt, a(z+1) o9 Yy, I{v>1} Z Ay —j (t+v—j+l) 0P Eryv—j T 31+v}
J=1
u-—1
t+u t+v
+ Cum{yh I{u>l} Z a’u—i(,.,.u_i.,.l) 09 Etru—i t Ervus a(z+1) o9 Yt}
i=1

=Cy,2(u,v;t) + Cy3(u,vit) + Cy 4(u,v;t) (say).

IThe complete proof, being lengthy and technical, is available: Zeng, X. and Kakizawa, Y. (2022). Higher autocumulant
functions for ADCINAR(1) process and bias-correction of some estimators. Discussion Paper (Series A): No.367.
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By independence between Y; and &;,; (i > 0), it is obvious that Cy »(u, v;t) = 0 and that some terms of

Cy 3(u,v;t) and Cy 4(u, v;t) are zero, i.e.,

v—1
CY,3(M’ v [) = I{v>1}1{u>1} Z Cum{Yl7a(;‘I,14) o9 Yl"av—j(;:“;}_.]q.l)o‘l? 8Z+V—j}’ (520)
Jj=v—u+l

u—1

CY,4(ua V3 t) = I{u>1} Z Cum{Yl‘s au*l‘(;:z_[q.l) Oﬁ Ettu—is a(;:r) Oﬁ Yt} (521)
i=1

Now, the repeated operations can be treated, in the following way:
» with regard to (5.20) when u,v > 1,foreach j =v-u+1,...,v -1,

t+v—j
a(i oo Ye=al( VG )]0 Y

t+v _ r(ttu t+v .
aV—j(z+v—j+1) 09 Erev—j = @v—j| t+v—j+1) U (t+u+1 109 &revjs
* with regard to (5.21) whenu > 1, foreachi=1,...,u — 1,

(i) o9 Yo = @[TV (T Y ()] oo Ve,

a'u—i(;:Z—Hl) 9 Ettu—i = au—i(,ti,l:_iH) °9 Ettu—i-
Applying the law of total cumulant (e.g., McCullagh (2018)) and Lemma 5.4(i), it is shown that

¢-9" a—a*
Cy3(u,vi1) = Cya(u,v;1) =C¥V( —9 1-a )0'1241.9,

hence,

19 _ ﬂu _ u
=5 al c )0‘% Uy, independent of ¢.
- -«

Ay (u,v;t) =2a"(1 - a)(
Similarly, applying the law of total cumulant and Lemma 5.4, a heavy algebra shows that
Ay(u,v,w;t) = a“6y(u,v), independentofs. 0O

Proof of Proposition 5.2 In what follows, given a nonnegative integer &, we introduce Y; 5, = a(l’:{’) o9 Yy

and &, = I{n>0y 20y &1,m,i» Where &, p; = ap—i (‘T8 ) oy eren—i; see (5.18). Also, let 775, = ("+h

t+h—i+ t+1
(or Trpi = (;jjl‘_m ) be a set of times at which the repeated operation a(;:{l)olg (or Cb’h_l‘(;:l};l_i+1)<>ﬁ) is
performed. Throughout this proof, C;] ’s are positive constants, independent of ¢ and u, . .., u,.

To make the proof clearer, we first deal with r = 2, 3. Below, we assume that u, > --- > u; > 1.
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Now, for the case r = 2,

Cum(Yta Yt+u| s Yt+u2) = Cum(Yh gt,ul 5 8t,u2) + Cum(Yl’ Yl,ul s gt,uz) + Cum(Yta Yt,u1 + gt,m s Yt,uz)

=D+ D14 DI (say), with D! = 0.
To deal with the terms Dgz] and DEZ] in turn, we apply
Cum(Xo, X1, X2) = E(XoX1X2) — E(XoX1)E(X2)(3) +2E(X0) E(X1)E(X2).

The repeated use of the conditioning argument, in relation to (5.4), shows that, given I, I, I, whose

values are O or 1, with I + Iy + I, > 1, |E[Y! (Y;, + &1.,) " Ytlfuz]l < Cz[z]a/lz’”, which yields

D) < (el + 3l +2(clyate.

On the other hand, we notice that

u—1

DEZ] = Z Cum(Yt,Yt,ul,gt,uz,iz)'

=uy—ui+l

Aslong as up —u;+1 < ip (£ up — 1), |E(YtIYt{1Ltlefzu2 l.z)l < Cl[z]a/llu‘*b(‘“_“')1912(i2+”'_”2), which

enables us to see that

uy—1 ) us
DR < (e a3 2c)’] YT e < (o +3(cl[2])2+2(cl[2])3]—1“_0.

i2=u2—u1+1

This completes the proof for the case r = 2.

When r = 3, it is easy to see that

Cum(Yl7Yt+u]7Yl+u27Yl+u3)
= Cum(Yta 81,141’ 8t,u27 81‘,143) + Cum(Yl’ Yl‘,up 8t,u2,8l‘,u3)
+ Cum(Y[’Yt,ul + St,ula Yt,uz’gl,u3) + Cum(Yt’Yl,ul + 8t,u1’Yt,uz + 8[,u29Yl‘,u3)

= D([)3J + D£3J + D£3J + D:[SJ (Say), Wlth D([)3J = 0
To deal with the terms Dgﬂ, D£3], and DP] in turn, we apply

Cum(Xo, X1, X2, X3) = E(XoX1X2X3) — E(XoX1X2)E(X3)(4) — E(XoX1)E(X2X3)(3)

+2E(XoX1)E(X2) E(X3)(6) — 6E(Xo)E(X1)E(X2)E(X3).

Step 1. The repeated use of the conditioning argument, in relation to (5.4), shows that, given I, Iy, I, I3,
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whose values are 0 or 1, with / + 23-:1 I; >1,

< C3[3]0/3”3,

2
|E [YZI{ ﬂ(Yt,uj + 8Z,Mj)1j }Yt{3u3]
j=1

which yields
DY < [P+ 7(cPh? +12(cP1)? + 6(cP e < 6B4[1 + (CF)*at

(B, stands for the Bell number; note B4 =1+7+6+1 = 15).

Step 2. We notice that

uz—1

(31 _
D2 - Cum(Yl‘,Yl‘,ul +8t,u1,Yt,u2a8t,u3,i3)a
i3:u3—u2+1

uz—1

[31 _
D] - Cum(YhYt,ul"gt,uzv‘gt,u3,i3)
i3=u3—ui+1

u—1 uz—u|

+ E g Cum(Yt’Yt,ul’gt,uz,ig’gt,u3,i3)

Dh=uy—u1+1 i3=uz—us+1
— pl3l (3]
= D1,1 +D1,2 (say).

Similarly to Step 1, we deal with three terms D£3] DB and DB!

Dy 1. in the following way:

D£3]. Aslongasus —up+ 1 <iz(<u3z — 1),

1 Lyh I3 [3]  bus+I3(uz—uy) gl5 (iz+us—u3)
|E[Y; (Y, +&tu,) IYf’Mzgt,u3,i3]| < C2’1a, auz+ly (us—u) 93 i3+ —us)

which enables us to see that

DI < (el +7(cPh? + 12(cl’)) + 6(C]) 0 %21 9o < 6By [1+(CL)Y] 1“:” -
i3=us—uy+1
DPI] Aslongasus —u;+1 <iz(<uz—1),
|E(YrIYtI,lu15{?u25:?u3,i3)| < Cl[?l]allu1+13(u3—u1)ﬂ13(i3+u1—u3),
which enables us to see that
DY < (e +7(c?h? + 12(c) + 667D e %21 96 < 6B, [1+(C}))*] 1“_u3 5
i3=us 1y +1

DPZ]. Aslongasuz —up +1 < i3 <wuz—wuyand us —uy + 1 < ir(< up — 1) (in this case, 77 us.i
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intersects with 7; ,,, i,),

|E(Y1 2 )| < C[3 11u1+2 1 (MJ uj— 1)192] 21 (lJ+MJ 1— uj)

tul tu212 tuzlq

which enables us to see that

u—1 u3—uj
3 (iitui—u:
D < ey +7clhr+ 2P +echee Y DT gRieliey)

i2=u2—u1+1 i3=Lt3—M2+1

< 6B+ (CPD 1 T W

This completes the proof of » = 3.

Even for the general case r = 4,5, .. ., we obviously have Cum (Y;, & u,. . .., &r.u,) = 0, hence,
r
Cum(Yt, Yl‘+u1’ e, Yt+ur) = Z D[r],

where

Cum(Yt’Yt,ul +8t,u19 L 9Yt,ur,1 +8t,ur,17Yt,ur)9 J =r,

r] _
D, =

Cum(Ye,Yiu, +€ruys- - Yoy ¥ €0y s Yeuys Etouguys- > €ty)s J=1,...,r =1

r],

The basic tool for dealing with the terms D[J s is the cumulant-moment relation, given by

—

r r—

Cum(Xo, ..., X,) = E( [1 x,-) - E( Xl-)E(Xr)(r S 4t (=) 7! ]L[ E(X))
i=0

i=0 i

Il
[«

(e.g., McCullagh (2018)). We adopt the conventional notation of the empty sum/product, i.e., >’ jcp a; = 0
and [[;epa; = 1.

In the same manner as the term D[ | , we can deal with the last term D . That is, the repeated use
of the conditioning argument, in relation to (5.4), shows that, given I, [, .. ., I, whose values are O or 1,

with 7+ 37 1; > 1,

r=1
’E[YI{ (Y[u,'l'gtuj)l} :”<Cr] Iur
=1

which enables us to see that

r+l

D" < {Z(i - 1)13(’;1)(@[’])!'}(1% < P1Byai[1+ (Cr+1 ] gur

i=1

To complete the proof, we need to consider other terms D[Jr] J=1,...,r—1.
For every case of J € {1,...,r — 1}, we denote by K the rightmost position of k € {J+1,...,r}
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such that 7; ,, N 77 4, i, # 0, i.e., by definition,
() ug, —uy+1<ig,(Sug,—1)and (iij) whenK; #r,0<ip <wus—uyfor{ =K;+1,...,r.

