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Abstract

This thesis summarizes studies on the construction of machine learning models specific to
personalized prediction of human perception toward visual stimuli.

Machine learning has attracted significant attention in assisting humans due to its high poten-
tial and continues to respond to expectations in various fields. Specifically, after the development
of deep learning technologies such as convolutional neural networks and recurrent neural net-
works, machine learning models can solve more complex tasks by learning a large amount of
data. Recent studies on machine learning have progressed to the foundation models such as
contrastive language-image pre-training and generative pre-trained transformer, and researchers
have focused on the way to construct models that can effectively learn big data and conduct sev-
eral tasks in a single model. Namely, they aim to develop the generalized model. Although this
direction may be one advancement of machine learning, another important direction is the devel-
opment of machine learning models that can be tuned for each individual from the perspective
of human assistance. For instance, user satisfaction in video-sharing services can be improved
by personalizing the multimedia content recommender system. Therefore, the personalization
of machine learning can be an effective direction of advancement.

The person-specific information is needed as a clue for training machine learning models to
suit each individual. One of the person-specific information is the biological information ob-
tained from humans. Here, to introduce such information into the machine learning models,
human perception should be mediated as in the actual human information processing. However,
it is difficult to directly implement them to existing models in various tasks such as content rec-
ommendation and information retrieval since machine learning just recognizes the patterns in
the inputs and outputs and may ignore human perception. Hence, studies on predicting human
perception have been conducted to indirectly personalize machine learning. Concretely, previ-
ous studies have predicted emotion and attention as human perception from brain activity and
gaze data as the data representing biological information (hereafter, biological data). In these
studies, although machine learning models have been used as prediction models, these models
do not necessarily consider the properties specific to biological data since their architectures
are designed not specifically for biological data. In contrast to the general data in the fields of
computer vision and natural language processing, biological data are difficult to handle due to
their unique properties such as individual differences. Therefore, there are great demands for
rethinking the machine learning models suitable for biological data.

This thesis focuses on three perspectives related to the inherent properties of biological data.
The first perspective is the data volume obtained from each individual. Biological data varies
widely among individuals, and data obtained from various individuals are difficult to handle in
a uniform manner. Hence, the machine learning models need to be trained from the limited
amount of data for reflecting on individual differences. The next perspective is the relationship



between stimuli and their human response. Humans constantly receive a variety of stimuli and
perceive them in their daily lives, and biological data reflect on such stimuli. To effectively
predict human perception, not only biological data but also the contents of stimuli should be
considered. Finally, the third perspective is mutual complementation through the collaborative
use of several types of biological data. Advancements in sensor technologies enable the easy
and simultaneous acquisition of various types of biological data. Each type of biological data
represents a different aspect of the human response, and the human perception can be more
precisely predicted by collaboratively using them than one of them alone.

The purpose of this thesis is to construct machine learning models that can predict personal-
ized human perception by incorporating the above perspectives. This thesis targets the human
perception toward visual stimuli since several studies show that visual information is the most
important to humans. Concretely, this thesis mainly tackles three themes to construct the ma-
chine learning models incorporating the above perspectives, respectively. First, to address the
problem of the data volume, we focus on the similarities of biological data between individuals.
In the case of predicting human attention toward visual stimuli such as images, we propose a
new method for detecting the individuals with biological data patterns similar to those of the
target individual. Moreover, we construct the machine learning model using the data obtained
from similar individuals for predicting the perception of the target individual. Secondly, for an-
alyzing the relationship between visual stimuli and biological data, we focus on the construction
of the uniform representation of visual contents and gaze data including the region watched by
the individual. Finally, we newly propose the feature integration methods for treating several
types of biological information since biological data are pre-processed for calculating features
suitable for each type of data before inputting machine learning models, generally. Then, when
calculating the features of gaze data, we adopt the representation based on the second perspec-
tive for considering both visual contents and biological data. In this way, we newly proposed
machine learning models suitable for biological data and indicate the effectiveness of focusing
on the above inherent perspective.

This thesis consists of six chapters. Chapter 1 describes the research background and the
proposition of this thesis. Chapter 2 describes the related works and their problems to be solved
in this thesis. Chapter 3 presents methods for few-shot personalized saliency prediction, which is
the task predicting regions in images gazed at by individuals. Chapters 4 and 5 focus on human
emotions as perceptions. Chapter 4 presents the methods for classifying images into emotional
categories using gaze data. Chapter 5 presents the methods for multi-modal human emotion
recognition based on various types of biological information. Finally, Chapter 6 concludes this
thesis and clarifies the future directions.

In summary, this thesis presents several machine learning methods for personalized predic-
tion of human perception toward visual stimuli. For constructing the machine learning models
specific to personalized prediction of human perception, the proposed methods incorporate the
similarities of biological data between individuals and mutual complementation between differ-
ent types of biological information. Furthermore, we confirm the effectiveness of the proposed
methods through empirical experimentation on datasets derived from personally acquired raw
data and openly available datasets.
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Chapter 1

Introduction

This chapter shows the background, the proposition, and the organization of this thesis.

1.1 Background

Machine learning has attracted significant attention in assisting humans due to its high po-
tential and continues to respond to expectations in various fields [1-3]. Specifically, after the
development of deep learning technologies such as convolutional neural networks (CNNs) [4]
and recurrent neural networks [5], machine learning models can solve more complex tasks by
learning a large amount of data. Recent studies on machine learning have progressed to the foun-
dation models such as contrastive language-image pre-training [6] and generative pre-trained
transformer [7], and researchers have focused on the way to construct models that can effec-
tively learn big data and conduct several tasks in a single model [8—10]. Namely, they aim to
develop the generalized model. Although this direction may be one advancement of machine
learning, another important direction is the development of machine learning models that can
be tuned for each individual from the perspective of human assistance. For instance, user sat-
isfaction in video-sharing services can be improved by personalizing the multimedia content
recommender system [11, 12]. Therefore, the personalization of machine learning can be an
effective direction of advancement.

The person-specific information is needed as a clue for training machine learning models

to suit each individual. One of the person-specific information is the biological information ob-
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tained from humans [13]. Here, to introduce such information into the machine learning models,
human perception should be mediated as in the actual human information processing. It should
be noted that the human perception is defined as the broad interpretation of the stimuli such
as attention and emotion in this thesis. However, it is difficult to directly implement them to
existing models in various tasks such as content recommendation [11, 12] and information re-
trieval [14, 15] since machine learning just recognizes the patterns in the inputs and outputs and
may ignore human perception. Hence, studies on predicting human perception have been con-
ducted to indirectly personalize machine learning [16-19]. Concretely, previous studies have
predicted emotion and attention as human perception from brain activity and gaze data as the
data representing biological information (hereafter, biological data). In these studies, although
machine learning models have been used as prediction models, these models do not necessar-
ily consider the properties specific to biological data since their architectures are designed not
specifically for biological data. In contrast to the general data in the fields of computer vision and
natural language processing, biological data are difficult to handle due to their unique properties
such as individual differences. Therefore, there are great demands for rethinking the machine

learning models suitable for biological data.

1.2 Proposition in this Thesis

This thesis focuses on three perspectives related to the inherent properties of biological data.
The first perspective is the data volume obtained from each individual. Biological data varies
widely among individuals, and data obtained from various individuals are difficult to handle
in a uniform manner. Hence, the machine learning models need to be trained from a limited
amount of data for reflecting on individual differences. The next perspective is the relationship
between stimuli and their human response. Humans constantly receive a variety of stimuli and
perceive them in their daily lives, and biological data reflect on such stimuli. To effectively
predict human perception, not only biological data but also the contents of stimuli should be
considered. Finally, the third perspective is mutual complementation through the collaborative
use of several types of biological data. Advancements in sensor technologies enable the easy

and simultaneous acquisition of various types of biological data. Each type of biological data
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represents a different aspect of the human response, and the human perception can be more
precisely predicted by collaboratively using them than one of them alone.

The purpose of this thesis is to construct machine learning models that can predict personal-
ized human perception by incorporating the above perspectives. This thesis targets the human
perception toward visual stimuli since several studies show that visual information is the most
important to humans. Concretely, this thesis mainly tackles three themes to construct the ma-
chine learning models incorporating the above perspectives, respectively. First, to address the
problem of the data volume, we focus on the similarities of biological data between individuals.
In the case of predicting human attention toward visual stimuli such as images, we propose a
new method for detecting the individuals with biological data patterns similar to those of the
target individual. Moreover, we construct the machine learning model using the data obtained
from similar individuals for predicting the perception of the target individual. Secondly, for an-
alyzing the relationship between visual stimuli and biological data, we focus on the construction
of the uniform representation of visual contents and gaze data including the region watched by
the individual. Finally, we newly propose the feature integration methods for treating several
types of biological information since biological data are pre-processed for calculating features
suitable for each type of data before inputting machine learning models, generally. Then, when
calculating the features of gaze data, we adopt the representation based on the second perspec-
tive for considering both visual contents and biological data. In this way, we newly proposed
machine learning models suitable for biological data and indicate the effectiveness of focusing

on the above inherent perspective.

1.3 Organization of this thesis

This thesis contains six chapters. The first chapter is this chapter, and the rest of this thesis is
organized as below.

Chapter 2 describes the related works of visual saliency prediction, emotional categorical
classification, and multi-modal human emotion recognition, and the most representative ones
are listed. Besides, the problems of these works to be solved are clarified.

Chapter 3 presents three methods for the prediction of the personalized saliency map (PSM)
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with a limited amount of training data, and consists of three chapters for presenting each method.
Concretely, Chapter 3.1 presents the few-shot PSM prediction method based on adaptive image
selection considering object and visual attention. This method focuses on the similarities of
visual attention between individuals for the prediction of personalized salient regions in images
from a limited amount of training data. To calculate such similarities, the images that individuals
commonly gazed at are needed. Hence, the adaptive image selection module considering object
and visual attention is proposed and introduced into the PSM prediction model in a simple man-
ner. Next, Chapter 3.2 presents the few-shot PSM prediction method using individual similarity
based on collaborative multi-output Gaussian process regression. This method is an extended
version of the method proposed in Chapter 3.1. In the method presented in Chapter 3.1, the PSM
is predicted by simply using similarities invariant to images. Then, this method incorporates
the machine learning model with the similarities and the target image for predicting the PSM
with varying similarities for each image. In this method, the Gaussian process regression-based
model is adopted for considering the gaze uncertainty and data volume. Finally, Chapter 3.3
presents the few-shot PSM prediction method with similarity of gaze tendency using object-
based structural information. In this method, the remaining problem of the method presented in
Chapter 3.2, which is the collapse of structural information of images, is solved. For preserving
the structural information, this method focuses on the object-based similarities of gaze tendency.
Experiments with the open dataset showed a progressive improvement in performance in each
chapter.

Chapter 4 presents two methods for gaze-based emotional category classification of images
and consists of two chapters for presenting each method. Concretely, Chapter 4.1 presents an
estimation of emotion labels via tensor-based spatiotemporal visual attention. In this method, a
novel way to construct a uniform representation including visual contents and gaze data is pro-
posed for effectively analyzing the relationship between visual stimuli and biological data. The
constructed representations are the fourth-order tensors, and the machine learning-based tensor
analysis is applied to them for estimating emotion labels for images. By confirming the perfor-
mance of emotion label estimation, such representation is indicated to contain both the visual
contents and gaze data. Chapter 4.2 presents tensor-based emotional category classification via

visual attention-based heterogeneous CNN feature fusion. This method focuses on the feature



CHAPTERI1: Introduction

extraction from the representation presented in Chapter 4.2. CNN features, which are outputs of
an intermediate layer of the pre-trained CNN, are well-known for their high representation abil-
ity. However, they do not necessarily have the high discrimination ability for our target domain,
and this method uses multiple CNN features calculated from multiple CNN models by using
tensor analysis-based feature fusion. Experimental results showed a progressive improvement
in performance in each chapter.

Chapter 5 presents three methods for multi-modal human emotion recognition using several
types of biological information and consists of three chapters for presenting each method. Con-
cretely, Chapter 5.1 presents the human-centric emotion estimation method based on correla-
tion maximization considering changes with time in visual attention and brain activity. This
method simply focuses on the correlation-based feature integration treating several types of bi-
ological information. By using the canonical correlation analysis, heterogeneous features are
transformed into the common feature spaces with properties of multiple input features. Trans-
formed features are input to the simple machine learning model for predicting human percep-
tion. Chapter 5.2 presents the human emotion recognition method using multi-modal biological
data based on time-lag considered correlation maximization. In human emotion recognition
of visual stimuli, humans gather information through their eyes, which is subsequently pro-
cessed in the brain. Visual stimuli perceived by human eyes undergo transmission to the brain
through neurotransmitters, resulting in a time delay between gaze data and brain activity data.
Hence, this method integrates features with considering the time lag between multiple biological
data. Finally, Chapter 5.3 presents the multi-view variational recurrent neural network for hu-
man emotion recognition using multi-modal biological data. This method focuses on the other
characteristics of biological data. Specifically, this method realizes feature integration with con-
sidering the following three characteristics: 1) the relationship between explicit and implicit
information such as brain activity and gaze, 2) temporal changes associated with emotions re-
called by humans, and 3) the potential impact of noises. For simultaneously considering them,
the multi-view variational recurrent neural network is newly derived. Experiments on datasets
derived from personally acquired raw data showed a progressive improvement in performance
in each chapter.

Chapter 6 concludes this thesis and describes the future direction.
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The methods presented in each chapter correspond to the research achievements at the end
of this thesis. Chapters 3.1, 3.2, and 3.3 introduce the methods proposed in [A-2], [B-9], and
[B-12], respectively. Chapters 4.1 and 4.2 introduce the methods proposed in [A-1] and [B-4].
Finally, Chapters 5.1, 5.2, and 5.3 introduce the methods proposed in [A-3], [B-11], and [B-18].
It should be noted that figures and tables in this thesis are taken from or partially modified from

the corresponding references.



Chapter 2

Related Works

2.1 Introduction

This chapter shows the research related to this thesis. For realizing the personalized pre-
diction of human perception toward visual stimuli, this thesis mainly focuses on three themes,
the personalized saliency prediction, emotional category classification, and multi-modal human
emotion recognition. Therefore, this chapter presents several studies relevant to the three tasks
mentioned above. Concretely, Section 2.2 presents several studies relevant to saliency predic-
tion. Section 2.3 presents several studies relevant to emotional category classification of images.
Section 2.4 presents several studies relevant to multi-modal human emotion recognition. Next,
Section 2.5 clarifies the problems to be solved in this thesis. In the end, Section 2.6 concludes

this chapter.

2.2 Saliency Prediction

While this thesis addresses personalized saliency prediction, the field of image processing
traditionally focuses on universal saliency prediction. Actually, personalized saliency prediction
has been rarely studied since it is difficult to acquire gaze data including the gazed location in
images. Instead, the universal saliency prediction has been studied for clarifying the human
visual system and implementing them into computers. Although the map predicted by the uni-

versal saliency prediction model is called a saliency map, generally, the map predicted by the
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personalized saliency prediction model is called a personalized saliency map (PSM), and the tra-
ditional saliency map is called a universal saliency map (USM) in this thesis. Besides, it should
be noted that a saliency map means the generic term of PSMs and USMs. Hereafter, the previ-
ous works related to USM prediction and PSM prediction are summarized in Section 2.2.1 and
Section 2.2.2, respectively. Finally, Section 2.2.3 provides an overview of metrics for evaluating
the quality of predicted maps since PSM and USM require specific evaluation metrics distinct

from general machine learning tasks.

2.2.1 Previous Works Related to USM Prediction

This section explains research on USM prediction. Hereafter, mathematical research and deep
learning-based research are described as USM prediction research. Moreover, the reference that

compare the prediction accuracy of these two types of USM prediction methods is introduced.

Mathematical Research

Reference [20]
Reference [20] proposed the first mathematical model for USM prediction by utilizing a
Gaussian pyramid to represent a physiological model for human visual attention. This
model calculates feature maps related to luminance, hue, and orientation components for
multiple images obtained by applying the Gaussian pyramid to the input image. USMs
are calculated through feature integration, incorporating normalization processes inspired

by the receptive fields in retinal ganglion cells [21].

Reference [22]
Reference [22] calculates hand-crafted feature vectors similar to reference [20]. The
method embeds the dissimilarity between target regions and their neighbors into a Markov
chain-based graph and calculates the USMs for images using a method similar to random

walk.

Reference [23]

Reference [23] focuses on extracting the foreground region of an image by applying
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thresholding to frequency components obtained through discrete cosine transform. USMs
are then predicted by summing the obtained foreground regions in the hue component di-
rection after Gaussian blurring. This study primarily addresses objects in the foreground

of images.

Reference [24]
Reference [24] calculates local features by extracting color and texture features from seg-
mented regions of the image. Moreover, global features are obtained by calculating color
distribution from the entire image, and these global and local features are used to calculate
saliency scores. The final USM prediction is achieved through integration of these local

and global saliency scores.

Deep Learning-based Research

Reference [25]
Reference [25] proposed the first deep learning-based method for USM prediction. The
study constructs multiple Convolutional Neural Networks (CNNs) [4] with hierarchical
structures inspired by biology. Moreover, the output values from these CNNs are inte-

grated using Support Vector Machine, resulting in the final USM prediction.

Reference [26]
Reference [26] employs a CNN with five layers for USM prediction. Besides, the method
presented in reference [26] was improved in 2016 [27], achieving higher accuracy in USM

prediction by utilizing both shallow and deep features obtained from CNNs.

Reference [28]
Reference [28] addresses the problem of predicting salient regions that are not strongly
associated with semantic contents in images. The study combines the output values from
two pre-trained CNNs of different sizes, solving this problem and achieving accurate USM

prediction.

Reference [29]

Reference [29] utilizes a Neural Network based on Generative Adversarial Network (GAN) [30]
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for USM prediction. This method constructs a generator and a discriminator, with the
generator performing USM prediction and the discriminator distinguishing between the

predicted USM and the Ground Truth.

Comparison and Summary of Previous Research

In reference [31], five mathematical model-based and five deep learning-based USM pre-
diction methods are compared and evaluated through experiments. The results demonstrate
that, across multiple evaluation metrics, deep learning-based methods outperform mathematical
model-based methods in terms of prediction accuracy. When comparing the average accuracy
of deep learning-based and mathematical model-based methods, deep learning-based methods
consistently exhibit higher average accuracy across all evaluation metrics, with statistical signif-
icance confirmed. Therefore, it is suggested that deep learning-based USM prediction methods

are superior, although they may exhibit reduced accuracy for distorted images.

