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S1. Supplementary Methods 

Digital Image correlation (DIC) for PA tension tests. We use the Ncorr module in 

MATLAB [1] to analyze DIC data. In Ncorr, the reference image can be updated based 

on the correlation coefficient, so it can measure large deformation precisely. Details of 

the DIC procedure are given in our previous works [2,3].  Briefly, we used airbrush to 

create random speckle patterns on the surface of PA gel. Photographs of these samples 

were taken 5 times per second during tests. The photos for DIC measurements were 

acquired using a charged-coupled device (CCD) camera (FLIR Grasshop-per3 4.1 MP 

mono) with a telecentric lens (Edmund Optics, SilverTL 0.16x). Selected pictures were 

imported into MATLAB and the strain fields were calculated using Ncorr. 

Large strain analysis is activated in Ncorr to update the reference image.  The important 

input parameters are the subset radius, the radius of a circular subset used to correlate 

sub-images, is set to 20; the subset spacing, the spacing between neighboring subsets, is 

set to 2; and the strain radius, the size of the region over which displacement data are 

fitted to a plane to calculate the displacement gradient, is set to 5.  The choice of these 

parameters is determined by the quality of speckle patterns and the strain distribution and 

may vary from test to test.  

Uniaxial tension tests. We use uniaxial tension tests to determine the parameters for our 

PA models in Eqns. (S4a-c) and (S5a-c) below. These tests are conducted on rectangular 

PA gel specimens of dimension 30mm (length) x 10mm (width) x 2mm (thickness), as 

shown in Figure S1. Three cyclic tests and one relaxation test are carried out to determine 

the parameters for the p-PA and c-PA gels.  For cyclic tests, we stretch the sample to a 

stretch ratio of 3 with stretch rate 1/s, 0.1/s and 0.01/s respectively and then unload them 
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to their original lengths (stretch ratio = 1) at the same rates. For the relaxation test, we 

stretch the sample to a stretch ratio of 3 with stretch rate 0.5/s and then hold for a half 

hour. All tests are done in deionized water to prevent the gels from drying. 

 

Fig. S1 Schematic of uniaxial tension specimen to determine material parameters 

for constitutive models  
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S2. Review of viscoelastic models for PA gels 

In this section we summarize our model which describes the constitutive behavior of PA 

gels.  Since this model has been studied in detail in our previous works [4,5], we list 

equations that are relevant to this work and focus on explaining the physics in the model.  

Readers who are interested in the connection of this model with statistical mechanics 

approach are encouraged to read our recent work [6].    

c-PA gel model 

Let us start with the c-PA gel and consider uniaxial tension.   In our model, the 1st Piola or 

nominal stress P(t) is the sum of the stress acting on the permanent network and the stress 

supported by the dynamic network.   The stress acting on the permanent network depends 

only on the current deformation gradient and is given by: 

   
( )

( )
1

2

1

0

chem 2 ( ) ( )   − −

I t

dW
t t

dI
       (S1) 

where 
chem is the molar fraction of chemical crosslinks per unit undeformed volume and 

0W  is the strain energy density function for the chemical network. Since the gel is 

incompressible, we assume 
0W  depends only on the invariant of the right Cauchy-Green 

tensor ( ) ( )0

1

0
( ) trace

T
t ttI → → 

 
=


F F , where F is the deformation gradient tensor.  The 

superscript 0 t→  in the deformation gradient tensor 0 t→
F  indicates that it is measured 

from the reference configuration at 0t =  when the gel is undeformed. In uniaxial loading, 
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t
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= + , where   is the stretch ratio in the tensile test.  Hence eq. (S1) is a direct 

consequence of hyper-elasticity. 

 



 

 

5 

 

Unlike the chemical cross-links in the permanent network, crosslinks formed from physical 

bonds in the dynamic network can break and heal.  We assume that before loading ( 0t  ), 

the physical crosslinks have reached a state of dynamic equilibrium in which the healing 

rate is equal to the breaking rate; this steady state healing rate is denoted by
ss .  However, 

once loading starts (at t > 0), the physical bonds can break and heal at different rates.   In 

our model, it is assumed that when a physical bond breaks, it completely unloads and loses 

all its strain energy.  Therefore a newly reformed crosslink at time   has zero initial energy 

and the stress carried by it at current time t   depends on ( )trace
  → → → 

  
F F

T
t t tH , 

where the superscript t →  in the deformation gradient tensor 
 →

F
t

 indicates that 

deformation  is measured with respect to the configuration at  .   For uniaxial tension, 

 →tH =
( )

( )

( )

( )2 2

  

  
−

t

t
.  Note that 0→ =t tH , consistent with the fact that physical crosslinks 

carry no load at birth.      

