
 

Instructions for use

Title Impacts of hexadecapole deformations on the collective energy spectra of axially deformed nuclei

Author(s) Lotina, L.; Nomura, K.

Citation Physical Review C, 109(3), 034319
https://doi.org/10.1103/PhysRevC.109.034304

Issue Date 2024-03

Doc URL http://hdl.handle.net/2115/92571

Rights ©2024 American Physical Society

Type article

File Information PhysRevC.109.034304.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


PHYSICAL REVIEW C 109, 034304 (2024)

Impacts of hexadecapole deformations on the collective energy spectra of axially deformed nuclei

L. Lotina 1,* and K. Nomura 2,3,†

1Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
2Department of Physics, Hokkaido University, Sapporo 060-0810, Japan

3Nuclear Reaction Data Center, Hokkaido University, Sapporo 060-0810, Japan

(Received 11 October 2023; accepted 8 February 2024; published 5 March 2024)

The hexadecapole deformation, as well as the quadrupole one, influences the low-lying states of finite nuclei.
The hexadecapole correlations are often overshadowed by the large quadrupole effects, and hence have not
been much investigated. Here we address the relevance of hexadecapole deformations in the calculations of
low-energy collective states of heavy nuclei, by using the theoretical framework of the self-consistent mean-field
method and the interacting-boson approximation. The interacting-boson Hamiltonian that explicitly includes
the quadrupole and hexadecapole collective degrees of freedom is specified by a choice of the energy density
functional and pairing interaction. In an illustrative application to axially deformed Gd isotopes, it is shown that
the inclusion of the hexadecapole degree of freedom does not affect most of the low-spin and low-lying states
qualitatively, but that has notable effects in that it significantly improves the description of high-spin states of the
ground-state bands of nearly spherical vibrational nuclei and gives rise to Kπ = 4+ bands exhibiting strong E4
transitions in strongly deformed nuclei.

DOI: 10.1103/PhysRevC.109.034304

I. INTRODUCTION

Deformation of the nuclear surface and the corresponding
collective excitations are a prominent aspect of the atomic
nucleus [1]. Among those collective excitation modes that
correspond to positive-parity states of nuclei, the dominant
and most studied is of quadrupole type, while much less
attention has been paid to the next leading order, hexadecapole
deformation. This is mostly because the effects of the hex-
adecapole correlations in nuclear low-lying states are often
overshadowed by large quadrupole correlation effects. The
hexadecapole correlations, nevertheless, have been shown to
be present in many rare-earth [1–5], and actinide [6,7] nuclei,
as well as some light ones [8], and have recently been found
in exotic isotopes with an unusual proton to neutron number
ratio [9]. Notable hexadecapole effects in nuclear collective
structure include the appearance of the low-energy Kπ = 4+
bands and enhanced electric hexadecapole (E4) transitions.
Furthermore, recent hydrodynamic simulation has indicated
that the hexadecapole deformation plays a role in modeling
heavy ion collisions studied at the Relativistic Heavy Ion
Collider [10]. In addition, various nuclear deformation effects,
including that of hexadecapole type, should have influences
on the predictions of the neutrinoless double decay matrix
elements of open shell nuclei [11].

It is, therefore, interesting and timely to study impacts of
hexadecapole deformations on nuclear structure in a quan-
titative and systematic way, using a model that allows for
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an accurate description of excitation spectra and electro-
magnetic transition properties of low-lying collective states.
Among other nuclear structure models, the interacting boson
model (IBM) [12] has been successful for phenomenological
descriptions of low-energy collective excitations in medium-
heavy and heavy nuclei. The basic assumption of the IBM is
that the nuclear low-lying states are described in terms of s and
d bosons, which reflect [13] the collective monopole, S (with
spin 0+), and quadrupole, D (spin 2+), pairs of valence nucle-
ons, respectively. The IBM should have certain microscopic
foundations on the underlying nucleonic dynamics, and at-
tempts have been made to derive the model Hamiltonian from
more microscopic nuclear structure calculations [13–16]. In
particular, a mapping technique has been developed [15] that
links the IBM to the framework of the nuclear energy den-
sity functional (EDF). This procedure has been successfully
applied to describe quadrupole [15–18] and octupole [19,20]
collective states.

