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ABSTRACT
Nuclear magnetic resonance (NMR) spectroscopy is one of the indispensable techniques in chemistry because it enables us to obtain accu-
rate information on the chemical, electronic, and dynamic properties of molecules. Computational simulation of the NMR spectra requires
time-consuming density functional theory (DFT) calculations for an ensemble of molecular conformations. For large flexible molecules, it is
considered too high-cost since it requires time-averaging of the instantaneous chemical shifts of each nuclear spin across the conformational
space of molecules for NMR timescales. Here, we present a Gaussian process/deep kernel learning-based machine learning (ML) method for
enabling us to predict, average in time, and analyze the instantaneous chemical shifts of conformations in the molecular dynamics trajec-
tory. We demonstrate the use of the method by computing the averaged 1H and 13C chemical shifts of each nuclear spin of a trefoil knot
molecule consisting of 24 para-connected benzene rings (240 atoms). By training ML model with the chemical shift data obtained from DFT
calculations, we predicted chemical shifts for each conformation during dynamics. We were able to observe the merging of the time-averaged
chemical shifts of each nuclear spin in a singlet 1H NMR peak and two 13C NMR peaks for the knot molecule, in agreement with experimental
measurements. The unique feature of the presented method is the use of the learned low-dimensional deep kernel representation of local spin
environments for comparing and analyzing the local chemical environment histories of spins during dynamics. It allowed us to identify two
groups of protons in the knot molecule, which implies that the observed singlet 1H NMR peak could be composed of the contributions from
protons with two distinct local chemical environments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147398

I. INTRODUCTION
Within the last decade, there has been tremendous progress in

the development of machine learning (ML) methods for fast and
accurate prediction of chemical properties of molecules and mate-
rials allowing to access molecular scales and simulating time scales
that were intractable before. These methods realized accurate mod-
els for potential energy surfaces,1–8 as well as chemical shifts in
solids9–12 and liquid state.13 One of the current challenges is to
enable access to the fast and reliable ML-aided computational chem-
istry predictions of thermodynamic14 and time-averaged chemical
properties for previously intractable large systems. One computa-
tionally demanding task, in particular, is the prediction of nuclear
magnetic resonance (NMR) spectra of large and dynamic molecules
that requires computing the time-averaged chemical shifts of nuclear
spins.

NMR spectroscopy quantifies the response of the atomic nuclei
spins placed in a strong magnetic field to the radio-frequency elec-
tromagnetic radiation.15 Due to the nuclear magnetic resonance,
spins reemit signals at the shifted frequencies depending on the
local environment of each spin, making it possible to capture the
relative positions of neighboring nuclear spins as well as local elec-
tronic structure. Therefore, NMR measurements are powerful and
indispensable, in particular in chemistry and material science. Fur-
thermore, most importantly, the resulting NMR spectrum reflects
the time-averaged local atomic environments due to the intrinsic
dynamics of the molecule. Access to the local structural, electronic,
and dynamic information makes NMR spectroscopy one of the
most versatile and precise spectroscopic techniques in the analy-
sis of not only chemical structure but also dynamic behaviors of
molecules.
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The computation of NMR spectra of molecules has a long
history and now is well established.15 On the other hand, for
some molecules, such as the trefoil knot molecule of paraphenylene
reported recently,16 the computation of the NMR spectrum for a
representative structure at minimum energy cannot reproduce the
single peak of experimentally observed 1H NMR spectrum, even at
a qualitative level, presumably because of the intrinsic dynamics of
the knot. Interpretation of the experimental NMR spectra can be
supported by simulated spectra, which should be obtained by time-
averaging the chemical shifts for each nuclear spin over the space of
accessible molecular conformations. It is, however, computationally
challenging. First, the computation of the chemical shifts for a single
molecular conformation is high-cost since it requires the calculation
of the second-order derivative of energy of the molecule with respect
to the external magnetic field and nuclear magnetic momentum;
this is a very time-consuming calculation with currently available
quantum chemistry computer software. Second, the chemical shifts
should be computed for all instantaneous conformations of the
dynamic knot molecule. The time-averaging of the simulated chem-
ical shifts over the entire accessible conformational space poses a
computational challenge, while the time-averaged chemical shifts
have been directly computed only for a limited number of relatively
small molecules.17