2.2.2 Previous Works Related to PSM Prediction

Reference [32]
In this work, the first dataset designed for PSM prediction has been constructed as an open
dataset. This dataset encompasses gaze data and images captured when 30 experimental
participants gazed at 1600 images. Building upon this dataset, a PSM prediction based on
a multi-task CNN [33] has been proposed. Despite the substantial amount of gaze data
collected from multiple participants, it was deemed insufficient for training deep learning
models. To address this limitation, Xu ef al. introduced a multi-task CNN that is capable
of simultaneously predicting PSMs for multiple participants, thereby compensating for

data volume and achieving highly accurate PSM prediction.

Reference [34]
This study further advanced PSM prediction by incorporating individual background in-
formation. While the method proposed in [32] allows for accurate PSM prediction, the

problem arose concerning the scale of the network. To tackle this problem, this study

10
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introduces a strategy employing both the original image and individual background infor-
mation as inputs. This approach employs a unified network to learn gaze data obtained

from all participants, addressing issues related to network size and data volume.

2.2.3 Evaluation Metrics for Predicted Saliency Map

Research on predicting USMs and PSMs employs diverse evaluation metrics. In reference [35],
Bylinskii et al. systematically categorizes and elucidates these evaluation metrics, outlining their

roles as below.

Area under ROC Curve (AUC)
Given that saliency maps depict fixation locations on images, saleincy prediction can be
conceptualized as a classification problem. AUC evaluates the accuracy of saliency pre-
diction based on the area under the Receiver Operating Characteristic (ROC) curve, which
is a standard for signal detection in the field of signal processing. This metric allows for

precise evaluation focusing on locations on images.

Shuffled AUC (sAUC)
SsAUC, an extension of AUC, was devised to address biases in evaluating saliency maps.
Since humans exhibit a center bias and gazed at the central part of images [36], models
that predict only the central region as the fixation location tend to receive inflated AUC
scores. sAUC mitigates this bias by randomly sampling fixation locations from other

images for eliminating center bias effects.

Normalized Scanpath Saliency (NSS)
NSS is an evaluation metric devised for assessing saliency prediction. While AUC and
SAUC evaluate saliency maps based on the accurate prediction of high Ground Truth
values, they tend to yield high evaluation scores even when large errors occur in other
regions. However, a model that predicts high values for regions not actually gazed at may
not be effective since the relative gaze intensity is important information. Therefore, NSS

addresses this issue by normalizing the predicted saliency map.

11
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Pearson’s Correlation Coefficient (CC)
CC, a statistical measure widely used across various fields, evaluates the overall similar-
ity between the predicted saliency map and the Ground Truth. In contrast to metrics that
explicitly penalize false positives and false negatives, CC provides a uniform value to eval-
uate the overall similarity between the maps. While a low CC value makes it challenging
to discern whether the predicted map was excessive or deficient, CC excels at providing a

comprehensive evaluation of the entire map.

Earth Mover’s Distance (EMD)
EMD is one of the evaluation metrics in similarity calculation methods for images that can
consider spatial information. Specifically, EMD assesses the spatial distance between two
probability distributions in a given region, and a higher evaluation value indicates a larger
difference between the two distributions. Therefore, although it signifies that the two
distributions are identical when EMD is 0, the EMD value increases when the predicted
saliency map extends over a wide area. This indicates that EMD is a metric that strongly
reacts to excessive predictions owing to its interpretation of imposing a strong penalty on

false positives.

Similarity or Histogram Intersection (SIM)
SIM, a metric in image similarity calculation, derives evaluation values from the his-
tograms of the predicted saliency map and the Ground Truth. Both maps are normalized
beforehand. A value close to 1 indicates high similarity between the distributions, while

a value near 0O indicates less overlap.

Kullback-Leibler Divergence (KL)
KL, an information-theoretic measure, evaluates the similarity of two probability distribu-
tions. The KL employed in salinecy map evaluation is asymmetric, with a lower value in-

dicating that the predicted saliency map more accurately approximates the Ground Truth.

Information Gain (IG)
IG is an evaluation metric devised for saliency map prediction, drawing inspiration from

information theory. In IG, it is assumed that the predicted saliency map follows the prob-

12
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ability distribution, and the evaluation value is calculated after normalizing with consid-
ering center bias [37,38]. This evaluation value reflects the prediction accuracy of the

intrinsic saliency of the image without the effects of center bias.

2.3 Emotional Category Classification of Image

This section describes previous works related to emotional category classification methods.
This thesis treats the emotional category classification for confirming the effectiveness of a uni-
form representation including visual contents and gaze data. Many studies on emotional cat-
egory classification have focused on accurately capturing the relationship between images and
emotional category, and they do not use any types of biological data. Therefore, this section

introduces several representative references using only images as inputs.

Reference [39]
This study proposes a dataset constructed for the purpose of classifying emotional cate-
gories in images. Furthermore, this study validates the effectiveness of the dataset by con-
ducting emotional category classification based on object-based features obtained from
images, considering the report that emotions recalled by individuals during image view-

ing are related to objects in images.

References [40,41]
These studies present emotional category classification methods using CNNs. The ap-
proach utilizes CNNs capable of accurately recognizing objects within images, leading to

precise emotional category classification.

References [42,43]
Zhao et al. directed their attention to identifying the common factors linking emotion
features and visual features to predict emotion distribution. Under the assumption that a
multitude of images are predetermined for the emotion distribution, they derived emotion

features by considering the emotional distribution inherent in images.

References [44]

Lee et al. pay attention to semantic information obtained from objects for the performance

13
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improvement, and the pre-trained word embedding succeed in extracting such information

through the introduction of the attention mechanisms.

2.4 Multi-modal Human Emotion Recognition

This section shows the previous works related to multi-modal human emotion recognition. Al-
though there are various problem settings when recognizing human emotions, this thesis focuses

on human emotions recalled when viewing images.

Reference [45]
This study employs Deep Canonical Correlation Analysis (Deep CCA) [46] as the inte-
gration method. The study cohesively learns networks based on Deep CCA for gaze data
and brain activity data, followed by the integration of features obtained from each network

using a straightforward decision-label fusion.

Reference [47]
In this work, a more accurate emotion estimation is achieved by generating a mask image
by transparently overlaying the image with the gazed region as a mask. Hand-crafted
image features are then extracted from this mask image, resulting in higher accuracy in

emotion prediction compared to using only the image.

References [48]
This study employs Bi-modal Deep Autoencoder (BDAE) [49] as the integration method.
BDAE learns the relationship between the several types of biological information and con-
structs the common space. Given the gaze and brain activity data, the features calculated
from each data are transformed into the common space for feature integration. Finally, the
simple machine learning model with the integrated features outputs the final recognition

results.

References [50]
In this study, Bi-modal Long-short Term Memory (BLSTM) [51] is used for feature inte-

gration with the consideration of the temporal changes in biological data. Given the input

14
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data, the features calculated at each timestep are subsequently input into BLSTM. In this

way, the temporal changes in biological data are considered when integrating features.

References [52]
In this study, a two-stream heterogeneous Graph Recurrent Neural Network is utilized
to leverage the complementarity inherent in spatial-spectral-temporal domain features.
The framework consists of multiple modules, including the graph transformer network
designed to handle heterogeneity, the graph convolutional network aimed at capturing
correlations, and the gated recurrent unit employed for analyzing dependencies in the

temporal or spectral domain.

2.5 Problems to be Solved in this Thesis

This section clarifies the problems to be solved in this thesis. As summarized above, previ-
ous works have adopted general machine learning models such as multi-task CNN and Deep
CCA for personalized prediction of human perception toward visual stimuli. Such general ma-
chine learning models may suffer from the inherent properties of biological data such as a small
amount of training data, complex relationship between contents of visual stimuli and biological
data, and the insufficient integration of several types of biological data. Therefore, there are great
demands for rethinking the machine learning models suitable for biological data. Specifically,
this thesis focuses on three situations, personalized saliency prediction, emotional category clas-
sification of images, and multi-modal human emotion recognition. Besides, for these situations,
several machine learning models are newly constructed specific to each situation. Figure 2.1

shows a research map of related works that summarizes the above.

2.6 Conclusions

This chapter has summarized the previous works related to this thesis, including saliency
prediction, emotional category classification of images, and multi-modal human emotion recog-

nition. Furthermore, this chapter has clarified the problems to be solved in this thesis.
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Chapter 3

Personalized Saliency Prediction

Visual saliency represents a distinctive subjective perceptual mechanism that enables hu-
mans to promptly identify crucial information in a complex environment. In the field of image
processing, several works such as salient object detection [53, 54] and visual saliency predic-
tion [20, 22, 23, 29] aim to implement the human visual attention mechanism on computers.
Then, Universal Saliency Maps (USMs), which highlight salient regions in images, find di-
verse applications such as image re-targeting [55, 56], image enhancement [57, 58], and image
compression [59, 60]. To model human instinctive perception, USMs are computed to empha-
size regions that garner more attention than their surroundings [20]. In contrast, Personalized
Saliency Maps (PSMs) consider individual visual attention variations, linked to personalized
preferences [34,61,62], attracting considerable attention for PSM prediction [63,64].

Gaze patterns may exhibit variations even when presented with the same image across dif-
ferent individuals, adding to the intricacy of extracting patterns for PSM prediction. In order
to accomplish PSM prediction, it is imperative to collect data from individuals to analyze their
gaze patterns and tendencies. Previous research [34] involved the acquisition of gaze data from
30 individuals exposed to diverse images, endeavoring to predict PSMs using such an extensive
dataset. The PSM prediction approach relies on a multi-task Convolutional Neural Network
(multi-task CNN) [33]. Trained on a substantial amount of individual gaze data, this network is
capable of simultaneously predicting PSMs for multiple individuals. However, applying a multi-
task CNN to a new individual without sufficient gaze data necessitates acquiring extensive data,

posing a significant burden on the individual. Consequently, there is a need to develop a PSM
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prediction method trainable with a limited amount of gaze data. As mentioned earlier, extracting

gaze patterns and tendencies from a limited amount of training data poses a challenging task.
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Chapter 3.1

Few-shot Personalized Saliency
Prediction Based on Adaptive Image
Selection Considering Object and
Visual Attention

3.1.1 Introduction

The previous study [65] unveiled that utilizing gaze data from individuals who observe image
regions akin to the target individual proves effective in predicting PSM. Under the assumption
made in the previous study that individuals with similar characteristics have previously viewed
the new image, it becomes viable to utilize the actual gaze data from these individuals. Never-
theless, as a new image may not always be gazed by other individuals, a more practical approach
involves predicting the PSM of the target individual using PSMs predicted for other individuals
with similar gaze patterns. The construction of such a method presents a difficult yet essential
challenge.

To predict PSMs for the new target individual, the analysis of multiple images is needed in or-
der to identify individuals with gaze patterns similar to those of the target individual. Before this
process, it is crucial to select images from the extensive dataset to compute individual similari-
ties between the target individual and those included in the dataset. Nevertheless, the reliability
of the computed individual similarities is compromised if the chosen images exhibit high visual
similarities to each other. Achieving robust PSM prediction with a reduced number of selected

images necessitates an adaptive image selection scheme to address this concern. Two key as-
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pects are particularly emphasized: 1) diversity of images and 2) variance of PSMs. Given the
considerable diversity in images within the dataset, the selection of images while maintaining
diversity becomes pivotal. Additionally, the variance of PSMs among individuals in the dataset
should be high, as regions commonly viewed or ignored by many individuals can be effectively
represented by USMs. The introduction of an adaptive image selection scheme that focuses on
these aspects is anticipated to yield precise PSM prediction for the new target individual.

This chapter presents Few-shot PSM Prediction (FPSP) based on adaptive image selection
(AIS) considering object and visual attention. The illustration in Fig. 3.1.1 delineates the prob-
lem under examination. To begin, a multi-task CNN is constructed and trained using the PSM
dataset to predict PSMs for individuals within the dataset [33]. Subsequently, the similarity be-
tween individuals is computed using chosen images from the PSM dataset, selected by AIS to
emphasize image diversity and PSM variance. To ensure the diversity of selected images, AIS
concentrates on the types of objects found in training images within the PSM dataset, employing
a object detection approach. Identified objects with substantial PSM variances are pinpointed,
enabling the adaptive selection of images containing such objects, as illustrated in the orange
region of Fig. 3.1.1. Finally, the FPSP for a target image concerning a new individual is executed
based on the individual similarity and PSM predictions derived from the multi-task CNN trained
on individuals in the PSM dataset. In this way, FPSP utilizing AIS for the new individual can be

achieved with high accuracy even with a limited training dataset.
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Images included in the training dataset Target image

PSMs predicted by the multi-task CNN

Selected images

a
Target person

Figure 3.1.1: Problem setting. The purpose of this chapter is PSM prediction of a target
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Persons included in the PSM dataset

Person P

PSM prediction

individual for images absent from the training dataset. For predicting a PSM for a target image,
the target individual needs to view only some images, which have been viewed by individuals
included in the training PSM dataset.
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CHAPTER3: Personalized Saliency Prediction

3.1.2 Proposed PSM Prediction

This section describes our proposed method as illustrated in Fig. 3.1.2. Our approach involves
training a multi-task CNN to predict PSM for individuals included in the large-scale dataset.
Subsequently, image selection based on AIS is performed to select used images. The target
individual is then required to view only the selected images for their PSM prediction. Finally, the
PSM of the target image for the target individual is predicted by leveraging the PSMs predicted

for similar individuals.

3.1.2.1 Multi-task CNN Construction

The multi-task CNN is configured to compute P PSMs, where P represents the number of
individuals. In our proposed method, the input data, which is used for training the multi-task
CNN, comprises images X, € R4*®&*& (y = 1,2, ... N; N denoting the number of training
images, d| X d, indicating the number of pixels, and d3 representing the number of color chan-
nels) and USMs SUSM(X,,) € R%*%_ The USM denotes the region where multiple individuals
view. In our approach, the USM SYSM(X,) is obtained through the USM prediction method. For
the given PSMs SPSM(p, X,,) € R9*% (p = 1,2, ..., P) for P individuals, where S™M(p, X,,) is
derived from the gaze data of the pth individual for the image X,,, we compute a difference map

A(p, X,,) between the PSM of the individual p and the USM in accordance with [34] as follows:
A(p, X)) = S™M(p, X,) - SUM(X,). (3.1.1)

The multi-task CNN consists of one encoder and P decoders and each comprising three layers.
The output layer yields P results of A(p, X,;). The model architectures of the multi-task CNN are
illustrated in Fig. 3.1.3. Additionally, the training of the multi-task CNN involves minimizing

the following loss function:

3 P N R
D20 D IAKp, X, SYM(X,) - A, X (3.1.2)

=1 p=1 n=1
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Figure 3.1.3: The model architecture of the multi-task CNN employed in our approach. This
figure uses “Conv” and “MaxPool” for indicating the application of a convolution and max-
pooling layer, respectively.

where A;(-) represents a function for calculating the difference map and employs a 1 x 1 convo-
lution layer on the outputs obtained from the /th decoding layer, and || - ||12¢ denotes the operator
for the squared two-order Frobenius norm. When given a new image X'€', the prediction of the

PSM for individual p is calculated using the trained network as the following expression:
SO (p, X' = As(p, X', SUM(XE) + SUM (X', (3.1.3)

In this way, the multi-task CNN allows the prediction of PSMs for multiple individuals using a

single model.
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3.1.2.2 Adaptive Image Selection

The purpose of AIS is to reduce the number of images gazed at by the target individual for

new

predicting their PSMs. For a new individual p"** not belonging to the individuals in the training
data for the multi-task CNN, the multi-task CNN cannot learn their PSMs since they do not
view all images in the training data for the multi-task CNN. To address this, we obtain a limited
amount of seed PSMs for images from the target individual. The selection of images viewed
by the target individual is crucial for reducing their burden, as the influence of each image on
training is substantial. Image diversity significantly relies on the selection scheme, even though
the PSM dataset [33] inherently possesses diverse images. Thus, we propose an image selection
method that maintains diversity by considering object types and PSM variances as illustrated
in Fig. 3.1.4. To maximize object variety in the selected images, we apply the object detection
method [66] to images that are used for training the multi-task CNN. Additionally, we use gaze
data obtained from individuals for pre-selected images to calculate the PSM variances. In AIS,
image selection is based on the detected objects and their associated PSM variances. Specifi-
cally, we choose objects with high PSM variances, as those with low variances are expected to
be represented by USMs. Finally, we select images containing diverse objects with high PSM
variances. In the first step of the AIS procedure, objects O,y (m = 1,...,M; M denoting

the types of objects across all images) are detected in the images using the object detection

methods. Detected objects are represented by bounding boxes with dimensions a’é’n m X d(vz -
Subsequently, we calculate the object variance v, ) as follows:
1 dﬁl,ﬂl) d;;,m) 1 P )
V(nm) = —dfl a2 Z P Z{SPSM(P, O ) — 8T M (O my ) j,k)} , (3.1.4)
n,m) (nm) j=1 k=1 p=1

1 &
$" MO = 5 D™D, Oum)ii: (3.1.5)

p=1

where SPSM(p, O(u,m)) denotes the PSM of individual p corresponding to the object O, ), and
(J, k) denotes the pixel location. It is important to note that we consider v, ) = 0 if image X,
does not contain the mth object, and the highest v, ) is selected if image X, includes multiple

mth objects. To conduct our image selection, we compute the sum of variances, v,, for PSMs
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Image PSM of Person 1 PSM of Person 2

Figure 3.1.4: Examples are presented to describe the diversity of images and the PSM variance.
The images in the first and second rows exhibit visual similarities, which prompts AIS to choose
either one. In contrast, the image in the third row is bypassed by AIS due to the resemblance in
PSMs between persons.

associated with each image using the following formula:

M
Wn = Vo (3.1.6)

m=1
In conclusion, C images with the highest values in Eq. (3.1.6) are chosen. Given that human
visual attention is influenced by objects, our approach, which explicitly considers this connec-
tion, realizes a simple but effective approach for preserving the image diversity and the PSM
variance. Therefore, AIS, with its emphasis on combining object detection and visual attention,

is a potent strategy.

