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Low-energy structure and β-decay properties of neutron-rich
nuclei in the region of a shape phase transition
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The low-energy structure and β-decay properties of the neutron-rich even-mass nuclei near the neutron number
N = 60 that are experimentally of much interest are investigated within the framework of the nuclear density
functional theory and the interacting boson-fermion-fermion model. By using the results of the constrained
self-consistent mean-field calculations based on the relativistic energy density functional, the interacting-boson
Hamiltonian describing the even-even core nuclei, the boson-fermion, and the fermion-fermion interactions are
determined. The Gamow-Teller transition strengths, with the corresponding operator being constructed without
introducing further phenomenological adjustment, are computed by using the wave functions of the initial and
final nuclei of the β decay. The triaxial quadrupole potential energy surfaces computed for the N = 60 even-even
isotones suggest a pronounced γ softness. The calculated energy spectra for the even-even and odd-odd nuclei
in the Rb to Cd isotopic chains exhibit an abrupt change in nuclear structure around N = 60, as suggested
experimentally. The predicted β-decay log10 f t values underestimate the measured values for the nuclei with
low Z and with N � 60, exhibit a rapid increase for N > 60, reflecting the nuclear structure evolution, and agree
rather well with the measured values for those nuclei with Z being not far from the proton major shell closure
Z = 50. Sensitivity of the predicted β-decay properties to the model assumptions and parameters employed in
the nuclear structure calculations is discussed, specifically, by comparing results obtained based on the different
choices of the underlying energy density functional.
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I. INTRODUCTION

The low-energy structure of neutron-rich heavy nuclei with
the neutron number N ≈ 60 and with the mass A ≈ 100 has
been of much interest from both experimental and theoretical
points of view. In these nuclear systems a subtle interplay
between the single-particle and collective degrees of freedom
plays an essential role. The nuclear structure phenomena that
are extensively studied in this mass region include the abrupt
change of nuclear shapes around N = 60, often referred to
as quantum phase transitions [1], the coexistence of different
intrinsic shapes [2] in the neighborhood of the ground state
and corresponding low-lying excited 0+ states. Experiments
using radioactive-ion beams have been carried out to reveal
properties of those neutron-rich nuclei that are even heavier
and beyond the region of shape phase transitions at N ≈ 60.
Theoretical predictions for the neutron-rich nuclei in this re-
gion have been made extensively with a number of nuclear
structure models, such as the nuclear shell model [3–6], meth-
ods based on the nuclear energy density functional (EDF)
[7–11], and the interacting boson model (IBM) [12–16].

Along with their nuclear structure aspects, the neutron-rich
heavy nuclei are also relevant to astrophysical nucleosyn-
thesis processes, i.e., the rapid neutron-capture (r) process
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and β decay. The β-decay rate should be sensitive to the
wave functions for the initial and final nuclei of the pro-
cess, which vary significantly from one nucleus to another
in the transitional regions. Reliable theoretical descriptions,
as well as precise measurements [17–21], are key to eval-
uate the nuclear β-decay matrix elements and hence to
model the astrophysical process producing heavy chemical
elements. Consistent descriptions of the nuclear low-lying
structure and β decay have been provided by several theo-
retical approaches such as the interacting boson-fermion and
boson-fermion-fermion models (IBFM and IBFFM) [22–29],
the quasiparticle random-phase approximations [30–38], and
the nuclear shell model [3,39–41].

Furthermore, what is worth mentioning is the double-β
decay, a rare process in which single-β decay occurs suc-
cessively between the neighboring even-even nuclei, emitting
two electrons (or positrons) and some light particles such
as neutrinos [42–44]. In particular, should that type of the
double-β decay that does not emit neutrinos (i.e., neutrinoless
double-β decay; 0νββ) be observed by experiment, it would
provide crucial pieces of information about the masses and the
nature of neutrinos, and the validity of various symmetry re-
quirements for the electroweak fundamental interaction. Since
the predicted 0νββ nuclear matrix elements (NMEs) differ
by several factors among different theoretical approaches,
tremendous efforts have been devoted to reduce and control
the theoretical uncertainties inherent to the models employed.
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The study of the single-β decay is also instrumental for pre-
dicting accurately the double-β NMEs, especially when it
is necessary to compute intermediate states of the odd-odd
nuclei without assuming the closure approximation.

Among the theoretical models describing β decay, as
well as nuclear structure, the IBM, a model in which cor-
related monopole and quadrupole pairs of valence nucleons
are represented by s and d bosons, respectively [12,45,46],
has been quite successful in the quantitative description
of the quadrupole collective states of medium-heavy and
heavy even-even nuclei. In the conventional IBM studies,
calculations have been purely phenomenological, since the
parameters of the Hamiltonian have been obtained from ex-
periment. On the other hand, the IBM should be rooted in
the underlying microscopic nuclear structure, and the model
Hamiltonian has been shown to be derived from nucleonic de-
grees of freedom [12,45–48]. In particular, a fermion-to-boson
mapping technique has been developed [48], in which the
IBM Hamiltonian is completely determined by using the re-
sults of the self-consistent mean-field (SCMF) calculation that
is based on a given EDF. This method has been applied to a
number of studies on the quadrupole collective states [48–51].
An extension of the method to those nuclear systems with
odd numbers of neutrons and/or protons has been made by
incorporating the particle-boson coupling, with microscopic
input provided by the same EDF calculations [52,53]. In these
cases, in addition to the IBM Hamiltonian describing an even-
even nucleus, unpaired nucleon degrees of freedom and their
coupling to the even-even boson core should be considered in
the framework of the IBFM or IBFFM. The IBFM and IBFFM
formulated in that way have also been employed to study β

decay of the γ -soft nuclei near the Ba and Xe regions [27,28],
the neutron-deficient Ge and As nuclei [54], the neutron-rich
Pd and Rh nuclei [55], and the two-neutrino double-β (2νββ)
decay in a large number of the candidate nuclei [56].

This article presents a simultaneous description of the low-
energy collective excitations and β-decay properties of the
neutron-rich nuclei in the vicinity of N = 60, which is experi-
mentally of much interest, within the mapped IBM framework
mentioned above. The scope of the analysis is to study the
correlations between the changes in the nuclear structure of
the initial and final even-even nuclei and the predictions of
the β decay. The present study covers the even-even and odd-
odd nuclei from the proton number Z = 36 (Kr) to 48 (Cd)
isotopes with the neutron number 54 � N � 64, in which
region rapid shape phase transitions are expected to occur. It
is noted that the present analysis is restricted to the allowed
β decay, i.e., the transition in which parity is conserved and
that takes place between those states with angular momenta I
differing by �I � 1. Note also that only the β decay between
positive-parity states is considered. In addition, some of the
nuclei included in the present analysis are also candidates for
the 0νββ decay, e.g., 96Zr and 100Mo. Their structure and
single-β and double-β properties have already been studied
in a previous paper [56], and some updated results on these
particular nuclei are included in the present article.

The paper is organized as follows. In Sec. II, the theoreti-
cal framework to describe low-lying states of the considered
even-even and odd-odd nuclei is presented, followed by the

definition of the β-decay operator. In Sec. III, results of the
SCMF calculations along the N = 60 isotones, and of the
spectroscopic calculations on the low-spin and low-energy
spectra, and some electromagnetic transition properties of the
considered nuclei are discussed. In Sec. IV, results of the
β-decay properties, and the sensitivity of the final results to
the choice of the EDF, are discussed. A summary of the main
results and conclusions are given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Self-consistent mean-field method

As the first step, the constrained SCMF calculations are
performed for a set of even-even Kr, Sr, Zr, Mo, Ru, Pd,
and Cd isotopes with 54 � N � 64 by means of the relativis-
tic Hartree-Bogoliubov (RHB) method [8,9,57,58]. For the
particle-hole channel, the density-dependent point coupling
(DD-PC1) EDF [59] is employed, which is widely used in mi-
croscopic calculations on nuclear structure and dynamics [9].
For the particle-particle channel the separable pairing force
of finite range [60] is considered with the strength 728 MeV
fm3, which has been determined to reproduce the pairing gap
obtained from the Gogny D1S [61] interaction. The sensitivity
of the mean-field results on various intrinsic properties to the
choice of relativistic EDF and to the strength of this pairing
force has been extensively studied, e.g., in Ref. [62].

Here the particular choice of the relativistic EDF and the
pairing interaction is made as the microscopic input to the
mapped IBM-2, since these combinations have been shown
to be adequate in a number of nuclear structure studies in
different mass regions concerning, e.g., the octupole defor-
mations and collectivity [63–65], and the structural evolution
in neutron-rich even-even and odd-mass Zr isotopes [15], and
in the systematic calculation of the double-β decay of 26
even-even nuclei [56] and single-β decay in transitional As
and Ge nuclei [54]. As in the case of these previous RHB
plus IBM-2 studies, the constraints imposed in the present
RHB SCMF calculations are on the expectation values of the
mass quadrupole moments Q̂20 and Q̂22, which are related
to the polar deformation variables β and γ representing de-
grees of axial deformation and triaxiality, respectively [66].
The SCMF calculations provide intrinsic properties such as
the potential energy surfaces (PESs) defined in terms of the
triaxial quadrupole deformations (β, γ ), and single-particle
energies and occupation probabilities. These quantities are
used as a microscopic input for the spectroscopic calculations,
as described below.

B. Interacting boson-fermion-fermion model

Within the mean-field approximations some important
symmetries, such as the rotational invariance and conservation
of particle numbers, are broken. To study physical observables
in the laboratory frame such as the excitation energies and
electromagnetic transition rates, it is necessary to go beyond
the SCMF level [67], by taking into account the dynami-
cal correlations arising from the restorations of symmetries
and from the inclusion of quantum fluctuations around the
mean-field solution, which are not taken into account properly
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in the mean-field approximation. Such a beyond-mean-field
treatment is here made by means of the IBM.

