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Quench Prediction for NI REBCO Pancake Coils 
Using LSTM 

 
Yusuke Nakai and So Noguchi 

 

Abstract—In this paper, we propose a neural network-based 
quench prediction method. High-temperature superconductors 
(HTS) has a slower propagation velocity in the local normal-zone 
than low-temperature superconductors (LTS), and the hotspots 
are more likely to occur. The cases of coil burnout due to this 
have been reported, and such quenches are difficult to detect. 
Several methods have been proposed to detect and protect 
against quenches, but the coil temperature is already rising when 
a quench is detected. This means that coil operation must be 
stopped before the actual quench signal by predicting the 
occurrence of a quench. In this study, we show the results of 
quench prediction for unknown data by training data obtained 
from numerical simulations using a neural network called LSTM. 
 
Index Terms—REBCO pancake coils, quench prediction, neural 
network, LSTM. 

 

I. INTRODUCTION 

EBCO (rare-earth barium copper oxide), a 2nd-
generation high-temperature superconductor, has 
excellent high-current characteristics, and it is 

expected to be applied to magnets for generation of high 
magnetic fields [1]-[3]. When a local normal transition occurs 
in a REBCO coil, the REBCO coil may burn out due to a 
thermal runaway. The local normal zone of a REBCO tape 
propagates much slower than that of low-temperature 
superconductors [4]. It is, therefore, difficult to detect such 
local normal-zone propagation in a REBCO tape. 
Consequently, the normal zone rapidly widens due to high 
joule heat. Some methods to detect a local normal state 
transition or a quench have been proposed; e.g., targeting 
voltage, acoustic, and heat generated in normal-state-
transitioned/quenched coils [5]-[7].  

The no-insulation (NI) winding technique [8] has been 
proposed to improve the thermal stability of REBCO pancake 
coils. As a monumental work, the world record 45.5 T DC 
field was achieved by the NI winding technique applying to an 
insert REBCO magnet [9]. After 45.5 T generation, the insert 
REBCO magnet has quenched, but not burned out. 
Meanwhile, the toroidal field test magnet of the plasma 
science and fusion center, MIT was burned out during its 
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quench test [10]. It is occasionally unsuccessful to detect a 
local normal state transition or a quench immediately after its 
occurrence, or a normal-state-transitioned/quenched coil 
cannot be prevented from burning-out. Toward practical 
applications of high magnetic field REBCO magnets, an 
effective quench detection technique must be developed. 

As one quench detection method, it is, therefore, desired to 
predict a local normal state transition in advance, and the 
operating current would be able to shut down safely before a 
quench occurs. In this study, we utilize a LSTM (long short-
term memory) for quench prediction. The LSTM is a kind of 
neural network, and it is used for forecasting time-series data 
[11]-[13]. The input to the LSTM is a set of continuous time-
series data, and the output is the predicted values at the 
following time. In the proposed system, the coil voltages 
obtained from numerical simulations are inputted as training 
data. From the data, the LSTM learns whether the coil voltage 
rises rapidly or does not, and voltages are predicted in the 
following time values. When a quench is successfully 
predicted in this way, the REBCO coil can be protected safely 
from performance deterioration or coil burn-out. 

II. NUMERICAL SIMULATION 

A. Simulation Model 

The coil voltage data used in the training are obtained 
through numerical simulations in this first trial. A no-
insulation (NI) REBCO pancake coil is represented by an 
equivalent circuit as shown in Fig. 1. Since many cases should 
be simulated to make the coil voltage data, a simple numerical 
simulation model [14] is employed. The single pancake coil is 
divided in the radial direction, and each element is represented 
as an equivalent circuit connecting in series each other. Fig. 1 
shows radially divided coil (upper) and the circumferential 

R 

 
Fig. 1. Equivalent circuit. 
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equivalent circuit elements (lower). In this way, the NI 
REBCO coil is expressed in low dimensions to shorten the 
computation time. The current behaviors are obtained solving 
(1)-(3), and the coil voltages are computed from these results. 

