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PAPER Special Section on Circuits and Systems

Reinforcement Learning for Multi-Agent Systems with Temporal
Logic Specifications

Keita TERASHIMA†, Nonmember, Koichi KOBAYASHI†a), and Yuh YAMASHITA†, Members

SUMMARY In a multi-agent system, it is important to consider a de-
sign method of cooperative actions in order to achieve a common goal. In
this paper, we propose two novel multi-agent reinforcement learning meth-
ods, where the control specification is described by linear temporal logic
formulas, which represent a common goal. First, we propose a simple solu-
tion method, which is directly extended from the single-agent case. In this
method, there are some technical issues caused by the increase in the num-
ber of agents. Next, to overcome these technical issues, we propose a new
method in which an aggregator is introduced. Finally, these two methods
are compared by numerical simulations, with a surveillance problem as an
example.
key words: multi-agent systems, reinforcement learning, linear temporal
logic, aggregator, surveillance

1. Introduction

A multi-agent system (MAS) [1] is a system composed of
multiple autonomous agents that interact with each other
and with their environment. Within a group of agents in
an MAS, each agent has an individual or common goal. If
there is a common goal among agents, it is a challenge how
they cooperate with each other in order to achieve the goal.
Reinforcement learning (RL) [2] is well known as one of the
learning methods used in the design of an MAS. RL targets
an unknown environment with uncertainty and aims to ac-
quire optimal control strategies by learning through repeated
actions by agents in the environment. RL is a very effec-
tive method for designing large-scale and complex systems,
because knowledge of the environment is not required for a
designer of the system. In multi-agent reinforcement learn-
ing (MARL), agents observe other agents as part of their
environment. Therefore, as the number of agents increases,
the state space grows exponentially, and the explosion of the
state space causes a significant decrease in learning speed.

On the other hand, one of the recent trends is to de-
scribe control specifications by linear temporal logic (LTL)
[3], and to design a controller by RL under the temporal logic
constraints. Temporal logic is a logical system that is added
temporal operators to standard logic operations. Using tem-
poral logic formulas, we can describe properties related to
time. Various methods have been proposed for MARL us-
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ing temporal logic, regardless of the type of temporal logic
[4]–[7].

In this paper, we propose two novel MARL methods,
where the control specification is described by an LTL for-
mula. First, we propose a simple solution method, which
is extended directly from the single-agent case [8]. In this
method, there are some technical issues such as the explo-
sion of the state space caused by the increase in the number
of agents. Then, we propose a distributed method with an
aggregator to solve this problem. In MARL, the Centralized
Training with Decentralized Execution (CTDE) methods are
known [9], [10]. In the CTDE method, a kind of aggrega-
tors is introduced during training. However, to the best of
our knowledge, temporal logic has not been considered in
the existing methods. Finally, these two learning methods
are compared by numerical simulations, with a surveillance
problem as an example. It is shown that there are differences
in the state space and learning speed, and the performance
of the latter method is better than that of the former method.

This paper is organized as follows. In Sect. 2, we de-
scribe a Markov Decision Process, LTL, and automata. In
Sect. 3, we propose two novel MARL methods with LTL
specifications. In Sect. 4, a numerical example is presented
to show our proposed methods. In Sect. 5, we conclude this
paper.

Notation: Let N0 denote the set of nonnegative inte-
gers. Let R≥0 denote the set of nonnegative real numbers.
Let ε denote the empty string.

2. Preliminaries

In this section, first, as preliminaries for MARL, we explain
the outline of a Markov Decision Process (MDP) for the
single-agent case. Next, we describe how to describe the
control specifications for the agents using LTL and how to
convert an LTL formula into a limit-deterministic general-
ized Büchi automaton (LDGBA).

2.1 Markov Decision Process

In this paper, interactions between an agent and an environ-
ment are represented by an MDP defined below.

Definition 1. For the single-agent case, a (labeled) MDP is
a tuple M = (S, A, sinit,P, AP, L), where S is a finite set of
states, A is a finite set of actions, sinit ∈ S is the initial state,
P : S×A×S → [0,1] is a transition probability function, AP
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is a finite set of atomic propositions, and L : S × A × S →
2AP is a labeling function labeling each transition with a
subset of atomic propositions. Let A(s) =

{
a ∈ A;∃s′ ∈

S s.t. P(s′ |s,a) , 0
}
, and Σs′∈SP(s′ |s,a) = 1 for any s ∈ S

and a ∈ A(s).