Several computational approaches exist for the prediction of
NMR spectra of dynamic molecules. For example, in the work
of Kwan and Liu,17 the dynamic contributions to predicting the
NMR spectra of small molecules were studied and their method was
applied to predict the equilibrium structure of the [18]-annulene
molecule, consisting of 36 atoms. Next, the Conformer-Rotamer
Ensemble Sampling Tool18 aims to predict the averaged NMR spec-
tra of small molecules by combining the computed spectra for a
Boltzmann weighted set of equilibrium structures, where the nuclear
permutations due to the rotatory motions of parts of the molecule
are addressed. Even though these approaches demonstrated the
necessity to account for dynamic effects, as pointed out in the work
of Grimme et al.,18 in most cases, it is computationally too expen-
sive to calculate the averaged chemical shifts for each nuclear spin
since it requires the computation of chemical shifts for a large num-
ber of conformations sampled from the molecular dynamics (MD)
trajectory as we also mentioned above. On the other hand, recent
ML-based approaches for NMR prediction9–13,19 allowed to signif-
icantly reduce the computational cost by employing a surrogate
ML model for chemical shifts trained on a set of reference config-
urations, therefore, significantly reducing the amount of high-cost
quantum chemical calculations. Although time-averaged chemical
shifts can be computed with simple ML models, the richer mul-
tiparametric probabilistic models could offer a convenient set of
tools to obtain finer insights into the characterization of chemical
environments of individual spins during dynamics.

In this study, we develop a new algorithmic scheme for the
elucidation of NMR spectra of flexible molecules by using a classi-
cal MD simulation and Gaussian process (GP)/deep kernel learning
(DKL) model in conjunction with continuous three-dimensional
Smooth Overlap of Atomic Positions (SOAP) descriptors, which
is capable of predicting the time-averaged chemical shifts of each
nuclear spin as well as comparing the local chemical environments of
individual spins over the accessible conformational space, see Fig. 1.
Differently from other chemical shift prediction models,9,10,13 the

presented method leverages the learned low-dimensional deep ker-
nel representation of local environments allowing to compare the
histories of local chemical environments of spins during dynam-
ics as well as visually and numerically control the uncertainty of
predictions. As an illustrative example, we employed a trefoil knot
molecule,16 which is topologically interlocked and consists of 24
linked benzene rings (144 carbons and 96 protons). Although local
chemical environments of atoms within a single conformation of the
knot are quite diverse, its experimental 1H NMR and 13C NMR spec-
tra provided just a singlet peak and two peaks, respectively.16 It was
suggested that a few peaks observed in the 1H and 13C NMR spectra
are due to the intrinsic dynamics of the knot.

II. RESULTS
While making predictions of chemical shifts for individual

spins by an ML method, it would be beneficial to have (1) a rep-
resentation of local nuclear environments that is continuous with
respect to atomic positions; (2) good prediction quality on the test
set together with uncertainty estimates for each test sample; (3) a
low-dimensional representation of dataset allowing for data inter-
pretation and uncertainty control. To fit all of these criteria, we
use a combination of GP regression with DKL20,21 together with
SOAP continuous descriptors in a three-dimensional molecular
space.

The overall prediction scheme is given in Fig. 1, and we refer to
it as SOAP/DKL/GP model. In the model, first, training/test confor-
mations were selected from the MD trajectory data obtained from
semiempirical and classical MD simulations. Then, density func-
tional theory (DFT) calculations of chemical shifts were performed
for the selected molecular conformations. After the preparation of
the training data, the SOAP/DKL/GP model was trained with the
chemical shift data. Next, model performance was examined in
terms of the predictive quality of chemical shifts and uncertainty
estimates; a decision was taken on whether more training data are
needed. Uncertainty quantification for the model was performed
by the learned variance parameter of the GP acting over the low-
dimensional output of the deep kernel. The attractive feature of the
low-dimensional DKL representation is that we can visually and
numerically examine how well the environments of the selected
training conformations cover the environments present in the MD
trajectory. Finally, the low-dimensional mappings of local nuclear
chemical environment histories, provided by the trained deep ker-
nel, were computed together with the time-averaged chemical shifts
of each nuclear spin.