On the basis of this proof strategy, let

[r] _
CiKJ ’’’’’ ir - Cum(Yl‘a Yt,u1 + gl‘,ul, L) Yl‘,u]_l +8t,uj_1’ Yt,uj’gt,uj+1’ LI ’8Z,MKJ_178t,uKJ,iKJ’ LI ’gt,ur,ir)'

Besides, when K; # r, (ig,+1, - - . , i) must be restricted to the condition that us —us—1+1 < ip(< ue—uy)

for{=Ky+1,...,r. Thatis, forevery J € {1,...,r — 1},

,
[r] _ [r]
D, = Z DJ,r—K_,+1’

KJ:J+1
where
uk ;-1 UK j+1—UJ ur—uy
[r] _ [r] _ (]
Dk = Cixyoonir = Cixyoomir (52Y);
iKJ=uKJ—MJ+1 iKJ+1:’4KJ+1_uKJ+1 ir:ur—ur,1+1 (iKJ ’’’’’ ir)EI,[r]

noting that Ci[,:] = 0 when (ig,,...,i;) € [O,ux, — 1] X --- X [0,u, — 1]\Ij[r]. For every
J

------

J e {l,...,r =1}, given I, I,...,I., whose values are 0 or 1, with I + Z;zl I; > 1, as long as

(ina""ir) E‘Z—J[r]s

-1

J-1 Ky r
. I I; 1;
’E [YII{ l—[(Yl‘,Mj + 8t’”_f)IJ}YI,JuJ{ l_l 81{1@'}{ 1—[ 8tfuj,ij}”
J=1

j=J+1 j=K;

< C[r] I]u]+IKJ (MKJ _MJ)+Z;‘:KJ+1 Ij (uj—u_,-,l)ﬁIKJ (iKJ+uJ—uKJ )+Z;:KJ+1 Ij(ij+uj,1 —uj)
- J,r—Kj +1 s

which enables us to see that

r+l
|D,[Ir,]r—K]+1| < {Z(l - 1)!5(’?1)}a”r Z R U AL SR Y SRIUATE T
i=1 (i veemsiv) €T}
[r] r+l at
< r!Byi{l +(Cj,r—KJ+1) }W

[r] 1
1+ (CJ,r—KJ+1)r+

(1 _ ﬁ)r—]

Uy

IA

r'Bry1

Summing over K; =J +1,...,r, it follows that

Sl el
|D[Jr]|SI’!Br+1 l (l—ﬂ)r—’; a'r, J=1,...,r—1.
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In this way, we can prove that

r—1 Z(—J{l + (C[r]‘)r+l}

r :1 ‘]’ u

Cum (Y, Yosuys > Yoru,) < r1Bray |1+ (CP 4 3 2 (l—ﬁ)r—; . O
J=1
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Chapter 6

Some estimators in ADCINAR(1) process

6.1 Introduction

Nastié et al. (2017) considered the stationary alternative dependent counting nonnegative integer-valued
autoregressive process of the first-order (ADCINAR(1)), defined by ¥; = @ ¢y Y;_1 + &, under the specific
innovation {&; } (see Theorem 3 in Nasti¢ et al. (2017); the marginal distribution of {Y;} is then geometric
distribution Geo(u/(1+u)) for u > 0), where ao » is an alternative generalized binomial thinning operator
with 0 < @ < & < 1(¢ # 0). They gave asymptotic normality of the estimator for the new parameter
when other parameter («, u) is unrealistically known.

However, in practice, the distributional assumption on the innovation can not be specified in advance.
Also, the conditional expectation is given by E(Y;|Y;—{) = a¥;_| + E(&;), hence, @ is an important
parameter to be inferenced. This motivates us to revisit asymptotic properties of an estimator for
without assuming that @ is known.

One of the contributions (here, we are interested in a general innovation, not the one considered
by Nasti¢ et al. (2017)) is Proposition 6.3 in Section 6.2, which elucidates that plugging a certain
n'/2-consistent estimator for a affects the resulting asymptotic variance, whereas plugging the sample
mean and variance for E(Y;) and V(Y}) has no effect. The phenomenon can not be grasped from two
examples discussed in Karlsen and Tjgstheim (1988). Since two-step procedure is one of the commonly
used techniques in time series analysis, this finding gives a warning of the use of Karlsen and Tjgstheim’s
(1988) theory in the recent literature of the stationary nonnegative integer-valued process.

In the statistical analysis of time series count data, the conditional least squares (CLS) method due to
Klimko and Nelson (1978) has been widely used. See, e.g., Al-Osh and Alzaid (1987) and Park and Oh
(1997) for the stationary nonnegative integer-valued autoregressive process of the first-order (INAR(1))
defined by Y; = a@ o Y;_ + &, and Nasti¢ et al. (2017) for the stationary ADCINAR(1) process defined by
Y; = a0y Y| +&. Here, we do not assume the specific distributional form about the innovation {&; }.
The Yule—Walker (YW) estimator for the parameter @ can be applied easily, since the autocorrelation

structures of various nonnegative integer-valued time series models are the same as the usual stationary
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autoregressive process of the first-order. A general estimator for the parameter « (see Chapter 3) can be
also applied even for the ADCINAR(1) process.

It is well known that these estimators are strong consistent and asymptotic normal under moment
conditions on a general innovation, but are biased in a finite-sample. Some authors derived asymptotic
expansions of the biases in order to perform an analytical bias-correction for the stationary INAR(1)
process (see Bourguignon and Vasconcellos (2015), Weill and Schweer (2016), and Zeng and Kakizawa
(2022)). As an extension of Chapter 3, we also provide the asymptotic expansions of the biases of the YW
and CLS estimators for the parameter @ even in the stationary ADCINAR(1) process. Not surprisingly,
the resulting analytical bias-corrected estimators are complicated, involving the estimator for the new
parameter ©}. Therefore, the major contribution of this chapter is to develop, in a nonparametric way, other
bias-corrected estimators, without computing the closed-form expression for the asymptotic expansions
of the biases.

The rest of this chapter is organized as follows. Section 6.2 shows consistency and asymptotic
normality of two-step CLS (2CLS) estimator for the new parameter ¢ in the stationary ADCINAR(1)
process. Section 6.3 develops the bias-corrected YW and CLS estimators for the parameter «, together
with their theoretical justifications. Simulation experiments are conducted in Section 6.4, to assess the
finite-sample performances of the estimators (without/with bias-correction). Section 6.5 concludes this

chapter. The proof of Proposition 6.3(i) is postponed to Section 6.6.

6.2 Estimation for the parameters « and

Suppose that the observation {Yy,...,Y,} of length n is generated by ¥; = a ¢y Y;—1 + &;. Here, we
assume that 0 < @ < ¥ < 1(¢ # 0), i.e., the ADCINAR(1) process is strictly stationary and ergodic; see
Nastié et al. (2017). As usual, we define the sample mean, variance, and cumulants by ¥ = (1/n) DIARD 28
3% =(1/n) X7, (Y;-Y)2, &y = (1/n) I (Y;=Y)3, andkyy = (1/n) Z?:l(Yt—7)4—38;4,, respectively.
Note that ¥ —5 Uy, 8% £, o’%, and Ej,y £, Kjy,J =3,4. See Lemma 5.5(i). Also, Ig stands for
the indicator of the set S.

Estimation for the parameter «

The CLS method is widely used for estimating the parameter « in the INAR-type processes. That is,

minimizing the criterion

Ja,pe) = Y (Y = E[Y|Yia])? = ) (Y — ¥y — e, ©6.1)
t=2 t=2
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the CLS estimator for a and . is defined by

n 1 n n
ZY,Yt_l—anY,ZY,_I oo )
t=2 t=2 t=2

Qcrs = — — = and [z.crs = r(ZYt —acLs ZYt—l)

n 1 n 5
2 t= t=2
V= ( 2 vn)
=2 =2

(see also Klimko and Nelson (1978) and Al-Osh and Alzaid (1987)). Also, since « is the autocorrelation

at lag 1 for the ADCINAR(1) process, a general estimator for the parameter « is defined by

D =YY - 7)
=2
n-1
(Vi =Y+ ) (¥ =¥)? + o (¥, - 7)’
t=2

Acy,ep = , ¢1,c220

(note that @, ¢, includes the YW (¢ = ¢ = 1) and Burg (¢ = ¢ = 1/2) estimators as special cases; see
Chapter 3).
We state (without proof) that the estimators @, ., and @crs have the desirable asymptotic properties

(asymptotic normality of @, ., and @crs will be given latter).

Proposition 6.1. Suppose that 0 < a < & < 1(¢ # 0). The following hold.
(i) If E(&?) exists, @, ¢ 2% wand acLs 2% .
(i) IfE (sf) exists, the general estimator @, ., and CLS estimator @ c s admit the stochastic expansion

in the form

Vi(@-a) = D=y =@y = )} (Yimt = py) + 0, (1).

1
Ul%\/ﬁ t=2

Also, acrs = &1,0 + OP(n_Z).

Estimation for the new parameter

On the other hand, the criterion (6.1) is free of the parameter 9. Another tool is needed to estimate 9.
According to Karlsen and Tjgstheim (1988) (see also Nasti¢ et al. (2017)), we apply the 2CLS method.
It is the CLS criterion as if the observations Y;’s were the squared residuals {Y; — E(Y;|Y;_1)}?’s.

Note that, after some algebra, by Remark 5.1(i) and (5.10), in the stationary ADCINAR(1) process

{Y;}, we have:

Claim 6.1. Fort =2,...,n and arbitrary function G,

EY,GY;-)|Yi—1] ={aYi-1 + (1 —a)uy }G(Y;:-1),
Elgi(a, uy)G(Ye-)|Yio1] = {fi. -1 (@, py, o3) + Da -1 (uy. 03)}G (Y1),
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where

g, uy) ={Y; — py —a(Y,o1 — uy)}2,
fie-1(a, py, op) = —a* (Yo — puy)? + (1 = 2auy) (Yi—1 — piy) + 0y,

iy, o5) = (Yo1 — py)? = (1 = 2uy) (Y,—1 — py) — 0.