2.2 Linear Temporal Logic and Büchi Automata

Linear Temporal Logic (LTL) consists of a set of atomic
propositions, Boolean operators, and temporal operators.
The syntax of LTL formulas is defined recursively over a
set of atomic propositions AP as follows:

ϕ ::= > | α ∈ AP | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1Uϕ2,

where ϕ, ϕ1, and ϕ2 are LTL formulas, > (true) is Boolean
constant, ∧ (conjunction) and ¬ (negation) are Boolean con-
nectives, and X (next) and U (until) are temporal opera-
tors. These operators can be used to define additional tem-
poral operators: eventually, Fϕ := >Uϕ; and always,
Gϕ := ¬F¬ϕ.

It is known that any LTL formulas can be converted
into various ω-automata, which accept an infinite word [11].
According to the definition of their acceptance condition,
ω-automata can be classified into types such as Büchi au-
tomaton, Rabin automaton, among others. We first describe
a transition-based generalized Büchi automaton (tGBA),
followed by an introduction of the transition-based limit-
deterministic generalized Büchi automaton (tLDGBA).

Definition 2. A tGBA is a tuple B = (X, xinit,Σ, δ,F ), where
X is a finite set of states, xinit ∈ X is the initial state, Σ is
an input alphabet including ε, δ ⊂ X × Σ × X is a set of
transitions, and F = {Fj}

n
j=1 is an acceptance condition,

where for each j ∈ {1, . . . ,n}, Fj ⊂ δ is a set of accepting
transitions.

An infinite sequence r = x0σ0x1 . . . ∈ X(ΣX)ω is re-
ferred to as an infinite run if (xi, σi, xi+1) ∈ δ for any i ∈ N0.
Here, (ΣX)ω denotes an infinite sequence of repetitions of
the concatenation of Σ and X , such as ΣXΣX · · · . An infinite
word w = σ0σ1 . . . ∈ Σ

ω is an infinite sequence of input al-
phabets, and we denote a set of infinite runs generated when
a tGBA B is given an infinite word w as Run(B; w). Further-
more, we refer to the set of transitions that occur infinitely
within the run r as inf(r) ⊆ δ. An infinite word w is ac-
cepted by a tGBA B if and only if the following condition is
satisfied:

∃r = x0σ0x1 . . . ∈ Run(B; w) s.t. inf(r)∩Fj , ∅, ∀Fj ∈ F .

Definition 3. A tLDGBA is a tGBA where X can be parti-
tioned into two disjoint subsets Xinitial and Xf inal as follows:

• Fj ⊂ Xf inal × Σ × Xf inal, ∀Fj ∈ F ,
•

�� {(x, σ, x ′) ∈ δ;σ ∈ Σ, x ′ ∈ Xf inal}
�� = 1, ∀x ∈ Xf inal ,

•
�� {(x, σ, x ′) ∈ δ;σ ∈ Σ, x ′ ∈ Xinitial}

�� = 0, ∀x ∈
Xf inal ,

Fig. 1 tLDGBA Bϕ converted from ϕ = GFa ∧ GFb ∧ G¬u, where
X = {x0, x1 } = X f inal and xinit = x0. Green arcs labeled 1O and 2O are
accepting transitions. If the input alphabet contains u, tLDGBA Bϕ is no
longer accepted.

• ∀(x, ε, x ′) ∈ δ, x ∈ Xinitial ∧ x ′ ∈ Xf inal .

An ε-transition occurs only in the transition from
Xinitial to Xf inal with the empty string ε as the input alphabet
(i.e., without reading the input alphabet). Except for this ε-
transition, the transitions occurring within the states Xinitial

and Xf inal are deterministic, respectively. It is known that,
for any LTL formula ϕ, there exists the tLDGBA that accepts
all words satisfying ϕ [11]. We denote a tLDGBA B con-
verted from an LTL formula ϕ as Bϕ , whose input alphabets
is given by Σ = 2AP ∪ {ε}.

A simple example of an LTL formula and a tLDGBA
are shown below.