3.1.2.3 Individual Similarity-based FPSP

The proposed method predicts the PSM of the new individual p"®¥ based on the PSMs pre-
dicted for the similar individuals by the multi-task CNN. In the first step of PSM prediction

of the new individual, §°(p, X3 is calculated by feeding the target image into the multi-task
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CNN with Eq. (3.1.3). Here, Xﬁel (c = 1,2,...,C) represents the C images selected based on

AIS. Subsequently, by using the predicted PSMs $°(p, X3%), we compute the correlation as a

new

similarity score 8P between the target individual p"" and the individual p as follows:

C
Z corr (SPSM(pneW’ Xiel), Sout(p’ Xiel)) i (3.1.7)

c=1

B =

al -

new

where corr(-, -) calculates the correlation coefficient, and SPSM(p ,Xgel) is derived using the

gaze data of the target individual p"". This implies that the new individual p"*"

is required to
. . . . PSM < 1

view only the selected C images to acquire gaze data for computing the PSM $™>Y(p"*%, X5¢).

Subsequently, to mitigate the influence from dissimilar individuals, we exclusively choose sim-

ilar individuals based on the selection coeflicient a”, which is determined as follows:

1 (B >1)
al = (3.1.8)

0 (otherwise),

where 7 denotes a predetermined threshold value. Subsequently, leveraging the similarity score

and the selection coefficient, the individual similarity between the individual p and the new

new s

individual p"*% is computed in the following equation:

aPpp

S (3.1.9)

wh =

By employing the individual similarities w” and the predicted PSMs of similar individuals from

the multi-task CNN, we can straightforwardly predict the PSM SFPSP(pnew X'ty for the new

individual p"*¥ and the target image X'¢' as follows:
P
SFPSP(pneW, tht) — Z Wpsout(p’ tht). (3110)
p=1

In this way, leveraging the individual similarity w”, the proposed method facilitates the predic-

tion of the PSM for the new individual with a limited amount of training gaze data.
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3.1.3 Experiments

3.1.3.1 Settings

This experiment was conducted on the PSM dataset [33], consisting of 1600 images, was
employed, along with associated gaze data for 30 individuals with either corrected-to-normal
or normal vision. Gaze data were recorded as each individual viewed each image for three
seconds under free-viewing conditions. PSMs were computed based on gaze data following the
methodology outlined in [67] and were employed as the Ground Truth (GT). For the experiment,
500 images were randomly selected as test images, while the remaining 1100 images were used
for training. Additionally, we varied the number of selected training images, which is denoted
as C, within {10, 20, ..., 100}. In this experiment, we randomly selected 10 individuals as new
targets, employing the remaining 20 individuals for training the multi-task CNN. The multi-task
CNN was optimized using stochastic gradient descent [68], with learning rate, mini-batch size,
the number of iterations set, and momentum at 0.00003, 9, 1000, and 0.9, respectively. The
threshold value T was experimentally set to 0.7. In the proposed method, SYSM(X,,) could be
computed as the average of PSMs from the training set of 20 individuals which were used for
training the multi-task CNN.

To assess the effectiveness of the proposed method encompassing the image selection scheme,
we conducted qualitative and quantitative evaluations. Quantitatively, we measured the dif-
ference between predicted PSMs and their GT using CC, KLdiv, and Sim presented in Sec-
tion 2.2.3. Additionally, two types of comparative experiments were performed. Initially, we
directed our attention to assessing the efficacy of our approach with a limited quantity of gaze
data. To gauge the performance, we compared our method with the following existing methods,
signature [23], GBVS [22], Itti [20], and SalGAN [29], which are USM prediction methods
from the MIT saliency benchmark [69]. SalGAN is trained with the SALICON dataset [70]

Additionally, we compared our method with two PSM prediction methods as follows:
e PSM prediction using visual similarities (Baselinel) [71]

e PSM prediction using visual similarities and spatial information (Baseline2) [72]
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It is noteworthy that we trained the aforementioned comparative methods with images chosen
by AIS, assuming that the target individual views only these images.
In the second comparative analysis, aimed at underscoring the efficacy of our image selection

methodology, we conducted a comparison with the following image selection techniques:

e Image selection based on visual features (ISVF)
Images were chosen by evaluating the dissimilarity of visual features to other images,
utilizing outputs from the final pooling layer of the pre-trained DenseNet201 [73] as visual

features.

e Image selection focusing on the variance of PSMs (ISPSM)
Selection involved choosing images with a high variance in PSMs based on the PSMs of

the individuals used for training the multi-task CNN.

3.1.3.2 Results and Discussions

Experimental results are illustrated in Figs. 3.1.5 - 3.1.12, and Table 3.1.1 presents evalua-
tion scores. Figure 3.1.5 displays the predicted outcomes for one individual for demonstrating
that the FPSP method excels in predicting a PSM that closely aligns with the GT compared to
all other PSMs predicted by the comparative methods. The average results are presented in Ta-
ble 3.1.1, clearly indicating that FPSP based on AIS stands out as the most effective approach for
PSM prediction across all evaluation indices. In this way, through the comparison of averages,
we affirm the notable efficacy of the proposed method.

The outcomes predicted by FPSP based on AIS and the USM prediction methods are illus-
trated for individual participants in Figs. 3.1.6 - 3.1.8. It is noteworthy that we label the 10
target individuals as Pars 1-10 in these figures. These visuals demonstrate that FPSP success-
fully achieves individual-specific predictions for the majority of participants, outperforming the
USM prediction methods. This observation confirms the efficacy of constructing a personalized
prediction model for each individual. Additionally, Figs. 3.1.6 - 3.1.11 present the outcomes
for each participant obtained by the PSM prediction methods and FPSP based on AIS, demon-

strating superior results compared to alternative PSM prediction methods. Consequently, FPSP
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demonstrates more precise predictions than baseline PSM prediction methods, validating its ef-
fectiveness in the first experiment.

Moving on to the second experiment, we delve into the distinctions among AIS, ISVF, and
ISPSM. Analyzing the baselines in Table 3.1.1, it is evident that AIS emerges as the most impact-
ful image selection method. Additionally, in Fig. 3.1.12, the performance of FPSP is depicted
with changes in the number of training images, selected by AIS, ISVF, and ISPSM to compute
individual similarity. In essence, FPSP based on AIS accurately predicts the PSMs of the target
individuals with just 10 images from the PSM dataset. Hence, our image selection method, AIS,
is evidently effective for FPSP. Consequently, the experimental results confirm the robustness
and efficacy of FPSP based on AIS.

In summary, our discussions affirm the effectiveness of the proposed PSM prediction method,
FPSP, in Fig. 3.1.5 and Table 3.1.1, considering both qualitative and quantitative evaluations.
Furthermore, the comparisons of FPSP with USM prediction methods and baseline PSM predic-
tion methods for each individual in Figs. 3.1.6 - 3.1.11 validate its capability to achieve accurate
predictions for individuals. Finally, the robustness and efficacy of AIS for FPSP are substan-
tiated by Fig. 3.1.12. In conclusion, FPSP based on AIS stands out as a method that enables
accurate predictions with a limited number of training images, thereby alleviating the burden on

individuals for obtaining gaze data for PSM prediction.
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Table 3.1.1: Performance comparison across various evaluation indices. The symbol (T) indi-
cates that a higher index corresponds to improved performance, while the symbol (|) indicates
that a lower index reflects improved performance. It is important to mention that 100 (=C) se-
lected images were utilized for training in Baselines 1 and 2, as well as the proposed method.
The use of bold font signifies the highest value within its respective evaluation index.

Methods cCT SimT KLdiv]
Itti 0.3218 0.3911  9.0397
GBVS 0.4367 0.4474 6.8923
signature 0.4126 0.4122 8.0410
SalGAN 0.6345 0.5689  3.5597

Baselinel based on ISVF  0.0953 0.3140 11.029
Baselinel based on ISPSM  0.0762 0.3100 11.161
Baselinel based on AIS 0.4013 04165 7.641
Baseline2 based on ISVF  0.4842 0.4274  4.014
Baseline2 based on ISPSM  0.4761 0.4170  3.057
Baseline2 based on AIS 0.5972 0.5032 4.133

FPSP based on AIS (Ours) 0.7845 0.6557  1.083
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Figure 3.1.6: Average CC () for each target individual for the proposed method and USM
prediction methods.
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Figure 3.1.7: Average Sim (T) for each target individual for the proposed method and USM
prediction methods.
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Figure 3.1.8: Average KLdiv () for each target individual for the proposed method and USM
prediction methods.
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3.1.4 Conclusions

This chapter presents a approach for FPSP based on AIS, for taking into account visual atten-
tion and objects. FPSP enhances the precise PSM prediction with a limited number of training
images. Additionally, AIS contributes to reducing the number of images observed by a new
individual. Consequently, FPSP with AIS achieves accurate predictions with a reduced num-
ber of training images, alleviating the burden on individuals in acquiring gaze data for PSM

prediction.The efficacy of the proposed method is validated thorough the experiment.
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Chapter 3.2

Few-shot Personalized Saliency
Prediction Using Individual Similarity
Based on Collaborative Multi-output
Gaussian Process Regression

3.2.1 Introduction

In Chapter 3.1, the focus has been on predicting the PSM for the target individual through
similarities invariant to target images. However, the connection between gaze data or PSMs
and the visual stimuli of the image [61] implies that the similarity among individuals can fluc-
tuate from one image to another. Therefore, to achieve precise PSM prediction for the target
individual, similarity calculation is needed for each image and each individual. As previously
noted, the amount of gaze data from the target individual is limited, and deterministic machine
learning methods may lead to overfitting on the training data. In such circumstances, it becomes
imperative to devise a probabilistic approach for PSM prediction, incorporating the calculation
of similarity for each image and each individual.

This chapter introduces Few-shot PSM Prediction (FPSP) using individual similarity based
on Gaussian process regression (GPR). To predict the PSM for the target individual, we adopt
GPR with the predicted PSMs of other individuals and visual features. GPR is renowned for
mitigating overfitting to training data by leveraging probabilistic validation. Additionally, the
incorporation of visual features into the inputs facilitates the consideration of image variations.

Managing the PSM, which encompasses multiple variables such as saliency values correspond-
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ing to pixel values necessitates a Multi-output GPR (MOGP) model. Among various MOGP
models, Collaborative MOGP (CoMOGP) [74] is reported as one of the most proficient and
promising methods [75]. CoMOGP can collectively consider information on output relation-
ships and the outputs themselves. Consequently, by inputting the predicted PSM and visual
features into CoOMOGTP, the proposed method accommodates similarity considerations for each
image and individual, leading to PSM prediction for the target individual. The contributions in

this chapter are two-folds:

(i) The probabilistic regression model predicts the PSM of the target individual without suc-

cumbing to overfitting with limited training data.

(ii) CoMOGP represents similarities between individuals as weights of input PSMs and in-

corporates visual stimuli of images by utilizing visual features in the input.

In this way, FPSP, leveraging visual attention similarity based on the CoMOGP model is antici-

pated to achieve high prediction accuracy with a minimal amount of gaze data.
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Figure 3.2.2: Graphical model of CoMOGRP is presented, where a, and b, presumed to conform
to Gaussian processes, are computed utilizing the covariances of the input data. Moreover, w;
denotes the weights associated with a,(I.) and b,(I.), while g; represents the outputs.

3.2.2 Few-shot PSM Prediction Based on CoMOGP

This section provides a comprehensive understanding of FPSP based on CoMOGTP as illus-
trated in Fig. 3.2.1. In the initial phase of the proposed method, the multi-task CNN undergoes
training to predict the PSMs of individuals with a substantial amount of gaze data. Following
this, we employ AIS to select specific images that the target individuals are need to view for PSM
prediction. It is assumed that both the target and other individuals commonly view these chosen
images. Lastly, COMOGTP utilizes PSMs predicted by the multi-task CNN and visual features
computed from the target image to predict the PSMs of the target individual. In this section,
CoMOGTP is mainly explained, while multi-task CNN and AIS are explained in Sections 3.1.2.1

and 3.1.2.2, respectively.

3.2.2.1 FPSP Based on CoMOGP

Graphical model of COMOGTP is depicted in Fig. 3.2.2. The inputs for CoMOGP involve the

visual features f, € R% calculated from the images X, (¢ = 1,2,...,C; C representing the
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number of selected images) chosen by AIS. The construction of inputs is as follows:
I = [vec(S™(1, X)), vec(S™M (2, X)), ..., vec(S* (P, X)) T, £ 17, (3.2.1)

where S°"(p, X) represents the PSM of the image X for the individual p as predicted by the

multi-task CNN. Note that vec(-) denotes the vectorization process. To train CoMOGP, we

C
c=1

formulate the inputs I = {I.}*_, and the corresponding outputs ¥ = [vec(S(p'¢', XC))]E=1 e R¢T,
where p'® is the target individual assumed to view the selected images. In CoMOGP, its outputs

are expressed as follows:

ville) = gle) + 0, (3.2.2)
9
gl = ) wigag(o) + bil,), (32.3)
g=1
where w, , represents the weights of the latent values a,(I.) (¢ = 1,2, ..., Q; Q being the number

of latent values), and b,(I,) is features specific to g;(I.). It is noteworthy that a,(I.) and b,(I.)
are assumed to follow Gaussian processes. Additionally, y,(I.) denotes the output values of
the rth dimension of the outputs vec(S(p'¢, X)) € R”, and o, represents the Gaussian noise.
The posterior distribution concerning the latent variables a, and b; is approximated through
variational inference, and the evidence lower bound is optimized throughout the training process.

Given the target image X'€', the PSM S(p'&', X'&") of the target individual is predicted using

the outputs g(I'¢") calculated as follows:

p(gI LY, ') ~ N(u'®, o', (3.2.4)
we = KT KU, + o]y, (3.2.5)
o_tgt — K(Itgt’ltgt) _ thtT[K(I, I) + U]—thgt’ (326)

where g(I'*") = vec(S(p'®, X')T = [g1(I'®), g2(I'"), ..., gr(I"™H]T € RT, K'& = K(I,I'") €
RETT consists of blocks Ky (I, I'®) = [k (I, I'€)], € RC, o € RET*CT js a diagonal
noise matrix, and K(I,I) € RET*CT and K(I'¢', 1) € R™T include all k;+(I,, I-). Under the

independent assumptions, a,(I.) L ay(I:) and b;(I.) L by(I.) with g # ¢’ and t # ¢, the
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covariance between g,(I.) and g (1) is calculated as follows:

0
D Widged) + ke 1) =1

ke (e, 1) = 1 %5 (3.2.7)

Zwt,qwt’,qkq(lu I.) t+1,
q=1

where k,(I, I-) represents the covariance between a,(I.) and a,(I), and k,(I., 1) is the co-
variance between b;(I.) and b,(I./). In this manner, COMOGP considers the relationship among
inter-outputs by calculating a, and incorporates information on the output itself by calculating
by. The elements of PSM are interconnected, and each element itself possesses unique features.
These characteristics of CoMOGP make it well-suited for PSM prediction. In our proposed
method, PSM can be predicted for each image based on the inputs of visual features into Co-
MOGTP, and we can mitigate overfitting to a small amount of training data through the Gaussian

process-based approach.

3.2.3 Experiments

3.23.1 Settings

This experiment adopted the same dataset and the same training strategy of the multi-task
CNN as Section 3.1.3.1. From the dataset, 500 images were randomly chosen as test images,
while the remaining 1100 images served as training images. Additionally, C (= 100) images
were selected using AIS, representing those viewed by the target individuals. For this experi-
ment, 10 participants were randomly designated as target individuals, leaving the remaining 20
as individuals with a substantial volume of gaze data. Besides, the USM, which was used in
the multi-task CNN, was obtained as an average of the PSMs from individuals that were not
designated as target individuals. Furthermore, for visual features, we employed the outputs of
the final pooling layer of the Densenet201 model [73].

We conducted both quantitative and qualitative evaluations of our proposed method. To quan-
titatively assess the disparity between GT and the predicted PSM, we employed using CC, KL-

div, and Sim presented in Section 2.2.3. In order to validate our proposed method, we compared
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Table 3.2.1: Performance comparison across various evaluation indices. The symbol (7) indi-
cates that a higher index corresponds to improved performance, while the symbol () indicates
that a lower index reflects improved performance. It is important to mention that 100 (=C)
selected images were utilized for training in PSM prediction methods. The use of bold font
signifies the highest value within its respective evaluation index.

Methods SimT KLdiv] CCT
Signature [23] 0.412 8.04 0.413
GBYVS [22] 0.447 6.89 0.437
Itti [20] 0.391 9.04 0.322
SalGAN [29] 0.569 3.56 0.635
Baselinel [72] 0.503 4.13 0.597
Baseline2 [71] 0.417 7.64 0.401
FPSP based on similarity [76] | 0.401 1.82 0.735
FPSP using CoMOGP (Ours) | 0.655 1.38 0.765

our method against four comparative methods, Signature [23], GBVS [22], Itti [20], and Sal-
GAN [29], which are USM prediction methods selected from the MIT saliency benchmark [69].
It is worth noting that SalGAN uses deep learning with the SALICON dataset [70]. Addition-
ally, we employed three PSM prediction methods designed for small amounts of gaze data.
Baselinel: PSM prediction utilizing relationships between parts of the image and the entire im-
age [72]

Baseline2: PSM prediction relying on visual similarities [71]

PSM based on similarity: PSM prediction method presented in Chapter 3.1 [76]

It is important to mention that these PSM prediction methods were trained exclusively on the

selected images via AIS.
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3.2.3.2 Results and Discussion

Figure 3.2.3 and Table 3.2.1 present the quantitative and qualitative experimental results. In
Fig. 3.2.3, the PSM that our method predicts exhibit the highest similarity to GT in comparison
to the comparative methods. Table 3.2.1 further demonstrates the superiority of FPSP based on
CoMOGTP across all evaluation indices, outperforming all comparative methods. Specifically,
when compared to Signature, GBVS, and Itti, our method showcases superiority over conven-
tional USM prediction methods relying on computational models without training. Addition-
ally, in comparison to SalGAN, our method underscores the efficacy of personalized prediction
for PSM. Further comparison with Baselines1 and 2 highlights the effectiveness of leveraging
relationships between the target individual and others, i.e., the use of PSMs predicted by the
multi-task CNN is the effective approach for PSM prediction with a limited amount of train-
ing gaze data. Moreover, contrasting our approach with FPSP based on similarity reveals the
effectiveness of adjusting weights based on the image and other individuals. In this way, the

experimental results unequivocally validate the effectiveness of FPSP based on CoMOGP.