In the present analysis the neutron-proton version of the
IBM (IBM-2) is considered, which consists of the neutron
and proton bosons reflecting the collective neutron and pro-
ton pairs from a microscopic point of view [12,45,46]. The
numbers of neutron, Nν , and proton, Nπ , bosons are con-
served separately, and are equal to half the numbers of valence
neutron and proton pairs, respectively. Here the 78Ni doubly
magic nucleus is taken as the inert core for describing the
even-even Kr, Sr, Zr, Mo, Ru, Pd, and Cd nuclei. The dis-
tinction between the neutron and proton bosons is made also
in the IBFFM, denoted hereafter as IBFFM-2. The IBFFM-2
Hamiltonian is given in general as

Ĥ = ĤB + Ĥ ν
F + Ĥπ

F + V̂ ν
BF + V̂ π

BF + V̂νπ . (1)

The first term on the right-hand side of the above equation
denotes the IBM-2 Hamiltonian describing the even-even nu-
cleus, and is of the form

ĤB = εd
(
n̂dν

+ n̂dπ

) + κQ̂ν · Q̂π

+ κνQ̂ν · Q̂ν + κπ Q̂π · Q̂π + κ ′L̂ · L̂, (2)

where the first term stands for the d-boson number operator
with n̂dρ

= d†
ρ · d̃ρ (ρ = ν or π ) and with εd the single d

boson energy. The second, third, and fourth terms are the
quadrupole-quadrupole interactions between neutron and pro-
ton bosons, between neutron and neutron bosons, and between
proton and proton bosons, respectively. The quadrupole op-
erator Q̂ρ is defined as Q̂ρ = s†

ρ d̃ρ + d†sρ + χρ (d†
ρ × d̃ρ )(2),

with χν and χπ being dimensionless parameters. κ , κν , and κπ

are strength parameters.
Among the quadrupole-quadrupole interactions, the

unlike-boson interaction, Q̂ν · Q̂π , makes a dominant
contribution to low-lying collective states. For most
of the nuclei considered in this study, the like-boson
quadrupole-quadrupole interaction terms, Q̂ν · Q̂ν and
Q̂π · Q̂π , turn out to play a minor role, and are thus neglected
by setting κν = κπ = 0. These terms are, however, included
for all the Zr isotopes considered and 100Sr and 102Sr isotopes.
This choice is based on the peculiar nuclear structure and
its evolution as a function of N in the neutron-rich Zr
isotopes, as investigated in the earlier mapped IBM-2 with
RHB calculations reported in Ref. [15]. In that study, these
like-boson quadrupole-quadrupole interaction terms, as well
as the unlike-boson one, have been introduced to better
describe the low-energy structure at the quantitative detail.
Since the RHB PESs for the 100Sr and 102Sr nuclei are more
or less similar in topology to those for the neighboring Zr
isotopes, the same interaction terms are introduced. In the
following, for the above-mentioned nuclei a simple relation,
κν = κπ = κ/2, is assumed in order to reduce the number of
parameters.

The fifth term on the right-hand side of Eq. (2) stands for a
rotational term, with κ ′ being the strength parameter, and L̂ =
L̂ν + L̂π denotes the angular momentum operator with L̂ρ =
(d†

ρ × d̃†
ρ )(1).

The second and third terms of Eq. (1) represent the single-
neutron and -proton Hamiltonians, respectively, and take the

form

Ĥρ
F = −

∑
jρ

ε jρ

√
2 jρ + 1

(
a†

jρ
× ã jρ

)(0) ≡
∑

jρ

ε jρ n̂ jρ , (3)

where ε jρ stands for the single-particle energy of the odd neu-
tron (ρ = ν) or proton (ρ = π ) orbital jρ . a(†)

jρ
represents the

particle annihilation (creation) operator, with ã jρ defined by
ã jρmρ

= (−1) jρ−mρ a jρ−mρ
. On the right-hand side of Eq. (3),

n̂ jρ stands for the number operator for the odd particle. The
single-particle space taken in the present study comprises the
neutron 3s1/2, 2d3/2, 2d5/2, and 1g7/2 orbitals, and the proton
1g9/2 orbital in the N = 50 − 82 and Z = 28 − 50 major os-
cillator shells for calculating the positive-parity states of the
odd-odd nuclei.

The fourth (fifth) term on the right-hand side of Eq. (1) de-
notes the interaction between a single neutron (or proton) and
the even-even boson core. A simplified form which was de-
rived microscopically within the generalized seniority scheme
[68,69] is here adopted:

V̂ ρ
BF = �ρV̂ ρ

dyn + �ρV̂ ρ
exc + AρV̂ ρ

mon, (4)

where the first, second, and third terms represent the
quadrupole dynamical, exchange, and monopole interactions,
respectively, with the strength parameters �ρ , �ρ , and Aρ .
Each term in the above expression reads

V̂ ρ
dyn =

∑
jρ j′ρ

γ jρ j′ρ

(
a†

jρ
× ã j′ρ

)(2) · Q̂ρ ′ , (5)

V̂ ρ
exc = −(s†

ρ ′ × d̃ρ ′ )(2) ·
∑
jρ j′ρ j′′ρ

√
10

Nρ (2 jρ + 1)
β jρ j′ρ β j′′ρ jρ :

× [(
d†

ρ × ã j′′ρ

)( jρ ) × (
a†

j′ρ
× s̃ρ

)( j′ρ )](2)
: +(H.c.), (6)

V̂ ρ
mon = n̂dρ

n̂ jρ , (7)

where the j-dependent factors γ jρ j′ρ = (u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ ,

and β jρ j′ρ = (u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ , with Qjρ j′ρ = 〈ρ
1
2 jρ

‖Y (2)‖′
ρ

1
2 j′ρ〉 being the matrix element of the fermion

quadrupole operator in the single-particle basis. Q̂ρ ′ in Eq. (5)
denotes the quadrupole operator in the boson system, and
was already introduced in Eq. (2). The notation : (· · · ) : in
Eq. (6) stands for normal ordering. Note that the forms of V̂ ν

BF
and V̂ π

BF are considered based on the assumption [68,69] that
among the boson-fermion interactions those between unlike
particles [i.e., between a neutron (proton) and proton (neutron)
bosons] are most important for the quadrupole dynamical
and exchange terms, and those between like particles [i.e.,
between a neutron (proton) and neutron (proton) bosons] are
relevant for the monopole term. It is also noted that within
the seniority considerations the unperturbed single-particle
energy for the orbital jρ , ε jρ , in Eq. (3) should be replaced
with the quasiparticle energy, denoted ε̃ jρ .

The last term of the IBFFM-2 Hamiltonian (1), V̂νπ , cor-
responds to the residual interaction between the unpaired
neutron and proton. The following form is considered for this
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interaction:

V̂νπ = 4π (vd + vssdσν · σπ )δ(r)δ(rν − r0)δ(rπ − r0)

− 1√
3
vssσν · σπ + vt

[
3(σν · r)(σπ · r)

r2
− σν · σπ

]
.

(8)

The first term consists of the δ, and spin-spin δ terms, while
the second and third terms represent, respectively, the spin-
spin and tensor interactions. vd, vssd, vss, and vt are strength
parameters. Note that r = rν − rπ is the relative coordinate
of the neutron and proton, and r0 = 1.2A1/3 fm. The matrix
element of V̂νπ , denoted by V ′

νπ , has the following (u, v)-
dependent form [25]:

V̂ ′
νπ = (

u j′ν u j′π u jν u jν + v j′ν v j′π v jν v jν

)
V J

j′ν j′π jν jπ

− (
u j′ν v j′π u jν v jπ + v j′ν u j′π v jν u jπ

)
×

∑
J ′

(2J ′ + 1)

{
j′ν jπ J ′
jν j′π J

}
V J ′

j′ν jπ jν j′π
, (9)

with

V J
j′ν j′π jν jπ = 〈 j′ν j′π ; J|V̂νπ | jν jπ ; J〉 (10)

being the matrix element between the bases defined in terms
of the neutron-proton pair coupled to the angular momentum
J . The bracket in Eq. (9) represents the Racah coefficient. By
following the procedure of Ref. [70], those terms resulting
from contractions are neglected in Eq. (9).

C. Procedure to build the IBFFM-2 Hamiltonian

The procedure to determine the IBFFM-2 Hamiltonian (1)
consists in the following three steps.

(i) First, the IBM-2 Hamiltonian is determined in such
a way that the (β, γ ) PES obtained from the
constrained SCMF calculation is mapped onto the
corresponding one in the IBM system which is rep-
resented as the energy expectation value in the boson
coherent state [71]. This procedure specifies optimal
parameters of the IBM-2 that renders the IBM-2 PES
as similar as possible to the SCMF one. Only the
strength parameter κ ′ for the L̂ · L̂ term [see Eq. (2)]
is determined separately so that the cranking moment
of inertia calculated in the boson intrinsic state at the
equilibrium minimum is equal to the Inglis-Belyaev
(IB) moment of inertia obtained with the RHB calcu-
lation. The IB moment of inertia is here increased by
30%, taking into account the fact that it considerably
underestimates the observed moments of inertia. See
Refs. [48–50] for details about the determination of
the IBM-2 Hamiltonian.

(ii) The single-fermion Hamiltonian, ĤF [Eq. (3)], and
boson-fermion interactions, V̂BF [Eq. (4)], are con-
structed by using the procedure of Ref. [52]: The
SCMF RHB calculations are performed for the neigh-
boring odd-N or odd-Z nucleus with the constraint
on zero deformation to provide quasiparticle energies,
ε̃ jρ , and occupation probabilities, v2

jρ , at the spherical

TABLE I. The even-even core, neighboring odd-N , odd-Z , and
odd-odd nuclei with the neutron number N = 54–64 considered in
the present study.