The prediction scheme allowed us not only to provide a pos-
sible explanation of the formation of the experimental 1H and 13C
NMR spectra but also to get theoretical insight into the local chemi-
cal environment histories of nuclear spins during the dynamics of
the molecule. By comparing the local chemical environment dis-
tributions of each 1H nuclear spin, we categorized protons into
two groups that correspond to distinct distributions of the local
chemical environments, although resulting in almost indistinguish-
able time-averaged chemical shifts based on classical MD simula-
tion for a 100 ns that is even shorter than the timescale of NMR
measurement.
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FIG. 1. Machine learning (ML) scheme for predicting time-averaged chemical shifts for each nuclear spin. First, local environments of nuclear spins, based on MD trajectory of
the knot (left), are mapped to the invariant vectors. Then, invariant vectors are mapped to the low-dimensional space by the deep kernel (D = 840, P = 1000, Q = 50, R = 2
were used), where predictions are performed by the Gaussian process (middle). Low-dimensional mapping at the output of the deep kernel is used to construct fingerprints
characterizing the local chemical environments of the nuclear spins during dynamics (right).

A. Results: Trefoil knot dynamics and NMR spectrum

During the dynamics, each nuclear spin of the knot moves
through diverse local chemical environments. This is easily inferred
from the calculated chemical shifts for one of the optimized confor-
mations at the DFT level of theory, see Fig. 2, where the calculated
chemical shifts cover a wide range of values,22 while the experimen-
tally observed spectra are given by the narrow singlet peaks in both
1H and 13C NMR spectra. As a consequence, it was suggested that the
merging of signals from different nuclear spins of the same species
into a narrow peak may appear due to the dynamics of nuclear spins
within the flexible molecule.

Guided by the classical MD simulations, we illustrate the
dynamics of the knot in Fig. 3. Locally, the paraphenylene chain is
slipping next to another chain at the three “crossings” within the
knot. Because the molecule is a closed loop, the local traversal sliding
induces the sliding of another part of the molecule. This dynamics
of the molecule as a whole causes interchange of the nuclear relative

positions. This process occurs at timescales of hundreds of ps, lead-
ing to the appearance of narrow peaks. Estimated correlation times
for different groups of spins based on MD simulations are provided
in the supplementary material, Figs. 7 and 8. Since all the atoms
within the knot molecule fluctuate with the correlation times in the
range of hundreds of ps, it allows us to predict the locations of sharp
peaks for individual spins by computing the time averages of their
chemical shifts. In this case, no line broadening effect appears, and
the final spectrum results in a collection of narrow peaks.

Symmetries and nuclear permutations arising during the
dynamics can be understood by separating nuclear spins into
groups. We can partition the whole system into two distinct groups
of carbons (i.e., carbons at para-positions and nonpara-positions)
and a group of protons with two subgroups. First, there are para-
carbons that link phenyl rings to each other and are bonded to
three carbons. Second, there are ortho- and meta-carbons that are
bonded to two carbons. There are in total 48 para-carbons, and 96
nonpara-carbons, which we can relate to differences in intensities

FIG. 2. Experimental NMR spectra read
from the reported paper16 (dark blue
color) and calculated chemical shifts
for one of the optimized conformations
(green color). Relative intensities of the
peaks are shown only for clarity. (a) 1H
nuclear spins, (b) 13C nuclear spins.
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FIG. 3. Trefoil knot molecule. Para-carbons are colored in dark green, nonpara-
carbons are colored in light green, and hydrogen atoms, highlighted with red and
blue, correspond to two subgroups of protons with distinct chemical environment
distributions during dynamics. Typical motions of the knot molecule are shown in
the inset with arrows.

