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A Comprehensive Optimal Design of Inductors 
Using Monte Carlo Tree Search 

 
Shuli Yin, Hayaho Sato, and Hajime Igarashi, Member, IEEE 

 
Graduate School of Information of Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan 

 
This paper presents a strategy of optimizing inductors with non-linear properties, using Monte Carlo tree search. Compared with 

existing optimization tools, the proposed method can simultaneously optimize global configuration such as material, number of turns 
and winding arrangement, and local geometry. It indicates that the strategy statistically provides a best solution from global and local 
aspects after iterations with different lengths of chromosomes, which is challenging in conventional optimization techniques. The 
covariance matrix adaptation evolution strategy is used to solve the parametric optimization. For validation, the optimizations on 2-D 
inductors are performed. The proposed method is very suitable for optimization of devices with possibly different global configurations. 
The most notable originality of this work is in the proposal of an inherited search for design targets with different emphases, suggesting 
that using an inherited search from the previous search history can make it easier to find the optimal solution. 
 

Index Terms—Optimal strategy, Monte Carlo tree search, non-linear electromagnetic problems, inductors.  
 

I. INTRODUCTION 

NDUCTORS are key components in switched-mode power 
supplies. To select a suitable inductor in the power supplies, 

many design parameters need to be determined, such as the core 
material, the core and winding structure and the number of turns. 
Therefore, for effectively designing an inductor that satisfies 
given specification, a comprehensive design is expected to be 
more effective than the conventional design focused on local 
geometry.  

Meanwhile, the artificial intelligence (AI) has been 
extensively used for modeling and designing inductors in recent 
years [1]. Among various AI algorithms, Monte Carlo tree 
search (MCTS) is one of the most widely used methods 
especially for games [2]. As a search tool, it exploits the actions 
that are the best at the current station, whilst continuing to 
explore the alternative actions that may provide a better solution, 
thus making a trade-off between the exploitation and the 
exploration during the searching process [3].  

Apart from the aforementioned feature, the distinct 
advantage of MCTS is that it can realize the design optimization 
of magnetic devices simultaneously considering both their 
global configurations and local geometries [4, 5]. When we 
consider the optimal design of inductors, to which we pay 
attention in this work, device configurations such as materials, 
turns of coils, etc., core shape and coil arrangement are 
optimized so that their overall performance is maximized. 
Compared with conventional optimization techniques, which is 

challenging for handling different length of chromosomes by 
the different structures, MCTS-based design can systematically 
perform comprehensive design optimization. 

To date, MCTS has been successfully implemented in the 
single and multi-objective optimization of electric motors [4] 
and [6]. In this paper, the potential of MCTS for the design of 
inductors considering magnetic saturation is verified and 
discussed.  In addition to the different application targets from 
above, the innovation of the work lies in the following aspects. 

First, the selection of non-linear materials of the core is 
considered, which is not taken into consideration in [4] and [6]. 
Second, the proposed method can simultaneously deal with 
different structures represented by chromosomes with different 
lengths, which is otherwise challenging for alternative 
optimization algorithms due to the difficulty of crossover 
among the chromosomes with different lengths. Third, a search 
based on inheritance of previous search history is implemented 
to design inductors with different emphases on the electrical 
performance. Compared to MCTS from an initial blank state, 
the search with inheritance can reach the best solution more 
easily, resulting in fewer search iterations. Finally, another 
originality is that by using MCTS, an alternative configuration 
path along which the mean reward at each node reaches 
maximum after iterations is successfully predicted to attain the 
best performance even if this path does not occur in the search 
history. This paper investigates for the first time the design 
based on the statistical results, which provides an alternative 
optimal solution apart from the best-ever solution. 

II. PROCESS FOR OPTIMIZATION 
We assume that the two-dimensional model of an inductor, 

consisting of a rectangular core and several turns of windings, 
as shown in Fig. 1, is to be optimized. In the initial phase of the 
design, configurations of the inductor have not yet been 
determined, such as the material applied to the core and its size, 
the number of turns for windings horizontally and vertically, etc. 
For each category of configurations, several options are offered 
as candidates. The design process is based on the optimization 
strategy involving MCTS to determine the configuration 
settings of inductors, and to optimize their geometric 
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parameters afterwards.  
Additionally, having the optimal solutions, and the history of 

search paths by aforementioned process, more optimizations on 
inductors behaving different electromagnetic performances can 
also be explored, introduced in Ⅱ.C for details. 

