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PAPER Special Section on Circuits and Systems

Multi-Agent Surveillance Based on Travel Cost Minimization

Kyohei MURAKATA†, Nonmember, Koichi KOBAYASHI†a), and Yuh YAMASHITA†, Members

SUMMARY The multi-agent surveillance problem is to find optimal
trajectories of multiple agents that patrol a given area as evenly as possible.
In this paper, we consider the multi-agent surveillance problem based on
travel cost minimization. The surveillance area is given by an undirected
graph. The penalty for each agent is introduced to evaluate the surveillance
performance. Through a mixed logical dynamical system model, the multi-
agent surveillance problem is reduced to amixed integer linear programming
(MILP) problem. In model predictive control, trajectories of agents are
generated by solving the MILP problem at each discrete time. Furthermore,
a condition that theMILP problem is always feasible is derived based on the
Chinese postman problem. Finally, the proposed method is demonstrated
by a numerical example.
key words: Chinese postman problem, mixed integer programming, surveil-
lance problem, travel cost

1. Introduction

A cyber physical system (CPS) is a system composed of
physical and information components. There are many ap-
plications such as energy management [5] and healthcare
[17]. In this paper, we focus on the persistent surveillance
problem, which is closely related to a smart city. The per-
sistent surveillance problem that find trajectories of multiple
agents to patrol a given area has many applications such as
city safety management and disaster rescue.

The persistent surveillance problem has been studied
in [1], [4], [6]–[8], [10]–[13], [15]. In surveillance of city
areas and buildings, it is useful to model a surveillance area
as a graph (see, e.g., [1], [8], [10]–[13]). Furthermore, it is
important to apply amodel predictive control (MPC)method
to the surveillance problem. Using the policy of MPC, tra-
jectories of agents are generated by solving an optimization
problem at each discrete time [3], [14]. For example, when
it is detected that some agents stop in failures, trajectories of
remained agents are automatically changed. The authors has
developed MPC-based surveillance methods for a area given
by a graph in [8], [10], [12], [13].

In this paper, we focus on travel costs (i.e., total travel
distances) of agents. We consider the problem of finding
trajectories of agents that minimize travel costs under con-
straints on the surveillance performance. The surveillance
performance is based on the penalty of each node to evaluate
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the unattended time. If constraints are satisfied, then agents
may stop. Such behavior is desirable from the viewpoint of
power saving.

InMPC, it is important to guarantee the feasibility of an
optimization problem solved at each discrete time. For the
above surveillance problem, we derive a feasibility condi-
tion under the assumption that the initial locations of agents
can be arbitrarily set. Then, the Chinese postman problem
(CPP) plays an important role. CPP is the problem of finding
a shortest closed walk of an undirected graph in which each
edge is traversed at least once, rather than exactly once [16].
Using a solution of CPP, we can derive a feasibility condition
such that the number of agents and the surveillance perfor-
mance are characterized. Initial locations of agents can also
be determined from a solution of CPP. In also [11], CPP has
been used in the surveillance problem. In [11], a solution
of CPP is used as trajectories of agents. In this paper, a
solution of CPP is used in placement of initial locations and
a feasibility condition.

This paper is organized as follows. In Sect. 2, the op-
timal surveillance problem is formulated. In Sect. 3, this
problem is reduced to a mixed integer linear programming
(MILP) problem. In Sect. 4, we derive a feasibility condition.
In Sect. 5, we present a numerical example to demonstrate
the proposed method. In Sect. 6, we conclude this paper.

Notation: For the finite set A, let |A| denote the number
of elements of A. Let R denote the set of real numbers. Let
1m×n (0m×n) denote the m × n matrix whose elements are
all one (zero). Let In denote the n × n identity matrix. For
simplicity, we sometimes use the symbol 0 instead of 0m×n,
and the symbol I instead of In. For the matrix M , let M>

denote the transpose matrix of M . For the two matrices X
and Y , let X ⊗ Y denote the Kronecker product of X and Y .