of peaks in the 13C NMR spectrum. As it will be shown, despite
there being a single observed peak in the experimental 1H NMR
spectrum, we found there are two distinct subgroups of protons
with different distributions of local chemical environments during

the simulated time length of MD. This partition of protons into
two subgroups during dynamics appears at timescales of 1 ns and
is present for the 100 ns MD simulation. As illustrated in Fig. 3,
the protons in the outer (or upper) chain that cross another chain
(inner or lower) in a parallel way are highlighted in blue and the pro-
tons in the inner (or lower) chain that cross another chain (upper or
outer) in a parallel way are highlighted in red. Similar to the protons,
the nonpara-carbons also can be categorized into two subgroups
correspondingly.

B. Results: Merging of the time-averaged
chemical shifts

Next, we show how the time-averaged 1H and 13C NMR chem-
ical shifts become closer and group together when the length of
time-averaging window is increased. This is expected to result in
sharp peaks observed in the experiment. Figure 4 illustrates the
merging of the time-averaged 1H and 13C NMR chemical shifts for
each proton and carbon at three simulation times for 1 ns (200 snap-
shots), 10 ns (2000 snapshots), and 100 ns (20 000 snapshots) of
the classical MD. Additionally, in Fig. 6 we report the variance of
the time-averaged chemical shifts corresponding to each peak as a
function of the MD simulation time: Consequently, for given range
of simulation times up to 100 ns, variances of the time-averaged
chemical shifts approximately follow the power law as a function of
simulation time.

The experimentally observed NMR chemical shifts were
7.14 ppm for 1H and 127.2 and 138.1 ppm for 13C, while the pre-
dicted ones were 7.7 ppm for 1H and 134.6 and 139.7 ppm for
13C. This discrepancy between the observed and predicted chemical
shifts may be attributed to the following factors: (1) lack of accu-
racy of the classical force fields to describe the dynamics of the knot
appropriately; (2) computational condition for chemical shifts, see

FIG. 4. Merging of the averaged 1H and 13C NMR chemical shifts at different timescales. The computed time-averaged chemical shifts for individual nuclear spins are shown
as bars on the rug plot: in blue color for “blue” protons and nonpara-carbons bonded to such protons (denoted “blue C”), in red color, for “red” protons and nonpara-carbons
bonded to such protons (denoted “red C”), in green color for para-carbons, together with experimental NMR spectra read from the paper16 (dark blue color). (a) 1H chemical
shifts averaged over 1 ns, (b) 13C chemical shifts averaged over 1 ns, (c) 1H chemical shifts averaged over 10 ns, (d) 13C chemical shifts averaged over 10 ns, (e) 1H
chemical shifts averaged over 100 ns, (f) 13C chemical shifts averaged over 100 ns.
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FIG. 5. Mappings of 1H (a) and 13C (b) local environments from classical MD trajectory by the deep kernel. h(3)
1 and h(3)

2 are the outputs at the last (third) layer of the
deep kernel. Colored points correspond to the environments from the training instantaneous conformations with computed chemical shifts; gray circles correspond to the
environments from all conformations within the trajectory for which SOAP/DKL/GP prediction scheme was employed. (a) 1H spins (b) 13C spins.

Ref. 17; (3) missing of solvent effects in DFT calculation of chem-
ical shifts; (4) averaging chemical shifts within shorter time scales
compared with the time resolution of NMR measurements; and (5)
bias error of the ML model. Although the discrepancy originated
from various factors, the proposed prediction scheme allowed us to
elucidate the merging of the time-averaged chemical shifts, which
could explain the experimentally observed NMR spectra of the knot
molecule.