Now, we define

n

I py, o3, 0) = Y [{Y = EX Y)Y = E{(Y, = QY)Y 1 1P
t=2

= > A&, uy) = fiimi(@, py, 03) = Bafo 1 (uy, o) Y.
t=2

Suppose that an estimator @ for a(> 0) is available. Minimizing J(@, Y, 5'%, ) with respect to ¢ (here,

the restriction @ < ¢ < 1 is ignored), the 2CLS estimator for ¢} can be constructed in closed-form

D A&@Y) = fii1@.7, )} -1 (Y, 57)
t=2

thers = =9(a.Y, op)  (say).

n
@y fi(V.57)
t=2

Proposition 6.2. Suppose that 0 < a < ¢ < 1 and that E(&}) exists. The following hold.
(i) (1/n) ¥/, f22’[_1 (v, 5’%) = E(say) converges 1o E[fzz’1 (uy, 0'%)] = B (say) a.s.
(ii) Assume that B > 0. If @ 2 (a 2, a), then, the 2CLS estimator Egc Ls is strongly (weakly)

. .~ a.s. ~ p
consistent, i.e., ycrs — ¥ (hers — 9).

Proof (i) The result can be shown easily by Lemma 5.5.

(i1) We start with

I, o = _ = _
-2 (8 @Y) ~ [ @7.59) ~ 08 o1 (V. 59)) o1 (V.55)
1=2

Drcrs — 9 = , (6.2)

~ n
a s —~
~ 2 2 (V.5)
=2
where (1/n) 2/, fit_l (Y, 5}) <%, B. By Lemma 5.5(ii) and Claim 6.1, we see that, if & —> a,

1+ = = N — —
; Z{gl(a’a Y) - fl,t—l(a/9 Yy O-YZ') - ﬂa’fz,t—l(ye U%)}fz,t—l(y, 0—%)
t=2
a.s.

—5 E[{g2(a, py) = fii(a, py,03) = dafoi(uy,09)} o1 (uy, 03)] =0

(it converges in probability to zero, if @ LN @), which completes the proof. O
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Before presenting the next result (Proposition 6.3), we define
4
Kay + 20'Y K3y
A=Qa- 19)—2 +{29(1 = 2uy) — 1 -2a+ 8a/,uy}—’2 + (1 =2uy){l —4auy — 9(1 = 2uy)},
o o,

Y Y

and, fort=2,...,n,

Mo, ={Y; —puy —a(Yio1 — py) y(Yi—1 — py),

My, ={g(a,py) = fii-1(a, py, 03) = dafo o1 (uy, 03) } foor—1(Uy, 05).

By Claim 6.1, the expectations wj; = E(M(zl,z), w2 = E(Mg2My ), and wyy = E(M129,2) are,

respectively, given by

w11 = E[(Y1 — uy) (Y2 — py) Mg 2]

= E[{Y2 - uy — a(Y1 — py)}(Ya = uy) (Y1 = py)°], (6.3)
w12 = Elga(, py) fo.1 (py, 03) M 2]

= E[{Y, — py — (Y1 — uy) P (Y1 = py) fr1 (uy, o9)], (6.4)
wx = E[g2(a, ty) fo,1 (. o3) Moy 2]

= E[{Y> — uy —a(Yy — py) P o1 (uy, 03) Mg 2] (6.5)

Proposition 6.3. Suppose that 0 < a < ¢ < 1 and that E(&}) exists. Assume that B > 0. If

~ I\
Va(@ ~a) = —— > Ma,s+0,(1) (6.6)
=2

P

(the estimators @yw and @cys satisfy this condition; see Proposition 6.1(ii)), then, the following hold.

(i) Vn(Shers —9) = L Z(AMQ/J + My ;) +o0p(1).
=2

aB+n &
(ii) V(@ -, Dhers - DT 5 N, W),

with

¥ Y2

b4 ,
Vi Y»n

where Y11 = w1 /oy, Y12 = (Awii + wi2) /(@Bo}), and Yy = (A*w1 + 2Aw1z + wy) [ (aB).

Proof The proof of the stochastic expansion (i) is postponed to Section 6.6. The asymptotic normality
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(ii) is readily established by Slutsky’s theorem, once the following is shown:

1

77 2y Mo Mo} SN0, Q). 6.7)
t=2

with

w11 W12

w12 W2

Thus, we have only to prove (6.7), as follows.
Let #; = o{Y1,...,Y;} be asigma-field, and let n > 2. Note that {n’l/zM#,,,t =2,...,nhL#=qa,0,
are martingale difference arrays, i.e., E(n‘l/zM#,t |.%:~1) = 0. See Claim 6.1.

Now, for # = a, 9, we have E(Mﬂzt )= E(Mﬁ ,)(< ), by strictly stationarity of {¥;}. Then, for any

>0,
n
P( max |n~V2My,| > g) < 3 P(IMy| > Vie)
t=2,..., n pa
= (n—1)P(|My | > Vne) (by strictly stationarity of {Y;})
1 2
< By o15viey M o
— 0 (by Lebesgue’s dominated convergence theorem),
which yields
max My, = 0,(1), #=a,d. (6.8)
t=2,..., n

Also, for # = «, ¥, we see that

1 n

~E( max MF,) <=3 E(M},) < E(M},), 6.9)
t=2,...,n ) ’ ’

and that, by strictly stationarity and ergodicity of {Y;},

a.s.

1 v . 1 v a.s.
- Z M3, =5 E(M},) and - Z Mo Mg, 225 E(My2My.). (6.10)
t=2 t=2

By means of the Cramér—Wold device, the asymptotic normality (6.7) is shown by martingale central

limit theorem (see McLeish (1974)) and (6.8)—(6.10). O

Remark 6.1. Although it is unrealistic, suppose that (a, ,uy,a%) is known in advance. As in the
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above-mentioned proof of Proposition 6.3, we can prove that
= d
Va[#(a, py, o) = 9] = N(0, wn/(aB)?).
If (A%wq1 +2Aw12)/(aB)? = D (say) is negative, the infeasible estimator 5(0/, uy, 0'%) underperforms
the feasible estimator Ezc Ls asymptotically.
By Lemma 5.5(i) and Proposition 6.2(ii), it is easy to see that, if @ SN a(> 0),

Kiy +2(02)? _ 3 =

’A—Z(Y) + {ZﬁchS(l — 2Y) 1= 2(1+8(1Y} 3’2Y
a, _O-

' Y

+ (1 =2Y){1 - 4aY — Srcrs(1 - 2Y)}

A= (20 - %ers)

L5 A (ifa D a> 0), then, A 2 A).

This, together with Lemma 5.5 and Proposition 6.2, implies that estimators for ¢;;’s (see also (6.3)—(6.5))

can be constructed as

~ o1~ _ AWy + 012 ~ AZ&)“ +2A01; + 02
Yn=—5 ¥no=—= > and Yo = ——
Oy aBoy, (aB)

respectively, where

—~ 1
Wi ==
n

DU =Y =@ DY -V (¥ -V

=2

Br= o Y =T =30y - DP O - D (7.59),
t=2

N 1 & - — = = ~ . — —
@n = Z{Yt ~Y -a(Y1 - V) g (@,Y) = fi.,1(Q,Y,53) — Dacrs@ fo1(Y, O'Y)}fz%t_l (Y,5%).
=2

The standard errors (SEs) of the estimators @ and {%CLS are then given by \/fp\l]/n and \/fp\zz /n,

respectively.

6.3 Bias-corrections of YW and CLS estimators for the parameter «

It is well known that the estimators for the parameter « are biased in a finite-sample. We focus on the
bias-correction of the two commonly used estimators; one is the YW estimator ayw = @1, and the other
is the CLS estimator @crs. From now on, let # = YW, CLS, unless otherwise stated.

Let X; = (Y; — uy)/oy,t = 1,...,n. In the same way as in Chapter 3, it is shown that, even for the
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stationary ADCINAR(1) process,

1+ (c1+c)a

. RN BN -
E(@ey.c = @) = =— =20 - Cov| = 3 (X = aXe) Xt 3L X [ +o(n7), 61D)
t=2 t=2
where

1 v 1 v
COV[Z (X —aX;-1)Xi—1, ; Z th—l]
t=2 =2

1 n
= 2 lsanCovl(Xs - aXs ) Xo1. X7 ]
s,1=2
1

= Zl{m} [y (L, = 5,1 =) — apy (0,1 = 5,1 = 5)]
nZO-Yst =2

mfé ; (1= 5 Juar (10,00 =y 0.0

= #{M(l) —aM(0)}+0((n?), (6.12)

Y
with

M(u) = Z,uy(u,f, 0), u=0,1.
=1

Below, we will estimate M (1) — aM (0), in two different ways.

6.3.1 Lag window-type bias-correction

Define

n—-¢€
ay (u, 6,0) = Z(Yt V) Yo = Y)Yoe =YV)2, u=0,1and €=1,....,n—1.

The estimation of M (1) — @M (0) (see (6.12)) is proceeded in a nonparametric way, referring to the issue
of the spectral density estimation (e.g., Anderson (1971)) and the robust standard error estimation in the
regression model with heteroscedastic and autocorrelated disturbances. Theoretical justification will be
given later.

Now, ayw = a1,1 and @crs = a10+0) (n~?), as mentioned in Proposition 6.1(ii). We can construct

the bias-corrected YW and CLS estimators, in the form of

~ - 1 - 1 - o~

ayw =Clyw+—[1 +2afyw+A—4{M(1) —a’wa(O)}], (613)
Y

@cLs = acrLs + — [1 +acrs + = = {M(l) CYCLSM(O)}] (6.14)
Y
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where

Ly,
M(u) = Z k(€/Ly) iy, 6,6), u=0,1,
=1

for given weight function k and positive integer L, (< n), referred to as lag window function and truncation

parameter, respectively (assume that L,, — oo as n — oo, with a suitable rate; see Proposition 6.4 below).

Justifications of (6.13) and (6.14)

It remains to justify 1\71(1) - &#M(O), where #=YW,CLS.

For notational simplicity, with Z, = Y; —uy,t =1,...,n, let

n—¢€ L,
Gy (u, €, 6) = (1/n) Z Z:ZyuZ%, and M(u) = Z k(¢/L) iy (u, €, ), u=0,1.
t=1 =1

We here restrict ourselves to the form of k(x) = 1 — |x|? for some ¢ > 0, which is famous as a class of
Parzen’s (1957) lag window functions, with supy_ . |k (x)| < 1 (other lag window functons are available

in, e.g., Anderson (1971)).