In addition to s and d bosons, spin 4+, or g, bosons have
often been considered in the IBM [12]. The importance of
g bosons in describing spectroscopic properties of deformed
nuclei has been addressed from various perspectives [21–31].
Some of these earlier studies also concern the validity of the
sd-IBM from a microscopic point of view, that is, the question
as to whether the g boson degrees of freedom are indis-
pensable or not for a precise description of axially deformed
nuclei [21–24,26]. Along with the strongly deformed regions,
it should be also of interest to investigate the significance of
the hexadecapole correlation effects in those nuclei in nearly
spherical vibrational and transitional regions.

In this article, we implement the hexadecapole (g boson)
degree freedom in the IBM by means of the aforementioned
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mapping procedure [15], and demonstrate that the hexade-
capole effects are present in the low-energy collective states of
heavy nuclei in the nearly spherical vibrational region as well
as in the strongly deformed region. As an illustrative example
we focus on the isotopic chain of axially deformed 148–160Gd
nuclei, which exhibits a manifest first-order shape phase tran-
sition from spherical to (quadrupole) deformed shapes [32],
and for which hexadecapole collectivity has also been sug-
gested to emerge empirically.

II. SCMF ENERGY SURFACES AND MAPPING
ONTO THE IBM

Our analysis begins with the self-consistent mean-field
(SCMF) calculations using a nuclear EDF. The nuclear EDF
approaches are nowadays among the most reliable theoreti-
cal methods of studying intrinsic and excited states of finite
nuclei [33–40], and hexadecapole deformations have also
been considered as additional collective coordinates (see, e.g.,
Refs. [10,41,42]). For the 148–160Gd isotopes, we perform the
SCMF calculations within the multidimensionally constrained
relativistic mean-field (MDC-RMF) model [40,43] and ob-
tain energy surfaces in terms of the axial quadrupole (β2)
and hexadecapole (β4) deformations, which are shown on
the left column of Fig. 1. The SCMF calculations are here
carried out within the relativistic Hartree-Bogoliubov frame-
work [36,38] using the density-dependent point-coupling
(DD-PC1) interaction [44] and the separable pairing force
of finite range [45]. The constraints are on the expectation
values of axial quadrupole Q̂20 and hexadecapole Q̂40 mo-
ments, which are related to the deformation parameters β2 and
β4 through the relation, βλ = (4π/3ARλ) 〈Q̂λ0〉 with λ = 2, 4
and R = 1.2A1/3 fm.

As one can see in Fig. 1, for most of the Gd nuclei, the
hexadecapole deformed ground state with a positive β4 value
is obtained in the SCMF energy surfaces: the global mini-
mum occurs at the deformations (β2

min, β4
min ) ≈ (−0.05, 0),

(0.15, 0.05), (0.2, 0.1), (0.3, 0.15), (0.3, 0.15), (0.35, 0.15),
and (0.35, 0.15) for 148–160Gd, respectively. Both the β2

min

and β4
min values keep increasing with the neutron number,

but the latter changes more slowly than the former. One no-
tices that there is no β4 �= 0 minimum on the energy surface
of 148Gd. The potential is nevertheless rather soft along the
β4 direction, softest among the considered Gd isotopes. The
softness in β4 implies that the hexadecapole correlations play
an important role in this nucleus, and, as we show below, to
account for the β4 softness the g boson degree of freedom
is required. These findings, regarding the β2-β4 energy sur-
faces, are consistent with earlier SCMF results obtained for
the same mass region, e.g., the one with the axially deformed
Woods-Saxon potential involving the hexadecapole degree of
freedom [46], and a more recent beyond-SCMF calculation
that is based on the Gogny forces dealing with the quadrupole-
hexadecapole coupling [42].