Even though the merging of the time-averaged chemical shifts
showed agreement with the experimental measurements, a simple
question arises: How much faith we should put into ML predictions
for a given trajectory and given training data? The low-dimensional
mapping provided by the deep kernel may give us a good hint.
Parameters of the deep kernel are trained to statistically fit the
set of training data and the prediction uncertainty is captured
by the base kernel acting on the two-dimensional output of the
deep kernel. Additionally, it is valuable to have a visual represen-
tation that will indicate where the predictions may become less
credible.

In Fig. 5, we provide the mappings of the training local atomic
environments on top of all the local atomic environments that
appear within the MD trajectory. In a nutshell, the prediction of
chemical shift for each unknown environment (a gray circle) is made
by interpolating among the set of its colored neighbors. The farther a
gray circle from the nearest colored training points is the higher the
uncertainty of the prediction becomes. Deep kernel mapping of the
instantaneous local environments of individual protons reveals the
structure of the types of environments present in the system. There
are seemingly a single group of environments for protons and two
groups for carbons. Overall, the proposed scheme can be used to pre-
dict chemical shifts, understand the histories of the local chemical
environments of nuclear spins, compute the time-averaged chem-
ical shifts, and estimate the uncertainty of predictions. The local
chemical environments of proton and carbon nuclear spins from
the MD are mapped to the continuous blobs of gray points cov-
ered by the training points (in color), where no gray points stay
outcast, thus providing us with a clue that most of the conforma-
tional space of the molecule during classical MD is covered by the

FIG. 6. Variance of the time-averaged chemical shifts for nuclear spins correspond-
ing to each peak as a function of MD simulation time for which time-averaging was
performed.

environments present in the training dataset. Section II C discusses
the groupings of the local chemical environment histories of protons
in detail.

C. Results: Analysis of local chemical environment
histories of protons

Since only a single peak was observed in 1H NMR spectrum, we
may need to investigate that all the protons move through identical
local chemical environments at the accessible MD timescale. How
can we quantify the histories of local chemical environments each
proton experiences during dynamics? To answer this question, we
performed the following analysis.

Each spin continuously moves through various local chemi-
cal environments during dynamics. This motion is reflected by the
continuous path each nuclear spin tracks over the two-dimensional
output of the deep kernel. Therefore, each proton has the cor-
responding distribution of points over the low-dimensional deep
kernel output, reflecting the series of the local environments the pro-
ton experienced throughout the dynamics. These distributions can

J. Chem. Phys. 158, 194108 (2023); doi: 10.1063/5.0147398 158, 194108-5
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FIG. 7. (a) Similarity between the distri-
butions of proton chemical environments
during dynamics at the output of the
deep kernel visualized by the multidi-
mensional scaling algorithm. Each point
corresponds to a distribution of local
environments at the output of the deep
kernel experienced by a single proton
during the dynamic motion of the knot.
Distance between a pair of points cor-
responds to the earth mover’s distance
between the corresponding discretized
distributions. Example distributions are
highlighted within squares. Local chemi-
cal environment histories of protons form
two distinct groups highlighted by red
and blue colors. (b) Variances of the
predicted chemical shifts experienced by
protons during dynamics.

thus serve to characterize the overall local chemical environment
histories of individual protons along the MD trajectory.

First, we computed the distributions of sets of points over
the two-dimensional output of the deep kernel by binning points
into 12 × 12 discrete grids. Second, to compare the distributions
corresponding to the individual protons, we computed the earth
mover’s distance24 between them, which resulted in a 96 × 96 dis-
tance matrix for 96 protons. Finally, using this distance matrix,
we applied a multidimensional scaling algorithm to visualize the
similarity between the protons’ chemical environment distributions
as shown in Fig. 7(a). We observe two distinct groups of pro-
tons, defined as red and blue protons in Fig. 3, which implies
that the observed singlet 1H NMR peak could be composed of the
contributions from protons with two distinct local chemical envi-
ronments. Indeed, we obtain a very similar value of the time-
averaged chemical shifts averaged among all red and all blue protons,
respectively, as reported in Table S1 in the supplementary material.
In addition, it was noted that red protons experience a larger vari-
ance of chemical shifts during dynamics than blue ones, as shown in
Fig. 7(b). This is because red and blue protons are affected differently
via CH/π type interactions by the neighboring chain. As a note of
caution, this grouping of protons may depend on the simulated MD
timescale. Here, we used a 100 ns classical MD trajectory, where no
flip of a phenyl ring was observed (discussion on the ring flip barrier
is available in the supplementary material, Sec. S2 G). In case there
are such ring-flips for longer simulation times, all protons would
be indistinguishable, which is also in agreement with experimental

