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Abstract: A semi-analytical method is proposed for solving the free vibration problem of a rectangular 

parallelepiped. The parallelepiped is made of a unidirectionally reinforced fiber composite, which is 

modeled to have rectangular orthotropy. The method is based on the Ritz approach, and accommodates 

arbitrary boundary conditions on the six faces by introducing the boundary indexes into the 

displacement functions. Numerical results are given for the first several frequencies of isotropic and 

orthotropic parallelepipeds, including the cube, and are compared to the existing results obtained by 

other three dimensional and plate theories. 
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1. Introduction 

Structures made of advanced composite materials are being increasingly used in many fields of 

engineering, mainly due to large values of specific strength and stiffness. This technical merit is 

obvious when compared with conventional materials, such as metals. A composite structure may be 

considered as an assemblage of plate and shell components, 1ikewise in meta1 structures, and the 

vibration problem of composite plates and shells constitutes an important area in applied mechanics. 

A large number of analytical and experimental studies have therefore appeared on the subject in the 

past two decades, and some review papers have resulted, for example one written by Bert[1].  

Various approximate theories for plates and shells are of course reduced from a general theory of 

elasticity, and from this viewpoint it is clear that accuracy of numerical results calculated by using the 

two-dimensional plate and shell theories must be examined by a three-dimensional analysis. In other 

words, the three-dimensional results serve to test the validity of a two-dimensional analysis, especially 

for cases where numerical difficulty is expected.  



For three-dimensional vibration analysis of an isotropic parallelepiped, Fromme and Leissa[2] used 

the method of associated periodicity in1970, and since then series solutions have been presented for a 

free or simply supported paral1elepiped [3-5]. Leissa and Zhang also presented the solution procedure 

for a cantilevered parallelopiped in 1983 [6]. These previous studies are, however, limited to the 

isotropic parallelepiped with certain specific boundary conditions. For thick composite plates, some 

works were presented by using the first and higher order shear deformation theories [7-9], which 

consider approximate expressions of the displacement variation in the thickness direction. 

From the reasons above, the present paper takes up a problem for which apparently no three-

dimensional solutions have previously appeared, i.e., the free vibration of a unidirectional composite 

parallelepiped subjected to arbitrary boundary conditions on the six faces. In the analysis, the stress-

strain relation is formulated by the three-dimensional theory of elasticity, and is used with the 1inear 

strain-displacement equations to derive the total potential energy. Displacements are assumed in the 

special series form in which the boundary indexes [10] are included. The functional (total 

potentia1energy) is extremized for stationary value with respect to unknown coefficients in the 

displacement functions, and a frequency equation is  thus derived. Numerical results are presented for 

cubes and very thick plates which are comparable to results by the thick plate theories. 

 

 

2. Analytical method 

As shown in Fig.1, a rectangular coordinate system O-xyz is taken so that the origin O is located 

in the center of the parallelepiped and the x, y and z axes are parallel to the edges. The dimensions of 



the parallelopiped are given by a, b and c in x, y and z directions, respectively. For material properties, 

the moduli of elasticity in x, y and z directions are denoted by Ex, Ey and Ez, respectively, and the shear 

moduli on the three planes are given by Gxy, Gyz and Gzx. Six different Poisson's ratios are defined 

likewise. 

Based on the macroscopic modelling, a unidirectionally reinforced composite can be modelled as 

an orthotropic material. In the present report dealing with specially orthotropic case, the material 

principal axes are assumed to coincide with x, y and z  axes, respectively, and the stress-strain relation 

in this case is expressed by 
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where Qij (i,j=1,2,･･,6) are elastic constants, defined by 
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The maximum displacements (amplitudes) of vibration are defined by u(x,y,z), v(x,y,z) and w(x,y,z) 

in  x, y and z directions, respectively. The strain-displacement relation is expressed by 
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From Eqs.(1),(2)and (4),the maximum strain energy stored in the parallelepiped is  
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where V is a volume of the parallelepiped, and { κ }is a strain vector 
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and [Q] is the 6 × 6 matrix, where the left upper 3 ×3 partitioned matrix is given by the coefficient 

matrix in Eq.(1) and the right lower 3 × 3 matrix is by the coefficient matrix in Eq.(2). 

The maximum kinetic energy is obtained as  
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where ω is a radian frequency for free vibration and ρ is the mass density.  

For simplicity in the following analytical procedure, the nondimensional quantities are introduced: 
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There are various ways in defining a frequency parameter. For easy comparison with the plate analysis, 

the present parentheses defined in Eq.(8) by use of the plate bending stiffness D0. 