Example 1. Let the LTL formula ϕ be expressed as:

ϕ = GFa ∧GFb ∧G¬u,

where a, b,u are atomic propositions, and this LTL for-
mula ϕ can be converted into the tLDGBA Bϕ shown in
Fig. 1. The acceptance condition of the tLDGBA Bϕ is
F = {Fj}

2
j=1, where F1 =

{
(x0, {a}, x0), (x0, {a, b}, x0)

}
,

F2 =
{
(x0, {b}, x0), (x0, {a, b}, x0)

}
. In Fig. 1, the green arcs

labeled 1O and 2O represent F1 and F2, respectively. Once
the input alphabet contains u, the state of the tLDGBA Bϕ

transitions to x1 and it is no longer accepted.

Furthermore, we use an automaton obtained by aug-
menting a tLDGBA Bϕ . We denote this automaton as the
augmented tLDGBA B̄ϕ , which accepts the same language
as the tLDGBA Bϕ and can ensure that acceptance transi-
tions occur infinitely often. For details on how to augment a
tLDGBA, refer to [8].

3. Proposed Multi-Agent Reinforcement Learning
Methods

In this section, we propose two novel MARLmethods for ac-
quiring the control policy that satisfies a given LTL formula.

When LTL is applied to reinforcement learning, in
general, the environment is firstly represented by a labeled
MDP, and an LTL formula representing the control specifi-
cation given to the agent is transformed into anω-automaton
[8], [12]. Then, we construct a productMDPobtained by tak-
ing the composite product of the MDP and theω-automaton,
and obtain a control strategy by reinforcement learning on
this product MDP.
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We utilize Q-learning [13], which is one of the most
well-known reinforcement learning methods. In Q-learning,
the Q-table is updated based on the (immediate) rewards the
agent receives for taking actions in a given environment. The
Q-table records the evaluation values of the possible actions
in each state. The formula for updating each element of the
Q-table (i.e., the Q value Q(s,a)) is given as follows:

Q(s,a) ← (1 − α)Q(s,a) + α
[
r + γmax

a
Q(s′,a)

]
,

where s is a current state, a is a selected action, s′ is next
state, α ∈ [0,1] is the learning rate, r is the positive reward,
γ ∈ [0,1) is the discount factor. The goal of Q-learning is to
obtain an optimal policy Q∗(s,a) that maximizes the sum of
the rewards by iteratively updating the Q-table.

Note that each state transition of N agents occurs
stochastically and is assumed to be synchronous, i.e., all
agents either move in the intended direction or stay in the
same state. To realize the synchronous move, we assume
that each agent communicates with other agents. Moreover,
it is expected that the learning works efficiently by the syn-
chronous move. Furthermore, we assume that agents do not
interfere with each other’s actions, such as collisions.

3.1 Proposed Method 1: Simple Method

In this method, the state space is represented by a direct
product, which causes the number of states and the size of
the Q-table grow exponentially with the number of agents.
There are cases that implementation may be difficult.

Definition 4. Given N agents with an MDP Mi =

(Si, Ai, sinit ,i,Pi, APi, Li) of agent i ∈ {1, . . . ,N} and an aug-
mented tLDGBA B̄ϕ = (X̄, x̄init, Σ̄, δ̄, F̄ ), a product MDP is
a tuple M ⊗ = MN ⊗ B̄ϕ = (N,S⊗, A⊗, s⊗init,P

⊗,F ⊗), where
MN = M1 × · · · × MN . Each element of M ⊗ is as follows:

• S⊗ = S1 × · · · × SN × X̄ : a finite set of states,
• A⊗ = A1×· · ·×AN∪{εx̄′ ;∃x̄ ′ ∈ X s.t. (x̄, ε, x̄ ′) ∈ δ̄} : a
finite set of actions, where εx̄′ is a action corresponding
to the ε-transition to x̄ ′ ∈ X̄ on B̄ϕ ,

• s⊗init = (sinit ,1, . . . , sinit ,N , x̄init ) : an initial state,
• P⊗ : S⊗ × A⊗ × S⊗ → [0,1] : a transition function,
which is represented as follows:
P⊗(s⊗′ |s⊗,a⊗) =

p if a⊗ = (a1, . . . ,aN ),
(
x̄,

⋃N
i=1

(
Li((si,ai, si ′))

)
, x̄ ′

)
∈ δ̄,∀i ∈ {1, . . . ,N}, ai ∈ A(si),

1 if a⊗ = εx̄′, (x̄, ε, x̄ ′) ∈ δ̄,∀i ∈ {1, . . . ,N}, si = si ′,
0 otherwise,

where p ∈ [0,1], s⊗ = (s1, . . . , sN , x̄), s⊗′ =
(s1
′, . . . , sN ′, x̄ ′), and a⊗ = (a1, . . . ,aN ), εx̄′ .