Even-even Odd-N Odd-Z Odd-odd

48CdN 48CdN+1 47AgN 47AgN+1

46PdN 46PdN+1 45RhN 45RhN+1

44RuN 44RuN+1 43TcN 43TcN+1

42MoN 42MoN+1 41NbN 41NbN+1

40ZrN 40ZrN+1 – –

38SrN 38SrN+1 39YN+1 39YN+1

36KrN 36KrN+1 37RbN+1 37RbN+1

configuration for the odd nucleon at orbitals jρ . These
quantities are then input to Ĥρ

F and V̂ ρ
BF, respectively.

The remaining three coupling constants, �ρ , �ρ , and
Aρ , are determined to fit the experimental data for
a few low-lying positive-parity levels of each odd-N
and odd-Z nuclei. Table I summarizes the even-even,
neighboring odd-N , odd-Z , and odd-odd nuclei stud-
ied in this paper. It is worth mentioning that Y nuclei,
with Z = 39, correspond to the middle of the proton
major shell Z = 28–50, and their even-even boson
cores are here considered to be Sr nuclei (Z = 38).
Alternatively, one may also consider Zr cores for Y.

(iii) The parameters �ρ , �ρ , and Aρ , which are determined
by fitting to the neighboring odd-N and odd-Z nuclei,
are used for the odd-odd nucleus. The quasiparticle
energies, ε̃ jρ , and occupation probabilities, v2

jρ , are
newly calculated. Then the interaction strengths in
the fermion-fermion interaction (8) are fixed to re-
produce, to a certain accuracy, the observed low-lying
positive-parity levels of each odd-odd nucleus.

The IBFFM-2 Hamiltonian, with the parameters deter-
mined by the above procedure, is diagonalized to yield
excitation energies and wave functions of the odd-odd sys-
tems.

D. Electromagnetic transition operators

By using the IBFFM-2 wave functions, electromagnetic
properties are calculated. The E2 operator is defined as

T̂ (E2) = T̂ (E2)
B + T̂ (E2)

F , (11)

with the boson part,

T̂ (E2)
B = eB

ν Q̂ν + eB
π Q̂π , (12)

and the fermion part,

T̂ (E2)
F = − 1√

5

∑
ρ=ν,π

∑
jρ j′ρ

(
u jρ u j′ρ − v jρ v j′ρ

)

×
〈
ρ

1

2
jρ

∥∥∥∥eF
ρr2Y (2)

∥∥∥∥′
ρ

1

2
j′ρ

〉(
a†

jρ
× ã j′ρ

)(2)
. (13)

eB
ρ are the boson effective charges, and the common values for

the neutrons and protons, i.e., eB
ν = eB

π = 0.0577 eb, which
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were used in the previous IBFFM-2 calculations for the Ge
and As nuclei [54], are employed here. The neutron and
proton effective charges, eF

ν = 0.5 eb and eF
π = 1.5 eb, are

exploited also from Ref. [54]. The M1 transition operator
T̂ (M1) reads

T̂ (M1) =
√

3

4π

∑
ρ=ν,π

[
gB

ρ L̂ρ − 1√
3

∑
jρ j′ρ

(
u jρ u j′ρ + v jρ v j′ρ

)

× 〈 jρ‖gρ

l  + gρ
s s‖ j′ρ〉

(
a†

jρ
× ã j′ρ

)(1)

]
. (14)

The empirical g factors for the neutron and proton bosons,
gB

ν = 0 μN and gB
π = 1.0 µN , respectively, are adopted. For

the neutron (or proton) g factors, the free values gν
 = 0 µN

and gν
s = −3.82 µN (gπ

 = 1.0 µN and gπ
s = 5.58 µN ) are em-

ployed, with gρ
s quenched by 30% as is the case of many of

the realistic IBFFM-2 calculations (e.g., Ref. [25]).

E. Gamow-Teller transition operator

To study β-decay properties, Gamow-Teller (GT) transi-
tion strengths are computed. Here, the Fermi transitions do
not enter the β decay of the studied nuclei, since the single-
particle space considered for the odd-odd nuclei consists of
the neutron 3s1/2, 2d3/2, 2d5/2, and 1g7/2 orbitals, and the
proton 1g9/2 orbital, and there is no coupling between these
single-particle orbitals to the angular momentum zero that
gives rise to the Fermi transition.

The GT transition operator is here defined by

T̂ GT =
∑
jν jπ

ηGT
jν jπ

(
P̂jν × P̂jπ

)(1)
, (15)

with the coefficients η calculated as

ηGT
jν jπ = − 1√

3

〈
ν

1

2
jν

∥∥∥∥σ

∥∥∥∥π

1

2
jπ

〉
δνπ

. (16)

P̂jρ in Eq. (15) is a one-particle transfer operator, expressed as
one of these operators,

A†
jρmρ

= ζ jρ a†
jρmρ

+
∑

j′ρ

ζ jρ j′ρ s†
ρ

(
d̃ρ × a†

j′ρ

)( jρ )

mρ
, (17)

B†
jρmρ

= θ jρ s†
ρ ã jρmρ

+
∑

j′ρ

θ jρ j′ρ

(
d†

ρ × ã j′ρ

)( jρ )

mρ
, (18)

which increases the number of valence nucleons, 2Nρ + n jρ ,
by 1, and their conjugate operators,

Ã jρmρ
= ζ ∗

jρ ã jρmρ
+

∑
j′ρ

ζ ∗
jρ j′ρ

sρ

(
d†

ρ × ã j′ρ

)( jρ )

mρ
, (19)

B̃ jρmρ
= −θ∗

jρ sρa†
jρmρ

−
∑

j′ρ

θ∗
jρ j′ρ

(
d̃ρ × a†

j′ρ

)( jρ )

mρ
, (20)

which decreases the valence nucleon number by 1. In addi-
tion, the operators in Eqs. (17) and (18) [Eqs. (19) and (20)],
respectively, increase and decrease the number of like-particle
(like-hole) nucleons. The T̂ GT operator can be constructed
by using two of those operators defined in Eqs. (17)–(20),
depending on the type of the β decay under study (i.e., β+
or β−), and on the particle or hole nature of bosons in the

even-even IBM-2 core. To be more specific, for the β− decay,
P̂jν = Ã jνmν

and P̂jπ = B̃ jπ mπ
for those nuclei with Z � 39,

and P̂jν = Ã jνmν
and P̂jπ = Ã†

jπ mπ
for Z � 38. Their conjugate

operators correspond to those describing the β+ decay or
electron-capture (EC) process.

The coefficients ζ j , ζ j j′ , θ j , and θ j j′ in Eqs. (17)–(20)
are calculated by the following formulas obtained within the
generalized seniority scheme [72]:

ζ jρ = u jρ
1

K ′
jρ

, (21a)

ζ jρ j′ρ = −v jρ β j′ρ jρ

√
10

Nρ (2 jρ + 1)

1

KK ′
jρ

, (21b)

θ jρ = v jρ√
Nρ

1

K ′′
jρ

, (21c)

θ jρ j′ρ = u jρ β j′ρ jρ

√
10

2 jρ + 1

1

KK ′′
jρ

. (21d)

The factors K , K ′
jρ , and K ′′

jρ read

K =
⎛
⎝∑

jρ j′ρ

β2
jρ j′ρ

⎞
⎠

1/2

, (22a)

K ′
jρ =

⎡
⎣1 + 2

(
v jρ

u jρ

)2 〈(
n̂sρ

+ 1
)
n̂dρ

〉
0+

1

Nρ (2 jρ + 1)

∑
j′ρ

β2
j′ρ jρ

K2

⎤
⎦

1/2

,

(22b)

K ′′
jρ =

⎡
⎣ 〈n̂sρ

〉0+
1

Nρ

+ 2

(
u jρ

v jρ

)2 〈
n̂dρ

〉
0+

1

2 jρ + 1

∑
j′ρ

β2
j′ρ jρ

K2

⎤
⎦

1/2

,

(22c)

where n̂sρ
is the number operator for the sρ boson and 〈· · ·〉0+

1

represents the expectation value in the ground state of the
even-even core. The occupation, v jρ , and unoccupation, u jρ ,
amplitudes in the above expressions are the same as those used
when constructing the IBFFM-2 Hamiltonian.

It is noted that the operator, P̂jρ , adopted in the present
study is of a specific form, as it depends only on the am-
plitudes v jρ and u jρ . One could consider more complicated
one-particle transfer operators that are parametrized in some
different ways or that include some higher-order terms, espe-
cially because the final results on the β-decay properties are
supposed to be influenced by the form of the operator. Such a
more general form of the transfer operator would also involve
additional parameters that are needed for a better description
of the experimental data, which, in turn, could cause further
complications and theoretical uncertainties. The use of the
simplified operators in Eqs. (17)–(20), specified by the v jρ
and u jρ amplitudes only, has an advantage of not having to
introduce any phenomenological parameter in the calculation
of β decay.
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FIG. 1. Columns 1 and 2: Contour plots of the triaxial quadrupole (β, γ ) PESs for the even-even N = 60 isotones calculated within the
constrained relativistic Hartree-Bogoliubov method employing the energy functional DD-PC1 and separable pairing force of finite range.
Columns 3 and 4: The corresponding mapped PESs in the IBM-2. The global minimum is indicated by an open triangle, and the difference
between the neighboring contours is 0.2 MeV.

III. LOW-LYING STRUCTURE OF THE INITIAL
AND FINAL NUCLEI

A. Potential energy surfaces

In the first and second columns of Fig. 1 the triaxial
quadrupole (β, γ ) PESs for the N = 60 isotones, from 96Kr
to 108Cd, computed within the constrained RHB method with
the DD-PC1 EDF and a separable pairing force, are shown.
For 96Kr and 98Sr the SCMF calculation predicts two minima
on the oblate and prolate sides of the PESs. The energy sur-
faces for 100Zr, 102Mo, and 104Ru are particularly soft in γ

deformation. For 104Ru a triaxial minimum around γ ≈ 30◦ is
found. The nuclei 106Pd and 108Cd are suggested to be more
weakly (prolate) deformed, as expected from the fact that they
are rather close to the proton Z = 50 major shell closure.