The SCMF results are then used to construct the Hamilto-
nian of the s, d , and g boson system (denoted as sdg-IBM),
which gives rise to excitation energies and electromagnetic
transition rates. For the sdg-IBM Hamiltonian, we exploit
the form that has been been shown to be adequate for

FIG. 1. Left column: axially symmetric quadrupole (β2) and hex-
adecapole (β4) constrained energy surfaces for the 148–160Gd isotopes
calculated within the relativistic Hartree-Bogoliubov method using
the density-dependent point-coupling energy density functional and
the pairing force of finite range. Right column: the corresponding
energy surfaces of the sdg-IBM. The global minimum is indicated
by the open triangles.

phenomenological descriptions of shape phase transitions
with quadrupole and hexadecapole degrees of freedom [31]:

Ĥsdg = εd n̂d + εgn̂g + κQ̂ · Q̂ + κ (1 − χ2)Q̂′ · Q̂′, (1)

where the first and second terms in the right-hand side
stand for the d-, and g-boson number operators, n̂d = d† · d̃
and n̂g = g† · g̃, respectively. The third term represents the
quadrupole-quadrupole interaction. The quadrupole operator,
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Q̂, takes the form

Q̂ = s†d̃ + d†s + χ

[
11

√
10

28
(d† × d̃ )(2)

− 9

7
(d† × g̃ + g† × d̃ )(2) + 3

√
55

14
(g† × g̃)(2)

]
, (2)

which is the expression considered also in Ref. [31] and
corresponds to a generator of sdg-SU(3) in the limit χ =
1 [31,47]. The last term on the right-hand side of Eq. (1)
represents the hexadecapole-hexadecapole interaction, with
the hexadecapole operator being Q̂′ = s†g̃ + g†s. In principle,
the hexadecapole operator in the sdg-IBM could take a more
complicated form that contains some other terms. The reason
why we end up with the simplified form that comprises the
s†g̃ + g†s terms only is because the SO(15) symmetry is as-
sumed on the sdg-IBM Hamiltonian (see Refs. [28,31] for the
details). In addition, for the sake of simplicity no distinction
is made between the neutron and proton degrees of freedom.
While a more realistic study would require that neutron and
proton bosons be treated separately, it is expected that there
is no qualitative difference in the description of the low-lying
yrast states of most of the medium-heavy and heavy nuclei be-
tween the IBM that comprises neutron and proton bosons and
the one in which they are not distinguished. The distinction
between neutron and proton bosons would be relevant when
describing phenomena such as the neutron-proton mixed sym-
metry states and the related magnetic dipole properties, in
which the neutron and proton degrees of freedom play an
important role. On the other hand, the scope of present work
is to study the effect of g bosons on energy spectra, and for
the initial application of the mapped sdg-IBM framework to
realistic cases, it would be sufficient to use a simpler ver-
sion of the sdg-IBM, where the neutrons and protons are not
distinguished.

The parameters of the Hamiltonian (1) (εd , εg, κ , and χ )
are determined, for each nucleus, by applying the method of
Ref. [15]: the β2-β4 SCMF energy surface, ESCMF(β2, β4),
is mapped onto the equivalent energy surface of the boson
system, EIBM(β̃2, β̃4), so that the approximate equality,

ESCMF(β2, β4) ≈ EIBM(β̃2, β̃4), (3)

should be satisfied in the neighborhood of the global mini-
mum. Here, EIBM(β̃2, β̃4) is given as the expectation value
of the Hamiltonian (1) in the coherent state |φ〉, with |φ〉 ∝
(1 + β̃2d†

0 + β̃4g†
0)NB |0〉 [28,48]. NB stands for the number of

bosons, which is equal to half the number of valence nucleons,
and the ket |0〉 represents the inert core, i.e., the doubly magic
nucleus 132Sn. The amplitudes β̃2 and β̃4 stand for the boson
analogs of the axial quadrupole and hexadecapole deforma-
tions, respectively, and are assumed to be proportional to
the fermionic counterparts, that is, β̃2 ∝ β2 and β̃4 ∝ β4. See
Refs. [15,16] for further details of this mapping procedure in
the case of sd-IBM.