Next, we determine the stress carried by the dynamic network at current time t.    Let ( )   

denote the healing rate at time ,  where 0 t  .   More precisely, the molar fraction of 

chains per unit reference volume that are born between , d + is ( )d   . Let 

)( , , t

B t H   →
 denote the survivability function which is the fraction of physical bonds that 

survive from the time of their birth at time   to the current time t .  This fraction is equal 

to 1 at t = and goes to zero for t  . The nominal stress carried by this subpopulation 

of the chains is  

  ( ) ( )
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The stress carried by the bonds that heal or reform for time t > 0 (after loading) is obtained 

by summing the contribution of the stress carried by all subpopulations.   This is done by 

integrating over  , i.e., 

 ( ) ( )
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t td
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    (S2b) 

 

To this eq. (S2b) we must add the stress carried by the physical bonds that are connected 

and survive to the current time t before loading, which is 
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where   is the molar fraction of connected physical cross-links before the start of loading. 

The nominal stress is the sum of eq. (S1), eq. (S2b) and eq. (S3), i.e., 
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In previous works [4] we have proposed that the survivability function )( , ,   →t

B t H has the 

form: 

 ( )

1
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−
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In eq. (S4b), 
Bt  is the characteristic breaking time of physical bonds, (1, 2)B   is a 

material parameter that controls the rate of decay of the survivability function and f  is a 
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function which measures the dependence of breaking rate on the stretch experienced by a 

physical cross-link from its formation at time   to the current time t   [4].   It is given 

by 

  ( )
3

exp 1 1
3c

s
s

m

H
f H

I




→
→

  − 
= + −  

−   

     (S4c) 

where 
cI  is the first invariant of the right Cauchy-Green tensor calculated at the critical 

stretch 
c  in a tension test, after which the bond breaking kinetics accelerate, and m  is a 

material parameter.   Equation (S4c) expresses the fact that when chains stretch beyond 

their critical strain limit, their breaking rate increase significantly resulting in macroscopic 

softening of the gel.  For a linear viscoelastic solid, f is the constant function 1 ( )cI →   

so that the survivability function in eq. (S4b) is independent of strain history [7,8].   

To complete the model, one needs to supply the healing rate ( )t in eq. (S4a).   In our 

previous works [4,5], we have shown that the healing rate depends on the deformation 

history and is obtained by solving the integral equation: 

 
chem ,( ) ,1 ( ))( ,       

−

→− = + 
t

t

BHt t t H d       (S4d) 

where 
Ht is the characteristic time for healing. 

p-PA gel model 

The model for p-PA gel is almost identical, except that there is no permanent network.   

This permanent network is replaced by a second dynamic network is added to account for 

the presence of two phases [5].  

With this modification, eq. (S4a) becomes  
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𝑃(𝑡) = [∑ 𝜒𝑖
𝑠𝑠 𝑡𝐵𝑖

2−𝛼𝐵𝑖
[𝜙𝐵𝑖(𝜏 = 0, 𝑡, 𝐻0→𝑡)]2−𝛼𝐵𝑖2

𝑖=1 ] × 2
𝑑𝑊0

𝑑𝐼1
|

𝐼1(𝑡)
(𝜆(𝑡) − 𝜆(𝑡)−2) +

∑ ∫ [𝜒𝑖(𝜏)𝜙𝐵𝑖(𝜏, 𝑡, 𝐻𝜏→𝑡) × 2
𝑑𝑊0

𝑑𝐼1
|

𝐻𝜏→𝑡
[

𝜆(𝑡)

𝜆2(𝜏)
−

𝜆(𝜏)

𝜆2(𝑡)
]]

𝑡

0
𝑑𝜏2

𝑖=1    (S5a) 

The summation indices 1 2i ,=  specify the two phases, each has its material parameters, 

( 𝜒𝑖
𝑠𝑠 ,  Bi Bit , , etc.,) , healing rate i  and survivability function 𝜙𝐵𝑖(𝜏, 𝑡, 𝐻𝜏→𝑡).   The 

healing rate of each phase is determined by the integral equation: 

( ( )( ) , )      
−

= + i i

t

i i H B it t t d   i=1,2     (S5b) 

where 
1 2 1, 1  = −  are the molar fraction of weak and strong bonds in the hard and soft 

phase respectively.  
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S3. Determination of model parameters 