• F ⊗ = {F⊗j }
n
j=1 : an accepting condition, where for

each j ∈ {1, . . . ,n}, a set of accepting transitions is
F⊗j =

{
(s⊗,a⊗, s⊗′) ∈ S⊗×A⊗×S⊗; P⊗(s⊗′ |s⊗,a⊗) >

0,
(
x̄,

⋃N
i=1

(
Li((si,ai, si ′))

)
, x̄ ′

)
∈ F̄j

}
, where s⊗ =

Fig. 2 Learning procedure of the simple method.

(s1, . . . , sN , x̄), s⊗′ = (s1
′, . . . , sN ′, x̄ ′), and a⊗ =

(a1, . . . ,aN ), εx̄′ .

The reward function is defined as follows, where N
agents are given a constant reward if an accepting transition
of product MDP M ⊗ occurs.

Definition 5. Given N agents, the reward function R : S⊗ ×
A⊗ × S⊗ → R≥0 is defined as:

R(s⊗,a⊗, s⊗′) =
{
r if ∃ j ∈ {1, . . . ,n}, (s⊗,a⊗, s⊗′) ∈ F⊗j ,
0 otherwise,

(1)

where r is a positive value.

In this method, the reward function is used to obtain
a control strategy by reinforcement learning on a product
MDP M ⊗. Figure 2 shows the learning procedure of this
method.

In this method, the size of a finite set of states S⊗ grows
exponentially as the number of agents increases. In addition,
if we denote the Q-table as Q(s⊗,a⊗), its size is as follows:

| Q(s⊗,a⊗) | = | S1×· · ·×SN × X̄ | · | A1×· · ·×AN |, (2)

and it also grows exponentially as the number of agents
increases.

3.2 Proposed Method 2: Distributed Method

In order to solve the technical issue of the simple method,
consider introducing an aggregator to partition the state
space and the Q-table. Note that B̄ϕ is the same among
agents, which represents their common goal.

Definition 6. Given N agents with an MDP Mi =

(Si, Ai, sinit ,i,Pi, APi, Li) of agent i ∈ {1, . . . ,N} and an aug-
mented tLDGBA B̄ϕ = (X̄, x̄init, Σ̄, δ̄, F̄ ), a product MDP of
agent i is a tuple M ⊗i = Mi ⊗ B̄ϕ = (S⊗i , A

⊗
i , s
⊗
init ,i,P

⊗
i ,F

⊗
i ).

Each element of M ⊗i is as follows:

• S⊗i = Si × X̄ : a finite set of states,
• A⊗i = Ai ∪ {εx̄′ ;∃x̄ ′ ∈ X s.t. (x̄, ε, x̄ ′) ∈ δ̄} : a finite set
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of actions, where εx̄′ is a action corresponding to the
ε-transition to x̄ ′ ∈ X̄ on B̄ϕ ,

• s⊗init ,i = (sinit ,i, x̄init ) : an initial state,
• P⊗i : S⊗1 × · · · × S⊗N × A⊗1 × · · · × A⊗N × S⊗i → [0,1] : a
transition function, which is represented as follows:

P⊗i (s
⊗′
i |s

⊗
1 , . . . , s

⊗
N ,a

⊗
1 , . . . ,a

⊗
N )

=



Pi(s′i |si,ai) if
(
x̄,

⋃N
i=1

(
Li((si,ai, si ′))

)
, x̄ ′

)
∈ δ̄,

∀i ∈ {1, . . . ,N}, ai ∈ A(si),
1 if si = si ′, (x̄, ε, x̄ ′) ∈ δ̄,

∀i ∈ {1, . . . ,N}, a⊗i = εx̄′,
0 otherwise,

where for each i ∈ {1, . . . ,N}, s⊗i = (si, x̄), s
⊗′
i =

(si ′, x̄ ′), and a⊗i = ai, εx̄′ .
• F ⊗i = {F⊗i, j}

n
j=1 : an accepting condition, where

for each j ∈ {1, . . . ,n}, a set of accepting transi-
tions is F⊗i, j =

{
(s⊗i ,a

⊗
i , si

⊗′) ∈ S⊗i × A⊗i ×

S⊗i ; P⊗i (s
⊗′
i | s

⊗
1 , . . . , s

⊗
N ,a

⊗
1 , . . . ,a

⊗
N ) > 0,(

x̄,
⋃N

i=1
(
Li((si,ai, si ′))

)
, x̄ ′

)
∈ F̄j

}
. where for each

i ∈ {1, . . . ,N}, s⊗i = (si, x̄), s⊗′i = (si ′, x̄ ′), and
a⊗i = ai, εx̄′ .