On the right column of Fig. 1, we show the mapped sdg-
IBM β2-β4 deformation energy surfaces. One can see that the
basic characteristics of the SCMF energy surface, such as the
depth of the potential and the coordinates corresponding to

the global minimum [(β2
min, β4

min )], are reproduced in the
mapped sdg-IBM surfaces.

To compare with the sdg-IBM results, we also carry out
the calculations within the original version of the IBM, that
comprises s and d bosons only (sd-IBM). The sd-IBM Hamil-
tonian here takes the standard form [12]

Ĥsd = εd n̂d + κQ̂sd · Q̂sd , (4)

where Q̂sd = s†d̃ + d†s + χd (d† × d̃ )(2) is the quadrupole
operator for the (s, d )-boson systems. The three parameters,
εd , κ , and χd , are determined by mapping the SCMF energy
surface along the β2 deformation with β4 = 0 onto that of the
sd-IBM, that is, ESCMF(β2, β4 = 0) ≈ Esd

IBM(β̃2).

III. RESULTS

Figures 2(a) and 2(b) show the excitation energies of
even-spin positive-parity states in the ground-state bands
of 148–160Gd, obtained from the diagonalization [50] of
the mapped sd- and sdg-IBM Hamiltonians, respectively,
compared to the corresponding experimental data [49]. A no-
ticeable influence of including the hexadecapole deformation
on the ground-state bands is that the excitation energies of
the states with spin Iπ � 6+ calculated within the sdg-IBM
for those nuclei with N = 84 and 86, which are close to the
neutron magic number N = 82, are much lower than in the
sd-IBM, and are in agreement with experiment.

The calculated ratios of the first 4+ to 2+ excitation ener-
gies, R4/2 = Ex(4+

1 )/Ex(2+
1 ), obtained from the sdg (sd) IBM

are,1.86 (2.13), 2.15 (2.18), 2.38 (2.36), 2.84 (2.83), 2.99
(3.08), 3.10 (3.24), 3.16 (3.23) for 148–160Gd, respectively.
The observed R4/2 ratios, on the other hand, are equal to
1.81, 2.02, 2.19, 3.02, 3.24, 3.26, and 3.32 for 148–160Gd,
respectively [49]. By comparing the theoretical and experi-
mental R4/2 ratios, it turns out that another significant impact
of g bosons is that the sdg-IBM reproduces the experimental
R4/2 ratio for the 148Gd nucleus, R4/2 = 1.81 < 2. The exper-
imental value of R4/2 < 2 could be reproduced only by the
inclusion of g bosons, since it lowers the 4+

1 level to be close
in energy to the 2+

1 one. The fact that the observed R4/2 ratio
for 148Gd is lower than two also reflects, to a good extent, the
contribution from the single-particle excitations, which appear
to be effectively accounted for by the inclusion of g bosons.

Even though g bosons, as well as s and d bosons, are
considered as collective in nature, the fact that the inclusion of
g bosons in the IBM significantly improves description of the
observed energy ratio of R4/2 < 2, as well as the fact that the
ground-state yrast levels with I � 6 is reproduced quite well,
indicates that g bosons are considered as necessary building
blocks to describe the low-energy excitations in the nuclei
with N = 84 and 86, where single-particle degrees of freedom
come to play a role. We also note that both the sd-IBM and
sdg-IBM have often been applied to nearly spherical and mod-
erately deformed nuclei with N being near shell closure, and
has been shown to be valid in a number of phenomenological
applications and in the microscopic considerations.