We used two methods to determine the parameters for the constitutive models for the p-

PA and c-PA gels.   In both methods, we first define a parameter space for the fitting. The 

parameter space for the p-PA model is 

𝐶1 ∈ [0, 5]    𝐶2 ∈ [0, 0.3]      𝐶3 ∈ [0, 0.1]      𝜆𝑐 ∈ [1.05, 1.3] 

𝑤1 ∈ [0.3, 0.7]    𝛼𝐵1 ∈ [1.3, 1.9]    𝑡𝐵1 ∈ [0, 0.02]    𝑚1 ∈ [0.3, 0.7]    𝑡𝐻1 ∈ [0, 1]      

𝑤2 ∈ [0.3, 0,7]    𝛼𝐵2 ∈ [1.3, 1.9]    𝑡𝐵2 ∈ [0, 0.2]      𝑚2 ∈ [0.3, 0.7]    𝑡𝐻2 ∈ [0, 1]      

The parameter space for c-PA model is 

𝐶1 ∈ [0, 5]    𝐶2 ∈ [0, 0.3]      𝐶3 ∈ [0, 0.1]     𝜆𝑐 ∈ [1.05, 3.00]     𝑤𝑐ℎ𝑒𝑚 ∈ [0, 0.15] 

𝛼𝐵 ∈ [1.3, 1.9]    𝑡𝐵 ∈ [0, 0.2]    𝑚 ∈ [0.3, 0.7]    𝑡𝐻 ∈ [0, 1]    

where 𝐶1, 𝐶2, 𝐶3 define the Yeoh’s strain energy 𝑊0 in Eqn. (S4a) or (S5a), that is, 

 𝑊0(𝐼1) =  𝐶1(𝐼1 − 3) + 𝐶1𝐶2(𝐼1 − 3)2 + 𝐶1𝐶3(𝐼1 − 3)3  (S6) 

Specifically, 𝜇 = 2𝐶1 is small strain shear modulus of the undamaged PA gel, C1 and C2 

controls the strain stiffening characteristic of the network. The fitting results for different 

PA gels are shown in Table S1-S4. 

Method I: Large dataset computing  

We randomly pick 1 million sets of parameters from the parameter space and calculate 

the nominal stress using the constitutive model for each test 1 million times based on 

these 1 million sets of parameters.  Using mean square error as criteria, we pick one set of 

parameters out of these 1 million sets of parameters which fit our experimental data best. 

The optimal parameters for p-PA and c-PA are shown in Table S1 and S2 respectively. 

From Figures S2 – S5 we find that the fitting results are good. However, this method 

takes us several hours to finish even with a powerful workstation. 
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Method 2: Machine learning  

To make the fitting process more scalable, we also developed a machine learning method 

to determine the parameters. Details of this method can be found in our previous paper 

[9]. Briefly, we randomly pick 3000 sets of parameters instead of 1 million from the 

parameter set and then use our model to compute the nominal stress history 3000 times 

for each test.  Then we use machine learning to build metamodels for PA constitutive 

models based on these 3000 cases. After learning, we use the metamodels to predict the 

results of constitutive models on 1 million sets of parameters without really computing 

the constitutive models 1 million times.  This method can be implemented in a laptop 

(CPU – Intel i7-9750H, 4 cores, GPU – Nvidia GTX 1650) in a half hour and the fitting 

results are just as good as those shown in Figures S2 and S5. 
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Fig. S2. Fitting results for p-PAweak.   In cyclic test the loading and unloading rates have 

the same magnitude.   In relaxation tests, we first stretch the sample at a rate of 0.5s, then 

held the stretch ratio constant when it reaches 3.   

 

Table S1. Fitting parameters for p-PAweak 

𝐶1 = 0.1000𝑀𝑃𝑎 𝐶2 = 0.0500 𝐶3 = 0.0000 𝜆𝑐 = 1.2600  

𝜔1 = 0.5729 𝛼𝐵1 = 1.7448 𝑡𝐵1 = 0.0058 𝑚1 = 0.3635 𝑡𝐻1 = 0.5301 

𝜔2 = 0.4271 𝛼𝐵2 = 1.8404 𝑡𝐵2 = 0.1529 𝑚2 = 0.5277 𝑡𝐻2 = 0.7351 
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Fig. S3.   Fitting results for p-PAstrong .  In cyclic test the loading and unloading rates 

have the same magnitude.   In relaxation tests, we first stretch the sample at a rate of 0.3s, 

then held the stretch ratio constant when it reaches 2.  