Lemma 6.1. Suppose that 0 < a < & < 1(9 # 0) and that E (&%) exists. The following hold.
(i) If1/L, + L} /n = o(1), then,

E[M(1) = aM(0) = {M(1) = aM(0)}] = - L, ifq{uy(l,f,@ = apy(0,6,0)} + o(L,").
=i
(ii) If L, — oo, then,
VIM(1) —aM(0)] = O(Lj/n).
(iii) If 1 /L, + L™92) 1y = o(1), then,
M(1) —aM(0) = M(1) —aM(0) +o0,(1).
(iv) If L, = O(n"/?*29)) then,
MSE[M(1) — aM(0)] = O(n~/(1+2)),

Proof It is easy to see that

E[M(1) - aM(0) - {M(1) — aM(0)}]
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Ln
= Z{k(f/m — Huy (1,6,6) = apy (0,£,0))

—Zk(f/L,o (i (1.L.0) -y O.L.0) = > {r(1L.0) - apy (0.L.0).
=1 £=Lp+1
Then, (i) is a direct consequence of an exponential decay of |uy(1,¢,£) — auy(0,£,£)] < Ca’ (see
Remark 5.3(ii)) for some constant C > 0, independent of £.

To prove (ii), we notice that
VIM(1) - aM(0)] < 2{V[M(1)] +V[M(0)]},

where

n—{ n-{’

VIM(u)] = iz i Z (LKW L) Y Y CoNZsZiZlips ZiZisuZlyy)s 1= 0,1,
¢=1 ¢'=1

s=1 =1

By McCullagh (2018), Cov(ZsZs+uZ>

e ZtZ,+uZt2+ [) can be expressed in terms of cumulants (we used

his table of complementary set partitions for the case 7 = 1234|5678). Then, Proposition 5.2 enables us

to show that

VIM(u)] = Vi +O(Lyn/n),

where
1 L, L, n—-n-{'
== ; Z k(€/Lu)k (' [Ly) Z; zlj (Cum(Zs, Zyss Zts Zisi)V(Zost )V (Ziser)
=1 ¢{'=1 s=1 t=

+Cov(Zs, Zt)Cov(Zssu, Zisu)V(Zsse)V (Ziser)
+ Cov(Zs, Zi1u)COV(Zgyus Z )V (Zsse)V (Ziser) }

= O(L2/n).

By (i) and (ii),

M(1) = aM(0) = {M(1) = aM(0)} = O(L,") + O (Ln/n),
which proves (iii). On the other hand, by (i) and (ii) again,
MSE[M(1) — aM(0)] = O(L,;*? + L? /n),

so that (iv) corresponds to the optimal order when L,, = O (n'/(?*29)).
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We are ready to justify the estimator M (1) - asM (0). Note that @y — « is of the ratio form, i.e.,

_ 0,0V
a#—a—m—Op(l/\/ﬁ).

Proposition 6.4. Suppose that 0 < @ < ¢ < 1(93 # 0) and that E (&%) exists. If @ —a = O p(1/+/n),

then,

M(1) —aM(0) = M(1) —aM(0) + 0, (1),
provided that 1/L,, + Lr,?in(q’z)/n =o0(1).
Proof As usual, we decompose

M(1) - @M (0) — {M(1) —aM(0)} = {M(1) - M(1)} - @{M(0) - M(0)} - (@ - @)M(0)

+[M(1) — aM(0) — {M(1) — aM(0)}]. (6.15)

It is easy to see that
E[|M(0)]] < Z E(Z°Z},;) < Laptay

by the fourth-order stationarity of {Y,} and Cauchy—Schwarz’s inequality, which yields M (0) = O p(Lp),

hence,

(@ - a)M(0) = 0, (Ln/Vn). (6.16)

On the other hand, foru =0, 1, M(u) — M (u) can be written as

TG0 = TG0 = > (/L) oy €, €) = iy (u,€,0))
=1
L, n—-¢€

== Z K(C/Ln) Y {-ZQZ ZiwZire + ZiZE g + ZevuZlsy)

t=1

V2 (ZiZosu + 224 Zvt + 2 vsuZose +222,7)

—3 —4
~Z (Zi+Ziqu+2Z10)+Z }

Z “7’ +Zk(€/Ln)(1 - —)24 (say).

W
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By the strictly stationarity of {Y;}, Wr[l”j] =0,(Ly,), j =1,2,3, are verified, since

L,
E(W) < Y RENZ1Zial|Zise) + E(Z11ZE,) + E(1Z1l 23} < 4Laoy ity
=1
L,
E(WY) < Y UE(Z11Z1sul) + 2E(Z11|Z1sel) + 2E(|Z1sul | Z1sc]) +2E(Z7,)} < Loy,
=1

L,
E(WY) < Y {E(Z1]) + E(1Z1ul) + 2E(1Z1se])} < 4Lnory
=1

(we used Cauchy—Schwarz’s inequality). Then,
M(u) = M(u) = 0 p(Ly/\n), u=0,1, and @{M(0) — M(0)} = O,(L,/\n). 6.17)

The result follows from (6.15)—(6.17) and Lemma 6.1(iii)). O

Remark 6.2. As is well-known, the choice of the truncation parameter L, is crucial for this approach.
In Section 6.4, some simulation studies will be given by letting L,, = |n'/(*?9) | for the lag window
k(x) =1-|x|4,q = 1,2, on the basis of Lemma 6.1(iv). We leave a suitable data-driven choice of L,, for

future.

Remark 6.3. After completing the paper (Zeng and Kakizawa (2023)), we know the recent work about a
novel interesting thinning operation (and model) based on a generalized Neyman type distribution theory
(see Amiri et al. (2022)). Since such a model is strictly stationary and ergodic, whose autocorrelation
structures are the same as the ADCINAR(1) process, the bias-corrected YW and CLS estimators (6.13)

and (6.14) are expected to be applicable even for their model.

6.3.2 Analytical bias-correction

A tedious computation of (6.12) gives the following asymptotic expansion for the bias of @, .,, which is

the extension of Proposition 3.2 to the ADCINAR(1) case.

Proposition 6.5. Suppose that 0 < a < & < 1( # 0) and that E (&%) exists. The bias of @c, .., is given

by
~ 1 P -a B
E(@c,c, —@) = —;(1 +Bejc, + ml)) +o(n7!),
where
200> 1
B¢, = a{&‘&ﬁ +— +2+c +cz},
(I+a)oy oy
D a[ﬁQm,Y N 3-a-a(l+a)9}023y N {3 -a)¥ —2a}023 ypy
oy (1-a?oy (1-a)o
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- - 2 _
N 3 —-a-2a%)uy + {B+a)?-2a(3 a)}ﬂy + 3(9-1)

(1 —CX)O’% (1 —a)o-% a’%

+39].

Proof After some straightforward but tedious algebra, we obtain

202023y -
—_— 4 a/a% + 2&0’{4, +
l+a

? D (by Remark 5.3(ii)).

M(1) - aM(0) = —

This, together with (6.11) and (6.12), completes the proof. O

In order to estimate Q».;y, j = 3,4, we define Or3y = K3y — o and Oruy = Kay — 3K3y + 252
Then, with the replacement of a, O')%, and 0.3y by @y, 3)%, and 52:3,1/, we can naturally estimate B, .,
as ECI,Q ().

On the other hand, in order to estimate the additional bias term (¢ — a)D /(1 — a}), we further need

an estimator for ©J. Following Nasti¢ et al. (2017), we here take an estimator of ¢}, given by

Cy —as{1+2(1 - ay)Y)o2

9 (@y) = —~ —
ay(Qa3,y +203Y)

where

~ 1 <& 1 <& 1 <&
Cr=—— R — ZYtszY,_l.
=2 t=2 t=2

Similarly, with the replacement of «, 9, uy, 0')%, and Q».; y with ay, 5(&#),7, o2, and Q\z;j,y, j=3,4,

we can naturally estimate D as Dg.

Lemma 6.2. Suppose that 0 < a < ¥ < 1 and that E(&}) exists. Then,
EC],Cz (a#) a_V_) Bcl,Cz’ {9\(&#) 2_) v,

and

(@p — 9(@)Dy as. (a—9)D
1 - @yd (@) 1-ad

Proof We have only to the strong consistency e =25 9.

By Lemma 5.5(i) and Proposition 6.1(i), we have y &5, Uy, 3% £, O'%, Kiy £5, Kjy,J =34,

and @y —5 a. By strictly stationarity and ergodicity of {¥;}, one can show that

Cy == Cov(Y3, Y1) = yy(1,1) + 2yy (Dpy = @[9(Qasy +205uy) + {1 +2(1 — @)y }or].
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Hence,

~ _as. Cov(Y2Y) —a{l+2(1 - a)uy}os
Pay)

_ ~ 9.
a@(Q2:3,y + 20y uy)

In this way, analytical bias-corrected YW and CLS estimators for the parameter « in the stationary

ADCINAR(1) process are defined by

Ana —~ 1 ~ 9(@yw) — Ayw ~

apy =C¥yw+—{1+31,1(a/yw)+ (af“i) OTW Dyw}, (6.18)
n 1 -9 (ayw)ayw

_ _ 1 = Nacrs) — Acrs ~

a’érias =acLs + _{1 +Bio(acrs) + (afl;S) (iCLS DCLS} (6.19)
n 1 -9 (acrs)acrs

Remark 6.4. (i) For the stationary INAR(1) process under a general innovation, analytical bias-corrected
YW and CLS estimators were suggested in Chapter 3, as follows:

~/Ana _ = 1 B

Qyy = ayw + ;{1 +By1(ayw)},

_ _ -
ass =acrs + ;{1 +Bio(acrs)}-

Under the Poisson innovation (in this case, 0.3y = 0), one can use

_ A 1 ayw |~
Q;é,na:(l’yw+—(l+—+4a'yw),
=2
n oz
Y
1 @
~s7Ana _ = CLS —~
Arrg ZCICL5+;(1+ ) +3a'CLs).

Oy
(ii) Unlike the lag window-type bias-corrections (6.13) and (6.14), the analytical bias-corrections

in this subsection suffer from model misspecification problems (i.e., the under-fitting or over-fitting),

depending on the situation without/with the constraint ¢ = @, Q2.3.y =0, or Q2.4 y = 0.