3.2.4 Conclusions

In this chapter, we present the FPSP approach employing individual similarity grounded in
CoMOGP. Our proposed method accomplishes the prediction of PSM for the target individual
with limited gaze data. The experimental findings demonstrate the efficacy of our approach

through both quantitative and qualitative evaluations.
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Chapter 3.3

Few-shot Personalized Saliency
Prediction with Similarity of Gaze
Tendency Using Object-based
Structural Information

3.3.1 Introduction

In Chapter 3.2, we employ the collaborative multi-output Gaussian process regression (Co-
MOGP) [74] to predict the PSM with limited amount of training data, utilizing visual informa-
tion from images and the predicted PSMs of training individuals. The CoMOGP-based approach
incorporates the semantic information of images through the utilization of visual information.
However, a drawback arises as this method transforms PSMs of training individuals into vectors
for COMOGTP inputs, resulting in the loss of structural information within the PSMs. Given
that visual saliency is significantly influenced by the structural characteristics of images [20],
the absence of structural details from PSMs obtained through the multi-task CNN, which pre-
serves image structures, imposes constraints on PSM prediction. Consequently, achieving highly
accurate PSM prediction necessitates considering the semantic information of the image and re-
taining the structural information inherent in the PSMs.

In this chapter, we introduce a few-shot PSM prediction method incorporating gaze tendency
similarities utilizing object-based structural information. In order to incorporate both semantic
and structural information from images, our approach centers on the gaze tendency towards ob-

jects in images. Given the established connection between human gazes and objects [77], we
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leverage similarities in gaze tendency for each object within images while comparing the target
individual with the training individuals. As gaze data obtained for the target image is unavail-
able, we make the assumption that the target individual viewed a few images (hereafter referred
to as common images) selected through the AIS scheme. Our proposed method then seeks vi-
sually similar objects among those present in the common images. Specifically, we conduct
object detection in both common and target images. Subsequently, gaze data corresponding to
common images is collected from both training and target individuals, allowing us to calculate
the gaze tendency similarities for objects present in common images. Following this, visual
similarities of objects between common and target images are computed to seek the similar ob-
jects. Consequently, the PSMs for each object in the target image are predicted based on the
PSMs predicted for the training individuals and the gaze tendency similarities for analogous
objects. Through these processes, gaze tendency similarities are computed for each image uti-
lizing object-based visual similarities, enabling our method to incorporate semantic information.
Furthermore, structural information is taken into account by integrating the PSMs predicted for
training individuals while preserving their structures. This chapter offers a distinctive contri-
bution by directing attention to the gaze tendency similarities for visually akin objects. This
emphasis aims to enhance the efficacy of the PSM prediction method, particularly when work-
ing with a limited set of gaze data, by concurrently incorporating both semantic and structural

information.
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Figure 3.3.2: Computation way of object-based visual similarity. Starting with the target image,
we initially identify objects and subsequently retrieve analogous objects from those present in
the common images. Furthermore, the calculation of gaze tendency similarities among the target
and training individuals relies on the PSM for the retrieved objects.

3.3.2 Proposed Few-shot PSM Prediction

This section describes the intricacies of the proposed few-shot PSM prediction method com-
prising three fundamental steps as illustrated in Fig. 3.3.1. Initially, we train a multi-task CNN
to predict PSMs for individuals with substantial training data. Subsequently, employing the
AIS scheme, we selectively identify common images known for inducing more varied gazing
patterns than other images. Finally, the few-shot PSM prediction is executed by leveraging
gaze tendency similarities based on object-based visual similarity. In this section, calculation of
object-based gaze similarity is mainly explained, while multi-task CNN and AIS are explained

in Sections 3.1.2.1 and 3.1.2.2, respectively.

3.3.2.1 PSM Prediction with Object-based Gaze Similarity

In this section, we delineate the computation of gaze tendency similarities between the target
individual and training individuals using object-based visual similarity, along with the method
for predicting the PSM of the target individual. The calculation of gaze tendency similarities
relies on the set of common images X, (¢ = 1,2,...,C; C representing the number of selected

images) chosen by AIS. It is crucial to note that we presume gaze data for the common images
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are available for both the target individual and training individuals, allowing the calculation of
PSMs S(p, X.) and S(pg, X,) for individual p and the target individual, respectively. In this
context, we assess the similarities in gaze tendency for the entire image and the objects within
the target image. Specifically, we compute the gaze tendency similarity matrix Wy, between

individual p and the target individual for the overall images as follows:

2 corr (S(p, Xo), S(pigis Xo))

Wan,p = ,
Sh1 B corr (S(p', Xo), S(pigt, X))

(3.3.1)

where corr (-, -) denotes the Pearson’s correlation coefficient. Subsequently, for computing the
gaze tendency similarity concerning the objects within the target image, we identify the objects
Otgtv’ntgt (g = 1,2,..., Mg; Mg indicating the number of objects in the target image) using
the object detection method [78]. Determining the gaze tendency similarity for objects in unseen
images, such as the target image in this context, poses a challenge. To overcome this, we apply
the similarity of the PSMs for analogous objects in the common images to that of the target
image, as illustrated in Fig. 3.3.2. Subsequently, we identify objects O, (m. = 1,2,..., M;
M. representing the number of objects in the cth common image) in the common images X,
using the same approach as for the target image. To determine similar objects, we assess the
visual similarity between objects Oc,n, and Orgtm, employing the function f, for extracting

visual features, defined as follows:

VSim(Oc,mc’ Otgt,mlg[) = dis(fv(oc,mc)a fv(Otgt,mlg[))’ (332)

where dis(-, ) represents the distance between visual features. Additionally, by utilizing the
PSMs for the J most similar objects, the gaze tendency similarities for the object Orgtm,, are
calculated as follows:
J : i
Zj:l VSlm(Oj’ otgtamlgt)Wmtgtvp,j
P J : ™ ’
Zp/zl Zj;] VSlm(Oja Otgt,mtgt)Wmtg‘,p’,j

Wongp.j = corr (S(p, 0)), S(pgi 0))), (33.4)

(3.3.3)

Mygt,p =

where O; is the jth most similar object to the object Ogim,, . Finally, we calculate the gaze

tendency similarity matrix W), by applying Wy, , and Wy, to the region of the object Oygtm,,

51



CHAPTER3: Personalized Saliency Prediction

and other regions such as backgrounds, respectively. It is noteworthy that we apply the mean of

W,

Mygt

We integrate PSMs S(p, Xig) predicted by the multi-task CNN for predicting the PSM of the

_p to the regions where objects overlap.

target individual, utilizing the gaze tendency similarity matrix as follows:

P
S(ptgty Xig) = Z S(P, Xigt) O W), 3.3.5)
p=1

Therefore, the proposed method enables the simultaneous consideration of both semantic and

structural information in Egs. (3.3.3) and (3.3.5), realizing few-shot PSM prediction with high

accuracy using the object information in gaze tendency similarities.

3.3.3 Experiments

3.3.3.1 Settings

This experiment adopted the same dataset and the same training strategy of the multi-task
CNN as Section 3.1.3.1. Subsequently, we randomly partitioned the dataset into 500 test images
and 1100 training images, selecting C (= 100) common images from the training images using
the AIS scheme. Notably, individuals in the PSM dataset were randomly divided into 10 target
individuals and 20 training individuals. Target individuals exclusively viewed common images,
while training individuals viewed the training images. Additionally, the USM, which was used
in the multi-task CNN, was calculated as the average of the PSMs of the training individuals to
mitigate the impact of USM calculation errors. Visual features and the distance metric dis(:, -)
utilized the outputs of the final pooling layer of the Inception-Resnet-v2 model [79] and the
standardized Euclidean distance, respectively. Moreover, we set J = 5.

To assess the effectiveness of our method, both quantitative and qualitative evaluations were
performed. For quantitative evaluation against GTs, using CC, KLdiv, and Sim presented in
Section 2.2.3 were employed as evaluation metrics [35]. In this experiment, we compared our
method with the following existing methods, Signature [23], GBVS [22], Itti [20], SalGAN [29],
and Contextual [80], which are USM prediction methods from the MIT saliency benchmark [69].

SalGAN and Contextual were trained with the SALICON dataset [70]. Additionally, we consid-
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Table 3.3.1: Performance comparison across various evaluation indices. The symbol (7) indi-
cates that a higher index corresponds to improved performance, while the symbol () indicates
that a lower index reflects improved performance. It is important to mention that 100 (=C)
selected images were utilized for training in PSM prediction methods. The use of bold font
signifies the highest value within its respective evaluation index.

Methods SimT KLdiv] CC?T
Signature [23] 0.412 8.04 0.413
GBVS [22] 0.447 6.89 0.437
Itti [20] 0.391 9.04 0.322
SalGAN [29] 0.569 3.56 0.635
Contextual [80] 0.580 3.57 0.674
Baselinel [72] 0.503 4.13 0.597
Baseline2 [71] 0.417 7.64 0.401
Similarity-based FPSP [76] | 0.401 1.82 0.735
CoMOGP-based FPSP [81] | 0.655 1.38 0.765
Proposed Method 0.642 1.09 0.781

ered four PSM prediction methods using a small amount of gaze data:

Baselinel: PSM prediction using local and global information of input images [72].
Baseline2: PSM prediction using visual similarities of the target and training images [71].
Similarity-based FPSP: PSM prediction method presented in Chapter 3.1 [76].
CoMOGP-based FPSP: PSM prediction method presented in Chapter 3.2 [81].

It is important to note that all PSM prediction methods were trained exclusively with the com-

mon images selected by AIS.
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3.3.3.2 Performance Evaluation

We present the experimental results in Fig. 3.3.3 and Table 3.3.1. Specifically, Fig. 3.3.3 vi-
sually illustrates that the PSM predicted by our proposed method closely aligns with the GT,
showcasing the qualitative efficacy of our approach. For a quantitative assessment, we compare
our method with others in Table 3.3.1. Our method surpasses all comparative methods across
all metrics, exhibiting superior performance to CoMOGP-based FPSP [81] in “CC” and “KL-
div”. This validates the effectiveness of our proposed method. More precisely, a comparison
with the state-of-the-art USM prediction method, Contextual [80], underscores the efficacy of
personalized prediction. Furthermore, a comparison with Similarity-based FPSP [76] highlights
the efficiency of incorporating the gaze tendency similarity based on object information. Next, a
comparison with CoMOGP-based FPSP [81], which can consider semantic information, reveals
that our method outperforms it in most evaluation metrics, emphasizing the efficacy of leverag-
ing structural information. In the end, by comparing the proposed FPSP with both CoMOGP-
based FPSP [81] and Similarity-based FPSP [76], we emphasize the efficiency of simultaneously

incorporating structural and semantic information.

3.3.4 Conclusions

This chapter introduces a method for predicting PSMs in a few-shot scenario by leverag-
ing gaze tendency similarity through object-based structural information. The emphasis of the
proposed approach lies in aggregating PSMs predicted for different individuals, addressing the
scarcity of gaze data. Through experiments on an open dataset, the proposed method demon-

strates superior performance compared to other approaches

55



Chapter 4

Gaze-based Emotional Category

Classification

Given the widespread availability of web images, there is a growing need for comprehen-
sive image analysis [82, 83]. Understanding of image contents primarily involves two key as-
pects: image-based information and human-based information. Many studies have leveraged
image-based information to accomplish tasks such as semantic segmentation and object recog-
nition [4, 84-87]. Simultaneously, human-based information has been employed for interest
level estimation and image emotion recognition [19,43]. Therefore, we distinguish understand-
ing of image contents into two main categories: image-based understanding and human-based
understanding, aligning with the first and second types of information, respectively. Despite
the advancements facilitated by Convolutional Neural Networks (CNNs) [4] in achieving high-
performance image-based understanding [4, 84-87], human-based understanding remains chal-
lenging, given its intricate connection to abstract semantics perceived by humans [88]. Specif-
ically, image emotions represent the highest level of abstract semantics, defined as descriptors
capturing the types and intensities of feelings, sensibility, moods, or affections experienced by
humans when viewing images [89]. Therefore, this chapter centers on the image classification
into emotional categories. In research on estimating emotions when humans view images, the
efficiency of utilizing various types of biological data has been validated [16—18]. In the fields
of psychological and neuroscience, it has demonstrated that objects present in images relate to

human emotions [90,91]. Additionally, a correlation exists between the emotional attributes of
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images and the temporal changes in visual attention, which are intricately linked to human emo-
tions [77]. Therefore, akin to emotion estimation, incorporating information about the viewed
objects and temporal changes in visual attention is expected to be effective for the image classi-

fication of emotional categories.

Preliminaries

In this chapter, we employ specific mathematical notations to elucidate tensor analysis. The
tensor order aligns with the count of modes. Throughout this chapter, individual lowercase let-
ters such as a denote scalars, boldface lowercase letters such as a denote vectors (first-order
tensors), boldface capital letters such as A denote matrices (second-order tensors), and calli-
graphic letters such as X denote tensors (third-order tensors or higher tensors).

Dy XDy

The mode-/ matricization of a kth-order tensor X*" € R P is denoted by mat;(X*) e

Dyx[1i#ID;

R . This is an ensemble of vectors in R™ obtained by holding the /th mode fixed and

varying the other modes. The mode-/ product of a kth-order tensor X*! is denoted as X*" x;

D xDyx--xDj_q ><L)7><Dl+1 X-+XDy

DyxDy
Y eR using a matrix ¥; € R o Multiple multiplications are succinctly

expressed as follows:
thh X7 Y = thh X1 Y1 Xo Yo XX Yooy X1 Yy X oo X Y “4.1)

Moreover, the expression (X, Y), where the size of M matches that of X, denotes the inner

product. These notations align with those utilized in prior studies [92,93].
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Chapter 4.1

Estimation of Emotion Labels via
Tensor-based Spatiotemporal Visual
Attention Analysis

4.1.1 Introduction

We introduce an approach for estimating emotion labels by employing tensor-based analysis
for spatiotemporal visual attention utilizing gaze data in this chapter. Our approach involves
the creation of a fourth-order Gaze and Image Tensor (GIT) that incorporates the target image
and gaze data, establishing associations between images and the temporal evolution of visual
attention, as depicted in Fig. 4.1.1. The first and second modes correspond to pixel locations,
the third mode represents color channels, and the fourth mode captures changes in visual atten-
tion over time. Subsequently, we develop two neural networks designed for estimating emotion
labels by considering temporal changes in visual attention and the objects included in target im-
age, as depicted in Fig. 4.1.2. The first network directly leverages the fourth-order GIT, allow-
ing us to incorporate spatial structures of visual attention across temporal changes. To achieve
this, we employ supervised feature transformation through General Tensor Discriminant Anal-
ysis (GTDA) [92] on the fourth-order GIT. This calculates highly discriminative features for
estimating emotion labels and classifies the features, which are calculated by GTDA, using Ex-
treme Learning Machine (ELM) [94], enabling efficient training with a limited number of train-
ing samples. The second network partitions the tensor at each timestep and engage in transfer

learning utilizing features obtained from a pre-trained Convolutional Neural Network [4] (CNN
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Figure 4.1.1: Overview of the GIT construction. While our approach deals with color images
and builds a fourth-order GIT, this illustration depicts a gray-scale image for visual simplicity.

features), recognized for its significant contribution to object recognition [95]. To specifically
capture visual features from objects pertinent to human emotions, CNN features are extracted
from each frame of the fourth-order GIT. Through the alignment of these CNN features, we de-
rive the second-order GIT, subjecting it to GTDA and constructing an ELM following the same
procedure as the first network. At the end, the proposed method conducts emotion label estima-
tion through the decision-level fusion of outputs from both networks. This approach facilitates

emotion label estimation through tensor-based spatiotemporal visual attention analysis.
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4.1.2 Our Emotion Label Estimation

The proposed method involves estimating emotion labels through tensor-based spatiotemporal
visual attention analysis. Initially, the method introduces a fourth-order GIT, as illustrated in

Fig. 4.1.1, and employs two neural networks depicted in Fig. 4.1.2 for emotion label estimation.

4.1.2.1 GIT Construction

In our proposed approach, we form the fourth-order GIT using gaze data, which includes
both gaze coordinates and their corresponding duration times. For given training images X inmg €
Rdxdxds (y = 1,2, N; N denotes the number of training images, d; and d» represent the
width and height of an image, respectively, and d3 indicates the number of color channels), we
generate a fixation map for each frame based on gaze data. Subsequently, we apply a Gaussian
filter to the fixation map of each frame f (= 1,2,...,ds; ds being the number of frames). The
total gaze duration time for one image is divided into d4 segments. We then compute a gaze
weight matrix Wff}z.e e R¥*% corresponding to each frame f of the GIT. Additionally, we

derive a gaze and image weight matrix W, s using the following formula:

, 4.1.1)

where O € R%*% is a matrix with all elements set to one. Consequently, we compute the

fourth-order GIT X3th € Ré*d2xdsxds hagsed on gaze data as follows:

4th _ yimg
Xn,cnl,f - Xn,col © Wn,f, (412)
where X;nﬁl e RD>% (col = 1,2, ...,d3) is a segment of X%, and Xfl‘?olf € R9*% g 3 segment

of X* Note that “o” denotes the Hadamard product operator. For gray-scale images, we treat
the same values for each channel, constructing the fourth-order GIT. Consequently, we achieve
the construction of GIT, which effectively represents images with consideration for changes in

visual attention.
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4.1.2.2 CNN Feature Extraction

To calculate visual features from viewed objects, our proposed method leverages the out-
puts of the final pooling layer in a pre-trained CNN. Typically, the images fed into the CNN
possess three dimensions corresponding to pixel location coordinates and color channels, and
our method calculates CNN features from each frame f to construct the second-order GIT
X2nd ¢ RAr¥ds (where d represents the dimension of CNN features) by aligning the computed
visual features. Given that CNN features play a pivotal role in object recognition, the resultant
second-order GIT becomes closely linked with objects. Thus, in the second network, we em-
ploy CNN features to discern the characteristics of focused objects in images. The procedures

outlined in this section correspond to the “CNN feature extraction” depicted in Fig. 4.1.2.