 
𝑅 , 𝐼 , 𝑅 , 𝐼 , 0 1  

𝑅 , 𝐼 , 𝑅 , 𝐼 , 𝐿 ,
𝑑 𝐼 , 𝐼 ,

𝑑𝑡
0 2  

𝐼 , 𝐼 , 𝐼 , 𝐼 0 3  
 
where 𝑖, 𝑑, and 𝑡 are the element number, the number of radial 
divisions, and the time, respectively. 𝐼 , 𝐼 , 𝐼 , and 𝐼  are 
the REBCO layer current, the copper layer current, the radial 
current, and the operating current, respectively. 𝑅 , 𝑅 , 𝑅 , 
and 𝐿  are the REBCO layer resistance, the copper layer 
resistance, the radial contact resistance, and the inductance. 
Here, the REBCO layer resistance 𝑅  is computed from the 
n-power index model depending on the temperature, the field 
intensity and angle [15]. 

Together with the circuit simulation, the thermal finite 
element analysis (FEA) is coupled. Here, for simplicity, the 
adiabatic condition is applied. The coil temperature is 
reflected to the electric properties such as the resistivity. In 
this paper, the coil temperature is not used for the training of 
LTSM but will be used in the near future. 

B. Simulation condition 

With a constant current of 50 A flowing in an NI single 
pancake coil, a small external heat is continually applied to the 
mid-turns of the coil. As the external heat keeps adding from 
𝑡 1 s, a normal state transition occurs with the increase of 
the coil voltage and temperature. Fig. 2 shows the examples of 
voltage data used as training data. As the time passes, the heat 
spreads from the center elements to the inner/outer elements. 
Different voltage waveforms can be obtained changing the 
amount of the external heat.  

Table I lists the specifications of the REBCO tape and coil 
on the numerical simulation. When the normal-state transition 
criterion is 10 µV/cm [16], the coil normal-state transition 
criterion is 0.05 V. Since the NI winding technique is applied 
for the test NI REBCO coil, it would not reach to quench even 
beyond the criterion voltage. As shown in Fig. 3, the coil 

voltage may exceed the criterion voltage of 0.05 V before the 
temperature some element in the coil exceeds the critical 
temperature of 85 K. In this study, we have determined that a 
quench occurred when the critical temperature was exceeded.   

Table II lists the numerical simulation conditions to 
generate the training data. Here, it is assumed that the test NI 
REBCO coil is cooled with the heat transfer coefficient of up 
to 10 KWꞏK-1ꞏm-2 [17]. 

III. LSTM 

The LSTM (long short-term memory) [18] is a kind of 
neural network that can learn long-term dependencies. The 

TABLE I 
SPECIFICATIONS OF REBCO TAPE AND COIL 

Parameters Value 
REBCO Tape  

Tape width [mm] 4.02 
Tape thickness [mm] 0.1 

REBCO layer thickness [mm] 1.0 
Copper layer thickness [mm] 10.0 

Critical temperature [K] 85 
Ic @ 77K, self-field [A] 150.0 

Coil  
Number of pancakes 1 

Number of turns 200 
I.D. / O.D. [mm] 60.0 / 100.0 

Number of main coil divisions 10 

 
Fig. 2. Examples of the training data. 
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TABLE II 
SIMULATION CONDITIONS AND LEARNING CONDITIONS 

Parameters Value 
Simulation Conditions  
Simulation time [s] 10 

Time step [s] 0.01 
Operating current [A] 50 

Operating temperature [T] 77 
Maximum heat transfer coefficient 

[W/(Kꞏm-2)] 
10000 

External heat [W] 11.440000~11.449900, 
11.468129~11.468030 

Learning Conditions  
Number of data 200 
training: Test 7: 3 

Epochs 50 
Batch size 100 

Length of input data 10 
Length of output data 100 

 
Fig. 3. Temperatures and voltages for quench and not-quench 
cases. 
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RNN (recurrent neural network), a similar type of neural 
network, passes information obtained once through data to 
subsequent ones with the next input; however, it has a problem 
of not being able to maintain the past information up to the 
present. The further apart the relevant information and the 
scene in which it is needed, the less the RNN is able to learn to 
associate the information. The LSTM improves on this 
problem. Figure 4 shows the structure of LSTM. The 
intermediate layer connecting the input and the output layers 
has a forget gate, an input gate, and an output gate. First, the 
forget gate computes the function 𝑓  to determine which 
information is forgotten from cell state 𝐶 . 
 