data. Similar to the proton case, the nonpara-carbons can also be
clustered into two subgroups during the dynamics (supplementary
material, Fig. S14).

III. CONCLUSION
In this work, we have presented an ML-based method for pre-

dicting chemical shifts, computing the time-averaged chemical shifts
for each nuclear spin, analyzing the local chemical environment his-
tories of spins during dynamics, and applied it to the example of
a large knot molecule. We were able to obtain averaged chemical
shifts for such a large molecule and found that the observed sin-
glet 1H NMR peak could be composed of the contributions from
protons with two distinct local chemical environments. The dis-
tinctive feature of the presented method is the use of the learned
low-dimensional deep kernel representation of local environments
allowing to compare the histories of local chemical environments of
spins during dynamics and to evaluate the prediction uncertainty
both numerically and visually over the output layer of the deep
kernel.

From the perspective of machine learning, it might be surpris-
ing that we successfully predicted the chemical shifts for several
thousand snapshots using calculated chemical shifts for only 18 con-
formations as a training dataset. This is due to the characteristics of
the knot structure: First, there is similarity between the local envi-
ronments of different spins; second, the dynamics of the interlocked
knot molecule is somewhat restricted due to the knot structure.
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These facts enabled us to capture the repetitive atomic environ-
ments with a small number of training conformations required for
accurate predictions. We selected the knot molecule to prove that
the SOAP/DKL/GP scheme can provide the time-averaged chemi-
cal shifts for each nuclear spin; the prediction of the time-averaged
chemical shifts for large molecules with more complex dynamics will
indeed motivate the design of more advanced multiparametric prob-
abilistic predictive schemes that scale easily with the addition of a
large number of training points.

Some additional points in methodological development are the
following. First, the computational cost of the chemical shifts for
many conformations of a large system at a sufficient level of the-
ory can be prohibitively high. Since chemical shifts represent a local
chemical property, we may need to design approximate calcula-
tion schemes together with transfer learning methods for training
the model on one collection of systems while applying it to the
other. Second, performing MD simulations at sufficient time lengths
comparable to the acquisition time of NMR measurements is also
high-cost. Third, fitting chemical shifts for a large number of local
atomic neighborhoods may be problematic due to scalability issues
of GPs; this point currently is an active research topic on its own.
These issues are under consideration for the following work.

IV. METHODS
A. Computational studies
1. Classical MD

First, we performed quantum mechanical calculations at
HF/6-31G∗ level of theory by Gaussian 16 Rev. C.0126 software
to evaluate atomic charges. The topology files of the trefoil knot
molecule and solvent were prepared by the antechamber package27

with the general AMBER force field.28 AMBER topology files gener-
ated by the package were converted into a GROMACS format using
the Python script, Acpype.29

Second, equilibration of the solvent under the presence of the
knot molecule was conducted by the following procedure. One knot
molecule was placed at the center of 8 Å cubic box and solvated
by 7669 dichloromethane molecules. Energy minimization of the
systems was performed based on the conjugate gradient algorithm
with the threshold of the maximum force, 10.0 kJ/mol/nm. Next,
canonical ensemble (NVT ensemble) equilibration for 0.1 ns at
300 K with 0.2 fs timestep followed by isothermal–isobaric ensem-
ble (NPT ensemble) equilibration for 0.1 ns at 1 bar pressure with
0.2 fs timestep was carried out for relaxation of solvent molecules,
while the atomic positions of the knot are restrained with a harmonic
potential. The temperature and the pressure were kept constant by
using the velocity rescale thermostat and the Berendsen barostat,30