The reward function is defined as a function that gives
each agent a constant reward when at least one agent causes
an accepting transition.

Definition 7. Given N agents, the reward function R : S⊗1 ×
· · · × S⊗N × A⊗1 × · · · × A⊗N × S⊗1 × · · · × S⊗N → R

N
≥0 is defined

as:

R(s⊗1 , . . . , s
⊗
N ,a

⊗
1 , . . . ,a

⊗
N , s

⊗′
1 , . . . , s⊗′N )

=


(r1, . . . ,rN ) if ∃i ∈ {1, . . . ,N},∃ j ∈ {1, . . . ,n},

(s⊗i ,a
⊗
i , s
⊗′
i ) ∈ F̄⊗i, j,

(0, . . . ,0) otherwise,
(3)

where r1, . . . ,rN is a positive value.

In this method, we introduce an aggregator that cal-
culates how well the control specification is satisfied from
agent’s actions. The learning procedure with an aggregator
is described below.

Learning Procedure of Distributed Method:

Step 1: Each agent chooses an action ai in the current state
on its MDP Mi based on its own policy.

Step 2: The next state s′i is determined on Mi , where each
agent’s transition occurs synchronously due to com-
munication among the agents.

Step 3: The labeling function Li outputs the label.

Step 4: The aggregator collects the union set of labels of
each agent and calculates the state transition of the
augmented tLDGBA B̄ϕ .

Fig. 3 Learning procedure of the distributed method for N = 2 agents.
The introduction of an aggregator enables the partitioning of both the MDP
and the Q-table.

Step 5: The next state s⊗′i on the product MDP M ⊗i is deter-
mined by combining x̄ ′ calculated by the aggregator
and s′i . Then, s⊗′i is given to the reward function R
and each agent.

Step 6: The reward function R calculates and distributes
each agent’s reward ri .

Step 7: Each agent’s Q-table is updated. Return to Step 1
and repeat the above procedure.

Figure 3 shows the learning procedure of this method in
the case of two agents (N = 2). 1O, . . . , 7O in Fig. 3 correspond
to the same number of steps in the above learning procedure.
In this learning procedure, the aggregator has the role of
calculating the state of tLDGBA for computing the reward
values. By introducing the aggregator, each agent can learn
without having to observe the state of other agents.

Note that each agent has a Q-table in this method, and
we denote a Q-table of agent i as Qi(s⊗i ,a

⊗
i ). The total of

the sizes of Q-tables of N agents is as follows:

N∑
i=1
| Qi(s⊗i ,a

⊗
i ) | =

N∑
i=1
| Si × X̄ | · | Ai |, (4)

which grows linearly as the number of agents increases. In
addition, the total number of states of product MDPs of N
agents also grows linearly. Thus, the distributed method
reduces both the total number of states of product MDPs and
the total sizes of the Q-tables from an exponential increase
to a linear increase compared to the simple method. It is
expected that the learning efficiency is improved by reducing
the total sizes of the Q-tables.

4. Simulation Experiment

In this section, we apply each proposedmethod to the surveil-
lance problem for three robots (N = 3). Consider the 7 × 7
grid world shown in Fig. 4 as the environment given to each
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Fig. 4 7 × 7 grid world where N = 3 robots patrol. Green rooms are the
states that we want agents to try to visit, while red rooms are the states that
we want agents to avoid visiting. R43 is the initial state of all agents.

robot. The finite set of states is Ri (i = 1, · · · ,49), the initial
state is R43 and a finite set of actions is {Up, Down, Right,
Left}. The robots move toward the intended state with prob-
ability 0.9 and stay in the same state with probability 0.1.
The stop action is not included in the finite set of actions of
the robots, because it is implicitly included in the “stay” of
the transition probability function. In addition, the finite set
of atomic propositions is {r11, r23, r35, r38,u}, and the labeling
function is as follows:

L
(
(s,a, s′)

)
=



{r11} if s′ = R11,

{r23} if s′ = R23,

{r35} if s′ = R35,

{r28} if s′ = R38,

{u} if s′ = Ri, i = {2,13,15,26,47},
∅ otherwise.