4.1.2.3 GTDA-based Feature Transformation

Given the common application of GTDA to both the fourth-order GIT and the second-order
GIT, which are derived in the upper and lower networks in Fig. 4.1.2, we introduce a kth-order
tensor ﬂj.‘f}‘ e Rmxmx-Xm representing these two types of GITs. Hence, in this section, we
replace X2"¢ and X*" with ﬂf.‘;t}‘ for simplicity. It is noteworthy that ﬂﬁt]}.‘ is the jth training
tensor in the ith individual class (j = 1,2,...,n;; n; being the number of training tensors in
the ith class, i = 1,2,...,c; c being the number of classes). To acquire the transformation set

{P; € Rmxm; };‘:1 (m; < my), GTDA addresses the optimization problem:

(P}, = argmaxtr (P] (C) - 4C}) Py). 4.1.3)
{Pl}f:]

where {; serves as a tuning parameter. In our proposed method, {; equals the maximum eigen-

value of (CIW)‘IC;’ as described in [92]. Furthermore, we define C[b and CIW as follows:

c = Z [nimat; ((M; = M) PT) mat] ((M; = M) x; PT)]. (4.1.4)
i=1
€ = Z Z |mat (AL = M) > PT)mat] (A - M) < PT)|, (4.1.5)

i=1 j=1
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where M; = (1/n;) Z?":l ﬂﬁ‘j‘.‘ denotes the class mean tensor for the ith class. Additionally,

M= (1/N) ZiC:] n;M; stands for the total mean tensor, aggregating all training tensors. It is im-

<j<n;

<iee s Mi [i_}, and Mare all kth-order tensors residing in R"™1>/"2X>"%,

portant to note that ﬂfﬁ‘}’ |i
Finally, a tensor Bi‘tjh is derived by transforming the kth-order tensor ﬂf‘}h according to the fol-

lowing equation:

k
s = AN | xP;. (4.1.6)
=1

This process enables the computation of highly discriminative features for emotion label esti-

mation through the application of GTDA, taking into account the label information.

4.1.2.4 ELM-based Emotion Label Estimation

This section describes the way to construct classifiers based on ELM and the emotion label
estimation grounded on the dual outputs of the proposed networks. The ELM-based classifiers
undergo training utilizing the transformed tensor ¥2" € RY% and Y ¢ Rdixdxdxd, Tensors
Y2 and Y*" result from the application of GTDA to X2"¢ and X*™, respectively, analogous to
the role of Bif;‘jl? in the preceding section. It is pertinent to note that d* represents the number
of transformed dimensions through GTDA, corresponding to m* in the preceding section. ELM

comprises a three-layer neural network and trains a weight matrix connecting a hidden layer and

an output layer through the subsequent equation:
B=Z'T, 4.1.7)

where T' = [¢t],¢;,...,¢,]7. Itis noteworthy that ¢, = [t,1,%,2,...,%] is a one-hot encoded
class vector. By using the one-hot encoding, the element corresponding to the class of the nth
training image is one, while the rest of the elements are zeros. Besides, Z is the Moore-Penrose
generalized inverse [96] of the output matrix Z. The output matrix of a hidden layer of ELM is

calculated as follows:

Z = [z(y1),2(32)s ..., 21", (4.1.8)
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where, y, is the vectorization of the transformed tensors ¥2"4 or Y#  z(y,) is obtained by

applying an activation function g to y, as follows:

2(yn) = [g@; yn + b1), g(az yn + b2), ..., glagyn + bp)1". (4.1.9)

Notably, E represents the number of neurons in the hidden layer. Additionally, a, and b, (e =
1,2,..., E) serve as parameters for the activation function g, with a, and b, being random values
obtained from a uniform distribution. Given a test vector y obtained from a transformed test

tensor Y24 or Y41 the output of ELM is calculated as follows:

f)=zp'B (4.1.10)

In our proposed approach, we construct the initial classifier utilizing the transformed fourth-
order GIT Y#" as input, and the secondary classifier utilizing the transformed second-order
GIT Y>"¢ as input. The initial network predicts emotion labels by considering the temporal
progression of visual attention, whereas the secondary network predicts emotion labels by pay-
ing attention to specific objects in the images. In the end, we employ a softmax function for
decision-level fusion, combining the results of the two classifiers, and determining the emotion

label based on the outputs of the softmax function.

4.1.3 Experiments

This section presents the experimental results validating the effectiveness of our proposed
method. The experiments utilized the abstract paintings dataset [39], comprising 280 images,
and each image is labeled with at least one emotion from eight categories (amusement, awe,
contentment, excitement, anger, disgust, fear, and sad). The ground truth (GT) for each image
was derived from emotion labels assigned by around 14 individuals. Our method was applied
to estimate each emotion label, using 224 randomly selected images for training and remaining
56 images for testing. The performance evaluation employed F-measure, the harmonic mean
of Recall and Precision. To carefully consider the data imbalance, the number of images for

each class was equalized through random selection and the proposed method was trained for
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each emotion label. Tobii Eye Tracker 4C! was used in this experiment with 13 participating
participants (Pars 1-13). Participants were tasked with viewing each image until recalling some
emotions, with one second allocated to adjust their gaze to the center of the monitor before
viewing each image. The length of gazing time was normalized as it became dj.

For the determination of the number of hidden neurons in ELM, a four-fold cross-validation
was conducted on the training dataset. The optimal number of hidden neurons, providing the
best estimation performance, was selected based on the validation dataset. A sigmoid function
served as the activation function g of ELM.

The following seven comparative methods (CMs) were adopted for comparing them with the

proposed method (PM):

e CMI
This method ignores the temporal evolution of visual attention, constructing the fourth-
order GIT of ds = 1 (i.e., third order GIT) and extracting CNN features directly from the
third order GIT.

o CM2
Similar to PM, this method has two networks. The first network extracts gaze features, in-
putting them directly into ELM. The gaze features align with a gaze analysis method [97].

The second network employs the approach from CM1.

e CM3

This method utilizes only the first network of PM.

e CM4

This method utilizes only the second network of PM.

o CM5
A baseline method [47] using hand-crafted visual features, which are calculated by apply-

ing Gabor and Sobel filters, and gaze information .

o CM6

"https://tobiigaming.com/eye-tracker-4c/
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Figure 4.1.3:  Average F-measure across all emotion labels and participants for each CNN
feature extraction model.

A method [45] employing deep canonical correlation analysis (DeepCCA) [46] for esti-

mating emotion labels based on CNN features and gaze features [97].

e CM7
This method estimates emotion labels using general feature fusion based on CCA [98]

between gaze features [97] and CNN features.

To evaluate the resilience of our approach, we utilized five commonly used CNN models:
Inception-v3 [99], DenseNet201 [73], Inception-ResNet-v2 [79], VGG19 [100] and ResNet50 [101]

for extracting CNN features.
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The experimental results are presented in Tables 4.1.1 and 4.1.2, along with Fig. 4.1.3. Ta-
ble 4.1.1 displays the average F-measure across all emotion labels and CNN features for each
participant, while Table 4.1.2 displays the results across all participants and CNN features for
each emotion label. Furthermore, Fig. 4.1.3 depicts the average F-measure of all participants
and emotion labels concerning each CNN feature extraction model. The experimental results
consistently show that the PM achieves a higher average F-measure compared to all compara-
tive methods. This validates the effectiveness of our approach. Specifically, when comparing
PM with CM1, the effectiveness of our novel image representation, GIT, for emotion label es-
timation is evident. The comparison with CM2 demonstrates the overall effectiveness of our
network architecture for accurate estimation. Comparisons with CMs 3 and 4 highlight the su-
periority of using both neural networks over individual networks. Additionally, the comparison
with CMS indicates that CNN features outperform hand-crafted features for emotion label es-
timation. PM also outperforms the CM6 in terms of accuracy. Finally, the effectiveness of our
method surpasses that of the simple feature fusion method (CM?7) relying on CCA. Furthermore,
the robustness of our method is evident, as Fig. 4.1.3 shows consistently higher F-measure values

for PM across all CNN features compared to other comparative methods.

4.1.4 Conclusions

This chapter presents the method for estimating emotion labels using tensor-based spatiotem-
poral visual attention analysis. In order to improve the performance of estimating emotion labels,
we consider the temporal dynamics of visual attention in human gaze towards objects within a
target image by constructing a fourth-order GIT. Leveraging the generated GIT, two networks
are established to independently estimate emotion labels based on temporal changes in visual
attention and the presence of objects in the target image. Consequently, our approach achieves

emotion label estimations through decision-level fusion of the outputs from these networks.

68



Chapter 4.2

Emotional Category Classification
Using Visual Attention-based
Heterogeneous CNN Feature Fusion
Based on Tensor Analysis

4.2.1 Introduction

Chapter 4.1 introduces the emotional category classification method based on GIT, which
incorporates information on the viewed object and the temporal changes in visual attention.
This method collaboratively uses CNN features extracted from GIT and GIT itself for consid-
ering both semantic information about objects and the temporal changes in visual attention.
While CNN features excel in the ability representing the source domain, they might lack the
capability for our target domain. To enhance semantic features and improve representation for
emotional category classification, utilizing multiple CNN features from various CNN models is
desirable. This requires a heterogeneous feature fusion method that takes into account both tem-
poral changes and interactions among CNN features. Due to the high dimensionality of CNN
features, their fusion and analysis present challenges. Therefore, our emphasis is on a tensor-
based feature fusion approach, resembling vector concatenation. The dimensions of each mode
in the formed tensor are less than that of vector concatenation. Consequently, utilizing tensor-
based feature fusion allows for the examination of temporal changes and interactions among
CNN features. However, managing high-order information, encompassing specifics about CNN

features, their quantity, and temporal changes, is essential. Hence, for emotional category clas-
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sification, it is imperative to employ a learning method that incorporates tensor analysis.

In this chapter, we introduce a novel approach for tensor-based emotional category classi-
fication, employing visual attention-based heterogeneous CNN feature fusion. Multiple CNN
features are extracted from each frame of GIT, where frame in our proposed method refers to
the pairing of the image and visual attention at each time unit that divides the total gaze time in
GIT. It is worth mentioning that while frame typically refers to a unit in a movie, in our con-
text, it denotes this unique pairing. Additionally, several CNN features are extracted and used
to construct a new CNN feature-based tensor (CFT) to consider the interactions between CNN
features. Given that each feature of CFT originates from GIT, we anticipate that the proposed
method enables visual attention-based heterogeneous CNN feature fusion, ultimately enhanc-
ing representation ability. The primary contribution of this chapter lies in CNN feature fusion
based on CFT. Finally, we leverage General Tensor Discriminant Analysis (GTDA) [92], which
is supervised feature transformation specific to the tensor analysis, for CFT. GTDA transforms
input features into more highly discriminative ones, facilitating emotional category classification
through Logistic Tensor Regression (LTR) [102]. It is noteworthy that both GTDA and LTR are
tensor-based methods and are applied for analyzing CFTs. Consequently, precise classification

of emotional categories is attainable through this novel feature fusion approach.

4.2.2 Tensor-based Emotional Category Classification

The proposed method classifies images into emotional categories through tensor-based anal-
ysis, which realizes heterogeneous feature fusion based on visual attention, specifically tailored
to our target problem. The flow of our approach is presented in Fig. 4.2.1. Details regarding
CNN feature extraction and the construction of the CFT can be found in Section 4.2.2.1. Emo-
tional category classification using the transformed CFT via GTDA and LTR are covered in
Section 4.2.2.2, respectively. Given the confirmed effectiveness of combining GTDA and LTR

in [93], we have incorporated these techniques into our method.
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4.2.2.1 CNN Feature Extraction and CFT Construction

The proposed method involves the extraction of CNN features by using the outputs of the last
pooling layer of pre-trained CNNs. Specifically, three CNN models, namely DenseNet201 [73],
Inception-ResNet-v2 [79], and Xception [103], are utilized for feature extraction. The dimen-
sions of these CNN features are 1920, 1536, and 2048, respectively. In our approach, a CFT
is constructed by aligning these features extracted from the GIT presented in Section 4.1.2.1.
However, due to the disparate dimensions of these CNN features, direct spatial concatenation
is challenging. To address this, we employ supervised dimension reduction, specifically Fisher
discriminant analysis (FDA) [104], to unify their dimensions to the lowest one, i.e., 1536. Con-
sequently, by aligning these CNN features, our method forms the CFT V3™ ¢ Rd{x‘gx‘léf, where
d{ represents the minimum CNN feature dimension (1536), dg signifies the number of CNN
features (three), and dg denotes the number of frames, equal to dj.

Incorporating multiple CNN features in our method enhances the representation ability, and
the CFT introduces a novel way of considering CNN feature dimensions, temporal changes in
visual attention, and the types of CNN features. This enables simultaneous consideration of
interactions among multiple types of CNN features, resulting in heterogeneous CNN feature

fusion for enhancing the representation ability.

4.2.2.2 LTR-based Emotional Category Classification

As the input of the LTR-based classifier, we prepare the transformed CFT (f/f,rd, which is
computed by applying GTDA presented in Section 4.1.2.3 to the CFT V™. For the CFT
gpird ¢ ]Rdif *Xd;*x‘lf calculated from the test image, we aim to predict its class label ys. The

test

formulation of the LTR model employed in our method is as follows:

1
1+ exp(—(Z, Vdy)’

Prlyes | Vg, Z1 = 4.2.1)

where Z represents a parameter tensor containing regression coefficients, and it shares the same

size as the transformed CFT V,,. To determine the optimal parameter tensor Z for Z, we address
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the following maximum log-likelihood problem:

A

Z = arg max £L(2), (4.2.2)
z

where
N
L) = ) 0aln ((Z. V) + (1 = y)in (1 =(Z, V). (4.2.3)
n=1

The maximization problem mentioned above can be addressed by incorporating an L;-norm
regularization term for Z, inspired by the approach in [102].

Finally, the proposed method predicts the class label as follows:

Yeest = arg max Pr[y | ‘i/fgs‘{, Zl. 4.2.4)
y€{0,1}

Therefore, the proposed approach achieves heterogeneous CNN feature fusion and tensor-based

analysis while taking into account temporal changes in visual attention.

4.2.3 Experiments

4.2.3.1 Experimental Conditions

This section presents the experimental results validating the effectiveness of our proposed
method. The experiments utilized the abstract paintings dataset [39], comprising 280 images,
and each image is labeled with at least one emotion from eight categories (amusement, awe,
contentment, excitement, anger, disgust, fear, and sad). The ground truth (GT) for each image
was derived from emotion labels assigned by around 14 individuals. Our method was applied
to estimate each emotion label, using 224 randomly selected images for training and remaining
56 images for testing. The performance evaluation employed F-measure, the harmonic mean
of Recall and Precision. To carefully consider the data imbalance, the number of images for
each class was equalized through random selection and the proposed method was trained for

each emotion label. Tobii Eye Tracker 4C' was used in this experiment with 13 participating

"https://tobiigaming.com/eye-tracker-4c/
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participants (Pars 1-13). Participants were tasked with viewing each image until recalling some
emotions, with one second allocated to adjust their gaze to the center of the monitor before
viewing each image. The length of gazing time was normalized as it became dj.

For comparing the proposed method (PM), we employed eight comparative methods (CMs).
CM1 excluded the utilization of temporal changes in visual attention from the PM. Therefore, in
CM1, d4 = 1 in the GIT. Additionally, CM1 employed only one CNN feature among the three
types presented in Section 4.2.2.1. CM1 was incorporated to assess the innovative approaches
introduced in this chapter. CM?2 utilized solely gaze features extracted based on [97], classify-
ing emotional categories using an Extreme Learning Machine (ELM) [94]. We adopted CM2
to evaluate the incorporation of both gaze information and image through the comparison of the
proposed method. Moreover, we compared with the following three methods. First, we adopted
CM3 [47] that employed both hand-crafted visual features and gaze information. Besides, since
multi-modal features were used in the experiment, this fusion method was considered suitable
for comparison. An emotional category classification method, which fuses multiple types of bio-
logical data through Deep Canonical Correlation Analysis (Deep CCA) [46], was proposed [45],
and we employed this method as CM4 with gaze features [97] and CNN features. Moreover,
we employed CMS5 that performs the image classification into emotional categories through
CCA [98]-based feature fusion applied to both gaze features [97] and CNN features. CMs 6 and
7 employed CNN feature fusion based on vector concatenation. Specifically, CM6 constructed
a two-order CFT with dimensions corresponding to CNN features and their changes over time.
CM6 concatenated multiple CNN features at each time, applying GTDA to the formed two-order
CFT. On the other hand, CM7 concatenated all CNN features, treating the vector whose dimen-
sion is the product of the dimension of CNN features and the number of CNN feature types.
To prevent an increase in dimensionality, CM7 averages the temporal changes in CNN features.
Handling the resulting vector, CM7 used linear discriminant analysis (LDA) [104] in the place
of GTDA. At the end of CMs 6 and 7, Support Vector Machine (SVM) [105] and ELM were
applied to obtained features for classifying input images into emotional categories. While, CM8
fused CNN features based on decision-level feature fusion. Concretely, in CMS8, we initially
constructed a two-order CFT comprising CNN features with considering their temporal changes

in each CNN features. Then GTDA were applied for feature transformation of two-order CFT,
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and the subsequent ELM or SVM classified transformed two-order CFT into the emotional cat-
egory. Notably, the decision-level feature fusion technique were employed for treating multiple

modalities in CM8 [106, 107].
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CHAPTER4: Gaze-based Emotional Category Classification

4.2.3.2 Performance Evaluation

Tables 4.2.1 and 4.2.2 present the outcomes of the experiment. Table 4.2.1 displays the av-
erage Fl1-measures for all emotional categories, computed for each participant. Table 4.2.2 dis-
plays the average F1-measure computed for each emotional category across all participants. ’D,”
”I,” and ”X” denote DenseNet201, Inception-ResNet-v2, and Xception, respectively. The order
in which CNN features are combined influences emotional category estimation performance,
and comparison of PM (D-I-X), PM (D-X-I), and PM (X-D-I) reveals that PM (D-I-X) yields
the best results on average, influenced by the mode expansion in the second mode of GTDA
within our method. Despite PM (D-X-I) exhibiting the least favorable results among PMs, it
outperforms all comparative methods, affirming the effectiveness of PM without considering the
combination order of CNN features. The decision method for this order possesses intriguing
characteristics that warrant future consideration, although our current focus is on heterogeneous
CNN feature fusion and analysis.

The proposed method outperforms comparative methods based on the obtained results. Com-
parison of PM with CM1 validates the effectiveness of novel approaches adopted in our method.
A comparison of PM with CMs 1 and 2 affirms the efficacy of the new gaze-based image rep-
resentation and CFT, demonstrating the benefits of collaboratively using image and gaze infor-
mation. PM surpasses CM3 and CM4 in Fl-measure, which shows the superior performance
of PM in classifying images into emotional categories. Comparison with CM5 highlights the
effectiveness of combining gaze information and images using both the new gaze-based image
representation and CFT, outperforming baseline fusion methods. Additionally, PM excels over
CMs 6, 7, and 8, emphasizing the superiority of our proposed heterogeneous CNN feature fusion
and its analysis over vector-based concatenation methods for emotional category classification.