The lowering of the higher spin levels of the ground-state
bands for the nearly spherical nuclei is explained by the
increasing g boson contribution to the wave functions as a
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FIG. 2. Energy spectra of positive-parity even-spin yrast states
[panels (a) and (b)], 0+

2 , 2+
3 , and 4+

3 states [panels (c) and (d)], and 2+
2 ,

3+
1 , and 4+

2 states [panels (e) and (f)] of 148–160Gd calculated with the
sd- (left column), and sdg-IBM (right column) in comparison with
the experimental data [49]. The calculated excitation energies are
represented by filled symbols, and the corresponding experimental
data by the open symbols.

function of spin. The contribution of g bosons to a given
state is inferred from the expectation value, 〈n̂g〉, computed by
using the sdg-IBM wave function of that state. For 148Gd, in
particular, the states with spin Iπ = 4+

1 , 6+
1 , 8+

1 , and 10+
1 are

shown to contain one g boson, i.e., 〈n̂g〉 ≈ 1, and 〈n̂g〉 ≈ 1.5
for the 12+

1 , and 14+
1 states.

Figures 2(c) and 2(d) depict the 0+
2 , 2+

3 , and 4+
3 energy

levels, which are supposed to be part of the excited Kπ =
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FIG. 3. Low-spin part of the positive-parity bands of 154Gd cal-
culated with the sdg-IBM, in comparison with the experimental
data [49]. The theoretical band that is built on the 4+

3 state, high-
lighted in thick lines with color red, is predicted to be of one-g-boson
character.

0+ band in the well deformed isotopes with N � 90. The
inclusion of g bosons has an effect of lowering the 2+

3 and
4+

3 energy levels for those nuclei with N � 88. In particular,
for the 4+

3 states of 148Gd, 150Gd, and 152Gd the expectation
values are calculated as 〈n̂g〉 ≈ 1. On the other hand, the hex-
adecapole deformation makes only a minor effect on the 0+

2
energy levels in general, as the expectation values 〈n̂g〉 ≈ 0.
Overall it appears that the sdg-IBM does not improve the de-
scription of these non-yrast states, and that even the sd-IBM,
i.e., the calculation without g bosons, is able to reproduce the
observed behaviors of these states rather well.

Figures 2(e) and 2(f) show the excitation spectra of the 2+
2 ,

3+
1 , and 4+

2 states, which are attributed to members of the γ

vibrational band. The g boson effect appears to be minor in the
description of the bandhead 2+

2 level, but significantly lowers
the energies of the 3+

1 and 4+
2 states for those nuclei with N �

88, which are weakly quadrupole and hexadecapole deformed.
Particularly at N = 84, the 4+

2 level obtained from the sdg-
IBM is so low in energy as to be close to the 2+

2 level, in
comparison to experiment.

The discrepancies between the calculated and experi-
mental energy spectra for non-yrast states, as observed in
Figs. 2(c), 2(d), 2(e), and 2(f), are not surprising, given that,
unlike the conventional IBM calculations, the Hamiltonian
parameters are here not obtained from experiment, but from
the mapping of the β2-β4 SCMF energy surface computed
with the EDF that is not tailored for particular nuclei.

The detailed band structure of each nucleus can also be
studied. As a representative case we show in Fig. 3 the low-
energy positive-parity bands of 154Gd. In the sdg-IBM spectra,
states are classified into bands according to the dominant
inband E2 transitions and according to the nature of the states
in terms of the g-boson content in their wave functions. One
sees from Fig. 3 that the ground-state band is reproduced
well. The predicted Kπ = 0+

2 band looks stretched in energy
as compared to the experimental one, even though the 0+

2
bandhead energy is reasonably reproduced. The predicted γ

band, starting from the 2+
2 state, is much lower in energy
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than the experimental one. The appearance of the low-lying
2+

2 state indicates too pronounced γ softness, which could
be attributed to the particular choice of the nuclear EDF
and pairing interaction. In addition, the calculated γ band
exhibits a staggering of levels, (3+

γ , 4+
γ ), (5+

γ , 6+
γ ), . . . . It is

a characteristic of a γ -unstable rotor [51], but contradicts the
observed feature of the γ band, which looks rather harmonic.
To remedy this, cubic terms are often included in the boson
Hamiltonian [18], since they lower the energy levels of the
odd-spin members of the γ band, to be consistent with the
observed γ -band structure that is harmonic. The cubic terms,
however, would also lower the 2+ bandhead energy of the γ

band, which would become much lower than the experimental
counterpart. Such an extension is well beyond the scope of this
paper.