2. Problem Formulation

A surveillance area is given by an undirected connected
graph G = (V,E), where V = {1,2, . . . ,n} is the set of
nodes, and E ⊆ V × V is the set of undirected edges. We
assume that an agent can move according to a given graph,
and behavior of an agent is expressed by a discrete-time sys-
tem. The number of agents is given by m. Let qj(k) ≥ 0
denote the travel cost of the agent j ∈ {1,2, . . . ,m} until
time k. The travel cost from a certain node to other node is
defined by the length of the path (i.e., the number of edges
of the path).

We present a simple example.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Example of undirected connected graphs. Nodes except for 1 and
13 have self-loops, but these are omitted.

Example 1: Consider the case of a single agent (m = 1).
Suppose that the surveillance area is given by the graph in
Fig. 1. Suppose also that the initial location and the initial
travel cost are given by the node 4 and q1(0) = 0, respectively.
Then, the candidates of the locations at the next time are
constrained to the set {2,3,4,5,6,7}. If the agent moves from
the node 4 to 2, the travel cost is updated as q1(1) = 0+1 = 1.
Next, if the agent moves from the node 2 to 3, the travel cost
is updated as q1(2) = 1 + 1 = 2. Finally, if the agent stays at
the node 3 (i.e., the self-loop (3,3) is chosen), the travel cost
is not changed (i.e., q1(3) = 2 + 0 = 2).

Next, we introduce the notion of the penalty for each
node. The penalty pi(k) ≥ 0, i ∈ {1,2, . . . ,n} is defined as
follows:

pi(k + 1) =


0 if some agent is located

on the node i at time k,
pi(k) + 1 otherwise.

(1)

When a node is not monitored by any agent, the penalty for
this node increases. Hence, the penalty for each node can be
used for evaluating the performance of surveillance.

The optimal surveillance problem is formulated as fol-
lows.

Problem 1: For the undirected graph G = (V,E) and the
update rule (1) of the penalty, suppose that the current lo-
cation of agents, the current penalty pi(t), the current total
travel cost qj(t), and the prediction horizon N ≥ 1 are given
(t is the current time). Then, find trajectories of m agents
minimizing the following cost function:

J =
m∑
j=1

qj(t + N) (2)

subject to the following constraint for each node i ∈
{1,2 . . . ,n}:

pi(k) ≤ c, k ∈ {t, t + 1 . . . , t + N}, (3)

where c > 0 is a given scalar.

In this problem, the cost function (2) represents a sum of
travel costs of all agents in the time interval [t, t +N]. By the
constraint (3), the performance of surveillance is guaranteed.

3. Reduction of Problem 1 to an MILP Problem

In this section, based on [13], we consider reducing Prob-
lem 1 to an MILP problem.

To model the travel cost of each agent, each undirected
edge except for self-loops is represented by two directed
edges (arcs). That is, the undirected edge (i, j) is represented
by two arcs (i, j) and ( j, i). Let Ē denote the set of arcs
enlarged by the above method. The set Ē is denoted by
Ē = {1,2, . . . , |Ē |}, where each element may be represented
by the pair of nodes. We define binary variables as follows:

• δi, j(k): δi, j(k) = 1 if the agent j is located on the node
i at time k. Otherwise δi, j(k) = 0.

• δi(k): δi(k) = 1 if at least one agent is located on the
node i at time k. Otherwise δi(k) = 0.

• ξl, j(k): ξl, j(k) = 1 if the agent j is located at the node
a at time k − 1, and is located at the node b at time k,
where l = (a, b). Otherwise ξl, j(k) = 0.

From the definition

ξl, j(k) = δa, j(k − 1)δb, j(k) (4)

holds, where l ∈ Iout(a) and l ∈ Iin(b). In addition, we
impose the following equality constraint:

| Ē |∑
l=1

ξl, j(k) = 1, j ∈ {1,2, . . . ,m}.

If this constraint is satisfied, then
∑n

i=1 δi, j(k) = 1 is also
satisfied. The relation between δi, j(k) and δi(k) is given by
the following linear inequalities for each i ∈ {1,2, . . . ,n} [8]:

δi, j(k) ≤ δi(k) ≤
m∑
j′=1

δi, j′(k), j ∈ {1,2, . . . ,m} (5)

We also define binary variable vectors as follows:

δ̄(k) :=
[
δ1(k) δ2(k) · · · δn(k)

]>
,

ξj(k) :=
[
ξ1, j(k) ξ2, j(k) · · · ξ |E |, j(k)

]>
.