respectively.
Third, the main MD simulation was performed under NPT

ensemble for 100 ns. The temperature at 300 K and pressure at
1 bar were kept constant using the velocity rescale thermostat31

and the Parrinello–Rahman barostat,32 respectively. The cutoff value
of 14 Å was assigned for nonbonded interactions. Long-range
electrostatic interactions were treated using a particle-mesh Ewald
scheme.33 Dynamics were propagated with a leapfrog integrator
using a time step of 1 fs, and C–H bonds were constrained using
a linear constraint solver.34 All simulations were carried out under

periodic boundary conditions using GROMACS software version
2020.5.35 The structures at 10, 30, 50, 70, 90, 95, and 100 ns dur-
ing the main MD simulation were used to calculate the chemical
shifts.

2. DFTB-MD
Optimization of trefoil knot was performed using the

self-consistent-charge density functional tight-binding (DFTB)
method36 with the third-order expansion37 as implemented in the
DFTB+ package version 20.2.1.38 The 3ob parameter set39,40 with
the Hubbard parameters −0.1492 for C and −0.1857 for H were
employed. After the optimization, DFTB with molecular dynam-
ics (DFTB-MD) simulations were conducted for 200 ps with 0.4 fs
time interval, employing an NVT ensemble at 300 K and the
Nose–Hoover chain thermostat.41,42 Grimme’s D3 type dispersion43

was included in all calculations. The structures at 0, 20, 25, 50, 75,
100, 125, 150, 175, and 200 ps were used to calculate the chemical
shifts.

3. NMR spectra simulation
Isotropic chemical shieldings were calculated at B3LYP/6-311

+G(2d,p) level of theory with GIAO method by the Gaussian 16
Rev. C.01.26 Chemical shieldings were converted to chemical shifts
by employing the SiMe4 as a reference (values are available in the
supplementary material). Chemical shifts were calculated for the
selected snapshots from the classical MD, DFTB-MD, one optimized
structure at DFTB level of theory, and one optimized structure at the
B3LYP/6-311+G(2d, p) level of theory. The calculation for a single
snapshot required around three days on 16 cores.

B. Invariant descriptors and ML model
For a continuous and rotationally invariant representation of

local nuclear environments, we used the SOAP descriptors.44 Here,
we briefly describe the basic steps behind SOAP calculations for the
simplest case of the three-body density correlation function. SOAP
first maps the atomic positions of a molecule within the local neigh-
borhood of some central atom onto the sum of smooth and localized
functions, typically Gaussians, which is referred to as atomic density.
The density is then projected onto the basis sets of radial functions
and spherical harmonics. The types of radial basis functions and size
of radial/spherical basis sets are hyperparameters and are selected
depending on the diversity of molecular conformations within the
dataset. The feature vector that continuously depends on the posi-
tions of neighbor atoms, and which is rotation, translation, and
permutation invariant, is obtained by contraction of density expan-
sion coefficients over magnetic quantum numbers. Details on SOAP
calculations are provided in the supplementary material and the
complete theory can be found, for example, in Ref. 45.

The GPs are known to be efficient and mathematically well-
formalized regression models that provide predictions jointly with
uncertainty estimates.46 The GP is fully defined by its mean func-
tion and kernel or covariance function. While the mean function
simply encodes the prior knowledge into the model, the covari-
ance function captures the correlations between the pairs of points
within the dataset. The representation of local nuclear environ-
ments provided by SOAP vectors is high-dimensional. For example,
840-dimensional vectors were computed in this work. While train-
ing GPs in high-dimensional space for simple datasets does not
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necessarily pose a problem, we gain additional information if we
obtain a low-dimensional representation of data. Such representa-
tion of data points may naturally be learned by the DKL,20,21 where
the GP covariance function is given by the composition of the deep
neural network with the low-dimensional base kernel: The low-
dimensional output of the neural network serves as an input for the
base kernel. Weights of the neural network, referred to as a deep
kernel, are trained jointly with the base kernel parameters to maxi-
mize the marginal log-likelihood, which provides a natural measure
of how well the statistical model describes the training data. In the
end, the trained deep kernel provides a mapping from the high-
dimensional descriptor space to the low-dimensional space, where
similar environments having similar chemical shifts are mapped
close by.