The SCMF PESs can be compared with the mapped IBM-2
PESs, which are shown in the third and fourth columns of
Fig. 1. One could observe certain similarities between the

IBM-2 and SCMF PESs, in that basic characteristics of the
latter in the neighborhood of the global minimum are repro-
duced in the former. The difference between the SCMF and
IBM-2 PESs becomes visible for those configurations that
correspond to large β deformation, so that the IBM-2 surface
is flat as compared to the SCMF one. This is due to the
restricted degrees of freedom in the IBM-2 framework; that
is, the IBM-2 is built only on the valence nucleons in one
major oscillator shell while the SCMF model comprises all
nucleons.

Another notable difference between the SCMF and IBM-2
PESs is that the former exhibits several minima that are close
in energy to each other, most spectacularly in 96Kr and 98Sr,
whereas a single minimum is found in the IBM-2 PES in both
cases. Here it is assumed that low-lying states in the vicinity of
the ground state are determined mainly by the configurations
near the absolute minimum of the SCMF PES, and hence the
mapping is carried out so as to reproduce the topology of
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FIG. 2. Calculated excitation spectra of the 2+
1 , 4+

1 , 0+
2 , and 2+

2 states of the even-even Kr, Sr, Zr, Mo, Ru, Pd, and Cd isotopes
(solid symbols connected by solid lines). The experimental data (open symbols connected by dotted lines) are adopted from the NNDC
database [73].

only that region of the SCMF PES. This assumption may not
hold for those nuclei for which multiple mean-field minima
are found. Particularly in 98Sr, even though the oblate and
prolate mean-field minima differ in energy only by 0.67 MeV,
the mapping is carried out only to reproduce the prolate global
minimum at β = 0.45. The IBM-2 Hamiltonian for 98Sr could
be constructed based on the oblate secondary minimum at
β = 0.3. In that case the nature of the wave function would
be considerably different from otherwise, and this would
severely affect the β-decay properties. It should be also noted
that the oblate-prolate balance in the energy surface is so
subtle that it depends on the nuclear EDF that underlies the
IBM-2 calculation. These possibilities should be thoroughly
investigated in future.

There is, nevertheless, a way of producing the multiple
minima on the energy surface within the IBM-2, that is, by
the inclusion of the configuration mixing between several
different boson spaces differing in boson number by two [74].
Alternatively, cubic, or three-body, boson terms with negative
strength parameter could be introduced in the IBM-2 Hamilto-
nian [15], which are also expected to produce two minima on
the prolate and oblate sides. These extensions are, however,
not attempted in the present work, mainly because both the
configuration mixing and the inclusion of the cubic terms
cannot be handled with the current version of the IBFFM-2
code.

Furthermore, as noted earlier, the SCMF PES for 104Ru
exhibits a triaxial minimum at γ ≈ 30◦, while the IBM-2 one
does not. This discrepancy could be solved by including the
three-body boson terms with a positive strength parameter
[51]. By the inclusion of these terms, the observed level struc-
ture and E2 transition properties of the γ -vibrational bands
of γ -soft nuclei are shown [51] to be better reproduced, but
the energy levels of the ground-state and excited 0+ bands

are not altered significantly. For this reason, and since in the
following discussion mainly the β decay that involves the
0+

1 ground states of the even-even nuclei is considered, the
three-body boson terms are neglected in the present calcu-
lation. In some cases, however, the triaxiality could make
non-negligible contributions to the nuclear wave functions,
and it will be of great interest to investigate the roles played
by the quadrupole triaxiality in the β-decay properties.

B. IBM-2 results for the even-even nuclei

Figure 2 depicts the excitation energies of the 2+
1 , 4+

1 ,
0+

2 , and 2+
2 states of the even-even Kr, Sr, Zr, Mo, Ru, Pd,

and Cd nuclei with 54 � N � 64 calculated with the mapped
IBM-2. Note that the results for the Zr isotopes have already
been presented in Ref. [15], but they are included in the plot
for the sake of completeness. One could observe in Fig. 2
that the mapped IBM-2 gives a reasonable description of the
observed 2+

1 and 4+
1 excitation energies for all the isotopic

chains, except for the Zr one. In many cases, the 0+
2 and 2+

2
energy levels are overestimated for nearly spherical nuclei
that are close to the N = 50 magic number, for which the
IBM description in general becomes less reliable. For the
Sr and Zr isotopes, the calculated low-lying levels exhibit a
rapid decrease in energy starting from N = 56 to 60. This
behavior of the levels can be interpreted as a signature of the
shape phase transition from the nearly spherical to deformed
configurations. The high-lying 2+

1 energy level observed for
96Zr is due to the filling of the neutron d5/2 subshell closure.
As addressed in Ref. [15], the major reason why the mapped
IBM-2 is not able to reproduce the level structure of the Zr
isotopes in the transitional regions, i.e., N = 56 and 58, is that
the RHB PESs for these nuclei suggest strong deformation
and the resultant IBM-2 energy levels are rather compressed.
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FIG. 3. Adopted strength parameters of the IBM-2 Hamiltonian
for the even-even nuclei studied in the present work.

In many of the previous mapped IBM-2 calculations, the 0+
2

excitation energies have been quite often overestimated. Such
a problem could be explained in part by the fact that the
underlying EDF calculation generally suggests a too large
deformation and one has to choose the quadrupole-quadrupole
interaction strength κ that is unexpectedly larger in magnitude
than those which have been often used in phenomenological
IBM-2 fitting calculations.

Figure 3 shows evolution of the derived IBM-2 parameters
as functions of N employed in the present calculation. One can
find some correlations between the behaviors of the low-lying
levels and those of the IBM-2 parameters. In Fig. 3(a), for
instance, the decrease with N of the single d boson energy,
εd , indicates development of quadrupole deformation. The
decrease in magnitude of the parameter κ with N is also
a signature of increasing quadrupole collectivity [Fig. 3(b)].
The average of the parameters, χ ≡ (χν + χπ )/2, and its sign
reflect whether the nucleus is prolate (χ < 0) or oblate (χ >

0) deformed in the SCMF calculations. For many of the nuclei,
particularly in the Kr, Sr, Zr, and Mo isotopes, the average χ

is close to zero, indicating the γ softness that is found in the
corresponding PESs (see, Fig. 1). The L̂ · L̂ term is considered
only for those nuclei for which the IB moment of inertia is
calculated to be appreciable, i.e., approximately larger than
10. Otherwise, the strength parameter of this term is simply
set as κ ′ = 0.

Figure 4 shows the calculated B(E2) values in Weisskopf
units (W.u.) for the even-even N = 60 isotones. The mapped
IBM-2 provides overall a reasonable quantitative and qual-
itative description of the B(E2; 2+

1 → 0+
1 ) [Fig. 4(a)] and

B(E2; 4+
1 → 2+

1 ) [Fig. 4(b)] transition strengths, even though
the common boson effective charges are used for all the

FIG. 4. Calculated and experimental [73] (a) B(E2; 2+
1 → 0+

1 ),
(b) B(E2; 4+

1 → 2+
1 ), (c) B(E2; 0+

2 → 2+
1 ), and (d) B(E2; 2+

2 → 2+
1 )

transition strengths for the even-even N = 60 isotones as functions
of the proton number Z .

nuclei considered. An exception is perhaps the B(E2; 4+
1 →

2+
1 ) value for 100Zr, for which the IBM-2 gives twice as

large as that of the experimental data. However, the observed
B(E2; 4+

1 → 2+
1 ) value is 67 ± 7 W.u., which is smaller than,

or in the same order of magnitude as, the B(E2; 2+
1 → 0+

1 )
value of 74 ± 4 W.u. This systematic would not be repro-
duced within the present IBM-2 model space consisting of a
single configuration, giving rise to only the B(E2; 4+

1 → 2+
1 )

rate that is greater than the B(E2; 2+
1 → 0+

1 ) one.
As seen from Fig. 4(c) the observed B(E2; 0+

2 → 2+
1 )

rates of the N = 60 isotones are generally large, that is, of
the orders of >20 W.u. The large B(E2; 0+

2 → 2+
1 ) values

are often considered a signature of strong shape mixing or
shape coexistence. Particularly large B(E2; 0+

2 → 2+
1 ) values

of >60 W.u. that are found experimentally for the 98Sr, 100Zr,
and 102Mo are considered to be a consequence of strong
shape mixing in these nuclei. On the contrary, the mapped
IBM-2 suggests too small B(E2; 0+

2 → 2+
1 ) values for all the

N = 60 isotones. The vanishing B(E2; 0+
2 → 2+

1 ) rate implies
that the mixing between the ground state and the 0+

2 states
is not properly accounted for in the present calculation. A
possible remedy for this inconsistency would be to include in
the IBM-2 the configuration mixing, since this extension often
works in reproducing strong B(E2; 0+

2 → 2+
1 ) rates for those

nuclei where shape coexistence is suggested to occur. Another
major cause of the inconsistency could be attributed to the
SCMF PESs calculated for these N = 60 isotones, which
generally suggest a too strong deformation. As a consequence,
the mapped IBM-2 ends up giving a more rotational structure
than expected, exhibiting a weak 0+

2 → 2+
1 transition.

As one sees in Fig. 4(d), enhanced B(E2; 2+
2 → 2+

1 ) transi-
tion rates are predicted in the mapped IBM-2 calculation. This
transition is often considered an indicator of the γ softness,
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FIG. 5. Calculated and experimental excitation energies of the low-spin positive-parity states of the odd-odd nuclei.

which is indeed shown to be most significant around 102Mo
and 104Ru in the corresponding SCMF PESs (see Fig. 1).