First, using δi(k), the penalty pi(k) is modeled by

pi(k + 1) = (1 − δi(k))(pi(k) + 1). (6)

The lower bound of pi(k) is 0, and the upper bound of pi(k)
is given by p̄ < ∞ (p̄ can be determined based on a given
graph). Then, zi(k) := δi(k)pi(k) − 1 is equivalent to the
following linear inequalities [2]:{

−1 ≤ zi(k) ≤ p̄δi(k) − 1,
pi(k) − p̄(1 − δi(k)) − 1 ≤ zi(k) ≤ pi(k) − 1. (7)

Hence, (6) can be represented by

pi(k + 1) = pi(k) − zi(k) − δi(k)

and (7).
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Next, using ξl, j(k), the input-output relation at the node
i can be represented by∑

l∈Iout(i)

ξl, j(k + 1) =
∑

l∈Iin(i)

ξl, j(k), i ∈ {1,2, . . . ,n}.

From this expression, we can obtain

0 ≤ Eu j(k) − Fξj(k) ≤ 0, j ∈ {1,2, . . . ,m},

where u j(k) := ξj(k + 1), j ∈ {1,2, . . . ,m}, and E,F ∈
{0,1}n×| Ē | is derived from the graph G (see also [9]). Fur-
thermore, from (4), δi, j(k) =

∑
l∈Iout(i) ξl, j(k + 1) holds.

Then, the inequalities (5) can be rewritten as

Eu j(k) ≤ δ̄(k) ≤
m∑
j=1

Eu j(k), j ∈ {1,2, . . . ,m}.

Hence, δi, j(k) may not be used.
Finally, using u j(k)(= ξj(k + 1)), the time evolution of

the traveling cost for the agent j can be modeled by

qj(k + 1) = qj(k) +Wu j(k), j ∈ {1,2, . . . ,m},

where W := [w1 w2 · · · w | Ē |],

wi =

{
0 if the edge i is a self-loop,
1 otherwise.

From the above preparations, the move of agents, penal-
ties (the constraint (3) is included), and travel costs are mod-
eled by the following mixed logical dynamical systemmodel
[2]: {

x(k + 1) = Ax(k) + Bv(k),
Cx(k) + Dv(k) ≤ G,

(8)

where

x(k) = [p1(k), . . . , pn(k),q1(k), . . . ,qm(k),

ξ>1 (k), . . . , ξ
>
m(k)]

> ∈ Rn+m × {0,1} | Ē |m,
v(k) = [z1(k), z2(k), . . . , zn(k), δ̄>(k),

u>1 (k), . . . ,u
>
m(k)]

>

∈ Rn × {0,1}n+ | Ē |m.

The matrices A, B, C, D, and G are derived as follows:

A =

In 0 0
0 0 0
0 Im 0

 , B =

−In −In 0
0 0 I | Ē |m
0 0 Im ⊗W

 ,

C =



0 0 0
0 0 0
In 0 0
−In 0 0
0 0 In ⊗ F
0 0 −In ⊗ F
0 0 0
0 0 0
0 −Im 0


,

D =



−In 0 0
In −p̄In 0
−In p̄In 0
In 0 0
0 0 −In ⊗ E
0 0 In ⊗ E
0 −Imn Im ⊗ E
0 Imn −1m×m ⊗ E
0 0 0


,

G =



1n×1
−1n×1

(p̄ + 1)1n×1
−1n×1

0
0
0
0

−c1m×1


.

From the state equation in (8), we can obtain

x̄ = Āx(t) + B̄v̄, (9)

where

x̄ = [x>(t), . . . , x>(t + N)]>,

v̄ = [v>(t), . . . , v>(t + N − 1)]>,

Ā =



I
A
A2

...
AN


, B̄ =



0 0 · · · 0
B 0 · · · 0

AB
. . .

. . .
...

...
. . .

. . . 0
AN−1B · · · AB B


.