In addition to quantitative evaluations, a representative experimental results are depicted in
Fig. 4.2.2. The gaze-based image representations of Par2 and Par7 are classified into four cate-
gories, encompassing all ground truths, whereas that of Par8 is classified into three categories,
covering one ground truth. Par2 and Par7 viewed nearly identical areas in each frame of the
shown image, while Par8 viewed a different area, resulting in varying classified emotional cate-

gories. This observation confirms the relationship between temporal changes in visual attention
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Original image

Ground Truth
- Awe
- Content

Classified
f=1 f =50 f =100 Categories
- Anger
+ Awe

- Content
- Disgust

. - Awe
> ) - Content
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+ Disgust
- Fear
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Figure 4.2.2: Selected experimental outcomes. This figure depicts a set of test images alongside
their corresponding ground truths. The regions where participants viewed are highlighted in
white at frames 1, 50, and 100. Utilizing gaze data, PM (D-I-X) assigns categories to the image.
If the assigned category matches the ground truth, the corresponding category is denoted in red.

and human emotions.

4.2.4 Conclusions and Discussions

In this chapter, we have introduced a tensor analysis-based method for emotional category
classification, achieving visual attention-based heterogeneous CNN feature fusion. To enhance
classification performance, our method introduces a new tensor, CFT, which consolidates out-
puts from multiple CNN models while considering temporal changes in visual attention. Subse-
quently, emotional category classification is made possible through the application of GTDA and

LTR. The effectiveness of our proposed method was confirmed through experimental results.
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Chapter 5

Multi-modal Human Emotion

Recognition

Human emotions, an essential yet enigmatic aspect of human nature, hold the potential to
contribute to various fields. One such area is multimedia content recommendation, where under-
standing the mechanism underlying the occurrence of human emotions facilitates personalized
preferences in recommendations [108, 109]. Additionally, in the field of human-computer inter-
action, implementing this mechanism allows agents in robots or computers to engage affectively
with humans [110, 111]. The pursuit of integrating this mechanism into computers is referred to
as affective computing [112]. Recognizing human emotions is a crucial initial step in affective
computing, but it remains challenging due to the subjective nature of human emotions.

In the domain of signal processing, there have been investigations into examining brain activi-
ties recorded during humans viewing images/videos or listening to music as a means of recogniz-
ing human emotions [93,113]. However, emotions derived from such brain activity analysis may
not necessarily correlate with the target stimuli, given the vast amount of information processed
by the human brain from various sources. Conversely, non-verbal cues such as facial expressions
and eye gaze have been explored as indices for the recognition of human emotions [13]. These
non-verbal cues have the potential to encapsulate subconscious reactions, governed by the sym-
pathetic nervous system irrespective of human intention. In this way, incorporating these cues
alongside brain activity enhances the capture of more reliable emotion-related information. In-

deed, multi-modal human emotion recognition methods, utilizing multiple types of biological
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data, have demonstrated superior accuracy compared to uni-modal methods [45, 48, 50, 114].
The majority of these multi-modal approaches leverage eye gaze and brain activity as modalities
to capture explicit and implicit information, respectively.

Previous approaches have involved the cooperative utilization of multiple types of biolog-
ical data by integrating features computed from such data, prompting researchers to explore
more effective methods for feature integration conducive to emotion analysis. Notably, in [48]
and [45], Bi-modal Deep Autoencoder (BDAE) [49] and Deep Canonical Correlation Analy-
sis (DeepCCA) [46] are employed to extract common factors across all features. Despite the
sequential nature of biological data, these methods overlook the temporal changes in biologi-
cal data which are crucial aspects of human emotion recognition [77, 115]. Subsequently, the
study [50] introduces Bi-modal Long-Short Term Memory (BLSTM) [51] to consider tempo-
ral changes, successfully capturing temporal dynamics by aligning each modality at the same
timestep. However, these methods adopt general machine learning frameworks, neglecting the
intrinsic properties of biological data. In this chapter, we strive to develop several machine

learning models specific to the characteristics of biological data.
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Chapter 5.1

Human-centric Emotion Estimation
Based on Correlation Maximization
Considering Changes with Time in

Visual Attention and Brain Activity

5.1.1 Introduction

When utilizing biological data, the consideration of user burden in data acquisition is paramount.
While gaze data can be obtained using small sensors like those in glasses, acquiring brain ac-
tivity data still poses a significant user burden. Moreover, studies have indicated the relevance
of temporal changes in visual attention and gazed objects to human emotion [77] when using
gaze data. Although some studies have attempted to estimate human emotions based on gaze and
brain activity data [45,48,50,116], these efforts did not specifically address the temporal changes
in biological data. Therefore, achieving higher-performance emotion estimation necessitates the
collaborative use of temporal changes in both gaze data and brain activity data.

Based on the above considerations, this chapter addresses the following two problems:

1. To alleviate user burden, brain activity data is obtained only during the training phase. In
other words, a method that collaboratively utilizes gaze and brain activity data without

requiring brain activity data acquisition during the test phase is sought.

2. The temporal changes in both gaze data and brain activity data need to be considered to

enhance emotion estimation accuracy. Brain activity data with higher temporal resolution
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is preferable, and analyzing the relationship between gaze and brain activity data at each

timestep is expected to improve accuracy.

This chapter introduces human-centric emotion estimation that maximizes correlation be-
tween visual attention and brain activity, considering temporal changes. The term “human-
centric” is used since the proposed method is trained individually for each user, focusing on
extracting their implicit states. Canonical Correlation Analysis (CCA) [98] is employed to ad-

dress the above problems, offering the following solutions:

1. Transformation Matrix Calculation
CCA computes a transformation matrix from two types of features. Once calculated, this
matrix remains constant, eliminating the need for recalculation. As brain activity data is

only required during the training phase, this reduces the user burden.

2. Use of Gaze and Image Tensor (GIT) for Multi-modal Emotion Recognition
A GIT [117] is constructed to represent temporal changes in visual attention as presented
in Section 4.1.2.1. This innovative approach incorporates time as an axis corresponding
to the frame in addition to the axis of images, providing a novel image representation

considering temporal changes in visual attention.

The efficacy of CCA has been extensively reported across various domains, including computer
vision and human-computer interaction [118—121]. In this way, we employ the CCA-based ap-
proach to integrate gaze-based visual features and brain activity-based features. Initially, for
concurrent analysis of images and temporal changes in visual attention, we utilize the fourth-
order GIT [117]. The first and second modes of this tensor represent pixel locations, and the
third mode corresponds to color channels, encapsulating image information. Additionally, the
fourth mode of the tensor considers temporal changes, corresponding to frames. Moreover, by
feeding the acquired GIT into Convolutional Neural Network (CNN) [4] models, our method
facilitates the derivation of novel gaze-based visual features. Subsequently, our method trans-
forms these gaze-based visual features to acquire emotion-correlated features by maximizing
canonical correlation through CCA, utilizing brain activity-based features obtained from users
viewing images. Through these feature extraction and transformation methods, our approach de-

rives human-centric features tailored for emotion estimation. Another advantage lies in the fact
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that brain activity-based features are only used for obtaining feature transformation, and making
their acquisition unnecessary for estimating emotion from newly obtained images indicates the
broad applicability. Finally, in the classification step, our method derives human-centric visual
features from multiple CNN models, yielding a third-order tensor with modes corresponding to
“dimensions of the transformed features,” “types of adopted CNN models,” and “the time axis.”
By applying generalized tensor discriminant analysis (GTDA) [92] to this third-order tensor
and conducting classification using an extreme learning machine (ELM) [94] capable of train-
ing with a limited number of samples, our proposed method achieves human-centric emotion

estimation.
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CHAPTERS: Multi-modal Human Emotion Recognition

5.1.2 Our Estimation Method

The proposed method comprises three steps, outlined in Fig. 5.1.1. In the initial step, we
compute gaze-based visual features. Our method utilizes the fourth-order GIT as an image
representation, considering both objects in images and temporal changes in visual attention.
Subsequently, we derive pre-trained CNN-based visual features from the images corresponding
to each frame of the fourth-order GIT, serving as gaze-based visual features. In the second step,
we compute brain activity-based features [18] from each user. Additionally, CCA is applied
between gaze-based visual features and brain activity-based features at each frame for trans-
forming gaze-based visual features into novel features that account for temporal variations. In
the final step, we align all transformed features and construct a new third-order tensor. Emotion

estimation is then performed using tensor-based machine learning.

5.1.2.1 Gaze-based Visual Feature Extraction via GIT

Initially, to analyze images and temporal changes in visual attention simultaneously, we con-
struct a fourth-order GIT X 2‘;‘ presented in 4.1.2.1. Subsequently, to extract more semantically
meaningful gaze-based visual features, we derive three types of visual features from the image
corresponding to each frame of the fourth-order GIT. To enhance the representation of human
emotions, we incorporate various types of visual features. As the visual features calculated
from the GIT capture objects in images and the temporal changes in visual attention, we con-
sider these visual features as gaze-based visual features. Specifically, we utilize the outputs of
an intermediate layer included in several CNN models, given the well-established efficacy of
CNNs in object recognition [122]. By constructing the GIT based on CNN features, we obtain
gaze-based visual features that characterize objects viewed by humans.

Training CNNs requires a substantial amount of data. However, preparing a such amounts of
GITs is challenging due to the limited gaze data from each user. To address this, we employ
transfer learning, which is a proven effective technique [123]. Generally, the CNNs are pre-
trained using the ImageNet dataset [4]. Our method incorporates three CNN models, namely,

Xception (X) [103], InceptionResnet-v2 (I) [79], and Densenet201 (D) [73]. We extract visual
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P
n,

features v ;€ R% (p e {X, I, D}, with d, denoting the dimension of the outputs obtained
from the last pooling layer of the CNN model p) based on the pre-trained CNN from the image
corresponding to each frame of the fourth-order GIT Xfl";}.. Therefore, our approach extracts

gaze-based visual features with considering objects in images and the temporal changes in visual

attention from the new image representation, the fourth-order GIT.

5.1.2.2 Extraction of Brain Activity-based Features and CCA-based Transforma-

tion

This section describes on the extraction of brain activity-based features and the CCA-based
transformation, taking into account the temporal changes. As the way to obtain the brain activ-
ity data, various types of measurements, such as EEG, fMRI, and fNIRS, are available. Then,
EEG and fNIRS data are particularly noteworthy for their high temporal resolution. Notably,
fNIRS, which measures blood oxygenation changes, is robust against external activities such
as eye blinks that may occur during image viewing [124]. Additionally, fNIRS equipment im-
poses minimal behavioral or physical restrictions on users [125]. Therefore, several studies
have explored the relationship between human emotions and fNIRS signals [126—128], and in
our study, we incorporate fNIRS signals alongside gaze data. Previous research has also uti-
lized both fNIRS and gaze data [129-131]. To capture fNIRS signals, we measure changes in
deoxygenated and oxygenated hemoglobin levels in the head cortex using near-infrared light.
Subsequently, we compute fNIRS features from fNIRS signals while users view images, based
on the approach outlined in [18]. Specifically, we derive the following 11-dimensional features

from each channel in each frame, as illustrated in Fig. 5.1.2.

e Statistical features (six dimensions)
General statistics, encompassing average, variance, skewness, kurtosis, zero-crossing rate,

and root-mean-square, are computed for fNIRS signals in each time domain.

e Wavelet transform [132]-based features (five dimensions)
Applying discrete wavelet transform to fNIRS signals enables their conversion into a fre-

quency domain, comprising both high-frequency and low-frequency components. Subse-
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Figure 5.1.2: In our proposed approach, the calculation of brain activity-based features is
aligned with gaze-based visual features in each frame.

quently, we determine the energy ratio for each frequency component concerning the total

energy.

In the proposed approach, fNIRS signals are acquired from ten channels located on the front
and back of the head, respectively. It is important to note that we measure changes in both
oxygenated and deoxygenated hemoglobin levels, which provide biologically relevant informa-
tion for brain function. Consequently, the dimension of the fNIRS features is 440, calculated
as 11-dimensional features X 20 channels x 2 (oxygenated/deoxygenated). Consequently, we
compute fNIRS features s, ; € R*Y corresponding to a frame f of the nth image. It is essential
to apply dimension reduction to fNIRS features s, s since CCA tends to overfit the training data
when the dimension of fNIRS features s, s exceeds the number of training images. Principal
Component Analysis (PCA) [133] is employed as the dimension reduction method, resulting in
newly obtained fNIRS features §, s € R% (d, represents the dimension of fNIRS features after
applying dimension reduction).

We conduct CCA between the aforementioned fNIRS features §,, y and the gaze-based fea-
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tures vi7 at each frame f, as illustrated in Fig. 5.1.3. Specifically, we determine the optimal

f
transformation pair (ﬁ/f f’ ff’f f) € R% x R by solving the following maximization problem:
w” fTC” wh )

max S S : (5.1.1)

W’ wh ) pT p P TP P
SYvr \/ws’f Css,fws’f \/wv,f Cw,fwv’f

where T denotes the transposition operator. Specifically, the variances Cjs,f, Cf o and the
covariance Cf by at frame f are computed as follows:
1 < QT
Css,f = NSfo,
e = Lyryrt (5.1.2)
v f N s o
Lo oo
P _ P
Cmf = NSfo ,
where
Sr=181,520p5 8N/, (5.1.3)
P _ P P p
Vf = [vl,f’VZ,f"“’vN,f]' (5.14)

Note that S.f and V}’ are centered in each frame. Furthermore, we can express this maximization

problem as follows:

.
(wf’f, w’v”f) = arg max wiszv,fwf’f
W)
P’ p i p
s.t. wS’fC”,fws’f = wv’wa,wa’f =1. (5.1.5)

Additionally, we derive the eigenvalue problem utilizing the method of Lagrange multipliers and

L1-regularization [134] as follows:

14 P P
o0 Csv,f ws,f _ /l? Cs.gf + é/slx (0] ws,f (516)
p T p 4 P p

e 0 || w, o Ch oIl || wh,

where /1? represents the Lagrange multiplier, £; and £, are regularization parameters, and I”

and I denote the identity matrices. The optimal transformation pair (W’; P Wf f) is then derived
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by solving the eigenvalue problem. The utilization of the valid top d; (< min(dy, dx, dp, dr))
transformation pairs in each frame results in the acquisition of transformation matrices VAVA‘E7 €
R%*ds and Wf ;€ R%>dyp,

The gaze-based visual features vi are transformed using the obtained transformation matri-

f
ces Wf 7 to compute the transformed features at each frame as the following equation:

=W (5.1.7)

Through this process, we acquire the transformed gaze-based visual features that take into
account the characteristics of fNIRS features. It is important to note that, once the transforma-
tion matrices are obtained, we can transform new gaze-based visual features without the need
for TNIRS features in the inference phase. This approach offers two significant contributions.
Firstly, brain activity data is only required during the training phase, which reduces the burden
on users. Secondly, the transformation pair is computed for each frame, which allows us to

consider temporal changes in visual attention and brain activity.
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5.1.2.3 Emotion Estimation Based on Tensor-based Analysis

This section describes emotion estimation based on tensor-based analysis and lightweight

%
n.f’

with considering fNIRS (Brain activity-based Gaze and Image Tensor; BGIT) X314 e Rm>m2xms

machine learning. By uilizing the transformed features ¥’ ., we construct a new third-order GIT
to analyze features while taking into account temporal changes. Here, m; (= d,) represents the
dimension of transformed features, m;, (= 3) signifies the types of gaze-based visual features,
and m3 (= dy) is the number of frames of the fourth-order GIT. Specifically, we construct the

third-order BGIT X>™ as follows:
=9 (5.1.8)

where Xf:lfip’ p and f)ﬁ . represent the (i, p, f) element of the third-order BGIT X>™ and the ith

element of the transformed gaze-based visual features 175 I respectively.

In the proposed approach, we incorporate GTDA and ELM, which are presented respectively
in Sections 4.1.2.3 and 4.1.2.4, into the third-order BGIT X' to estimate human emotions. Em-
ploying GTDA is motivated by its applicability to tensors, and we employ ELM for treating the
limited number of training samples. In this way, the proposed method is capable of estimating
human emotions by applying tensor analysis and lightweight machine learning to the third-order

BGIT X3rd.

5.1.3 Experiments

5.1.3.1 Settings

This experiment adopted the Tobii Eye tracker 4C' to measure gaze data and the LIGHT-
NIRS? to measure fNIRS signals. We employed 20 channels, with 10 channels positioned at the
front of the head and 10 at the back, as depicted in Fig. 5.1.4. Participants viewed images on a
15-inch display from a distance of 70 cm. Additionally, participants wore a head cap to facilitate

the measurement of fNIRS signals, and the gaze sensor was positioned on the display.

Thttps://tobiigaming.com/eye-tracker-4c/
Zhttp://www.shimadzu.com/
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Figure 5.1.4: Channel positions of the measurement instrument for fNIRS signals. We collected
fNIRS signals from 20 channels utilizing emitters and decoders.

As the dataset, we utilized the art photo dataset [39]. This dataset comprises images assigned
a single label from eight emotional labels (Amusement, Awe, Contentment, Excitement, Sad,
Fear, Anger, and Disgust), and we selected 10 images from images with each emotional label,
totaling 80 images. Furthermore, we randomly chose 64 images as training images and used the
remaining images as test images.

This experiment involved 10 participants (Pars 1-10) 3. Participants were instructed to view
each image for ten seconds with a ten-second inter-stimulus interval as depicted in Fig. 5.1.5.
During the interval, an image with a cross mark in the center was displayed to mitigate the in-
fluence of the previous image and guide the gaze to the center of the monitor. Following the
task, participants provided feedback (positive/negative) as ground truths regarding the emotions
induced by viewing the images. Two emotional states were adopted to increase the number of
images in each category. Table 5.1.1 presents the number of samples for each emotion recalled
by each participant. It was confirmed that there was no significant difference in the numbers
of emotions between participants. To assess the effectiveness of the proposed method, we em-

ployed eight comparative methods (CMs 1-8) as follows:

3This human research was conducted with the approval of the ethical committee at Hokkaido University.
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> (time)

10 sec. 10 sec. 10 sec.

Figure 5.1.5: Experimental design in our experiment. Participants were instructed to view each
image for a duration of ten seconds with an inter-stimulus interval of ten seconds. Subsequently,
we collected gaze data and fNIRS data from each participant.

Table 5.1.1: Numbers of emotions for participants.

Parl Par2 Par3 Par4 Par5 Par6 Par7 Par§ Par9 Parl0
Training Image (Positive) 29 28 30 28 36 23 31 35 28 39
Training Image (Negative) 35 37 34 36 28 41 33 29 36 25
Test Image (Positive) 8 7 8 8 9 7 8 7 7 7
Test Image (Negative) 8 9 8 8 7 9 8 9 9

CM1. This approach is akin to the proposed method but employs only a single CNN feature as
opposed to multiple types of CNN features.