𝑓 𝜎 𝑊 ∙ 𝑦 , 𝑥 𝑏 4  
 
where 𝑊 and 𝑏 represent the weight and the bias in each gate, 
respectively. 𝜎 is a sigmoid function, using the new input 𝑥  
and the previous output 𝑦 . ‘1’ means keep the information 
completely, and ‘0’ means discard the information in this 
sigmoid function. Next, the information is updated at the input 
gate. As before, 𝑥  and 𝑦  are used to compute 𝑖  and the 
candidate value  𝐶  to add to the cell state. 
 

𝑖 𝜎 𝑊 ∙ 𝑦 ,𝑥 𝑏 5  
𝐶 tanh 𝑊 ∙ 𝑦 , 𝑥 𝑏 6  

 
The old cell state 𝐶  is then multiplied by 𝑓  to forget the 
information it does not need, and a new cell state 𝐶  is 
generated by adding it multiplied by 𝐶 . 
 

𝐶 𝑓 ∗ 𝐶 𝑖 ∗ 𝐶 7  
 
Finally, the output gate calculates 𝑜  and multiplies it by the 
processed cell state to determine what to output. 
 

𝑜 𝜎 𝑊 ∙ 𝑦 , 𝑥 𝑏 8  
𝑦 𝑜 ∗ tanh 𝐶 9  

 
In (9), tanh is used to output only the portion determined by 
the sigmoid function. Following these steps, the LSTM 
updates its cell state and gradually changes its long-term 
memory while using the past output as the next input. Due to 
its excellent long-term memory characteristics, the LSTM has 

been applied to speech recognition and stock price prediction 
[19]-[20]. 

IV. PREDICTION RESULTS 

When training, continuous time-series data with an arbitrary 
number of steps is used as input, and subsequent values are 
used as the teacher signal. With reference to these teacher 
signals, predictions are made for unknown inputs. In the 
present case, for each voltage waveform, the teacher signals 
are the 100 steps that follow when 10 steps of voltage are used 
as input. As shown in Fig. 5, many such data sets are 
generated by shifting the time. Table II shows the learning 
conditions. In Table II, “epoch” is the number of learning 
times and “batch size” is the size of one group when training 
data is divided into small group. During each learning session, 
instead of leaning all the data at once, the data is divided into 
small groups and learned in batch sizes. The performance 
improvement of the model is attributed to the optimization of 
these parameters, which are modified based on the loss 
function computed during training. In this study, MAE (Mean 
Absolute Error) is used as the loss function.  

Figures 6 and 7 show the 1-second prediction results from t 
= 7 s, 8 s and 9 s for the voltage waveform, where the orange 
and blue broken curves show the 1-second predicted voltage 
and the voltage to be simulated. The blue broken curves with 
triangles are the input values used to predict each time. Here, 
the voltage to be predicted is not included in the training data. 
The input is the simulated voltage from 1 second before the 
start of each prediction. Figure 6 shows the voltage prediction 
results for a quench occurrence case; meanwhile, Fig. 7 shows 
the prediction results for a not-quench case. Although there 
are voltage noises, the voltage rises can be predicted well. In 
this study, we suppose that it is sufficient to know whether a 
quench occurs or not. However, the predicted values contain 
noise, and the values fluctuate. Increasing the prediction 
interval time reduces the noise but increases the possibility of 
false predictions. In this study, our priority is to avoid missing 
a quench detection. 

V. CONCLUSION 

We have studied a method for prediction of a quench event 
of REBCO coils using the LSTM. It is possible to predict the 
voltage rise that is a sign of quench before it would occur. We 

 
Fig. 4. The structure of LSTM. 

 
Fig. 5. How to create datasets. 
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can stop the coil operation in advance. However, it is still 
difficult to learn the voltage rise as a sign of quench because 
the voltage is small. In addition, 1 second is too short to take a 
quench protection, and the real voltage signal is noisy. We 
need to develop an AI quench prediction method much more. 

As the next step, we will apply the develop method to a real 
NI REBCO pancake coil. 
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Fig. 6. Prediction for a quench case. 
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Fig. 7. Prediction for a not-quench case. 
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Fig. 7. Prediction for a not-quench case. (original ver.) 
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Fig. 6. Prediction for a quench case. (original ver.) 
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