From the linear inequality in (8), we can obtain

C̄ x̄ + D̄v̄ ≤ Ḡ, (10)

where C̄ = [IN ⊗ C 0], D̄ = IN ⊗ D, and Ḡ = 1N×1 ⊗ G.
Moreover, (2) can be rewritten as

J = Lx̄, (11)
L =

[
01×(n+m+m | Ē |)N 01×n 11×m 01×m | Ē |

]
.

Thus, using (9), (10), and (11), Problem 1 is equivalently
rewritten as the following MILP problem:

Problem 2:

given x(t)

find v̄ ∈ (Rn × {0,1}n+ | Ē |m)N

minimize J = LB̄v̄ + L Āx(t)
subject to (C̄B̄ + D̄)v̄ ≤ Ḡ − C̄ Āx(t).

TheMILPproblemobtained can be solved by using a suitable
free/commercial solver. According to the policy of model
predictive control [3], [14], the optimal trajectory of agents
can be generated by solving the MILP problem at each time.
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Remark 1: In this paper, we consider an undirected graph
as a mathematical model of surveillance areas. The above
method can be extended to a weighted directed graph.

Remark 2: The computational complexity of MILP prob-
lems depends on the number of decision variables and so on
(especially, the number of binary decision variables). The
important point is that an MILP problem is NP-hard. Hence,
the computation time for solving an MILP problem becomes
extremely longer with an increase in the number of binary
decision variables. One of the methods to overcome this
issue is to decompose a given graph. For each decomposed
graph, each agent is assigned in advance, and the surveil-
lance problem for a single agent is solved. See [8] for further
details.

4. Derivation of Feasibility Condition

In this section, based on CPP, we derive a condition on
the number of agents, the surveillance performance, and the
prediction horizon such that Problem 2 (the MILP problem)
is always feasible. The surveillance performance is evaluated
by c in the inequality (3). Here, we make the following
assumption.

Assumption 1: Initial locations of all agents can be set
arbitrarily. In addition, the initial location of each agent is
different.

Using a solution of CPP, we can determine initial locations
of agents.

CPP is the problem of finding a shortest closed walk
of an undirected graph in which each edge is traversed at
least once, rather than exactly once [16]. In the case of
the undirected graph shown in Fig. 1, one of the solutions
of CPP can be derived as the closed walk shown in Fig. 2,
where self-loops are ignored. Let κ denote the number of
nodes in the closed walk, which is a solution of CPP. In the
closed walk shown in Fig. 2, κ is given by κ = 22.

First, we explain a motivating example.

Example 2: Consider the graph shown in Fig. 1. Assume
that the initial penalties of nodes are given by pi(0) = 0,

Fig. 2 Solution of CPP for the graph shown in Fig. 1.

i ∈ {1,2, . . . ,14}. Suppose that the number of agents is
given by three (m = 3), and the initial locations of agents
1, 2, and 3 are given by nodes 1, 7, and 14, respectively
(gray nodes in Fig. 2). Suppose also that c = 7 and N = 8.
Then, one of the trajectories (closed walks) that Problem 1
is always feasible can be derived as follows:

Agent 1: 1→ 2→ 3→ 4→ · · · → 2→ 1,

Agent 2: 7→ 10→ 12→ 13→ · · · → 4→ 7,

Agent 3: 14→ 11→ 9→ 8→ · · · → 11→ 14.

In the case where the number of agents is two (m = 2), if c =
10 and N = 11, then there exist trajectories that Problem 2
is always feasible. Thus, initial locations, feasibility, and
performance can be discussed using a solution of CPP. �

Next, we consider a general case. We further impose
the following constraint for Problem 2:

• The location of agent i ∈ {1,2, . . . ,m} at time t + N is
either one of the locations of agents at time t.

This constraint can be represented by

δ̄(t + N) = δ̄(t). (12)

where δ̄(t+N) is not a decision variable in Problem2. Noting
that δi, j(k) =

∑
l∈Iin(i) ξl, j(k) holds from (4), δ̄(t +N) can be

derived as a binary vector satisfying the following inequality:

Fu j(t + N − 1) ≤ δ̄(t + N) ≤
m∑
j=1

Fu j(t + N − 1). (13)

From (12) and (13), the additional constraint is derived as

Fu j(t + N − 1) ≤ δ̄(t) ≤
m∑
j=1

Fu j(t + N − 1). (14)

Problem 2 with (14) can also be rewritten as an MILP prob-
lem. Thus, we have the following theorem.