C. IBFFM-2 results for the odd-odd nuclei

The calculated excitation spectra of the low-lying positive-
parity states of the odd-odd Rb, Y, Nb, Tc, Rh, and Ag nuclei
are presented in Fig. 5, in comparison with the available
experimental data [73]. For Rb and Y isotopes calculations
are made only for those nuclei for which experimental in-
formation is available or the same strength parameters of the
IBFFM-2 Hamiltonian as those fitted to the available data on
neighboring nuclei are used (for Rb). Theoretical excitation
energies for 100Rb and 102Rb are therefore not shown in the
figure. Calculated energies are also not shown for 102Y and
104Y, which is because the present version of the IBFFM-
2 code is unable to handle the dimension of the IBFFM-2
Hamiltonian matrices for these nuclei.

One observes, in Fig. 5, rapid evolution of energy levels
at particular isotopes within the range N = 57–61, which is
in many cases accompanied by the change of the ground-
state spin. The structural evolution is most clearly seen, both
theoretically and experimentally, in the Y isotopic chain, and
reflects the shape phase transition at N ≈ 60 in the even-even
boson Sr core [see Fig. 2(b)]. For the Nb, Tc, Rh, and Ag

isotopic chains, the majority of the isotopes with N � 59 have
the 1+ state as the lowest-energy positive-parity state, while
near the neutron shell closure N = 50 those states with spin
higher than 1+ become the ground state.

Table II lists the adopted strength parameters for the
IBFFM-2 Hamiltonian, i.e., those for the boson-fermion in-
teractions (�ν , �π , �ν , �π , Aν , and Aπ ) and for the residual
fermion-fermion interactions. In the present calculations, the
δ-type and tensor interactions turn out to be most important
to reproduce the low-energy spectra of odd-odd nuclei. Fixed
values are used for the strength parameter for the δ term,
vd = −0.08 MeV, and that for the spin-spin-δ term is set to
zero, vssd = 0 MeV. The spin-spin term is also assumed to
be zero, but is introduced specifically for the 98Tc and 96Nb
nuclei, with the corresponding strengths being vss = 0.1 MeV
for both nuclei, in order to reproduce the ground-state spin of
6+. The energy of the 1+ states turns out to be quite sensitive
to the tensor interaction strength, vt . As seen in Table II, the
adopted vt strength indeed varies from one nucleus to another,
so that the 1+ state should be the ground state in many of the
nuclei.

Figure 6 exhibits fractions of the pair components denoted
[νs1/2 ⊗ πg9/2](J ), [νd3/2 ⊗ πg9/2](J ), [νd5/2 ⊗ πg9/2](J ), and
[νg7/2 ⊗ πg9/2](J ) in the wave functions of the 1+

1 state of the
odd-odd nuclei. In most of the cases shown in the figure, the
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TABLE II. Adopted strength parameters (in MeV units) for the
boson-fermion interactions, and fermion-fermion interactions in the
IBFFM-2 Hamiltonian describing the considered odd-odd nuclei.
The fixed values, vd = −0.08 MeV, vssd = 0.0 MeV, are employed
for the δ and spin-spin-δ terms, respectively. The spin-spin interac-
tion strength, vss, is chosen to be zero for all nuclei, but for vss = 0.1
MeV for 98Tc and 96Nb.

Nucleus �ν �π �ν �π Aν Aπ vt

102Ag 0.30 0.30 0.70 1.70 −0.50 −2.00 0.000
104Ag 0.30 0.30 0.70 1.70 −0.20 −0.70 0.000
106Ag 0.30 0.30 0.70 1.40 −0.00 −0.70 0.060
108Ag 0.30 0.30 0.70 1.30 −0.00 −0.00 0.055
110Ag 0.10 0.30 3.00 1.30 −0.20 −0.80 0.500
112Ag 0.10 0.30 2.60 1.00 −0.30 −0.00 0.700
100Rh 0.30 0.30 0.60 1.00 −0.00 −0.80 0.030
102Rh 0.30 0.30 0.20 0.35 −0.00 −0.00 0.020
104Rh 0.30 0.30 0.20 1.00 −0.00 −0.80 0.055
106Rh 0.30 0.30 0.00 1.20 −0.00 −0.00 0.050
108Rh 1.50 0.30 0.70 1.00 −0.20 −0.40 0.050
110Rh 1.50 0.30 0.10 1.00 −0.50 −0.50 0.400
98Tc 0.30 0.30 0.40 0.70 −0.00 −0.00 0.000
100Tc 0.30 0.30 0.35 0.90 −0.00 −0.00 0.050
102Tc 0.30 0.30 0.44 0.70 −0.00 −0.00 0.040
104Tc 0.30 0.30 0.60 2.60 −0.40 −3.00 0.030
106Tc 0.30 0.30 0.30 2.10 −0.00 −3.00 0.150
108Tc 0.30 0.10 0.90 2.20 −1.20 −0.00 0.500
96Nb 0.30 0.30 0.40 0.90 −0.00 −0.50 −0.000
98Nb 1.50 0.10 0.80 0.00 −1.20 −0.00 0.280
100Nb 1.50 0.30 0.50 0.20 −1.40 −0.80 0.500
102Nb 1.50 0.10 0.90 3.80 −0.90 −2.00 0.500
104Nb 1.50 0.10 1.55 3.80 −0.90 −2.00 0.800
106Nb 1.50 0.10 1.00 3.80 −0.30 −2.00 0.800
94Y 0.10 1.00 0.40 0.00 −1.00 −0.40 0.000
96Y 0.50 1.00 0.10 0.00 −0.00 −0.50 0.060
98Y 0.50 1.00 0.10 0.00 −0.00 −0.00 0.040
100Y 0.50 0.50 0.80 12.00 −0.80 −0.00 2.000
92Rb 0.30 0.50 0.40 0.00 −1.00 −0.30 0.080
94Rb 0.70 0.50 0.20 0.00 −2.00 −1.00 0.100
96Rb 0.70 0.50 0.00 0.00 −0.00 −2.00 0.500
98Rb 0.30 0.10 2.20 34.00 −5.00 −5.00 0.500

configuration of the [νg7/2 ⊗ πg9/2](J ) pairs coupled to the
even-even boson cores predominates the 1+

1 wave functions
typically for those nuclei with the neutron numbers N � 59.
For heavier isotopes with N larger than 59, other pair com-
ponents start to play a role, especially the [νd3/2 ⊗ πg9/2](J )

ones. The [νs1/2 ⊗ πg9/2](J ) pairs do not appear to play an
important role in the 1+

1 state of all the nuclei considered.
The change in the composition of the wave function for the
odd-odd nuclei reflects the shape phase transitions in the even-
even core nuclei and, as shown later, influences the predicted
systematic of β-decay properties.

Table III compares the calculated and experimental B(E2)
and B(M1) transition rates, and electric quadrupole Q(I ) and
magnetic dipole μ(I ) moments. One notices that the present
IBFFM-2 generally gives a reasonable description of the Q(I )
and μ(I ) moments including sign. Limited experimental data
are available to compare for the B(E2) and B(M1) transition

FIG. 6. Fractions in percent of the configurations in terms of
the pair components [νs1/2 ⊗ πg9/2](J ), [νd3/2 ⊗ πg9/2](J ), [νd5/2 ⊗
πg9/2](J ), and [νg7/2 ⊗ πg9/2](J ) that are coupled to even-even boson
cores in the IBFFM-2 wave function of the 1+

1 state for the studied
odd-odd nuclei.

rates. Some deviations are present between the calculated and
experimental data for the transition rates, which could be
understood in terms of the different nature of the IBFFM-2
wave functions for the initial and final states. In 102Ag, for
example, the present IBFFM-2 calculation underestimates the
observed B(E2) rates, but overestimates the B(M1) ones. The
dominant pair component in the 5+

1 ground state for 102Ag is
here suggested to be of the type [νd5/2 ⊗ πg9/2](J=5), which
accounts for 95% of the corresponding wave function. On
the other hand, the 6+

1 state for the same nucleus is sug-
gested to be dominated by the [νd5/2 ⊗ πg9/2](J=6) (87%)
and [νd5/2 ⊗ πg9/2](J=7) (10%) pair components. For both
the E2 and M16+

1 → 5+
1 transitions, the fermionic part of the

transition operators, T̂ (E2/M1)
F [Eqs. (11) and (14)], are found

to make major contributions to the transition matrix elements.
The fermion contribution seems to be less significant in the
E2 matrix element, but makes a substantial contribution to
the M1 matrix element. These observations may help in un-
derstanding the deviations in the transition properties shown
in Table III.

In general, however, the experimental information about
the electromagnetic transitions is still so scarce in the odd-odd
nuclei in the considered mass region that it is rather hard
to draw a concrete conclusion about the performance of the
IBFFM-2 in computing these observables.
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TABLE III. Comparison of the calculated and experimental
[73,75] B(E2) (in W.u.) and B(M1) (in μ2

N ) transitions, Q(I ) (in eb),
and μ(I ) (in μN ) moments for the odd-odd nuclei considered in this
study.