It is known that the Ritz method yields accurate results in the eigenvalue problem of continuous 

system when power series in proper form are used in the displacement functions. Then, the 

displacements are taken in the form 
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where Aijk, Blmn  and Cpqr are unknown coefficients, and X, Y and Z are power functions of ξ, η and δ, 

respectively, defined as 
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ln Eq.(10),the Bij are "boundary indexes", which constrain the displacement functions to satisfy 

kinematic boundary conditions [10]. The first subscript "i" (i=1,2,..,6) in Bij indicates a face of the 

parallelepiped under consideration, and the second subscript 'j" (j=u,v,w) does the constrained 

displacement. For Bij=1, the corresponding displacement is rigidly fixed, while it is free for Bij=0. 

When the present analysis is applied to plate problems (i.e., for very thin solid, the upper and lower 

surfaces should be free), the indexes are taken as B5u=B5v=B5w= B6u=B6v=B6w=0 and the values of other 

indexes along four faces (plate edges) depend upon the plate boundary conditions to be considered. 

A frequency equation may be obtained in the minimization process of  F=Tmax-Umax, which is 

known as the Ritz method 
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and a set of homogeneous linear equations is derived as 
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An eigenvalue problem, expressed in Eq.(12), may be numerically solved by a standard subroutine. 

The elements in the coefficient matrix of this equation are not presented here due to the limited space.  

 

3. Numerical example 

By using the present three-dimensional analysis, the computation program was developed which 

calculate the free vibration frequencies and mode shapes for given geometric, material and constraint 

conditions. In the following example, the carbon fiber reinforced plastic is chosen (abbreviated as G/E), 

and the fiber orientation angle is taken to coincide with the x direction as in Fig.1. The elastic moduli 

[11] are  

Ex=138 [GPa], Ey=8.96 [GPa], Gxy=7.1 [GPa], νxy=0.3            (13) 

Other constants in Eq.(3) are given as  

Ez=Ey , Gzx=Gxy,  Gyz= Ey /[2(1+νyz)], νxz=νxy, νyx=νzx=νxy (Ey/ Ex ), νyz=νzy =0.3    (14) 

by assuming isotropy in the yz plane. In a special case of isotropic parallelopiped, the moduli reduce 

to 

E=Ex=Ey=Ez , ν=νyz=νzx＝νxy=νzy=νxz＝νyx= 0.3 , G=Gxy=Gyz= Gzx=E/[2(1+ν)]     (15) 

In the following numerical results, the plate models are often considered for cases where the four 

edges are al free, simply supported or clamped. The boundary indexes used in Eq .(10) are taken, for 

example, in these cases as follows. 

All edges Free 

                  Bij=0 (i=1,2,..,6; j=u,v,w)       (“u,v and w” are free on all Faces).                        (16) 

All edges Simply Supported 

                             Bij=0 (i=1,3; j=u)          (“u” is free on Face 1 and 3).                                   

                             Bij=1 (i=1,3; j=v,w)       (“v and w” are fixed on Face 1 and 3).                            (17) 

                             Bij=0 (i=2,4; j=v)          (“v” is free on Face 2 and 4).                                   

                             Bij=1 (i=2,4; j=u,w)       (“u and w” are fixed on Face 2 and 4).  

All edges Clamped 

                             Bij=1 (i=1,2,3,4; j=u,v,w)                                                                                      (18) 



ln the all cases above, the free surface condition is necessary on the upper and lower surfaces, i.e.                         

Bij=0  (i=5,6; j=u,v,w)                                                                                   (19) 

 

 



4. Convergence characteristics of the solution 

Because the displacement functions (9) are taken to be in series form, they must be truncated at a 

finite number of terms in the actual computation. Accuracy of the solution naturally depends on the 

number of terms, and the test for convergence rate is essential in this type of analysis. 

    Table 1 presents the first two frequency parameters (Ω1, Ω2) of the clamped plate model. The 

planform is square (a=b), and the thickness changes from thin plate (a/c=100) to cube (a/c =1). The 

equal number of terms are taken for each displacement (i.e., I=L=P, J=M=Q, K=N=R), but the number 

of terms I × J in the x and y directions are independently changed with that of terms K in the z direction. 

It is seen for the cube (a/c=1) that the solution is convergent for I × J but the frequency values still 

decrease for K. In contrast, for thin plates (a/c=100), the solution is still sensitive against the number 

of terms I × J  and is well converged for K. This convergence characteristics are understandable, 

because the variations in displacement through the thickness (z direction) tend to be more complicated 

and higher order terms are inevitably required, as the plate become thicker (i.e., approaching to a cube). 