The proposed SOAP/DKL/GP scheme applied to the dynamic
knot molecule allowed us (1) to compute the time-averaged chemical
shifts; (2) to compare the histories of local chemical environments
of nuclear spins during dynamics; (3) to get visual and numerical
estimates where predictions may fail for a given training set of con-
formations and a given MD trajectory. We used the cross-validation
technique to assess the performance of the model and then tested the
model on the unseen test snapshot randomly selected from the avail-
able snapshots from the classical MD trajectory. During the tests of
the 1H SOAP/DKL/GP model, the Mean Square Error (MSE) on
the unseen test snapshot was 0.066 ppm, the Mean Absolute Error
(MAE) was 0.202 ppm, and the maximum error was 0.658 ppm. The
13C SOAP/DKL/GP model had an MSE of 2.402 ppm, an MAE of
1.240 ppm, and a maximum error 5.21 ppm on the unseen test snap-
shot. Additional details of the model performance are provided in
the supplementary material.

From a physical perspective, the chemical shift prediction
scheme is based on two main assumptions. First, it is assumed
that the chemical shielding tensor varies continuously with the
positions of the neighboring atoms, i.e., we can apply the local
atom density fitting scheme. Second, it is assumed that the entire
conformational space of the molecule was accessible by MD sim-
ulations. In cases when high free energy barriers exist between
basins of conformations, we may need to apply additional Boltz-
mann weighted averaging for the set of trajectories from each
basin.

Previously, the continuous SOAP descriptors44 were used
together with simple GP models for energy and force-fitting,1 as
well as for the prediction of NMR spectra of solid state structures.9
Differently from previous studies that applied GPs to fit the chemical
properties of molecules, here, we employ a highly multiparametric
probabilistic model that combines training of the deep kernel jointly
with GP. We use the nonlinear deep kernel map as a way to visual-
ize and compare distributions of local environments of nuclear spins
during the dynamics of a molecule.

We used chemical shifts computed for 18 configurations (seven
configurations from classical MD, nine configurations from DFTB-
MD, one optimized structure at DFTB level of theory, and one
optimized structure at B3LYP/6-311+G(2d, p) level of theory with-
out including neither implicit nor explicit solvent) as a dataset. We
trained the ML model on 17 configurations and used one configu-
ration (taken from classical MD) as test dataset. SOAP parameters,
the architecture of the deep kernel, and analysis of the model perfor-
mance in terms of log-likelihood loss and root-mean-square error

are given in the supplementary material. We used the library47 for
computing the SOAP representations and the library48 for GP model
training.

C. Comparing chemical environment distributions
To compare the chemical environment distributions mapped

by the deep kernel, first we computed the discretized distributions
of sets of points for individual spins over the two-dimensional out-
put of the deep kernel by binning points into 12 × 12 discrete grid.
Then, we computed the earth mover’s distance49 between pairs of
distributions with POT library,24 which resulted in a square distance
matrix. Earth mover’s distance quantifies the best way to move the
mass between two distributions. Next, we applied the multidimen-
sional scaling (MDS) algorithm to visualize the similarity between
the chemical environment distributions of spins. MDS is a nonlin-
ear dimensionality reduction algorithm that aims to map data points
with a given distance matrix to a low-dimensional Cartesian space by
attempting to preserve the distances between the data points.50 We
used MDS algorithm implemented in the scikit-learn library.51

SUPPLEMENTARY MATERIAL

The Python code for training the machine learning model, the
dataset including the chemical shifts training data and the classi-
cal MD trajectory, and additional figures and details of the model
training are available in the supplementary material.
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