Nucleus Property IBFFM-2 Experiment

96Rb μ(2+
1 ) 2.42 +1.466 ± 0.002

Q(2+
1 ) 0.48 +0.25 ± 0.06

96Nb μ(6+
1 ) 4.71 4.976 ± 0.004

100Nb B(M1; 1+
2 → 1+

1 ) 0.25 0.0038+0.0019
−0.0010

102Ag B(E2; 6+
1 → 5+

1 ) 0.64 32 ± 16

B(M1; 6+
1 → 5+

1 ) 1.18 0.0011 ± 0.0004

μ(5+
1 ) 4.38 +4.6 ± 0.7

μ(2+
1 ) 5.43 +4.1 ± 0.3

μ(7+
1 ) 4.52 4.6 ± 0.3

104Ag B(M1; 6+
1 → 5+

1 ) 0.12 >0.0089

B(M1; 7+
1 → 6+

1 ) 0.03 0.0085 ± 0.0020

B(E2; 7+
1 → 6+

1 ) 28.96 (1.2 ± 1.1) × 102

B(E2; 7+
1 → 5+

1 ) 4.37 1.4 ± 0.3

μ(5+
1 ) 3.93 3.917 ± 0.008

μ(2+
1 ) 4.88 +3.7 ± 0.2

106Ag μ(1+
1 ) 3.03 +2.9 ± 0.2

Q(6+
1 ) 0.73 +1.08 ± 0.06

μ(6+
1 ) 4.08 (+)3.705 ± 0.004

108Ag B(E2; 1+
2 → 1+

1 ) 30.61 >3.1

B(E2; 3+
1 → 1+

1 ) 7.33 0.85 ± 0.08

B(M1; 2+
1 → 1+

1 ) 0.02 >0.012

B(M1; 1+
2 → 1+

1 ) 0.00 >0.0056

μ(1+
1 ) 3.00 2.6884 ± 0.0007

Q(6+
1 ) 0.89 +1.32 ± 0.07

μ(3+
1 ) 3.33 3.888 ± 0.015

μ(6+
1 ) 3.93 3.58 ± 0.02

110Ag Q(1+
1 ) 0.06 0.24 ± 0.12

μ(1+
1 ) 3.05 2.7271 ± 0.0008

Q(6+
1 ) −0.03 +1.41 ± 0.10

μ(6+
1 ) 4.19 +3.607 ± 0.004

μ(3+
1 ) 3.53 +3.77 ± 0.03

IV. β-DECAY PROPERTIES

A. log10 f t values

The wave functions of the initial and final states resulting
from the IBM-2 and IBFFM-2 Hamiltonians are used to cal-
culate the matrix elements of the GT operator (15), denoted
by MGT, which are necessary to obtain f t values in seconds:

f t = 6163( gA

gV

)2|MGT|2
. (23)

gA = 1.27 and gV = 1 are the free values of the axial vector
and vector coupling constants, respectively. In order to bet-
ter describe the β-decay rate, effective gA factors are often
considered by quenching the free value. As shown in the

following, the effective gA values that could be estimated
from the observed log10 f t values are quite at variance with
different nuclei; that is, in some cases the gA factor would
need to be reduced, while in other cases it should be increased.
For the sake of simplicity, the free value, gA = 1.27, is used
throughout in the present study for calculating f t values.

In Figs. 7(a)–7(f) the calculated log10 f t values for the β−

decay of the 0+
1 ground state of even-even nuclei into the 1+

1
state of the odd-odd nuclei are presented as functions of N for
each isotopic chain. One notices that the 0+

1 → 1+
1 β−-decay

log10 f t values are systematically lower than the measured
ones [73], mainly in those nuclei located before the shape
phase transitions, i.e., N � 60, and with lower proton num-
bers, i.e., Kr, Sr, and Zr ones. This finding indicates that an
enormous amount of quenching would need to be made of the
GT transition matrix elements. In the case of the 98Sr(0+

1 ) →
98Y(1+

1 ) decay, for instance, an effective gA factor that is one
order of magnitude smaller than the free value gA = 1.27
would be required to reproduce the experimental log10 f t
value of 4.9 ± 0.1 [73].

As often suggested (see, e.g., Ref. [25]), the quenching of
the GT matrix elements implies certain deficiencies of the
employed nuclear structure models regarding, e.g., various
model assumptions, parameters, and restricted configuration
spaces. In the present case, indeed, the assumption of tak-
ing only the g9/2 orbital for the proton single-particle space
seems reasonable for those isotopes with Z being near the
Z = 50 major shell closure, for which the g9/2 orbital plays
an predominant role, whereas for the low-Z nuclei, which are
rather close to the Z = 28 major shell closure, some other
single-particle states, such as those coming from outside of
the Z = 28–50 major shell, may play a role.

The calculated GT matrix element can be analyzed by
decomposing it into components that are associated with dif-
ferent neutron-proton pair configurations. For the 98Sr(0+

1 ) →
98Y(1+

1 ) decay, for example, the dominant contribution to the
GT transition comes from the matrix elements of the terms
in the GT operator that are of the forms like [a†

νg7/2
× a†

πg9/2
](1)

and [d̃ν × [a†
νg7/2

× a†
πg9/2

](L)](1), which are calculated to be too
large in magnitude, thus leading to the small log10 f t values.

One can also observe in Figs. 7(a)–7(f) that for the β−
decays of the Zr and Mo isotopes the calculated log10 f t
values exhibit a drastic increase around N = 60. In the Mo
isotopic chain, the predicted log10 f t values are even larger
than the measured ones for the heavier isotopes with N � 62.
Here, the rapid increase of the log10 f t values at N ≈ 60 could
be also explained by the dominance of the neutron-proton
pair configuration in the IBFFM-2 1+

1 wave functions. As
mentioned above, for those nuclei with N � 60, the matrix
elements of the terms that involve the pair configurations of
the type [νg7/2 ⊗ πg9/2](J ) are shown to be large. However,
this does not seem to be the case for the nuclei with N > 60,
where in the corresponding 1+

1 wave functions some other
pair configurations start to make appreciable contributions
(see, Fig. 6). The different pair components are more or less
fragmented in the GT matrix elements for the N > 60 nuclei,
and cancel each other to give rise to the rather small MGT, or
large log10 f t value.
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FIG. 7. The log10 f t values for [(a)–(f)] the β− decay of the 0+
1 ground state of even-even nuclei into the 1+

1 state of odd-odd nuclei, and
[(g)–(l)] the β− decay of the 1+

1 state of odd-odd nuclei into the 0+
1 state of even-even nuclei. Calculated log10 f t values are represented by

solid circles connected by lines, and open circles denote the experimental values [73].

Given that the log10 f t values increase sharply for the
N > 60 even-even nuclei, and that in some cases [e.g., the
Mo decays in Fig. 7(d)] overestimate the data, then the gA

factor would need to be rather increased for these neutron-rich
isotopes, whereas a quenched gA factor would be required
for the lighter isotopes with N � 60. As mentioned earlier,
an immediate cause of this peculiarity is the change with N
in the nature of the wave functions for the odd-odd nuclei.
The nuclear wave functions should be, however, sensitive to
the choice of the single-particle spaces, Hamiltonian param-
eters, and single-particle properties (ε̃ jρ and v2

jρ ), which are
determined largely by the underlying EDF-SCMF calculation,
and are at variance with different EDFs. This point is pursued
further in Sec. IV C. The sensitivity of the mapped IBM-2
prediction of the 2νββ-decay NMEs to the single-particle
spaces and to the different EDFs has also been addressed in
Ref. [56].

As compared to the 0+
1 → 1+

1 β− decay of the lighter even-
even nuclei with N � 60 and Z < 40, variation of the log10 f t
values with N occurs much more slowly for the Ru(0+

1 ) →
Rh(1+

1 ) [Fig. 7(e)] and Pd(0+
1 ) → Ag(1+

1 ) [Fig. 7(f)] β− de-
cays.

In a similar fashion, in Figs. 7(g)–7(l) the predicted
log10 f t values for the β− decay of the odd-odd nu-
clei are compared with the experimental counterparts [73].

Experimental data are not available for the Rb(1+
1 ) →

Sr(0+
1 ) decay, and only the lower bound, log10 f t > 6.9, of

the unidentified (1)− state is known for the 100Y(1+
1 ) →

100Zr(0+
1 ) decay. A general remark is that in each isotopic

chain the calculated 1+
1 → 0+

1 log10 f t value increases as
a function of N , consistently with the observed systematic,
and further exhibits a rapid increase from N = 59 to 61. The
change is particularly significant for the Nb(1+

1 ) → Mo(0+
1 )

and Tc(1+
1 ) → Ru(0+

1 ) decays, while for the Rh(1+
1 ) →

Pd(0+
1 ) and Ag(1+

1 ) → Cd(0+
1 ) ones the predicted log10 f t

values increase more slowly with N . In addition, the present
calculation reproduces the measured log10 f t values to a
greater extent than in the case of the β− decay of the even-
even nuclei.

In addition to the transitions between the 0+
1 and 1+

1 states,
there are log10 f t data for the decays between states with spin
other than 1+ and between higher-lying 0+ and 1+ states. To
keep the discussion as simple as possible, let us focus on the β

decays that only involve the even-even N = 60 isotones. The
calculated and experimental [73] log10 f t values of the β− and
EC decays are listed in Tables IV and V, respectively. As one
can see from Table IV, it is rather hard to draw a solid conclu-
sion on the quality of the mapped IBM-2 framework for the
description of the log10 f t values for many different β− de-
cays. Nevertheless, for many of the low-Z nuclei, the present
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TABLE IV. Comparison of calculated and observed [73] log10 f t
values for the β− decay of the even-mass nuclei including the N = 60
isotones.

log10 f t

Decay I → I ′ Theor. Expt.