A. Implementation of MCTS 
Figure 2 shows the design tree for the inductor. In this work, 

the material of the core (designated by Mi, i=1, 2, …, 8), the 
length of the core (lj, j=1, 2, …, 12), the height of the core (hk, 
k=1, 2, …, 6), the number of windings horizontally (m) and 
vertically (n) are considered. All these configuration settings 
are arbitrarily arranged from the top to the bottom leaf nodes, 
only if all nodes have same attributes for each layer of the tree. 
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Fig. 1.  Cross section of an inductor (1/2 model). 
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Fig. 2.  Configuration settings of the inductor by MCTS. 
 

To start, the number of rounds for the tree search is set. Then 
for each round, four steps are performed, i.e., Selection, 
Expansion, Simulation, and Backpropagation for MCTS. 
Explicitly, they are described below in details. 

1. Selection: located at a current node p which is selected 
from a previous round, the best child of p, designated by pi, is 
selected, according to the Upper Confidence Bound applied to 
trees (UCT), yielding:  
 

𝑈𝐶𝑇(𝑝௜ , 𝑝) =
∑ 𝑓ெ஼்ௌ(𝑝௜)

ே(௣೔)
ଵ

𝑁(𝑝௜)
+ 𝑐ඨ

ln൫𝑁(𝑝)൯

𝑁(𝑝௜)
(1) 

 

where fMCTS(pi) is the nodal value at pi which is obtained by 
Simulation introduced afterwards. In (1), N is the number of 
visits on a particular node (p or pi), and c is the constant 
coefficient. The best child node is selected with the maximum 
value of UCT. In the initial phase of the search, the root node is 
set to be p. After the leaf node is reached, p is reset to be the 
root node to perform a new search. 

2. Expansion: the precondition of the selection is that pi is 
fully expanded. If the condition is not fulfilled, the child node 
that hasn’t been visited is selected instead of the UCT-based 
selection. 

3. Simulation: the random policy is applied for obtaining a 
complete path to reach the leaf node from pi. Then all the 
configurations of the inductor are set, the optimization of the 
geometric parameters can be performed, which will be 
presented in Ⅱ.B. 

4. Backpropagation: after obtaining the simulation results, 
the information with regard to the number of visits N, and the 
reward fMCTS will be updated from pi back to the root node. This 
step is different from [4] and [6], which updates the information 
of all nodes traversing the path, including those generated by 
the random policy. 

B. Simulation 
In the inductor design, we focus on several key 

characteristics: the inductance L, saturation current Isat, DC 
resistance Rdc, and iron loss of the core Ploss. In this work, our 
target is to design inductors that have the specified value of 
inductance L0 and Isat, whilst minimizing Rdc and Ploss. 
Mathematically, the objective function can be written as 
 

𝑓ெ஼்ௌ = −𝐶ଶ ቆ𝑤ଵ ቤ1 −
𝐿(𝒙)

𝐿଴
ቤ + 𝑤ଶ ቤ1 −

𝐼௦௔௧(𝒙)

𝐼଴
ቤ

                      +𝑤ଷ ቤ
𝑅ௗ௖(𝒙)

𝑅଴
ቤ + 𝑤ସ ቤ

𝑃௟௢௦௦(𝒙)

𝑃଴
ቤቇ → max (2)

 

 
where I0, R0 and P0 are corresponding reference value for 
normalizing; w1, w2, w3, w4 are weighting coefficients, and 
chromosome x is a vector composed of the geometric 
parameters to be optimized, which has variable dimensions 
according to the configuration, listed in Table Ⅰ, and all the 
labels in the table can be found in Fig. 1.  Besides, C2 is a 
positive weighting constant. 
 

TABLE I 
THE VECTOR x AND ITS CONFIGURATION 

Configu- 
ration  

Geometric 
parameters x  

Configu- 
ration 

Geometric parameters 
x 

m= 1, n= 1 [d, w, t] m= 2, n= 1 [d, w, t, δx1] 
m= 3, n= 1 [d, w, t, δx1, δx2] m= 4, n= 1 [d, w, t, δx1, δx2, δx3]  
m= 1, n= 2 [d, w, t, δy1] m= 2, n= 2 [d, w, t, δx1, δy1] 
m= 3, n= 2 [d, w, t, δx1, δx2, δy1] m= 4, n= 2 [d, w, t, δx1, δx2, δx3, 

δy1] 
m= 1, n= 3 [d, w, t, δy1, δy2] m= 2, n= 3 [d, w, t, δx1, δy1, δy2]  
m= 3, n= 3 [d, w, t, δx1, δx2, δy1, 

δy2] 
m= 4, n= 3 [d, w, t, δx1, δx2, δx3, 

δy1, δy2] 
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One can observe that the number of design parameters varies 
from 3 to 8. With the help of MCTS, the dimension can be 
determined, then next the covariance matrix adaptation 
evolution strategy (CMA-ES) [7] searches for optimal solution 
of x. Comparatively, it needs to consider about 7000 different 
configurations shown in Fig. 2 to each optimization of the local 
geometry which has to be performed. 