6.4 Simulation results

Simulation studies of 2CLS estimator for the new parameter ¢

We conduct simulation experiments (ay = 0.3,0.4,0.5,0.6,0.7,9 = 0.9, and n = 100, 200, 300, 1000)
about the infeasible/feasible estimators for 7, under the set-up that {g,} follows the Poisson distribution
Po((1 — a)u) or negative binomial (NB) distribution NB(r, r/{r + (1 —a@)u}) (we set u = 10 and r = 10).
We consider 50 = 5((10,#1/,0,0')2,’0) as if the parameter (a,/ly,O')%) = (ao,py,o,of,’o) were known,

together with the feasible estimator 52C LS = 9 (@cLs, Y, 3%). To keep the inequality constraint, we also
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compute

o, 1’9\(0’0,#&0,0}%,0) < @,

95 = 3 80, v 0. T2 @0 < (o, py 0,0 o) < 1,
L, 1< (a0, .0, 0 ),
at, 9", Y,52) <af,

—~

Pers = 10@".Y.52), @' <d@.7.52) < 1,

1, 1 <9@",7,52),

where @' = max{0, min(1, @crs)} is the positive part of the truncated CLS estimator for . Note that the

former 55 is infeasible, whereas the latter

9

»eLs 18 feasible.

We discuss the simulation results (2000 replications) for the Poisson innovation. The similar findings

shown for the NB innovation, as well as the estimators with @c s replaced by ayy, are omitted to save

space. It is obvious from Table 6.1 that the biases, variances, and mean standard errors (MSEs) of all

estimators decrease as n increases. More details are as follows.

(A)

(B)

©)

In our experiance, it seems that, the more aq approches to zero, the less numerically stable the
estimators for ¢ are. The bad performance of 52C s when g is small, compared to 50 (the mark #
means that the variance and MSE of 52c Ls are too large) is caused by the fact that, for small sample
size n, (i) the CLS (or YW) estimator for a can be negative value or greater than 1, and (ii) the
resulting 2CLS estimator for ¥ can be smaller than the estimator for @ (of course, the consistency
tells us that these phenomena do not occur in the large sample). We conclude that the estimator

s is dangerous to use in practice, unless the sample size n is moderately large.

We thus compare 1’9\8 with &)

»orse We find that, unless the sample size n is large, the information

(a, uy, 0')2,) = (@0, Uty .0, 0)2, o) does not always yield good estimator, depending on the values of

ap, 1.e., when qg is small and » is small, the variance of ﬁg is smaller than that of @C LS On the
other hand, the simulation results when n = 1000 reveal that feasible estimator @c Ls 18 superior
to infeasible estimator 1’93 .

To illusrate the finding of (B) theoretically, recall Remark 6.1, i.e., the key quantity is D, for which
the explicit but tedius formulas of A, B, and w;; are available (we can apply Proposition 5.1),
whereas the expectation w1 (see (6.4)) contains E[ (Y] —uy)' (Yo—puy)’],i+j =5,6(i=0,1,2,3);
they are difficult to evaluate. After estimating O via the simulation experiment, it turns out that 9
is almost negative, at least for the Poisson and NB innovations. This is the reason why the plug-in
case seems to be superior to the known case, for large sample size n = 1000 (say); in that case,

there will be no worry about (A).
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Table 6.1: Biases, variances, and MSEs of infeasible estimators (50 and 1’9\8 ) and feasible estimators (520 LS
and {ﬁc Ls) in the stationary ADCINAR(1) process (% = 0.9) under the Poisson and NB innovations.

The mark # means that the variance and MSE of {%cm are too large for small sample size n. The

bold-faced values show that 5(; is superior to ﬂgc s

Poisson case Biases (x10) Variances (x100) MSEs (x100)

—~ —~ ~ ~ — — ~ o~ ~ o~ ~ =~
02 n Yo thers ﬂg ﬂZCLS Jo  thcers 19(; ﬁ2'CL5 Yo thers ﬁ(I) ﬂ2‘CLS

0.3 100 -0.796 0.563 -0.880 -0.482 1.809 # 1.367 1.886 2443 #2142 2.118
200 -0.531 -0.090 -0.601 -0.341 1.301 #0991 00919 1.582 # 1.352 1.036
300 -0.423 -0.197 -0.484 -0.282  1.082 1.137 0.830 0.635 1.261 1.176 1.064 0.714
1000 -0.172 -0.131 -0.198 -0.138  0.499 0.234 0.416 0.210 0.529 0.251 0.455 0.229
0.4 100 -0.279 0.118 -0.296 -0.242 0567 # 0.513 0.869 0645 # 0.601 0.927
200 -0.160 -0.049 -0.166 -0.131 0324 #  0.308 0.393 0350 # 0.335 0410
300 -0.146 -0.112 -0.151 -0.124  0.258 0.321 0.245 0.282 0.279 0.334 0.268 0.298
1000 -0.051 -0.050 -0.051 -0.050  0.097 0.087 0.096 0.087 0.100 0.089 0.099 0.089
0.5 100 0.063 0.013 0.044 -0.074 0393 # 0.346 0471 0397 # 0348 0477
200 0.060 -0.017 0.054 -0.024  0.230 0.244 0.215 0.227 0.234 0.245 0.218 0.227
300 0.029 -0.030 0.027 -0.031  0.172 0.168 0.168 0.166 0.173 0.168 0.169 0.167
1000 0.011 -0.012 0.011 -0.012  0.055 0.047 0.055 0.047 0.055 0.048 0.055 0.048
0.6 100 0.290 0.067 0.228 0.046  0.525 0.393 0.393 0.328 0.609 0.397 0.445 0.330
200 0.152 0.030 0.130 0.026  0.358 0.185 0.310 0.176 0.381 0.185 0.327 0.177
300 0.121 0.026 0.115 0.026 0.234 0.116 0.221 0.115 0.249 0.117 0.234 0.116
1000 0.040 0.013 0.040 0.013  0.090 0.037 0.090 0.037 0.092 0.037 0.092 0.037
0.7 100 0307 0.059 0.226 0.046  0.603 0.286 0.425 0.255 0.697 0.289 0.476 0.257
200 0.181 0.052 0.151 0.049 0.392 0.143 0.327 0.138 0.425 0.146 0.350 0.141
300  0.134 0.043 0.121 0.042  0.293 0.107 0.266 0.106 0.311 0.108 0.280 0.108
1000 0.063 0.018 0.063 0.018 0.096 0.032 0.096 0.032 0.100 0.033 0.100 0.033

NB case
0.3 100 -0.826 -0.377 -0.934 -0.689 2228 # 1.646 2.447 2911 # 2518 2.922
200 -0.524 -0.390 -0.623 -0.408 1.619 # 1.160 1.097 1.894 # 1.548 1.264
300 -0.437 -0.215 -0.512 -0.335 1.225 1.610 0.914 0.802 1.416 1.656 1.176 0914
1000 -0.174 -0.131 -0.210 -0.140 0.583 0.321 0.460 0.298 0.613 0.339 0.504 0.317
0.4 100 -0.336 -0.040 -0.358 -0.366 0.740 # 0.664 1.082 0.853 # 0.792 1.215
200 -0.209 -0.170 -0.218 -0.214 0.430 0.784 0.404 0.526 0.474 0.813 0.451 0.572
300 -0.149 -0.146 -0.157 -0.161 0.345 0.415 0.323 0.363 0.367 0.436 0.348 0.389
1000 -0.071 -0.076 -0.072 -0.077 0.126 0.112 0.125 0.112 0.131 0.118 0.130 0.118
0.5 100  0.038 -0.016 -0.0001 -0.127 0.536 # 0.437 0.588 0.537 # 0.437 0.604
200 0.038 -0.051 0.028 -0.064 0.289 0.338 0.265 0.302 0.291 0.341 0.266 0.306
300 0.022 -0.051 0.019 -0.054 0.204 0.210 0.197 0.203 0.205 0.213 0.197 0.206
1000  0.008 -0.018 0.008 -0.018 0.072 0.065 0.072 0.065 0.072 0.065 0.072 0.065
0.6 100 0.231 0.003 0.162 -0.022 0.595 0.461 0.436 0.394 0.649 0.461 0.462 0.394
200 0.178 0.030 0.149 0.024 0.389 0.226 0.323 0.211 0.420 0.227 0.345 0.212
300 0.111 0.028 0.095 0.026 0.296 0.159 0.260 0.154 0.308 0.160 0.269 0.155
1000  0.045 0.014 0.045 0.014 0.106 0.052 0.106 0.052 0.108 0.052 0.108 0.052
0.7 100  0.275 0.044 0.187 0.026 0.653 0.339 0.450 0.293 0.728 0.341 0.484 0.293
200  0.207 0.057 0.174 0.055 0.399 0.170 0.328 0.164 0.442 0.174 0.358 0.167
300 0.155 0.037 0.141 0.036 0.293 0.117 0.263 0.115 0.317 0.119 0.283 0.116
1000  0.060 0.024 0.060 0.024 0.111 0.038 0.110 0.038 0.115 0.039 0.114 0.039
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Simulation studies of bias-corrected estimators for the parameter «

We here conduct some simulations about the YW and CLS estimators (without/with bias-correction)
for the parameter « in the stationary INAR(1) and ADCINAR(1) processes (we set ¢ = 0.9 for the
ADCINAR(1) case), under the set-up that the innovation {&, } follows the Poisson distribution Po((1-a)u)
or NB distribution NB(r, r/{r + (1 — a)u}) (we set u = 10 and r = 10). We consider a = 0.2,0.5,0.8
and n = 100, 200, 300, with 2000 replications. Note that the INAR(1) process is a special case of the
ADCINAR(1) process when @ = 9 (see Remark 5.1(ii)). We use the lag windows k(x) = 1 — |x|¢
for ¢ = 1, 2. The resulting bias-corrected estimator, with L, = [n'/(**24) |, is denoted by 5;‘]), where
#=YW,CLS and ¢ = 1,2. By way of comparison, we also compute the analytical bias-corrected

A _
estimators a?“a a, ™, and a/;A“a. Here,

~+1Ana ~7F

Fat Vgt
(Q/YW) aYW i }

1 ~
yy" = Qyy + ;{1+Bl,1(a;w)+ Wi (6.20)
1 -9t ( YW
N ot (a ) al —~
giAna _ =F CLS CLS At
Apps = Uopg+ {1 +Bro(@, ¢) + DCLS}, 6.21)

T
ﬁi( Pcrs)Ls

where @, = max{0, min(1,@,)} is the positive part of the truncated estimator @,

#
o Tty ot
#9 0(“#) S a#,
9'(@) =1s@h., al <daa
day), a, < a,) <1,

1, 1 <9(@)),

and 5; is an estimator of D, replacing e, 9, pty, o2, and Q».; y by 217;, ot (EE;), Y, o, and Qg;j,y, Jj =34,
respectively.