CM2. This approach estimates emotions solely based on the gaze information used in our method.

CM3. This approach utilizes only fNIRS features in our method, and the ELM-based classifier

is used for emotion estimation with fNIRS features.

CM4. This approach handles two modalities, gaze and fNIRS features. It adopts gaze fea-
tures [97] different from the proposed method. Additionally, the fNIRS features [18] are
extracted in the same way as in our method. Two ELM-based classifiers corresponding to
each modality are built, and emotions are estimated based on late fusion. It is worth not-
ing that late fusion is a prevalent fusion method, and numerous researchers have employed

this method in multimodal analysis [135-137].

In addition to the aforementioned comparative methods, which incorporate elements of our
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method, we adopted the following methods for comparing our method.

CMS.

CMe6.

CM7.

CMS.

This method for emotion estimation [45] utilizes Deep CCA [46] to analyze the relation-
ship between gaze and brain activity information. Three types of CNN features obtained
from the GIT are used as gaze features, and Deep CCA is applied to each CNN feature
and fNIRS features.

This emotion estimation method [48] employs a Bi-modal Deep Autoencoder (BDAE) to
reconstruct inputs comprising fNIRS and gaze features, enabling the extraction of com-
bined high-level features. It should be emphasized that the calculation of fNIRS and gaze

features aligns with our method.

An extension of CM6, this approach for estimating emotions [116] conducts multi-layer
perceptron-based regression from gaze features to the combined high-level features de-

rived from CM6.

This method for estimating emotions [50] utilizes Long Short-Term Memory (LSTM) [51]
for processing gaze and fNIRS features, extracting combined high-level features while
accounting for temporal changes. It should be noted that the calculation of gaze and

fNIRS features aligns with our method.

As the final classifier, we opted for Support Vector Machine (SVM) [105] over ELM in CMs

5-8, influenced by prior studies [45,48, 50, 116]. For CMs 5-7, we computed features without

considering temporal changes (d4s = 1), as these methods lack the capability to handle such

changes. In this experiment, we utilized the F1-measure as an evaluation metric:
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(c) False positive example (d) False negative example

Figure 5.1.6: Some examples of estimation results for Parl. Figures (a) and (b) demonstrate
that our method (I-X-D) accurately estimated the true emotion. Conversely, Figures (c) and (d)
indicate instances where our method (I-X-D) incorrectly estimated the emotion.

5.1.3.2 Performance Evaluation

The results of the experiment are presented in Table 5.1.2. This table displays the F1-measure
results, confirming that our method consistently outperforms all CMs on average. In this experi-
ment, we explored various combinations of CNN features, denoted as “ours (a-b-c)”. Here, a, b,
and c stand for one of X (Xception), I (Inception-Resnet-v2), and D (Densenet201), and “ours (a-
b-c)” represents the order of CNN features in the proposed method. As indicated in Table 5.1.2,
our method surpasses the CMs in every combination. However, no significant difference was
observed based on the order of CNN feature combination.

A comparative analysis between our approach and CM1 showcased the efficacy of incorpo-
rating temporal variations in brain activity and visual attention. Additionally, comparisons with
CM?2 and CM3 revealed the effectiveness of collaboratively using brain activity and gaze in-
formation. When compared with CM4, which utilizes traditional feature fusion [98] with other
features extracted from gaze data [97], our approach proved to be more effective than CM4 in
the multi-modal feature fusion framework. CM4 utilizes and fNIRS gaze features without incor-
porating temporal changes. This confirms the effectiveness of CCA-based feature fusion with

GIT-based feature extraction for gaze data for estimating emotions. Besides, comparisons with
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CMs 5-8 demonstrated that our approach is more valid than other frameworks. Although CMs
5 and 8 were methods estimating emotions by collaboratively using brain and gaze information,
their outcomes were not satisfactory. This may be attributed to the limited training data for each
category, which hindered the optimization of Deep CCA or LSTM, leading to insufficient train-
ing and lower estimation accuracy. On the contrary, the unsupervised learning method, BDAE,
employed by CMs 6 and 7 required a smaller volume of training data in comparison to Deep
CCA and LSTM, rendering it relatively optimized.

Figure 5.1.6 illustrates the estimation outcomes for a single participant. Figures 5.1.6 (a) and
(b) showcase images where our method (I-X-D) accurately estimated emotions, while Fig. 5.1.6
(c) and (d) showcase images where our method (I-X-D) inaccurately estimated emotions. The
images for which our method (I-X-D) accurately estimated emotions manifest distinctions in
brightness and depicted objects. Notably, the image in Fig. 5.1.6 (a) is predominantly bright,
with an object likely to evoke positive emotions in most individuals. Besides, the image in
Fig. 5.1.6 (b) is predominantly dark, featuring an object that would likely elicit negative emo-
tions in most individuals. Thus, these images are easily categorized as authentic representations
of emotions. In contrast, Fig. 5.1.6 (c) features a predominantly dark background with an ob-
ject resembling a flower. Typically, flowers are linked to positive emotions. Consequently, our
method (I-X-D) might predict a positive emotion considering the attributes associated with a
flower. The image depicted in Fig. 5.1.6 (d) is predominantly characterized by white and black
colors and features a fox. Considering that the monochromatic arrangement might elicit negative
emotions in individuals, our method (I-X-D) predicts a negative emotion when the participant
observes the image in Fig. 5.1.6 (d).

Based on the qualitative and quantitative assessments described above, we can confirm the

effectiveness of our approach in estimating human emotions and identify its limitations.

5.1.4 Conclusions

In this chapter, we introduced a human-centric emotion estimation method that maximizes
correlation, taking into account temporal changes in both brain activity and visual attention.

Our focus is on two types of biological data representing the temporal changes in visual atten-
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tion towards objects in images and brain activity. To address these data, two feature extraction
networks are constructed. Gaze-based features are transformed by maximizing correlations with
fNIRS features, incorporating consideration of temporal changes through fourth mode of GIT.
The primary contribution of this chapter lies in the CCA-based transformation of gaze-based
CNN features and fNIRS features. Consequently, our approach accomplishes emotion estima-
tion solely relying on gaze information, thereby eliminating the necessity for brain activity data
during the test phase. The efficacy of human-centric emotion estimation has been substantiated

through experimental findings.
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Chapter 5.2

Human Emotion Recognition Using
Multi-modal Biological Data Based on
Time Lag-considered Correlation
Maximization

5.2.1 Introduction

Chapter 5.1 presents the method for recognizing human emotions using multiple types of
biological data. On the other hand, humans collect information through their eyes, and this in-
formation is subsequently processed in the brain. The visual stimuli perceived by the human
eyes undergo transmission to the brain through neurotransmitters, leading to a time gap between
gaze data and brain activity data [138], as depicted in Fig. 5.2.1. Previous studies, however,
neglect such a time lag, merely combining features computed from brain activity and gaze data
without considering the temporal misalignment. Consequently, these studies focus on integrat-
ing features not aligned with the same visual stimuli but rather from different stimuli between
brain activity and gaze data, thereby constraining the expressive capacity of the features, which
are calculated by integration methods in such studies, in capturing emotions recalled by hu-
mans. For addressing this gap, it is essential to devise an integration methodology that takes
into account the temporal misalignment between brain activity and gaze data to comprehend
the mechanism behind human emotions. Additionally, considering the heavy burden associated
with acquiring brain activity data in daily life, we restrict the use of brain activity data solely to

the training phase.
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Figure 5.2.1: Concept figure of the time lag between gaze and brain activity data. The existence
of a temporal delay arises from the transmission of visual stimuli, captured by human eyes, to
the brain through neurotransmitters.

This chapter introduces a multi-modal human emotion recognition method grounded in time
lag-considered correlation maximization. The time lag between gaze and brain activity data is
contingent on the reaction time of the neuron, which may vary among individuals. Our pro-
posed method aims to efficiently handle this time lag to model the reaction time of the neuron.
The main emphasis in this chapter is the weighted correlation maximization to enhance feature
integration, taking the time lag into consideration. More precisely, brain activity and gaze fea-
tures are extracted, and transformation vectors are calculated to transform both features into a
space shared by the these features. These transformation vectors are obtained by solving the
maximization problem for correlations weighted by considering the displacement by time. To
implement such correlation maximization considering the time lag, we extend the CCA frame-
work. CCA is a simple transformation through the linear transformation, and our extension
introduces a structure that explicitly recognizes the time lag, capturing the linear shift between
brain activity and gaze. Within the CCA framework, latent features are obtained through the
optimization of transformation vectors based on the correlation of multiple inputs. Our empha-
sis is on the correlation in the CCA framework, and time lag-considered weights are introduced
into such correlation. In our approach, a specific distribution is assumed for generating time

lag-considered weights. Once the transformation vectors are computed from the training data,
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in the inference phase, the acquisition of brain activity data, which is burdensome, becomes un-
necessary. Lastly, human emotions are recognized by utilizing features integrated through the
transformation vectors. The distinctive contribution of this chapter lies in the novel construc-
tion of a human emotion recognition method that considers the time lag for making closer to a

genuine understanding of the mechanism underlying the occurrence of human emotions.

5.2.2 Time Lag-considered Correlation Maximization for Human
Emotion Recognition

This section describes the multi-modal human emotion recognition approach, which incorpo-
rates consideration for time lag in correlation maximization. Initially, we compute sequential
features derived from gaze and brain activity data. For gaze features, we employ the GIT-
based method, which is presented in Section 5.1.2.1, designed to capture visual information per-
ceived by individuals. Additionally, we utilize functional near-infrared spectroscopy (fNIRS)
for brain activity data, chosen for its superior temporal resolution compared to functional mag-
netic resonance imaging (fMRI). Notably, fNIRS data are considered more resilient to external
activities such as eye blinks during image viewing, as opposed to electroencephalogram (EEG)
data [124]. Various studies have explored the connection between fNIRS data and human emo-
tions [126—-128]. Hence, we employ fNIRS and gaze features as multi-modal features. It is cru-
cial to emphasize that the proposed method exclusively utilizes fNIRS features for calculating
the transformation vectors during the training phase. Subsequently, the gaze and fNIRS features
undergo integration based on the time lag-considered Canonical Correlation Analysis (TICCA),
enabling the computation of latent features that encompass the commonalities between the two
feature types. The efficacy of incorporating a time lag in the correlation-based integration of
multimedia data and Twitter tweets has been demonstrated [139]. In this section, the TICCA is

mainly explained, while the feature extraction is explained in Sections 5.1.2.1 and 5.1.2.2.
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Figure 5.2.2: Outline of TICCA. We incorporate weights that account for the time lag into the
conventional correlation. In this figure, y,, and yy,, represent ygaze,; and Yprains,» respectively.
Additionally, white and gray circles denote observed and unobserved variables. A and L signify
the peak and range of the time lag.

5.2.2.1 TICCA-based Feature Integration

Figure 5.2.2 presents outline of TICCA. We construct brain and gaze features as the following

expression:

Y, =[yp1.¥p2:---¥pal, p = {gaze,brain}. (5.2.1)

We make the assumption that fNIRS data are recorded a few seconds after gaze data are recorded
for a given stimulus, introducing a time lag in the fNIRS data relative to the gaze data. Besides
the time lag, the impact of visual stimuli may persist in the fNIRS data in the subsequent time
step. In this context, we posit that human-obtained visual stimuli are promptly recorded in the
gaze data, while the influence of these stimuli on fNIRS data follows a Poisson distribution.
The TICCA facilitates the computation of latent features from gaze and brain activity features
while considering these assumptions about the time lag. Specifically, the optimization of the
transformation vector set w = {Wgaze, Worain} € (Rgaze | Rbrin) {5 carried out using training feature

sets {Yoaze ns mem,n}nN=1 (n = 1,2,...,N; N representing the number of training data) as the
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following equations:

N
W = arg max wg,,. Z CWprain (5.2.2)
w

n=1

brain
Cn

T gaze T _
s.t. wgaZeCn WgazeWprain Worain = 1, V1, (5.2.3)

where C5* and CY™@" represent the variance matrices of gaze and fNIRS features, respectively.

The computation of these variance matrices is conducted as follows:
C, =Y,,Y,,. p={gaze, brain}. (5.2.4)

Moreover, C° denotes the covariance matrix, accounting for the time lag between gaze and

fNIRS features, and is computed as follows:

Lo -2yl
1 e A
b N Ygaze,n,l Yl;—rain,n,O’ (525)

"Rk el A

where A serves as a shape parameter for the Poisson distribution, determining the focal point
of strongest influence of visual stimuli on the fNIRS features. L represents a hyperparameter
dictating the number of timesteps over which visual stimuli continue to impact fNIRS features.
It is important to note that the features are mean-normalized, and we construct the new feature

set as following expression:

Yp,n,l = D’p,n,L—la Ypn,L+1-15- -+ ayp,n,df—l]’ (526)

where [ = 0,1,...,L — 1. To solve Eq. (5.2.2), we employ the Lagrange multiplier method as

follows:

N N
F=Wie D CoWorain = By (Z wliChw, - 1}, (5.2.7)
n=1 p n=1
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where p = {gaze, brain}, and Sga,e and Byrain represent the Lagrange coefficients. By computing
OF [0Wga7e = 0 and OF /OWprain = 0, we derive the eigenvalue problem as follows:
0 nN:I CQT Woaze N C%aze o Wgaze

S , (5.2.8)

N b N brai
n=1 C, (0 Whrain (0 n=1 ¢ Whrain

where 8 = 2fa7¢ = 2Bprain- Solving Eq. (5.2.8) straightforwardly yields the optimal transforma-
tion vector pair (Worain, Whrain)- 1t is noteworthy that while several solution sets (8, Worain, Whrain)
may emerge, 3 signifies the efficiency of transformation vectors (Wprain, Worain)- Therefore, we
arrange the eigenvalues 8 and select the top diaent (£ min(dgaze, dprain)) €igenvalues along with
their corresponding transformation vectors. The transformation matrices Wgaze € RzazeXdiatent
and Wypin € Rébrminxdiaen are utilized for the actual transformation.

In the inference phase, where only gaze data is employed, the transformed features ffgaze €

Raen*dr are computed with the transformation matrix Wgaze as the following equation:

Veaze = Wose Yeaze- (5.2.9)

gaze

The proposed approach enables obtaining the transformed features while considering the time
lag, as presented in Eq. (5.2.5). Lastly, human emotions are recognized by generating demotion-
dimensional one-hot vectors e € R%moion where each element corresponds to a specific human

emotion as

e = f(Vaue), (5.2.10)

where f(-) is the classifier trained with the transformed features derived from the training data.

5.2.3 [Experiments

This experiment adopted the same dataset as Chapter 5.1, and the details are presented in
Section 5.1.3.1
We employed seven comparative methods for evaluation. As detailed in Table 5.2.1, two of

them, referred to as Ablations 1 and 2, focused on either gaze or fNIRS features, constituting
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Table 5.2.1: Characteristics of our approach and comparative methods.

Features Time
Gaze fNIRS | Change Lag

Ablation 1 v v
Ablation 2 v v

Deep CCA [45] v v

BDAE [48] v v

BLSTM [50] v v v

MVAE [140] v v v

CCA with GIT [114] v v v

Our method v v v v

uni-modal approaches. It is worth noting that these two methods applied principal component
analysis [133] to reduce feature dimensions to djaeen:. The remaining five methods were drawn
from previous studies [45,48,50, 114, 140], utilizing various feature integration techniques such
as Deep CCA [46], BDAE [49], BLSTM [51], CCA with GIT [114], and multi-view variational
autoencoder (MVAE) [141] to integrate multi-modal features. Notably, [45, 48] lacked mech-
anisms to consider both time lag and time changes, computing each feature when d; = 1 in
Section 5.1.2.1. Additionally, in the inference phase of [45, 48, 50, 140], both gaze and brain
activity features were obligatory, while in [114] and our proposed method, only gaze data were
required. Support Vector Machine (SVM) [105] was consistently employed as the final clas-
sifier f(-) in each method. The hyperparameters L, A, dprain, dgaze, and diaene Were set to 5, 1,
440, 2048, and 50, respectively. To conduct the performance evaluation, we considered Recall,
Precision, F1-score, and Accuracy metrics.

Table 5.2.2 presents the mean results of each method. Through a comparison of our method
with Ablations 1 and 2, we validate the efficacy of jointly utilizing gaze and fNIRS features
for human emotion recognition. While Ablation 2 excels in the “Recall” evaluation metric,
the proposed method outperforms others in other evaluation metrics. Notably, despite Ablation
2 having a lower Precision than the proposed method, the recognition ability of the proposed
method is superior, as evidenced by a higher F1-score, which is the harmonic mean of Recall

and Precision. Furthermore, when contrasting our method with [45, 48], the effectiveness of
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Table 5.2.2: Mean results of each method.

Recall Precision Fl-score Accuracy
Ablation 1 0.30 0.48 0.65 0.52
Ablation 2 0.83 0.74 0.76 0.77
Deep CCA [45] 0.57 0.54 0.53 0.58
BDAE [48] 0.29 0.64 0.55 0.57
BLSTM [50] 0.37 0.31 0.44 0.44
MVAE [140] 0.49 0.55 0.52 0.57
CCA with GIT [114] | 0.63 0.85 0.67 0.74
Our method 0.75 0.84 0.78 0.81
0.85 A=l —)=2 —)=3 — =4
0.8 =
/
0.75
2
S 07
3
<
0.65
0.6
2 3 4 5
L

Figure 5.2.3: Variations in the mean accuracy of the proposed approach regarding A and L.

considering temporal changes becomes apparent. In comparison with [114], where CCA with
GIT performs well in the “Precision” evaluation metric, effectiveness of the proposed method is
evident in the same context as Recall of Ablation 1. Lastly, the comparison with [140] reaffirms
the effectiveness of considering the time lag between gaze and fNIRS data, the primary focus of
this chapter. In the “Recall” evaluation metric, Ablation 2 outperforms other methods, but the
proposed method surpasses others in alternative evaluation metrics.

Figure 5.2.3 illustrates the variations in mean accuracy for the proposed method concerning A
and L. Notably, for any A, the accuracy is optimal at L = 5. Specifically, the highest accuracy
is achieved when A = 1, signifying that the peak of the time lag is to one timestep, that is one

second. Our results align closely with results reported in the other studies [138, 142] within the
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field of brain computing. Consequently, the proposed method effectively captures the human

cognition process by incorporating the time lag.