98Rb → 98Sr 3+
1 → 2+

1 7.78 5.6
3+

1 → 2+
2 9.95 6.2

3+
1 → 2+

3 8.44 6.1
3+

1 → 2+
4 8.05 5.5

3+
1 → 4+

1 7.90 6.3
98Sr → 98Y 0+

1 → 1+
1 2.87 4.9 ± 0.1

0+
1 → 1+

2 4.38 4.4 ± 0.1
0+

1 → 1+
3 4.82 5.5 ± 0.1

0+
1 → 1+

4 4.20 5.6 ± 0.1
100Y → 100Zr 4+

1 → 3+
1 4.22 >6.5

4+
1 → 4+

1 5.46 ≈6.0
4+

1 → 4+
2 4.54 >6.6

4+
1 → 4+

3 4.83 >6.9
100Zr → 100Nb 0+

1 → 1+
1 3.08 4.6 ± 0.1

0+
1 → 1+

2 3.90 4.8 ± 0.1
0+

1 → 1+
3 6.50 5.8

0+
1 → 1+

4 6.34 4.5 ± 0.1
102Nb → 102Mo 1+

1 → 0+
1 5.82

1+
1 → 0+

2 6.99
1+

1 → 2+
1 6.72

1+
1 → 2+

2 7.53
4+

1 → 3+
1 6.45 6.21

4+
1 → 3+

2 6.20 4.86
4+

1 → 4+
1 7.51 6.44

4+
1 → 4+

2 7.45 6.31
102Mo → 102Tc 0+

1 → 1+
1 3.22 4.21 ± 0.09

0+
1 → 1+

2 4.48 5.74 ± 0.10
0+

1 → 1+
3 5.19 4.81 ± 0.09

104Tc → 104Ru 3+
1 → 2+

1 6.22 8.10 ± 0.07
3+

1 → 2+
2 5.63 8.14 ± 0.09

3+
1 → 3+

1 7.83 8.18 ± 0.10
3+

1 → 4+
1 6.91 8.34 ± 0.09

106Rh → 106Pd 1+
1 → 0+

1 4.46 5.168 ± 0.007
1+

1 → 0+
2 6.45 5.354 ± 0.019

1+
1 → 0+

3 7.15 5.51 ± 0.05
1+

1 → 0+
4 7.62 5.63 ± 0.07

1+
1 → 2+

1 4.11 5.865 ± 0.017
1+

1 → 2+
2 7.72 6.55 ± 0.07

1+
1 → 2+

3 6.48 5.757 ± 0.017
1+

1 → 2+
4 6.35 6.25 ± 0.03

1+
1 → 2+

5 5.06 5.83 ± 0.03
1+

1 → 2+
6 7.52 6.59 ± 0.10

108Ag → 108Cd 1+
1 → 0+

1 3.74 4.425 ± 0.009
1+

1 → 2+
1 6.06 5.35 ± 0.03

calculation gives smaller log10 f t values than the experimental
ones, suggesting that the assumption of considering only the
single proton orbital (πg9/2) may not be reasonable, and that
the log10 f t calculations are also influenced by the chosen
parameters or forms of the IBFFM-2 Hamiltonian. The cal-
culation, however, overestimates the measured log10 f t values
for higher-Z nuclei.

TABLE V. Same as Table IV, but for the EC decay.

log10 f t

Decay I → I ′ Theor. Expt.

104Rh → 104Ru 1+
1 → 0+

1 4.12 4.32 ± 0.11
1+

1 → 0+
2 4.93 5.15 ± 0.18

1+
1 → 2+

1 6.26 5.42 ± 0.06
106Ag → 106Pd 1+

1 → 0+
1 4.22 4.92

1+
1 → 0+

2 4.48 6.5
1+

1 → 0+
3 5.32 7.0

1+
1 → 0+

4 5.88 6.1
1+

1 → 0+
5 6.65 7.6

1+
1 → 0+

6 5.89 7.2
1+

1 → 0+
7 5.25 6.6

1+
1 → 2+

1 5.02 5.24
1+

1 → 2+
2 5.74 6.5

1+
1 → 2+

3 5.02 7.9
1+

1 → 2+
4 5.93 6.9

1+
1 → 2+

5 4.40 6.8
1+

1 → 2+
6 5.41 7.8

6+
1 → 6+

1 8.95 8.02 ± 0.24
6+

1 → 5+
1 7.74 5.087 ± 0.018

6+
1 → 5+

2 7.57 5.08 ± 0.5

Experimental data for the log10 f t values for the EC decay
are available for the 104Rh and 106Ag nuclei. Overall, the
present calculation reproduces the log10 f t data fairly well,
especially for those nuclei that are not very far from the proton
Z = 50 major shell.

B. GT strength distributions

On the left-hand side of Fig. 8, distributions of the B(GT)
transition strengths, B(GT; 0+

1 → 1+
1 ) = |MGT(0+

1 → 1+
1 )|2,

for the β− decay of the even-even N = 60 isotones are shown
as functions of the 1+ excitation energies E (1+

n ) below 8
MeV. For the decays of 98Sr, 100Zr, and 102Mo, experimental
B(GT) values are shown, which are obtained by using the
corresponding log10 f t data and the formula in Eq. (23). Error
bars for the experimental B(GT) values are not shown, since
they are smaller than the size of the symbols in the plot.

For each odd-odd nucleus, all the 1+ states resulting from
the IBFFM-2 and the corresponding GT transitions are here
considered. For most of the even-even nuclei shown in the
figure, the GT transition to the first excited 1+

1 is the strongest,
while contributions from the decays to higher-lying 1+ states
become more minor with the increasing 1+ excitation energy.
For the 104Ru(0+

1 ) → 104Rh(1+) decay, in particular, non-
negligible amounts of the GT transitions are predicted within
the excitation energies E (1+

n ) from around 2 to 4 MeV. A
similar degree of the fragmentation of the B(GT) strength dis-
tributions are obtained for the 102Mo(0+

1 ) → 102Tc(1+) decay
below E (1+

n ) ≈ 2 MeV. The predicted GT strengths for the
98Sr, 100Zr, and 102Mo nuclei are, in some cases, larger by
about an order of magnitude, but agree rather well with the
observed systematic that the GT transitions to the low-lying
1+ states are dominant.
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FIG. 8. B(GT) strength distribution for the β− decay 0+
1 → 1+

n of the even-even N = 60 isotones in terms of the excitation energies of
the 1+

n states of the odd-odd final nuclei (left), their running sum (middle), and B(GT) strength distribution for the β− decay 1+
n → 0+

1 of the
odd-odd N = 59 isotones (right). The experimental B(GT; 0+

1 → 1+) values extracted from the log10 f t data [73] are shown as red squares.
The dashed vertical lines in the middle panels indicate experimental Qβ− values [73]. Note that the B(GT) values for the 96Rb(1+

n ) → 96Sr(0+
1 )

are too small, and they are scaled with a factor of 100 so that they are more visible.

In addition, in the middle column of Fig. 8, running sums
of the GT strengths, i.e.,

∑
n B(GT; 0+

1 → 1+
n ), that are taken

up to the excitation energy of the highest-lying 1+ state are
shown. Experimental Qβ− values for the 96Kr, 98Sr, 100Zr,
and 102Mo are also indicated in the figure. Note that, as 104Ru
and 106Pd are stable nuclei, the corresponding Qβ− values are
negative and thus not shown in the figure. For most of the
considered β− decays, the sums appear to converge at low
excitation energy, typically of E (1+) � 4 MeV. Especially

for the 98Sr(0+
1 ) → 98Y(1+) and 100Zr(0+

1 ) → 100Nb(1+) de-
cays, the running sum more or less becomes constant before
and around the measured Qβ− values, respectively. Notably
for the 96Kr(0+

1 ) → 96Rb(1+) and 104Ru(0+
1 ) → 104Rh(1+)

decays, the sums continue to increase up to the excitation
energies of the highest-lying 1+ states obtained with the
IBFFM-2. The GT decay rates are predicted to be remarkably
large for the low-Z isotones, i.e., 96Kr and 98Sr, with the corre-
sponding running sums reaching

∑
n B(GT; 0+

1 → 1+
n ) ≈ 7.5.
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For higher-Z , stable nuclei, e.g., 106Pd, the final sum becomes
smaller,

∑
n B(GT; 0+

1 → 1+
n ) < 1. This conforms to the re-

sults shown in Fig. 7, that the calculated log10 f t values for the
GT transition of the even-even nuclei to the lowest 1+ state of
the odd-odd nuclei are particularly small for the low-Z nuclei
such as Kr and Sr ones.

On the right-hand side of Fig. 8, the B(GT) strength dis-
tributions, B(GT : 1+

1 → 0+
1 ) = |MGT(1+

1 → 0+
1 )|2/3, for the

β− decays of the odd-odd N = 59 into the even-even N = 58
isotones are depicted in terms of the E (1+) excitation energy.
In general, the GT strengths for the odd-odd isotones are
predicted to be smaller, <1.0, than those for the even-even
nuclei, which are larger than 1 (see left column of Fig. 8).
As in the case of the even-even nuclei, contributions from
the low-lying 1+ states are dominant also for the β− de-
cays of odd-odd nuclei, such as 100Nb, 102Tc, 104Rh, and
106Ag. Of particular interest are the 96Rb(1+) → 96Sr(0+

1 ) and
98Y(1+) → 98Zr(0+

1 ) decays. For these decay processes, the
B(GT) strength distribution exhibits a substantial degree of
fragmentation, and contributions from the nonyrast 1+ states
are as significant as that from the lowest 1+ state. Note that,
as for the B(GT) rate of the 96Rb(1+) → 96Sr(0+

1 ) decay, the
B(GT) rates are negligibly small, so that they are scaled with
a factor of 100 in the figure.

Summarizing the results shown in Fig. 8, it appears that
the GT transitions of the lowest- or low-lying 1+ states make
dominant roles in the running sums of the B(GT) strengths
for the β− decays of both the even-even and odd-odd nuclei,
while the fragmentation tends to occur for those nuclei far
from the proton Z = 50 major shell closure. This observation
seems compatible, to a good extent, to the single-state domi-
nance [76,77] or the low-lying state dominance [78] proposed
especially for the studies of double-β decay. The previous
mapped IBM-2 calculation in Ref. [56] has also provided a
similar conclusion on the 2νββ decay NMEs of a number of
candidate nuclei. The finding in the present calculation, that
the GT transition strength is dominated by the low-lying 1+

states, sheds light upon the interpretation of the dominance
in the GT strength, as it varies significantly with both the
measurements and different theoretical approaches.