The biases, variances, and MSEs of the estimators ax, @ (q) ,q =1,2, aAna ozlA““ and a/’Ana are
shown in Tables 6.2-6.5. It is obvious that the biases, variances, and MSEs of all estimators decrease as

n increases (overall, the estimators have the downward biases). More details are as follows.

¢ Remarkably, the bias-corrections effectively reduce the bias of the estimator @, except that, as pointed
out in Remark 6.4(ii), careful attention must be paid to misspecification problems. As a serious matter,
we see that @A“a for the under-fitted case (Tables 6.4 and 6.5) is still biased when « is small, due to
the (incorrect) analytical bias-correction. On the other hand, the bias of 5’A“a for the over-fitted case
(Tables 6.2 and 6.3) seems to be almost removed similar to other bias-corrections, whereas @A™ in this

#
~(q) :

case underperforms a,"’ in terms of the variance and MSE.

* The analytical bias-corrected estimator 5;\“3 ((6.18) or (6.19)) is extremely dangerous to use when

a = 0.2 and n is small (see Zeng and Kakizawa (2023)), since, as we saw before, estimating ¢ is
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unstable unless n is moderately large. This is the reason why (6.20) and (6.21) are employed here (note

that (6.20) and (6.21) are improved but still dangerous to use when « is small; see Tables 6.4 and 6.5).

* In terms of the variance and MSE, the analytical bias-corrected estimator qAn

4 outperforms the lag

window-type bias-corrected estimator Zi;m when 7 is small for the INAR(1) process (Tables 6.2 and

6.3), whereas 5;(1) is superior to E;A"a for the ADCINAR(1) process (Tables 6.4 and 6.5).

~(q)

* If @ is large, then, the bias-corrected estimator @,”’ outperforms the (bias-uncorrected) estimator @y in

terms of the MSE.

* Although the variance of 5#(#2) is overall smaller than that of 5;1), their performances are comparable.

6.5 Concluding remarks

We have revisited the 2CLS estimator for the new parameter ¢ in the stationary ADCINAR(1) process

1/2_consistent estimator @ for @ (see

under a general innovation. It turns out that plugging a certain n
(6.6)) yields the additional term n~'/2 t—» AM ;[ (aB) to the leading term of the stochastic expansion
given in Proposition 6.3(i), whereas plugging (Y, 3%) for (uy, O'%) has no effect. The finding about the
2CLS approach seemed to be new in the recent literature of the stationary INAR-type process, to the best
of our knowledge.

We have developed two kinds of the bias-corrections of the YW and CLS estimators. One is the lag
window-type bias-correction ((6.13) and (6.14)) and the other is the analytical bias-correction ((6.18) and
(6.19)). Although the data-driven choice of the truncation parameter L,, remains to be explored (in the
simulations, we have used L, = [n'/(**24)|, g = 1,2, as a first step), the merit of the lag window-type
bias-correction is that there is no need for the computation of the closed-form expression of the biases
of @yw and @crs. On the other hand, the analytical bias-corrected YW and CLS estimators, involving

the estimation for the parameter ¢, are more complicated than expected; besides, the resulting estimators

have, of course, the model misspecification problems.

6.6 Proof of Proposition 6.3(i)

We notice that

1 O, 5 P, _ = =
7 D8 (@.Y) = fL1(@.Y,59) - 08 fo.1 (Y, 59)} frs1 (V. 57)
t=2

Vi(Phers —9) = (6.22)

a{B+op,(1)}

(see (6.2)). Below, we will deal with the numerator of (6.22).
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Table 6.2: Biases, variances, and MSEs of the estimators ayw (without bias-correction),
~Ana —~TAna
2 AW .
that @42 is used in a over-

yw> &

Yw

and

7Ana
Yw

fitted case).

~(q)
Ayw>

q=1,2,

in the stationary INAR(1) process under the Poisson and NB innovations (note

Poisson Case

Biases (x10)

Variances (x100)

MSEs (x100)

W= 0 Ew  ay al dw ahy @ G al a
0.2 100 -0.200 -0.042 -0.039 0.968 1.032 1.035 1.008 1.034 1.036
200 -0.091  -0.009 -0.008 0.475 0.491 0.492 0.483 0.491 0.492

300 -0.068 -0.013 -0.013 0.319 0.326 0.326 0.323 0.326 0.326

0.5 100 -0.325  -0.081 -0.080 0.781 0.826 0.822 0.887 0.832 0.829
200 -0.151  -0.026  -0.025 0.397 0.408 0.407 0.420 0.409 0.408

300 -0.123  -0.035 -0.038 0.268 0.274 0.273 0.283 0.275 0.274

0.8 100 -0452  -0.152 -0.158 0.507 0.520 0.518 0.711 0.543 0.543
200 -0.195 -0.042 -0.045 0.206 0.208 0.207 0.244 0.210 0.209

300 -0.138  -0.030 -0.038 0.138 0.139 0.139 0.157 0.140 0.140

W Gy A B G o B gy

0.2 100 -0.016  0.001 -0.027 1.053 0.967 1.049 1.054 0.967 1.050
200 0.002  0.002 -0.001 0.494 0.491 0.495 0.494 0.491 0.495

300 -0.007  -0.007 -0.009 0.327 0.327 0.327 0.327 0.327 0.327

0.5 100 -0.025  -0.025 -0.033 0.840 0.840 0.847 0.841 0.841 0.848
200 0.0003 0.0003 -0.002 0412 0412 0414 0.412 0412 0414

300 -0.022  -0.022 -0.023 0.275 0.275 0.276 0.275 0.275 0.276

0.8 100 -0.032  -0.032 -0.044 0.533 0.533 0.549 0.534 0.534 0.551
200 0.019 0.019 0.015 0.210 0.210 0.214 0.210 0.210 0.214

300 0.005 0.005 0.002 0.140 0.140 0.142 0.140 0.140 0.142

NB Case

o) n Gw G &% Gw o a5 Gw 3% o
0.2 100 -0.197  -0.039 -0.036 0.960 1.028 1.032 0.999 1.030 1.033
200 -0.078 0.003 0.004 0.474 0.492 0.493 0.481 0.492 0.493

300 -0.065 -0.010 -0.010 0.315 0.324 0.323 0.319 0.324 0.323

0.5 100 -0.303  -0.059 -0.058 0.818 0.868 0.865 0.911 0.872 0.868
200 -0.126 -0.0005 -0.0003 0.377 0.388 0.387 0.393 0.388 0.387

300 -0.108  -0.021 -0.024 0.265 0.272 0.271 0.277 0.272 0.271

0.8 100 -0435 -0.135 -0.141 0.485 0.497 0.496 0.674 0.516 0.516
200 -0.212  -0.059 -0.063 0.212 0.214 0.214 0.257 0.218 0.218

300 -0.136  -0.028 -0.036 0.137 0.138 0.138 0.155 0.139 0.139

BN G G BN Ty A G Ay G

0.2 100 -0.006  0.001 -0.023 1.041 0.976 1.041 1.041 0.976 1.041
200 0.015 0.014 0.011 0.491 0.493 0.494 0.491 0.493 0.494

300 -0.004 -0.004 -0.006 0.324 0.324 0.324 0.324 0.324 0.324

0.5 100 0.0005 0.0004 -0.011 0.881 0.882 0.887 0.881 0.882 0.887
200 0.027 0.027 0.024 0.390 0.390 0.392 0.391 0.391 0.393

300 -0.006  -0.006 -0.008 0.272 0.272 0.273 0.272 0.272 0.273

0.8 100 -0.013  -0.013  -0.025 0.513 0.513 0.525 0.514 0.514 0.526
200 0.005 0.005 -0.003 0.215 0.215 0.221 0.215 0.215 0.221

300 0.008 0.008 0.005 0.138 0.138 0.140 0.138 0.138 0.140
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Table 6.3: Biases, variances, and MSEs of the estimators @cr.s (without bias-correction), 5(‘1) qg=1,2,

CLS’
~Ana —~TAna 7Ana

and @ in the stationary INAR(1) process under the Poisson and NB innovations (note

Ycrs Ycrs CLS
that a;f{}‘}a is used in a over-fitted case).
Poission case Biases (x10) Variances (x100) MSE:s (x100)

a(=9) n acrs 5ng 5(6‘225 acLs 5(6‘125 5325 acrs 585 5(325
0.2 100 -0.183 -0.042 -0.040 0.985 1.030 1.032 1.018 1.031 1.033
200 -0.081 -0.009 -0.008 0.480 0.491 0.492 0.486 0.491 0.492
300 -0.062 -0.013 -0.013 0.321 0.326 0.326 0.325 0.326 0.326
0.5 100 -0.274 -0.077 -0.076 0.796 0.824 0.821 0.871 0.830 0.826

200  -0.127 -0.026 -0.026 0.399 0.406 0.405 0.415 0.407 0.406
300 -0.105 -0.034 -0.037 0.270 0.274 0.273 0.281 0.275 0.274
0.8 100  -0.368 -0.144 -0.149 0.506 0.508 0.507 0.641 0.529 0.529
200  -0.155 -0.041 -0.044 0.206 0.206 0.206 0.230 0.208 0.208
300 -0.110 -0.029 -0.036 0.138 0.138 0.138 0.150 0.139 0.139

~Ana ~tAna ~/Ana ~Ana  ~T7Ana —~,Ana ~Ana <~ tAna —~sAna

cLs %cLs Acrs cLs %Ls %cLs cLs %cLs %cLs

0.2 100 -0.015 0.001 -0.026 1.052 0.966 1.047 1.052 0.966 1.047
200 0.002 0.003 -0.001 0.494 0.491 0.495 0.494 0.491 0.495

300 -0.007 -0.008 -0.009 0.327 0327 0.327 0.327 0.327 0.328
0.5 100 -0.012 -0.012 -0.028 0.844 0.844 0.845 0.844 0.844 0.846
200 0.002 0.002 -0.002 0.410 0.410 0412 0.410 0.410 0.412
300 -0.019 -0.019 -0.021 0.274 0.274 0.275 0.275 0.275 0.276
0.8 100 0.033 0.033 -0.032 0.548 0.548 0.538 0.549 0.549 0.539
200 0.032 0.032 0.017 0.210 0.210 0.213 0.211 0.211 0.213