5.2.4 Conclusions

This chapter presented the multi-modal method for recognizing human emotion through the
TICCA-based feature integration, which accounts for the time lag between fNRIS and gaze
data. Specifically, we incorporated the mechanism to address the time lag-considered weights
into correlation of the CCA scheme, by assuming that the impact of visual stimuli on fNIRS
data adheres to the Poisson distribution. Through the adoption of TICCA, we have innovatively

constructed the time lag-considered human emotion recognition method.
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Multi-view Variational Recurrent
Neural Network for Human Emotion
Recognition Using Multi-modal
Biological data

5.3.1 Introduction

Biological data measurements frequently contain inherent noises, including measurement er-
rors, which can perturb methods based on deterministic machine learning and result in misin-
terpretation of the relationships between human emotions and biological data. In the domain
of brain-machine interaction, it is common to utilize probabilistic machine learning to mitigate
the impact of noise in brain activity data, leading to successful outcomes [143—-145]. Hence, the
utilization of probabilistic machine learning for integration is expected to yield stable integrated
features, ensuring resilient human emotion recognition by accounting for the impact of noises.
Therefore, the integration method needs to jointly consider three key characteristics of biologi-
cal data: 1) the relationship between explicit and implicit information such as brain activity and
gaze, 2) temporal changes associated with emotions recalled by humans, and 3) the potential
impact of noises.

This chapter introduces the Multi-view Variational Recurrent Neural Network (MvVRNN)
for multi-modal human emotion recognition. In the proposed approach, diverse features com-
puted from different biological data are integrated using MvVRNN. Subsequently, a lightweight

classifier is optimized using shared latent features obtained by MvVRNN to realize multi-modal
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Figure 5.3.1: Context and emphasis in this chapter. Within our approach, we introduce the
MvVRNN specifically for human emotion recognition when individuals view images. This is
achieved by emphasizing 1) the utilization of multiple types of biological data, 2) the incorpo-
ration of the recurrent module designed for sequential data, and 3) the integration of the proba-
bilistic generative model.

human emotion recognition. MvVRNN, which is a generative model, incorporates mechanisms
including 1) the integration of multi-modal information encompassing implicit and explicit hu-
man states, 2) a recurrent module for sequential data, and 3) variational approximation based on
the Gaussian distribution, jointly addressing the three aforementioned characteristics of biolog-
ical data as illustrated in Fig. 5.3.1. In MvVRNN, we posit that shared latent features generate
multi-modal sequential data for integration with temporal dependencies and probabilistic vari-
ation. It is important to note distinctions between the proposed MvVRNN and the multi-view
variational autoencoder with the recurrent module [146]. For instance, our model conditions
recurrent modules on previous latent variables to consider temporal dependencies of them. The

main contributions of this chapter are summarized as follows:

e By applying MvVRNN, which is newly derived for multi-modal human emotion recog-
nition, to multi-modal sequential data, dependencies of latent features across timesteps
and relationships between multiple views can be considered while reducing the impact of

noises through variational approximation.
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o Integrated features from MvVRNN offer enhanced representational power for human

emotions via the adoption of distributed latent features.

o It is indicated the efficiency of MvVRNN for recognizing human emotions through com-

parisons with other feature integration methods.
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5.3.2 Emotion Recognition Using MvVRNN

This section delineates the proposed method for emotion recognition utilizing the MvVRNN-
based feature integration. Initially, our approach combines various features from distinct biolog-
ical data sources while considering their temporal dynamics and variability. Subsequently, we
employ a lightweight classifier to facilitate the recognition of human emotions. The input data
from the mth modality (m = 1,2, ..., M; M representing the number of modalities) is denoted as
xgm) € R Ttis crucial to note that the class label y associated with user feedback is present in
the data. However, this is utilized not during the training of MvVRNN but for training a separate

classifier. In the following, we provide a detailed explanation of the MvVRNN. The graphical

representations of the MvVRNN are illustrated in Fig. 5.3.2.

5.3.2.1 Prior Distribution

In MvVRNN, it is posited that the multi-modal sequential input data arise from shared latent
features at each timestep. Additionally, these shared latent features are considered independent
of one another and are assumed to conform to a Gaussian distribution for ease of mathematical
treatment. The prior distribution of the shared latent features z; € R% at timestep ¢ is computed

as follows:

2z ~ N(ppis diag(o,; ), (5.3.1)

[priss Opria] = fRD B M), (5.32)

where pyi; and o, represent the parameters of the prior distribution, and their calculation
is performed by the function f. The hETi variables denote the previous state variables of the
recurrent module corresponding to the mth modality. In MvVRNN, we condition the prior dis-
tribution on these previous state variables, following the approach of the Variational Recurrent
Neural Network (VRNN) [147], and take into account the dependencies of the shared latent

features at neighboring timesteps.
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5.3.2.2 Probabilistic Generation Process

MvVRNN produces input data at each timestep by decoding the shared latent features. More
precisely, in MvVRNN, the generation of multi-modal input data involves preparing decoders

{De:c(’")}fnl:1 for each modality. The generation processes, conditioned on the shared latent fea-

(m)

tures z;, and the previous state variables of the recurrent module h 1

are expressed by the

following equations:

m m . m 2
XMz, ~ N@'™, diag(e™")), (5.3.3)

Em)’a_gm)] _ Dec(’”)(gz(zt),hii? , (5.34)

where ygm) and o'gm) denote the parameters of the generated distribution. Additionally, g, repre-
sents the function that transforms the shared latent features z;. While the shared latent features
are common across all modalities, we generate input data specific to each modality by establish-
ing dedicated decoders for each modality. The integration of input data is achieved by treating

the shared latent features as integrated features, taking into account their temporal dependencies.

5.3.2.3 Recurrent Module

To capture the temporal dynamics of multi-modal sequential input data, we incorporate a
recurrent module, such as the Long Short-term Memory (LSTM) [51] and the Gated Recurrent
Unit (GRU) [148]. Concretely, the multi-modal sequential input data are fed into the respective

recurrent module for each modality, and the process is outlined as follows:
hy" = gn(gum(x(™), g:(z), h}")), (5.3.5)

where gj represents the nonlinear mapping function, and g, is the function responsible for
transforming the input data of the mth modality. In the proposed MvVRNN, a dedicated recur-
rent module is designed for each modality to effectively capture the temporal dynamics inherent
in each modality. Consequently, the resultant state variables hﬁm) encompass temporal informa-

tion derived from each input data, facilitating the extraction of sequential data characteristics.
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The incorporation of the recurrent module addresses the specific focus (2) presented in Sec-

tion 5.3.1.

5.3.2.4 Posterior Distribution

The purpose of MVvVRNN in this chapter is to effectively integrate multi-modal input data
while preserving temporal information. Therefore, the proposed method needs to derive shared
latent features conditioned on input data, specifically, the posterior distribution of the shared la-
tent features. Calculating the posterior distribution in the Variational AutoEncoder (VAE) [149]
framework may not be feasible analytically, and an approximate distribution is typically em-
ployed. Similarly, we utilize an approximate distribution for the posterior distribution and train
the model by minimizing the Kullback-Leibler divergence to converge towards the true posterior

distribution. The approximate distribution is expressed as follows:

D @ M .
z,lxﬁ ),xg ),...,xf ) o N(upost,,,dlag(a'gost’t)), (5.3.6)

1 2 M 1 2 M
[llpOSt,l’ O'post,t] = Enc(gx“)(x; ))9 gx(Z)(xE ))’ ey gx(M>(x§ ))a hi—)l’ h;‘—)l’ ey h;—l))’ (537)

where ppost and o pog, represent the parameters of the approximate distribution. Enc(-) denotes

T

the encoder, typically implemented as a neural network. Lastly, the shared latent features z,_,,

encoded from multi-modal sequential input data, serve as integrated features. The calculation
of the posterior distribution for the shared latent features allows us to achieve our objectives

outlined in Section 5.3.1, specifically, focuses (1) and (3).

5.3.2.5 Objective Function

The aforementioned model is optimized using variational inference techniques. Specifically,
we maximize the marginal likelihood based on the variational lower bound. The variational
lower bound in MvVRNN necessitates the joint distribution and the approximate distribution

H @ M H @ M
(s%’x(s%’ . .,x(sT),ng) and q(ngIx(S%,x(S%, . .,x(ST)), respec-

across timesteps, denoted as p(x
tively, to calculate the variational lower bound, similar to the approach in VAE. It is important to

note that x<, = {x,x5,...,x;}. Leveraging Equations (5.3.1), (5.3.3), and (5.3.5), we compute
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the joint distribution conditioned on the state variables of the recurrent module as follows:

1 2 M
pa) x8 XD zp) =

1 2 M 1 2 M
l_[ p(zt|z<t7 (<l‘)’ (<[)a oo ( )) X 1_[ p(x(m)lz<h (<[)9 (<l)’ s ( )) (538)

Furthermore, utilizing Equations (5.3.3) and (5.3.6), we compute the approximate distribution

conditioned on the state variables of the recurrent module as follows:
1 2 M D @ M
qzerlxl), x 2 x00) = ]—[ gzlza, 28, x2), L xD), (5.3.9)

Equations (5.3.8) and (5.3.9) can be interpreted as factorization [147]. The variational lower

bound, serving as the objective function, is defined by leveraging these relationships, as follows:

T M
e M
EQ[Z(Zlogp(x(m)lxit), X2 x™ )

t=1 m=1

1 2 M 1 2 M
- Drrlgalxl) x5 28 2 lpi) xE), <<,>,z<,>>)] (5.3.10)

where Dk (-||-) denotes the Kullback-Leibler divergence. This objective function serves to
jointly optimize the encoder, the decoder, and the recurrent module. The stochastic backprop-
agation technique is subsequently employed to train the parameters of MvVRNN. Specifically,
the reparameterization trick [149] is utilized for optimizing the parameters included in distri-
butions, following a similar approach to VAE. Thus, we concurrently optimize the trainable

parameters across various functions of MvVRNN.

5.3.3 Experiments

This experiment adopted the same dataset as Chapter 5.1, and the details are presented in
Section 5.1.3.1

To conduct comparative experiments, seven methods were implemented as outlined in Ta-
ble 5.3.1. As ablation studies, we adopted VRNN-based approaches using only fNRIS or gaze-
based features (VRNN-brain or VRNN-gaze). The five remaining methods were previously

introduced for the multi-modal recognition of human emotions [45, 48, 50, 114, 140], with a

116



CHAPTERS: Multi-modal Human Emotion Recognition

Table 5.3.1: Characteristics of each method.

Multi-modality Recurrence Variational

VRNN-gaze v v
VRNN-brain v v
TC-MVAE [140] v v
TC-CCA [114] v

Deep CCA [45] v

BDAE [48] v

BLSTM [50] v v

MvVRNN v v v

Table 5.3.2: Evaluation results for each method.

Recall Precision Fl-score Accuracy
VRNN-gaze 0.29 0.28 0.25 0.49
VRNN-brain 0.58 0.45 0.49 0.54
TC-MVAE [140] | 0.49 0.55 0.52 0.57
TC-CCA [114] 0.63 0.85 0.67 0.74
Deep CCA [45] 0.57 0.54 0.53 0.58
BDAE [48] 0.29 0.64 0.55 0.57
BLSTM [50] 0.37 0.31 0.44 0.44
MvVRNN 0.77 0.67 0.70 0.75

primary focus on integrating brain activity and gaze-based features. We directly input these in-
tegrated features into Support Vector Machine (SVM) [105] for recognizing human emotions.
Notably, human emotion recognition methods based on Deep CCA and BDAE [45, 48] lacked
consideration for temporal changes in sequential data, necessitating the averaging of each fea-
ture across timesteps for these methods. The MvVRINN was optimized using ADAM [150], with
the mini-batch size, learning rate, and epoch set to 8, 1.0x107>, and 420, respectively. Addition-
ally, the dimension of the shared latent features was configured as 16. Evaluation metrics such
as “Recall”, “Precision”, “F1-score”, and “Accuracy” were employed to assess the proposed and
compared methods.

The experimental results presented in Table 5.3.2 compare the proposed MVVRNN with the
other methods. Firstly, the comparison with VRNN-brain and VRNN-gaze confirms the su-

perior effectiveness of multi-modality, incorporating both gaze and brain activity data, over
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uni-modality in human emotion recognition. Besides, comparing the MvVRNN with BDAE,
Deep CCA, and TC-CCA reveals that the evaluation results of the MvVRNN are the high-
est among these methods, substantiating the efficacy of the recurrence and variational mecha-
nisms. Meanwhile, the recurrent module demonstrates utility in capturing temporal information
in biological data when compared to the time-considered multi-modal variational autoencoder
(TC-MVAE) [140]. Additionally, the variational approximation proves suitable for modeling
uncertainty in biological data when contrasted with BLSTM. In this manner, both the recurrent
module and variational approximation are shown to be effective, underscoring the suitability of
their collaborative use in multi-modal human emotion recognition. Consequently, the efficacy of

the MvVRNN for feature integration is validated in the context of human emotion recognition.

5.3.4 Conclusions

In this chapter, we introduce MvVRNN that is a novel model designed for recognizing hu-
man emotions using multiple tyes of biological gata. Specifically, MvVRNN is innovatively
developed to integrate multi-modal sequential data with taking into account dependencies of la-
tent variables across timesteps and relationships of multiple views and mitigating the impact of
noises. Experimental results demonstrate the effectiveness of the newly introduced MvVRNN

for feature integration in the context of human emotion recognition.
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Chapter 6

Conclusions

As conclusions of this thesis, this chapter summarizes the proposition and clarifies future

directions.

6.1 Summary of the Proposition

This section provides a summary of the proposition in this thesis. This thesis deals with the
construction of machine learning models specific to personalized prediction of human perception
toward visual stimuli. Biological data are used as the person-specific information, and several
machine learning models suitable for biological data are presented.

In Chapter 3, three methods for the prediction of the personalized saliency map (PSM) with
a limited amount of training data are presented. These methods focus on the similarities of
visual attention between persons for the prediction of personalized salient regions in images
from the limited amount of training data. To calculate such similarities, the images that persons
commonly gazed at are needed. Hence, the adaptive image selection module considering object
and visual attention is proposed and introduced into the PSM prediction model in a simple
manner. As the PSM prediction models based on the similarities of visual attention between
persons, the following three models are presented: 1) the weighted average-based model, 2) the
Gaussian process regression-based model, and 3) the model using object-based similarities of
gaze tendency. These methods steadily achieve improvement in performance.

In Chapter 4, two methods for gaze-based emotional category classification of images are
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presented. For simultaneously analyzing the content of visual stimuli and human visual atten-
tion, the novel uniform representation including visual contents and gaze data is proposed. The
constructed representations are the fourth-order tensors, and the machine learning-based tensor
analysis is applied to them. By confirming the performance of emotion label estimation, such
representation is indicated to contain both the visual contents and gaze data. As the gaze-based
emotion label classification, CNN features are extracted from the constructed representation.
CNN features are outputs of an intermediate layer of the pre-trained CNN and are well-known
to their high representation ability. However, they do not necessarily have the high discrimina-
tion ability for our target domain, and multiple CNN features, which are extracted from multiple
CNN models, are used. Experimental results show the effectiveness of these approaches.

In Chapter 5, three multi-modal methods for recognizing human emotions using several types
of biological information are presented. Multiple types of biological data are used to compen-
sate for information that is missing from a single type of biological data. Each type of biological
data represents a different aspect of the human response, and the human perception can be more
precisely predicted by collaboratively using them than one of them alone. To deal with the sev-
eral types of biological data, feature integration methods are presented since biological data are
pre-processed for calculating features suitable for each type of data before inputting machine
learning models, generally. The first method simply focuses on the correlation-based feature
integration treating several types of biological information. By using the canonical correlation
analysis, heterogeneous features are transformed into the common feature spaces with proper-
ties of multiple input features. Transformed features are input to the simple machine learning
model for predicting human perception. Besides, humans collect information through their eyes,
and this information is subsequently processed in the brain. The visual stimuli perceived by the
human eyes undergo transmission to the brain through neurotransmitters, leading to a time gap
between gaze data and brain activity data Hence, the second method integrates features with con-
sidering the temporal misalignment of multiple biological data. Finally, the third method focuses
on the other characteristics of biological signals. Specifically, this method realizes feature inte-
gration with considering the following three characteristics: 1) the relationship between explicit
and implicit information such as brain activity and gaze, 2) temporal changes associated with

emotions recalled by humans, and 3) the potential impact of noises. For simultaneously consid-
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ering them, the multi-view variational recurrent neural network is newly derived. Experiments
on datasets derived from personally acquired raw data showed the progressive improvement in
performance.

The contributions of this thesis are the proposals of the several machine learning models
specific to the biological data for predicting the human perception toward visual stimuli. The
methods incorporates the mechanisms that can deal with the unique properties of biological data,
and their effectiveness has been validated by conducting experiments on on datasets derived from

personally acquired raw data and openly available datasets.

6.2 Future Directions

This section clarifies the future directions of this study.

Although the gaze and brain activity data are used as biological data in this thesis, there
are a variety of biological data such as Electrocardiogram (ECG) and facial expression. With
the advancements in sensor technologies, the sensors measuring biological data are becoming
smaller and more inexpensive, and they are being used beyond the scope of research. Under
these circumstances, there is a need to construct a unified model that can comprehensively han-
dle biological data regardless of the format or type of data since individuals possess different
sensors and have access to varying types of data. The establishment of such a unified model has
the potential to address or accommodate issues pertaining to individual differences, which are
currently processed in isolation in this thesis.

One of the purposes of the personalized prediction of human perception is to introduce person-
specific information into various tasks such as recommendation and information retrieval. This
thesis covers the construction of machine learning models specific to biological data, but their
application to such tasks is beyond the scope. Hence, one of the future directions is the actual
implementation of personalized prediction of human perception for real-world applications.

As mentioned in Chapter 1, the human responses depend on the kind of stimuli, and the con-
tents of stimuli are important for personalized prediction of human perception. While, in the
fields of computer vision and natural language processing, the very large-scale models, which

can solve several tasks in a single model, have been constructed [151, 152]. These models
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have successfully achieved advanced semantic understandings from images and text descrip-
tions. Therefore, the utilization of such large-scale models may enhance the personalized pre-
diction of human perception presented in this thesis.

To mitigate the substantial volume of data acquired from individuals, this thesis primarily
explores the data similarities between individuals. In contrast, federated learning [153, 154]
has been extensively researched for handling data specific to each individual. Integrating the
principles of federated learning into the method presented in this thesis holds the promise of
enhancing the efficiency of data utilization. However, when incorporating data from external
sources, particularly from other individuals, significant privacy concerns may arise. Therefore,
it is imperative to construct models that preserve privacy when utilizing data obtained from

different individuals.
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