It should be also worth investigating how the GT strength
distribution changes along a given isotopic chain, particularly
toward the neutron-rich region that is experimentally of much
relevance. For that purpose, the B(GT) strength distributions
and their running sums for β− decays of the even-even Zr
isotopes are shown in Fig. 9. For 96Zr, 98Zr, and 100Zr, the
GT strength is almost solely accounted for by the transition to
the first 1+ state, which is also considerably large in magni-
tude, B(GT; 0+

1 → 1+
1 ) ≈ 2–3. However, one notices for the

heavier Zr nuclei, i.e., 102Zr, 104Zr, and 106Zr, that the GT
strength is fragmented to a great extent. Particularly for the
104Zr(0+

1 ) → 104Nb(1+) decay, the major contribution to the
total GT strength comes from the transitions to the 1+ states
that are at the excitation energy E (1+) of about 4–6 MeV,
while the B(GT; 0+

1 → 1+
1 ) transition does not play a signifi-

cant role. For the lighter Zr nuclei, e.g., 96Zr and 98Zr, the sum,∑
n B(GT), appears to be converged at relatively low E (1+)

excitation energies, E (1+) ≈ 2 MeV, and the convergence is

FIG. 9. B(GT) strength distribution for the β− decay 0+
1 → 1+

n

of the Zr isotopes in terms of the excitation energies E (1+
n ) of the

final Nb nuclei (left), and their running sums (right).

reached near the measured Qβ− values. Note that 96Zr is a can-
didate nucleus for the 0νββ decay. However, for the heavier
Zr isotopes, 102Zr, 104Zr, and 106Zr, the convergence seems
to occur at higher E (1+) excitation energies, e.g., E (1+) > 4
MeV, that are larger or in the vicinity of the Qβ− values.

C. Sensitivity to the choice of EDF

As a possible source of the theoretical uncertainty, in this
section sensitivity of the log10 f t predictions to the choice of
the EDF is explored. The 106Rh → 106Pd decay is considered
as an illustration, since this decay was also studied within the
mapped IBM-2/IBFFM-2 framework in Ref. [55], where the
D1M interaction [79] of the Gogny EDF was employed as the
microscopic input for the IBM-2 and IBFFM-2. The present
calculation with the DD-PC1 EDF generally gives larger
log10 f t values than that based on the Gogny-D1M EDF.
For example, the Gogny-D1M EDF calculation of Ref. [55]
provided the log10 f t value of the 1+

1 → 0+
1 decay to be

3.31, while the present value is 4.46 (see Table IV), which
is larger than the former by an order of magnitude in f t
values.
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TABLE VI. Strength parameters for the IBFFM-2 Hamiltonian for the 106Rh nucleus employed in the present work (DD-PC1) and in the
previous calculation that is based on the Gogny-D1M EDF [79], reported in Ref. [55]. All the parameters, but for χν and χπ , are in MeV units.

EDF ε κ χν χπ κ ′ �ν �ν Aν �π �π Aπ vd vt

DD-PC1 0.18 −0.364 −0.5 −0.38 0.032 0.3 0 0 0.3 1.2 0 −0.08 0.05
D1M 0.85 −0.301 −0.86 −0.6 0 0.7 0.7 0 0.6 0.6 0 −0.20 0.1

Table VI compares the IBFFM-2 parameters for 106Rh ob-
tained with the DD-PC1 and Gogny-D1M EDFs. Differences
in the parameters for the IBM-2 Hamiltonian are due to the
different nature of the PESs provided by the two functionals.
In both cases, the (β, γ ) PES for the even-even core nucleus,
106Pd, shows a weak prolate deformation typically at β ≈ 0.2
(see Fig. 1, and Fig. 2 of Ref. [55]). The DD-PC1 PES,
however, exhibits a steeper potential valley than the D1M
counterpart. This is reflected in the differences in the derived
parameters, e.g., ε and κ , shown in Table VI. Furthermore,
in Table VII the quasiparticle energies, ε̃ jρ , and occupation
probabilities, v2

jρ , for the odd neutron and odd proton, which
are used in determining the IBFFM-2 interaction strength and
β-decay operators, are compared between the mapped IBM-2
calculations based on the DD-PC1 and Gogny-D1M EDFs.
These single-particle properties are crucial to determine the
boson-fermion and fermion-fermion interactions, but are at
variance with the EDFs.

Figure 10 compares the energy spectra for the 106Pd and
106Rh nuclei between the calculations based on the DD-PC1
and Gogny-D1M EDFs. In general, the mapped IBM-2 calcu-
lation with the DD-PC1 EDF gives a better description of the
energy spectra for 106Pd than that employing the D1M EDF.
The D1M-IBM-2 energy spectrum exhibits a rotational fea-
ture and is rather stretched in energy with increasing angular
momentum, as compared to the DD-PC1 result. The differ-
ence arises mainly from the parameters χν and χπ , which are
responsible for the γ softness. Especially when the absolute
value of the average, χ = |χν + χπ |/2, is chosen to be large,
then it generally leads to a rotational-like level structure. One
actually sees from Table VI that both the parameters χν and
χπ employed in the previous IBM-2 study [55] with the D1M
EDF are larger in magnitude than those in the present calcula-
tion using the DD-PC1 EDF.

Similarly, for the odd-odd nucleus, 106Rh, the energy spec-
tra obtained from the two EDFs are rather different, that is, the
calculation employing the DD-PC1 EDF reproduces better the
6+

1 energy level, while in the D1M energy spectrum the 2+
1 and

TABLE VII. The quasiparticle energies, ε̃ jρ (in MeV), and oc-
cupation probabilities, v2

jρ
, for the single-particle orbitals used in the

mapped IBM-2 calculations employing the DD-PC1 and D1M EDFs.

EDF ν3s1/2 ν2d3/2 ν2d5/2 ν1g7/2 π1g9/2

DD-PC1 ε̃ jρ 1.883 2.148 1.674 1.760 1.463
v2

jρ
0.158 0.147 0.705 0.693 0.522

D1M ε̃ jρ 3.706 4.446 1.863 3.214 1.166
v2

jρ
0.333 0.179 0.843 0.496 0.516

5+
1 levels come below the 6+

1 level. In addition, the IBFFM-2
calculation with the DD-PC1 EDF gives nonyrast 1+ energy
levels that are lower than in the case of the D1M EDF. In the
DD-PC1 EDF calculation, the structure of the IBFFM-2 1+

1
state for 106Rh is described by the neutron-proton pair config-
urations [νg7/2 ⊗ πg9/2](J=1) and [νg7/2 ⊗ πg9/2](J=3), which
share, respectively, 52% and 43% of the wave function. In the
IBFFM-2 calculation of Ref. [55] using the Gogny-D1M EDF,
however, only the [νg7/2 ⊗ πg9/2](J=1) pair component plays
a predominant role (73%) to determine the 1+

1 wave function,
whereas there are numerous minor contributions from other
pair configurations. This difference more or less explains the
discrepancies in the log10 f t values between the two EDFs,
since in the Gogny-D1M case matrix elements of the terms
in the GT operator that contain the pair [νg7/2 ⊗ πg9/2](J=1)

are quite large, but those of other terms cancel each other to a
greater extent than in the case of the DD-PC1 EDF.
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FIG. 10. Low-energy spectra for the 106Pd and 106Rh nuclei com-
puted with the microscopic inputs provided from the DD-PC1 and
Gogny-D1M EDFs. The experimental data are taken from Ref. [73],
and the results for the Gogny-D1M EDF are exploited from Ref. [55].
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As it is also evident from the comparisons in Tables VI,
VII and Fig. 10, the parameters for the IBFFM-2 and single-
particle properties depend largely on the choice of the EDF,
which then lead to the differences in the predicted excitation
spectra and log10 f t values. It remains, however, an open issue
to identify which parameters are most responsible for the dif-
ferent log10 f t value predictions in the employed theoretical
approach.

V. SUMMARY AND CONCLUSIONS

The low-energy structure and β-decay properties of the
neutron-rich even-mass nuclei around N = 60 that are cur-
rently under extensive investigations have been studied within
the theoretical framework of the EDF-to-IBM mapping.
The IBM-2 Hamiltonian describing the even-even core nu-
clei, and particle-boson interactions, have been determined
by using the results of the triaxial quadrupole constrained
SCMF calculations within the RHB model with the DD-
PC1 functional and the separable pairing force. The resulting
wave functions for the initial and final nuclei, obtained
from the IBM-2 and IBFFM-2, have been used to compute
the GT transition strengths, where the corresponding oper-
ators have been constructed without introducing adjustable
parameters.

The calculated (β, γ ) PESs for the N = 60 even-even
isotones suggest for most cases notably γ -soft shapes that
vary substantially with Z . Spectroscopic calculations for the
even-even Kr, Sr, Zr, Mo, Ru, Pd, and Cd isotopes within
the mapped IBM-2 have produced evolution of the low-lying
energy spectra and B(E2) rates as functions of N , and rapid
changes of these observables around N = 60 along the Sr, Zr,

and Mo isotopic chains. The excitation spectra of low-spin
states of the neighboring odd-odd nuclei have been shown to
exhibit certain variation with N , reflecting the shape transi-
tions that occur in the even-even core nuclei.

The mapped IBM-2 and IBFFM-2 calculation has provided
the log10 f t values for the β− decays of the 0+

1 state of the
even-even nuclei into the 1+

1 state of the odd-odd nuclei that
are systematically lower than the experimental values for the
lower-Z isotopes (i.e., Kr, Sr, and Zr) and mostly for N � 60.
The too small log10 f t values in these nuclear systems in-
dicate a need for a substantial degree of quenching for the
gA factor, which amounts to an order of magnitude in some
cases. For those nuclei with N > 60 and higher Z , however,
the calculated log10 f t values exhibit a sharp increase with N ,
and especially for Mo isotopes the calculation overestimates
the data. The necessity of introducing effective gA factors
would then imply deficiencies of the theoretical framework
that arise from various model assumptions and approxima-
tions, including the particular choice of the EDF providing
microscopic input to the IBM-2 and IBFFM-2, the form of the
corresponding Hamiltonians, and the restricted single-particle
space. The sensitivity of the results to the choice of the nuclear
EDF has been explored, specifically, by comparing the calcu-
lations that employ the relativistic DD-PC1 and nonrelativistic
Gogny-D1M EDFs as the microscopic inputs to the IBM-2
and IBFFM-2.

The simultaneous calculation of the low-energy nuclear
structure and β decay will be useful for improving the quality
of the employed theoretical method in describing spectro-
scopic properties of individual nuclei even more accurately,
and will provide implications for studies of other fundamental
nuclear processes including the 0νββ decay.
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