In this problem, the control specification given to the
robots is “to visit the rooms Ri (i = 11,23,35,38) in-
finitely often, while to avoid visiting the rooms Ri (i =
2,13,15,26,47)”. This can be described as the following
LTL formula ϕ:

ϕ = GFr11 ∧GFr23 ∧GFr35 ∧GFr38 ∧G¬u,

where ri (i = 11,23,35,38) are atomic propositions that
mean to visit the rooms Ri (i = 11,23,35,38) and u is one
that means to visit the rooms Ri (i = 2,13,15,26,47). The
number of states in the augmented tLDGBA is derived as
| X̄ | = 30.

For the simple method, from (2), the number of states
of the product MDP is

| S⊗ | = | S1 × S2 × S3 | · | X̄ | = 493 · 30 = 3529470

and the size of the Q-table is

Fig. 5 Reward history for the simple method. The mean of the average
reward for each episode was calculated across 500 learning sessions. The
green areas indicate the range of standard deviations.

| Q(s⊗,a1,a2,a3) | = | S⊗ | · | A1 × A2 × A3 |

= 3529470 · 43 = 225886080.

On the other hand, for the distributed method, from (4), the
total number of states of the three agents’ product MDPs is

3∑
i=1
| S⊗i | =

3∑
i=1
(| Si | · | X̄ |)

= 3 · (49 · 30) = 3 · 1470 = 4410,

and the total size of the Q-tables is

3∑
i=1
| Qi(s⊗i ,ai) | =

3∑
i=1
(| S⊗i | · | Ai |)

= 3 · (1470 · 4) = 17640.

It was confirmed that the distributed method reduces both
the number of states of the product MDP and the size of the
Q-table.

We ran a total of 500 learning sessions of 3000 episodes,
with 2000 steps in each episode. Here, the reward design
was set to “all agents get the same reward if even one agent’s
transition satisfies the acceptance condition”. The reward r
in (1) is set as r = 2. The reward ri in (3) is set as ri = 2. The
discount rate and the learning rate are set as γ = 0.99 and
α = 1/(1+ ep)0.5, respectively, where ep was the number of
episodes.

Figures 5 and 6 show the reward history obtained by
each method. In both figures, the green areas indicate the
range of standard deviations. Moreover, Figs. 7 and 8 show
representative three agents’ trajectories resulted from the
trainings of each method, where the circles in both figures
represent accepting transitions. For the simple method, as
shown in Fig. 7, we see that in about one-third of the cases,
the learning was not successful and the appropriate con-
trol policy was not achieved. On the other hand, for the
distributed method, as shown in Fig. 8, we see that each
agent cooperatively repeats each accepting transition, and
the agents cannot solve the task only about one-hundredth of
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Fig. 6 Reward history for the distributed method. The mean of the av-
erage reward for each episode was calculated across 500 learning sessions.
The green areas indicate the range of standard deviations.

Fig. 7 Three agents’ trajectories for the simple method. The circles
indicate accepting transitions. One case where learning was not successful
and an appropriate control policy was not achieved.

cases. Thus, the performance of the distributed method is
better than the simple method. The mean and standard de-
viation of the computation time was 5413 (±1051) seconds
for the simple method and 2812 (±360) seconds for the dis-
tributed method, where the simulations were run in Google
Colaboratory. By comparing Fig. 5 with Fig. 6 and the com-
putation times of each method, the distributed method per-
formed better in terms of the higher earned rewards, the
faster convergence and the shorter computational time.

5. Conclusion and Future Work

In this paper, we proposed two novel MARL methods (the
simple method and the distributed method) with the control
specification described by LTL formulas. The distributed
method with an aggregator reduces linearly the growth of

Fig. 8 Three agents’ trajectories for the distributed method. The circles
indicate accepting transitions. It can be seen that each agent cooperatively
repeats each accepting transition.

the number of states and the size of the Q-table, which occur
with the increase of the number of agents in the simple
method. It is shown that the distributed method improves
the rewards and reduces the computation time.

Future work includes further improving the perfor-
mance of the proposed methods. This also includes address-
ing a reward distribution problem and learning methods that
reduce the frequency of communication by the aggregator in
the distributed method.

This work was partly supported by JSPS KAKENHI
Grant Numbers JP19H02158, JP21H04558, JP22K04163.
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