 

Table S2. Fitting parameters for p-PAstrong 

𝐶1 = 3.990𝑀𝑃𝑎 𝐶2 = 0.506000 𝐶3 = 0.0352 𝜆𝑐 = 1.1560  

𝜔1 = 0.7500 𝛼𝐵1 = 1.7957 𝑡𝐵1 = 0.0051 𝑚1 = 0.4375 𝑡𝐻1 = 0.4289 

𝜔2 = 0.2500 𝛼𝐵2 = 1.6938 𝑡𝐵2 = 0.0183 𝑚2 = 0.4831 𝑡𝐻2 = 0.0940 

 



 

 

13 

 

 
Fig. S4.   Fitting results for c-PAweak.  In cyclic test the loading and unloading rates have 

the same magnitude.   In relaxation tests, we first stretch the sample at a rate of 0.5s, then 

held the stretch ratio constant when it reaches 2.   

 

Table S3. Fitting parameters for c-PAweak 

𝐶1 = 0.05682𝑀𝑃𝑎 𝐶2 = 0.0011 𝐶3 = 0.0000 𝜆𝑐 = 2.565  

𝜔𝑐ℎ𝑒𝑚 = 0.0898 𝛼𝐵 = 1.8717 𝑡𝐵 = 0.0612 𝑚 = 1.8017 𝑡𝐻 = 0.8021 
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Fig. S5.   Fitting results for c-PAstrong.  In cyclic test the loading and unloading rates 

have the same magnitude.   In relaxation tests, we first stretch the sample at a rate of 0.5s, 

then held the stretch ratio constant when it reaches 2.   

 

Table S4. Fitting parameters for c-PAstrong 

𝐶1 = 2.3416𝑀𝑃𝑎 𝐶2 = 0.1147 𝐶3 = 0.0535 𝜆𝑐 = 1.0550  

𝜔𝑐ℎ𝑒𝑚 = 0.0026 𝛼𝐵 = 1.7190 𝑡𝐵 = 0.0718 𝑚 = 0.3079 𝑡𝐻 = 0.312 
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S4. Model simulation of T-shape specimen test 

To simulate the relaxation process, we use eqn. (S4a-d) and eqn. (S5a-b).   In our relaxation 

experiments, the stretch history N at the grip is known, i.e., 

 ( )
1 01 5 0

1 5 5
N

. t s t
t              

. t s


+   
= 


      (S7) 

We assume that the 1st Piola or nominal stress and stretch in each section are uniform and 

denote them by ns ws ns wsP ,P , ,   respectively.   Our assumption implies that 

 
2

ns ws
N

 


+
=          (S8) 

Force balance implies that 

 ns ns ws wsP A P A F= =         (S9) 

where ns wsA ,A  denote the cross-section area of the specimen in the undeformed state and F 

is the force acting on the specimen.   Equations (S4a-d), (S6-8) allow us to numerically 

determine the time evolution of stretch ratios ns ws,  for the c-PA gel.   The same procedure, 

with eq. (S4a-d) replaced by eq. (S5a-b), determines ns ws,  for the p-PA gel.   The 

numerical algorithm to determine the stress history is based on the fact that the force acting 

on the two sections is the same. In each timestep, we first guess the length of two sections 

with the constraint that the sum of their length is equal to the overall length which at each 

time step is a constant.  Then we use our constitutive model e.g., (S4a-d) to calculate the 

nominal stress on each section at this timestep.  The force acting on each section is obtained 

using these nominal stresses.  If the difference between these forces are less than 1Pa, we 

adopt these lengths and go to next timestep. If not, we re-estimate the length of two parts 
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according to the difference between the force of two parts. The flow chart of our numerical 

scheme is shown in Figure S6. 

 

 

Fig. S6. Flow chart for calculating stretches of T-shape sample in each time step.  

The subscripts ns and ws denote narrow and wide section respectively.  N  is the nominal 

stretch imposed on the specimen. 𝜆ℎ, 𝜆𝑙, 𝜆𝑚 are intermediate variables in this algorithm to 

store relevant stretches.   
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S5. Relaxation test for T-shape sample in oil 

 

Fig. S6. T-shape test for c-PAstrong immersed in mineral oil. 

The sample is made of two separated parts so there is no water flow within this sample.  

The sample is stretched to   = L/L0 =1.3 with a fast stretch rate of 0.1/s and then hold it 

at the deformed length L = 1.3L0 for half an hour. The curves show the time evolution of 

stretch at narrow and wide sections, which have the same trend as the curve of T-shape 

test in water. 
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