300 0.012 0.012 0.004 0.139 0.139 0.141 0.139 0.139 0.141

NB case
a(=9) n acts a(CIZS a(CZZS acts 5(0125 5(525 acts 5825 52225
0.2 100 -0.178 -0.038 -0.035 0.979 1.028 1.031 1.011 1.029 1.032

200 -0.069 0.003  0.004 0.479 0.491 0.492 0.483 0.491 0.492
300 -0.059 -0.010 -0.010 0.317 0323 0.323 0.320 0.323 0.323

0.5 100 -0.253 -0.056  -0.055 0.830 0.863 0.860 0.894 0.866 0.863
200 -0.101 0.0001 0.0004 0.379 0.387 0.386 0.389 0.387 0.386

300 -0.091 -0.020 -0.023 0.267 0.271 0.270 0.275 0.272 0.271

0.8 100 -0.352  -0.129 -0.134 0.483 0.486 0.485 0.607 0.503 0.503
200 -0.172  -0.058  -0.061 0.211 0.211 0.211 0.240 0.215 0.215

300 -0.109 -0.027 -0.035 0.135 0.136 0.135 0.147 0.136 0.137

o Al @A Ofs acy A0S adEs als g

0.2 100 -0.004 0.003 -0.021 1.041 0977 1.041 1.041 0977 1.041
200 0.016 0.014 0.011 0.490 0.492 0.493 0.490 0.492 0.494

300 -0.004 -0.004 -0.006 0.323 0324 0.323 0.323 0.324 0.324
0.5 100 0.011 0.011 -0.006 0.879 0.879 0.883 0.879 0.879 0.883
200 0.029 0.029  0.025 0.389 0.389 0.391 0.390 0.390 0.392
300 -0.005 -0.005 -0.007 0.271 0.271 0.272 0.271 0.271 0.272
0.8 100 0.042 0.042 -0.016 0.530 0.530 0.513 0.532 0.532 0.513
200 0.017 0.017 -0.0004 0.213 0.213 0.217 0.213 0.213 0.217
300 0.014 0.014  0.006 0.136 0.136 0.138 0.136 0.136 0.138
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Table 6.4: Biases, variances, and MSEs of the estimators ayw (without bias-correction), &

~Ana —~TAna
Ayw> Cyw »
innovations (note that

Tyw
Ayw

@A is used in a under-fitted case).

~(q)

YW’
and @A™ in the stationary ADCINAR(1) process (¢ = 0.9) under the Poisson and NB

q=1,2,

Poission case

Biases (x10)

Variances (x100)

MSEs (x100)

o« w o G N aw @ a aw ah
0.2 100 -0.418 -0.155 -0.151 1.672 1.929 1.909 1.847 1.953 1.932
200 -0.232 -0.083 -0.082 0.975 1.069 1.059 1.029 1.075 1.066
300 -0.203 -0.089 -0.099 0.644 0.701 0.685 0.686 0.708 0.695
0.5 100 -0.585 -0.276 -0.292 1.591 1.693 1.675 1.933 1.769 1.760
200 -0.385 -0.219 -0.229 0.929 0.963 0.956 1.077 1.011 1.008
300 -0.240 -0.109 -0.132 0.681 0.705 0.695 0.739 0.717 0.712
0.8 100 -0.475 -0.202 -0.208 0.593 0.609 0.611 0.818 0.650 0.655
200 -0.237 -0.097 -0.100 0.313 0.317 0.317 0.369 0.326 0.327
300 -0.176  -0.078 -0.084 0.212 0.213 0.214 0.243 0.219 0.221
W A G &R G A @ Gy a4
0.2 100 0.024 0.037 -0.253 6.356 2.017 1.814 6.357 2.018 1.878
200 0.013 0.005 -0.146 1.269 1.142 1.016 1.269 1.142 1.037
300 -0.027 -0.041 -0.145 0.719 0.727 0.663 0.720 0.729 0.684
0.5 100 0.020 0.013 -0.303 1.973 1.983 1.726 1.974 1983 1.818
200 -0.060 -0.061 -0.240 1.076 1.072 0.968 1.079 1.075 1.026
300 -0.012 -0.012 -0.141 0.763 0.760 0.700 0.763 0.761 0.720
0.8 100 -0.014 -0.014 -0.071 0.645 0.645 0.640 0.645 0.645 0.646
200 0.005 0.005 -0.030 0.332 0.332 0.325 0.332 0.332 0.326
300 -0.013 -0.013 -0.037 0.221 0.221 0.217 0.221 0.221 0.219
NB case
o« n o aw @ 3D aw & & aw @ D
0.2 100 -0.411 -0.170 -0.166 1.572 1.800 1.786 1.741 1.828 1.814
200 -0.248 -0.113 -0.112 0.891 0.965 0.958 0.953 0.978 0.971
300 -0.126 -0.019 -0.029 0.689 0.747 0.731 0.705 0.748 0.731
0.5 100 -0.582 -0.277 -0.290 1.657 1.765 1.746 1.996 1.842 1.830
200 -0.367 -0.203 -0.212 0.953 0.989 0.981 1.088 1.030 1.026
300 -0.245 -0.116 -0.138 0.674 0.698 0.688 0.734 0.712 0.707
0.8 100 -0.469 -0.194 -0.200 0.611 0.627 0.629 0.831 0.665 0.669
200 -0.256 -0.115 -0.118 0.320 0.324 0.324 0.385 0.337 0.338
300 -0.174 -0.075 -0.081 0.206 0.207 0.208 0.236 0.213 0.214
BY Ty G Gw T BN T T
0.2 100 0.043 -0.004 -0.246 4755 1.827 1.705 4756 1.827 1.766
200 -0.021 -0.039 -0.162 1.036 1.013 0.929 1.036 1.014 0.955
300 0.036 0.022 -0.067 0.776 0.780 0.708 0.777 0.781 0.713
0.5 100 0.014 0.005 -0.300 2.073 2.089 1.797 2.073 2.089 1.888
200 -0.047 -0.050 -0.222 1.123 1.111 0.993 1.125 1.114 1.042
300 -0.023 -0.024 -0.147 0.760 0.756 0.693 0.760 0.756 0.714
0.8 100 0.002 0.002 -0.064 0.672 0.672 0.661 0.672 0.672 0.665
200 -0.012 -0.012 -0.049 0.338 0.338 0.333 0.339 0.339 0.335
300 -0.009 -0.009 -0.034 0.215 0.215 0.211 0.215 0.215 0.212
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Table 6.5: Biases, variances, and MSEs of the estimators @c.s (without bias-correction), @

~Ana

Qcrs YoLse

~7FAna

~(q)

CLS’

q=12,

and @AM in the stationary ADCINAR(1) process (% = 0.9) under the Poisson and NB

CLS
~rAna

innovations (note that ay

is used in a over-fitted case).

Poission case

Biases (x10)

Variances (x100)

MSEs (x100)

@ n acLs 585 52‘225 acLs 52% 5(6‘225 acLs 5(6‘125 52225

0.2 100 -0.399 -0.152 -0.148 1.720 1.943 1.923 1.880 1.966 1.945

200 -0.223 -0.083 -0.082 0.984 1.068 1.058 1.034 1.075 1.065

300 -0.197 -0.089 -0.099 0.649 0.701 0.685 0.688 0.709 0.695

0.5 100 -0.532 -0.268 -0.283 1.630 1.699 1.681 1913 1.770 1.761

200 -0.361 -0.218 -0.228 0.943 0.967 0.961 1.073 1.015 1.013

300 -0.224 -0.109 -0.132 0.686 0.706 0.696 0.736 0.718 0.713

0.8 100 -0.388 -0.191 -0.196 0.610 0.614 0.616 0.760 0.651 0.655

200 -0.195 -0.094 -0.097 0.314 0.315 0.315 0.352 0.324 0.325

300 -0.147 -0.075 -0.081 0.212 0.211 0.212 0.233 0.217 0.219

~Ana aTAna ~7Ana ~Ana  ~tAna ~sAna ~Ana 5TAna g/Ana

cLs %rs %cLs cLs %crs %cLs cLs %rs %cLs

0.2 100 0.027 0.034 -0.249 5.271 2.010 1.831 5272 2.011 1.893

200 0.009 0.004 -0.145 1.277 1.138 1.016 1.277 1.138 1.037

300 -0.028 -0.042 -0.145 0.719 0.727 0.663 0.720 0.729 0.684

0.5 100 0.012 0.007 -0.292 1.958 1.967 1.735 1.958 1.967 1.820

200 -0.063 -0.064 -0.239 1.076 1.072 0.973 1.080 1.076 1.030

300 -0.013 -0.014 -0.141 0.762 0.760 0.701 0.762 0.760 0.721

0.8 100 -0.010 -0.010 -0.057 0.643 0.643 0.646 0.644 0.643 0.649

200 0.005 0.005 -0.025 0.328 0.328 0.323 0.328 0.328 0.324

300 -0.012 -0.012 -0.033 0.219 0.219 0.216 0.219 0.219 0.217
NB case

@ n acrs ~(ch5 52223 acrs 5(&3 ~(CZZS acrs ~(0125 ~(czzs

0.2 100 -0.394 -0.168 -0.165 1.602 1.797 1.783 1.757 1.825 1.811

200 -0.239 -0.113 -0.112 0.900 0.965 0.958 0.957 0.978 0.971

300 -0.120 -0.019 -0.029 0.693 0.747 0.730 0.707 0.747 0.731

0.5 100 -0.531 -0.270 -0.284 1.705 1.779 1.760 1.987 1.852 1.841

200 -0.343 -0.202 -0.211 0.962 0.988 0.981 1.080 1.029 1.025

300 -0.229 -0.116 -0.138 0.680 0.699 0.689 0.732 0.713 0.708

0.8 100 -0.383 -0.184 -0.190 0.630 0.634 0.636 0.777 0.668 0.672

100 -0.215 -0.113 -0.116 0.323 0.324 0.324 0.369 0.336 0.338

300 -0.145 -0.072 -0.078 0.207 0.207 0.208 0.228 0.212 0.214

T aARTAL sy anw aAn o anm an

0.2 100 0.007 -0.007 -0.244 2433 1.815 1.704 2433 1.815 1.764

200 -0.022 -0.040 -0.162 1.034 1.011 0.929 1.035 1.012 0.955

300 0.035 0.021 -0.067 0.774 0.779 0.708 0.776 0.780 0.712

0.5 100 0.006 -0.003 -0.292 2.063 2.079 1.815 2.063 2.079 1.900

200 -0.050 -0.052 -0.220 1.118 1.107 0.993 1.121 1.110 1.042

300 -0.024 -0.025 -0.146 0.759 0.756 0.694 0.760 0.756 0.716

0.8 100 0.003 0.003 -0.051 0.671 0.671 0.668 0.671 0.671 0.671

200 -0.013 -0.013 -0.046 0.337 0.337 0.333 0.337 0.337 0.335

300 -0.008 -0.008 -0.031 0.214 0.214 0.211 0.215 0.215 0.212
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—~