For the electromagnetic characteristic parameters in (2), we 
utilize FEM to compute the 2-dimensional static magnetic field, 
combined with Newton Raphson method to solve non-linear 
equations. Boundary conditions are shown in Fig. 1. The B-H 
curves of candidates are shown in Fig. 3.   

Subsequently, the L(x) is computed from 
 

𝐿(𝒙) = න 𝐽௭ ∙ 𝐴௭𝑑𝑉 𝐼ଶ⁄
௏

(3) 

 

in which Jz and Az are the current density, the magnetic vector 
potential along the z-direction in Cartesian coordinate system, 
V is the volume of the inductor, and I is the magnitude of the 
current flowing in each turn of the coil. Isat(x) is determined 
based on the comparative analysis with the initial design value 
of inductance L0. Through multiple FEM calculations, as I is 
gradually increasing, the inductances are obtained. When L 
decreases to 0.7 L0, the magnetic saturation is considered to be 
reached and the current at present is identified to be Isat(x). Rdc(x) 
is obtained from Ohm's law, and Ploss(x) is calculated using the 
Steinmetz equation, yielding 
 

𝑃௟௢௦௦(𝒙) = 𝐾𝑓ఈ𝐵ఉ (4) 
 

where K, α, and β are constant coefficients derived from 
attributes of materials listed in TABLE II, f and B are the 
frequency and the magnitude of the magnetic flux density, 
respectively.  
 

TABLE II 
COEFFICIENTS FOR STEINMETZ EQUATION 

Material K α β Material K α β 
M1 36.0 1.96 2.94 M5 21.2 1.95 2.83 

M2 9.5 1.99 2.75 M6 18.2 2.00 2.97 
M3 37.0 1.93 2.83 M7 70.9 1.84 2.78 
M4 14.6 1.98 2.95 M8 29.4 1.91 2.79 

C. Inherited search for multiple targets 

Sections A and B provide a comprehensive strategy for 
designing an inductor with a specific objective. If other designs 
of the inductor with different emphases are expected, the 
inherited search based on the previous stored statistical data is 
a promising solution. The procedure is described below. 

It is assumed that the optimal solution of an inductor design 
has been obtained by solving (2). Then next we aim to design a 
new inductor with a focus on its electromagnetic performance 
on other aspects. In other words, w1, w2, w3, w4 are replaced by 
new ones, represented by wa, wb, wc, wd. We use the symbol 
fMCTS1 and fMCTS2 to denote these two objective functions. In this 
case, since all parameters have been calculated and stored at 
nodes when fMCTS1 was evaluated, fMCTS2 can be obtained by 
querying the stored paths and recalculating based on the known 
characteristics. Thus, the best solution with a path Pa can be 

derived from the stored data. What follows is to update the 
initial states of tree nodes for computing fMCTS2. The value of 
fMCTS2 and the first time of visits are recorded in nodes along Pa. 
After completing this step, we will repeat the whole process in 
Ⅱ. A and Ⅱ. B.  

III. NUMERICAL RESULTS 

A numerical experiment is conducted to validate the 
proposed method for designing inductors. The tree depicted in 
Fig. 2 is employed to design two inductors. For a material 
selection of the core, B-H curves of eight candidate soft 
magnetic composites are shown in Fig. 3. In addition, in Fig. 2, 
li represents the length to be 2.3 mm to 1.2 mm with a step of -
0.1 mm; hj denotes the height to be 1.2 mm to 0.7 mm with a 
step size of -0.1 mm; candidates of m are 4, 3, 2, and 1; for n, 
they are 3, 2, and 1.  
 

 
Fig. 3. B-H curves of candidate materials. 

 

The two designs of inductors, represented by target 1 and 
target 2, have the same expected inductance being 250 nH and 
saturated current being 15 A. For the first inductor design, our 
objective is to ensure the specified values of the inductance and 
saturated current. For a second one, we focus on ensuring L(x) 
and Isat(x), and minimizing Rdc(x) and Ploss(x). Expressed using 
mathematical modeling, fMCTS1 and fMCTS2 are with 
corresponding weighting coefficients [w1, w2, w3, w4]=[1, 1, 0, 
0] and [wa, wb, wc, wd]=[1, 1, 0.5, 0.5].  