 

5. Comparison with the plate theories 

As observed in Table 1, the present method shows fast convergence rates for a wide range of the 

thickness ratios. This enables us to compare the present results not only with other three-dimensional 

results but also with those by using the two-dimensional thick plate theories. Table 2 (a) presents the 

first five frequency parameters of very thick isotropic plate, a/c=2, ν= 0.3) having completely free 

boundaries, and compares the present results with those [9] obtained by the first-order and higher-

order shear deformation theories (abbreviated as FSDT and HSDT, respectively). It is observed that 

the first three frequencies agree well with the HSDT values. The fourth frequency (Ω4=16.07) is an in-

plane (stretching) mode, which cannot be detected by the plate bending theories. 

ln Table 2(b), the present frequencies show excellent agreement with those obtained by the three-

dimensional analysis. The plate is simply supported along the four edges, and the thickness ratio varies 

between a/c= 2 and 4. 

 

6. Exact solution for parallelepiped 

It is known [6] that there are two exact solutions for free vibration of a parallelepiped. The first 

case is that all faces are constrained tangentially and are unconstrained normally. This means, say at a 

face x=0 (Face 1) in Fig.1, that the displacement u is free but v and w are fixed rigidly. This boundary 

condition is unreal from a physical point of view, but the closed-form solution is still possible, 

satisfying both the equation of motion and the boundary condition exactly. The displacements in such 

a case are written, using nondimensional coordinates in Eq.(8), by 
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The second case of an exact solution is that “sin” and “cos” in Eq.(20) are interchanged, representing 

boundary conditions that displacements are constrained normally and unconstrained tangentially.    

Although the solution (20) is useless for practical use, it can be used to verify the accuracy of 

approximate methods, like the Ritz method introduced here. By using Eq.(20), a frequency equation 

is derived, which is the 3 ×3 matrix equation in terms of {Aijk, Bijk, Cijk}. 

Table3 presents the comparison in the frequency parameters Ω between the exact solution and the 

present Ritz solution for the identical boundary conditions as in Eq.(20). The material constants for the 

G/E material, as shown in Eqs.(13) and (14), are used. As clearly seen from the table, two sets of 

frequencies show very good agreement. The i, j and k in the parentheses (i, j, k) give the half wave 

number in x, y and z direction, respectively. 

 

7. Effect of the thickness 

Table 4 presents the first two frequency parameters Ω of parallelepipeds having three different 

boundary conditions. The “F”, “S” and "C" mean that the plate boundary conditions for free, simple  

support and clamped edge are simulated, respectively, in the way as explained in Eqs.(16), (17) and 

(18). These symbols are written in counterclockwise direction for a plate planform, and for example, 

the CFFF denotes a cantilever (i.e., clamped at Face 1).  The thickness  parameter a/c is varied 

drastically from a cube (a/c=1) to very thin plate (a/c=1000).  

It is observed in the table that the frequency parameters increase monotonically as a/c is increased 

from 1 to 1000, and show almost same values for a/c=100 and 1000. The identical value Ω =4.359 for 

Ω1 and Ω2 for CFFF indicates that one is showing a mode vibrating horizontally and the other is 

vibrating vertically (or vice versa). One example of such variations in the frequency parameters is 

shown in Fig.2, where Ω is plotted with a/c for a clamped case (CCCC with upper and lower surfaces 

free). In the figure, thin straight solid flat lines are values of Ω calculated by using CPT (Classical Plate 

Theory), which are not affected by the thickness explicitly. The broken lines are those obtained by 

FSDT. It is seen that the thick solid lines obtained by the present three-dimensional analysis gradually 

merge, near a/c=100, to the thin straight lines as a/c is increased, and that the FSDT values are very 

close to the three-dimensional results even near the cube (a/c=1). This is observed, however, only for 

the lower modes and the difference is magnified for higher modes. 

 



 

 

 

 

 

 



8. Concluding remarks 

A three-dimensional analytical method has been proposed for the solution of free vibration of a 

parallelepiped subjected to arbitrary boundary conditions on the six faces. First, the method was 

applied to the plate model where one pair of the opposite faces are free surfaces. The present results in 

this case were compared to those of the two-dimensional thick plate theories and of other three-

dimensional theory. Secondly, an exact solution was derived to the parallelepiped with six faces 

constrained, and was used to compare with the present results. In all cases, the present method showed 

excellent agreement with other reliable data, and the validity of the method was clearly demonstrated. 
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