Let 6 = (61,62,03)" = (@ —a,Y — py, 0')% - )z,)T = 0p(1/+/n). 1t is straightforward to see that

(@, Y) = gi(a, py) = 2(Z; — @Z—1){Zi-161 + (1 — @)62} + R1 (1, 62, Z1, Zi 1),
fLio1(@,Y,5y) = fie-1(a, py,o03) + {-2aZ}_| + (1 — dapy)Z1}61 — a(l = 2auy)d, + 63
+ R2(61,02,Zs-1),

1Y, T3) = frroi(py, o) + (1 = 2uy) 62 — 63 — 63,

where the random variables R (81, 02, Z;, Z;—1) and R, (61, 62, Z;-1) are monomials in (61, §5) of degrees

2,3, and 4, involving Z!_,Z/ for 0 < i+ j < 2(j =0, 1), hence,

8@, Y) = fi,-1(@.Y,5y) — 9@ fo,m1(Y,0p) — {ge(@, py) = fie—1(a, py, 03) = S fo—1(py, o3)}
= [-2(Z; = @Zi—1))Ze—1 + Qa =N Z2, = {(1 = dapy) = (1 = 2uy)} Zi—1 + Doy ]6

-{2(1 —=a)(Z; — aZ;y) — a(l = 2auy) + Fa(l = 2uy)}62 — (1 = da)ds + R3(0, Z;, Z,-1),

where the random variable R3(6, Z;, Z;_1) is a monomial in ¢ of degrees 2, 3, and 4, involving Zf_IZf
forO<i+j<2(j=0,1).

Now, we define, fort =2,...,n,

Wi = [-2(Zi — @Zi ) Zioy + Qe = D) Z7_ = {(1 = dapy) = (1 = 2uy)} Zi—1 +903] o1 (uy. 07),
Wa,r = [{g: (@, py) = fii-1(a, wy, o) = dafo -1 (y, o) (1 = 2uy)
—{2(1 = a)(Z — aZi—1) — (1 = 2auy) + Fa(l = 2uy)} for—1(uy, o)1,

Wi, = —[{gi (@, uy) = fra-1 (@, py, o) = dafo i1 (py. op)} + (1 = 9@) frr-1 (y. o).
It is not difficult to see that E(W; ;) = E(W;2),i = 1,2, 3, by strictly stationarity of {Y;}, where
E(Wl’z) = AO')% and E(Wz,z) = E(W3,2) =0. (623)

After some algebra, we have

3
{8:(@.Y) = L 1(@Y,57) = 98 fo 1 (V. 59} o1 (V. 57) = Mgy + ) 6 Wi + R(8, 20, Zi),
i=1

where the random variable R(6, Z;, Z;_1) is a monomial in § of degrees 2, 3,4, 5, 6, involving Zt"_Ith for

0<i+j<4(j=0,1). This, together with Lemma 5.6, yields

1

7 28 @D ~ L @ V.59 = 03 1 (T 0} o1 (7.5)
t=2

107



1 & 3
g > My 4N Y SEW;2) +0,(1). (6.24)
t=2 i=1

Substituting (6.24) for the numerator of (6.22), together with (6.6) and (6.23), we have the stochastic

expansion of ﬁzcm (we alsoused @ = a + OP(n‘l/z) = a +0,(1), which is implied by (6.6) and (6.7)).
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Chapter 7

Data analyses

We analyze two real datasets; IP count data and Download count data, available in Weil3 (2018), and
demonstrate the usefulness of two models of nonnegative integer-valued autoregressive process of the
first-order (INAR(1)) and alternative dependent counting nonnegative INAR process of the first-order
(ADCINAR(1)). Especially, Section 7.1 focuses on the equidispersion tests developed in Section 4.3.
Also, Section 7.2 illustrates the CLS estimation (Section 6.2) for the stationary ADCINAR(1) process

without the specific distributional form of the innovation.

7.1 1P count data

We first analyze the IP count data of length n = 241, available in Weil3 (2018), whose count represents
how many different IPs have registered in a 2-minute period. In view of Figure 7.1, the IP count data
exhibit the first-order autoregressive (AR(1))-like autocorrelation structure (the autocorrelation at lag
1 is 0.219). According to Chapter 4, the equidispersion tests are performed by fitting the INAR(1)
process in three different ways, i.e., the Whittle, Yule—Walker (Y W), and conditional least squares (CLS)
estimators for the parameter @ and the innovation mean and variance. It is revealed that the IP count
data is equidispersed since the z-values are given by zw = 0.396, zyw = 0.375, and z¢cps = 0.336.
Our estimates for «, u -, and a'g, together with the standard errors (SEs), are given in Table 7.1(i). Note
that, assuming the Poisson marginals, Weif} (2018) obtained the maximum likelihood (ML) estimates
@y = 0.243 (SE = 0.062) and fizpr = 0.997 (SE = 0.099) for @ and ., respectively

On the other hand, according to Weil3 (2018; page 175), the IP count data may contain an outlier Y74;
we now set Yoo4 = 1. The z-values for the outlier-corrected IP count data are given by zw = —0.707,
zyw = —0.762, and z¢ps = —0.835, which also reveals the equidispersion. The SEs of all estimates in

Table 7.1(ii) for the outlier-corrected data are smaller than those in Table 7.1(i) for the original data.
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Figure 7.1: The time series plot, ACF, and PACF of the IP count data.

Table 7.1: Estimates (SEs) for «, u ., and oﬁ.

(i) The IP count data. (i1) The outlier-corrected data.

Whittle YW CLS Whittle YW CLS

@ 0219 (0.069) 0.219 (0.069) 0.221 (0.069)  0.293 (0.066) 0.292 (0.066) 0.294 (0.066)
fe 1.024 (0.108) 1.027 (0.108) 1.031 (0.108)  0.906 (0.098) 0.910 (0.098) 0.914 (0.098)
o2 1.095 (0.207) 1.094 (0.207) 1.091 (0.207)  0.833 (0.105) 0.831 (0.105) 0.828 (0.104)
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7.2 Download count data

We next analyze the Download count data of length n = 267, available in Weil} (2018), whose count
represents the daily number of downloads of a TeX editor for the period from June 2006 to February
2007. In view of Figure 7.2, the Download count data exhibit an AR(1)-like autocorrelation structure
(the autocorrelation at lag 1 is 0.245). Weif3 (2018) fitted the data to the stationary INAR(1) model under
the negative binomial (NB) innovation, random coefficient INAR(1) model under the NB innovation, and
so on. Here, using the stationary ADCINAR(1) model without the specific distributional assumption on

the innovation, we obtain @crs = 0.247 (SE = 0.065) and o

scrs = 0.472 (SE = 0.084), respectively.

It is important to test whether the data are generated by the stationary INAR(1) process or the

stationary ADCINAR(1) process. By Proposition 6.3(ii), one may compute the Wald-type test statistic

_ Vi(DacLs - @crs)

\/@11 — 212+ U

Z

for testing H: ¢ = a against A: ¢ > @. The ADCINAR(1) model might be suitable (the z-value is 2.097).
However, since the null hypothesis H: % = « is on the boundary of the parameter space of («, %), the

detailed study of this testing problem is left for the future.
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Figure 7.2: The time series plot, ACF, and PACF of the Download count data.
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Chapter 8

Conclusions and future issues

Summary
We have mainly clarified the following points.

1 For the stationary nonnegative integer-valued autoregressive process of the first-order (INAR(1))
and alternative dependent counting nonnegative INAR process of the first-order (ADCINAR(1)),
the third and fourth autocumulant functions have been derived explicitly, together with the structure

about arbitrary higher autocumulant functions.

2 A nonparametric (lag window-type) bias-correction and an analytical bias-correction have been
developed for the widely used Yule—-Walker (YW) and conditional least squares (CLS) estimators
in the stationary INAR(1) and ADCINAR(1) processes. The lag window-type bias-correction,
which is available without computing the closed-form expression for asymptotic expansions of
the biases, is practically useful since the analytical bias formula is complicated for the stationary

ADCINAR(1) process.

3 The asymptotic theory about the frequency domain analysis of the stationary INAR(1) process has
been presented. The Wald-type test about the equidispersion has been constructed, on the basis of

the estimators for the innovation mean and variance.

Future works

The following issues would be interesting and challenging.

* We are considering an efficient and practically feasible estimation for the new parameter ¢} in the
stationary ADCINAR(1) process. Note that the null hypothesis H: © = @, which we mentioned in
Section 7.2, is on the boundary of the parameter space of (@, ) in the stationary ADCINAR(1)

process; the detailed study of this testing problem is left for the future.
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* The choice of the truncation parameter L, is crucial for the lag window-type bias-correction
developed in Section 6.3, although the optimal order L, = O(n'/ (2+29)) for Parzen’s lag window
k(x) =1 —|x|9, where g = 1,2, was justified there. We leave a suitable data-driven choice of L,

for future.

* We know the recent work about a novel interesting thinning operation (and model) based on a
generalized Neyman type distribution theory (see Amiri et al. (2022)). Since such a model is
strictly stationary and ergodic, whose autocorrelation structures are the same as the ADCINAR(1)
process, the bias-corrected YW and CLS estimators (Section 6.3) are expected to be applicable

even for their model.

* Bootstrap and jackknife procedures are important techniques in Statistics. Jentsch and WeiB3 (2019)
proved the validity of bootstrapping for the stationary INAR(p) process, so that the extension of

their result to the stationary ADCINAR(1) process is left for future.
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