Objective function fMCTS1 is searched from an initial blank 
state and fMCTS2 is optimized by an inherited search by using the 
stored search history of fMCTS1. The iteration stops at 100 for 
fMCTS1, and 50 for fMCTS2, respectively. The reason for setting in 
such a way is that initially, we need an exhaustive search for 
achieving optimization for target 1, hence a relatively large 
number of iterations is needed. Then using the results of target 
1 in combination with the search process, the optimization for 
target 2 is expected to be completed in fewer iterations. In 
addition, in the simulation of each round, 25 iterations are used 
for CMA-ES to achieve the optimization of the geometric 
parameters at the leaf nodes. On average, every 50 iterations of 
searching take approximately eight and a half hours to complete, 
with using a PC of Intel(R) Core (TM) i7-12700K CPU (3.60 
GHz), and 32 GB RAM. 

After the process of searching and optimizing, results for 
fMCTS1 and fMCTS2 reach maximum values, and their convergence 
histories are shown in Fig. 4. It depicts the iterative process of 
both objectives continuously, fMCTS1 from the 1st to 100th 
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iteration, and fMCTS2 from the 101st to the 150th iteration. It 
indicates that both targets get maximum values after the 
comprehensive optimal design. Besides, a comparative 
convergency history of target 2 without using results of 
inheritance is also shown. It is evident that for optimizing target 
2, the trend of convergence is relatively gradual. This is 
consistent with expectations, since in the second optimization, 
its initial state inherits an optimal solution and path from the 
first optimization. Simultaneously, it also continues to explore 
the possibility of a better solution by integrating the benefits of 
the MCTS.  

The results of the optimization are shown in TABLE III. The 
CMA-ES convergence histories and the optimal structures of 
both best-ever solutions are illustrated in Fig. 5 and Fig. 6. 

 

fMCTS2 without inheriting
fMCTS1

fMCTS2 with inheriting

 
Fig. 4. Convergence history of MCTS for fMCTS1 and  fMCTS2.  
 

fMCTS1
fMCTS2

 
Fig. 5. Convergence history of best ever solutions for fMCTS1 and  fMCTS2 by 
CMA-ES.  
 

TABLE III 
OPTIMAL RESULTS 

Results Target 1 Target 2 

Configuration M2, l7, h2, (m= 3), (n= 2) M3, l10, h2, (m= 2), (n= 2) 
L(x) 250 nH 249.3 nH 
Isat(x) 15 A 15 A 
Rdc(x) 32.1 m Ω 5.40 m Ω 

Ploss(x)  5.8 μW  6.64 μW 

x (mm) [0.06, 0.19, 0.57, 0.11, 
0.06, 0.13]  

[0.20, 0.23, 0.11, 0.11, 
0.06] 

 

M2

 
(a) 

M3

 
(b) 

Fig. 6. Optimal designs of inductors and their magnetic flux lines. (a) Target 1. 
(b) Target 2. 

Another originality of this paper is that, as a heuristic 
algorithm, MCTS can not only find the optimal solution, but 
can also yield its good approximation. For instance, for the 
target 1, the best-ever solution is found after 100 iterations (Fig. 
4). Moreover, along M5→ l12→ h3→ (m= 3)→ (n= 2), the mean 
rewards at nodes with respect to number of visits, reach 
maximum, while the path has not been visited in the history. 
Then the configuration along this path is optimized by CMA-
ES for a test, and excellent outcomes can also be obtained 
finally. Specifically, they are: L(x) ≈ 250.3 nH, Isat(x) = 15 A, 
Rdc(x) ≈ 7.87 m Ω, Ploss(x) ≈ 8.00 μW with x≈ [0.15, 0.33, 0.35, 
0.12, 0.13, 0.07] mm. The predicted optimal design is shown in 
Fig. 7. Consequently, excepting from obtaining a best-ever 
solution, MCTS can also predict the best solution pathway 
based on the statistical results. Therefore, when applying 
MCTS, both the best-ever solution and the solution with 
maximum mean rewards on nodes need to be considered 
comprehensively for designing inductors. 

 

M5

 
Fig. 7. Predicted optimal designs of Target 1 and its magnetic flux lines. 

IV. CONCLUSION 

This paper proposed a method for the comprehensive optimal 
design of inductors with non-linear characteristics. MCTS is 
implemented for the determination of configurations, and 
CMA-ES is used for the optimization of geometric parameters. 
This method is applicable to parameter optimization involving 
analysis of varying dimensions due to different configurations. 
Moreover, based on the existing search history, targets with 
different emphases can also be obtained easily by an inheritance. 
MCTS can also predict the best solution pathway based on the 
statistical results even if the path has not been visited in the 
history. More cases for inductors based on MCTS with an 
inheritance will be investigated in the further work. 
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