Theorem 1: Under Assumption 1 and pi(0) = 0 (i.e., the
initial penalty is given by zero), Problem2with the inequality
constraint (14) is always feasible if the following condition
holds:

κ

m
≤ c + 1 ≤ N . (15)

Proof : First, from the definition (1) of the penalty, the
update of the penalty by the location information is delayed
one discrete time. Hence, the prediction horizon N should
be equal to or greater than c + 1. That is, we can obtain
N ≥ c + 1.

Next, under N ≥ c + 1, m agents monitor locations
except for the current locations of agents, such that (3) is
satisfied. From this fact, we can obtain mc ≥ κ −m. We can
obtain (15) from N ≥ c + 1 and mc ≥ κ − m.

Finally, under the condition (15), the feasible solution
of Problem 2 with (14) can be derived from the solution of
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CPP. �

Using the condition (15), we can characterize the rela-
tion between initial locations, feasibility, performance, and
the number of agents. In the previous motivating example,
from κ = 22 and m = 3, we can obtain c ≥ 19/3 = 6.3333.
Then, we set c = 7. Of course, we can determine the number
of agents. When c = 5 is given, we havem ≥ 22/6 = 3.6667.
That is, at least four agents are needed. Initial locations can
be determined from the closed walk obtained from CPP.

We remark that a closed walk obtained by solving CPP
is not unique in general. However, the number (κ) of nodes
in the optimal closed walk is unique. Hence, the fact that a
closed walk obtained by solving CPP is not unique does not
affect the performance (c) and the number of agents (m).

5. Numerical Example

We present a numerical example. We use the setting of
Example 2 (m = 3, c = 7, and N = 8). Figure 3 shows
trajectories of three agents. From this figure, we see that
trajectories are not necessarily the same as a solution for
CPP. Figure 4 shows time response of penalties of nodes 6,
8, 13, and 14. From this figure, the constraint on penalties
(pi(k) ≤ 7) is satisfied in these nodes. We confirmed that
pi(k) ≤ 7 holds in all nodes. In the case of N = 7, Problem 1
is infeasible at a certain time. Hence, in this example, the
conditions (15) are tight.

Next, we compare the proposed method with our pre-
viously proposed methods [8], [10], [13]. In the proposed
method, since the travel cost is minimized, agents sometimes
stop (the performance is guaranteed by (3)). See Fig. 3. In
[8], [10], since the penalty for each node isminimized, agents
continue to move. In [13], agents may stop by introducing
a fuel constraint for each agent. However, the problem for-
mulation is more complicated than the proposed method.
Thus, by the proposed method, energy saving can be easily
considered.

Finally, we comment about the computation time to
solve the MILP problem. The worst computation time was
0.3867 sec, and the mean computation time was 0.0881 sec.
Here, we used the computer with CPU: Intel Core i9-11900K
3.50GHz andMemory: 32GB, and used IBMILOGCPLEX
Optimizer 12.7.1 as an MILP solver. Thus, the MILP prob-
lem in this case can be solved fast.

6. Conclusion

In this paper, we proposed a multi-agent surveillance method
based on travel cost minimization. The optimal surveillance
problem was reduced to an MILP problem through an MLD
system model. Furthermore, we discussed the relation be-
tween initial locations, feasibility, and performance based
on CPP. Furthermore, we derived a condition on the number
of agents, the surveillance performance, and the prediction
horizon such that the MILP problem is always feasible. The
obtained condition is very simple, and is useful for deter-
mining the number of agents and the performance.

Fig. 3 Trajectories of three agents.

Fig. 4 Time response of penalties of nodes 6, 8, 13, and 14.

One of the future efforts is to develop a distributed
optimization method for large-scale systems. It is also im-
portant to apply the proposed method to real applications. In
implementations, it is significant to consider cyber security
issues.

This work was partly supported by JSPS KAKENHI
Grant Numbers JP21H04558, JP22K04163, JP23H01430.
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