The theoretical band, built on top of the 4+
3 state, is inter-

preted as the Kπ = 4+ band and is found to be of one-g-boson
character in the present calculation. The experimental coun-
terpart is the one with the bandhead energy Ex(4+

4 ) = 1646
keV [49]. E4 transition properties are calculated with the
transition operators that are given by e4,sdg[Q̂′ + (d† × d̃ )(4)]
for the sdg-IBM, and e4,sd (d† × d̃ )(4) for the sd-IBM. The
addition of the (d† × d̃ )(4) term to the E4 transition operator
for the sdg-IBM is to compare the impact of d bosons to that
of g bosons on the E4 transitions, and in that way one would
be able to see properly how much the presence of g bosons
affects the E4 transitions. The effective boson charges, e4,sdg

and e4,sd , are fixed to reproduce an available experimental [49]
B(E4; 4+

1 → 0+
1 ) transition rate of 38 ± 3 Weisskopf units

(W.u.). The sd-IBM gives band structure of 154Gd qualita-
tively similar to that with the sdg-IBM. The Kπ = 4+ band
is also obtained in the sd-IBM with the bandhead 4+

4 state
at the excitation energy of 1412 keV. A significant differ-
ence between the sd- and sdg-IBM predictions is that the
B(E4; 4+

K=4+ → 0+
1 ) transition obtained from the former is

much lower (1.3 W.u.) than that from the latter (93 W.u.).
Experiments to deduce the reduced E4 matrix elements,
| 〈0+

1 ‖M(E4)‖4+
1 〉 |, were performed, e.g., in [4,5], using the

(α, α′) scattering and Coulomb excitations, and these transi-
tion matrix elements can be used to fix the boson effective
charges, e4,sd and e4,sdg. However, experimental information
about other E4 transitions is not available for the Gd isotopes
under study, and hence the detailed comparison of the present
model with the experimental E4 transition rates is not feasi-
ble. An extensive study of the E4 properties in other isotopic
chains will be reported elsewhere.

In the deformed region, the improvement of the sdg-IBM
over the sd-IBM is also visible in the higher-lying states of

a given spin. For even-spin states, for example, the sixth 2+
state and higher become lower and closer to each other in
energy which is in a better agreement with experiment. For
odd-spin states, this is even visible, e.g., for the third 3+ state
and higher. However, the corresponding experimental data for
the 3+ states are scarce. The sdg-IBM gives a slightly better
description of the in-band E2 transitions, I → I − 2, within
ground-state band for high-spin states, e.g., I = 8+ and 10+,
for deformed Gd nuclei. There is, on the other hand, no quali-
tative difference in the calculated E0, as well as E2, transition
properties for the low-spin states between the sd-IBM and
sdg-IBM. These properties will be discussed in detail in a
forthcoming longer article.

IV. SUMMARY

To summarize, we have analyzed the impacts of hex-
adecapole deformations on the low-lying collective states of
axially symmetric heavy nuclei in the spherical vibrational
as well as strongly deformed regimes. By using the results
of the mean-field calculations based on the relativistic EDF,
the sdg-IBM Hamiltonian has been determined without any
adjustment to experiment. The inclusion of g bosons has been
shown to lower the states of ground-state bands with spin
Iπ � 6+, especially in the region near the neutron closed
shell N = 82, thus improving the description of vibrational
nuclei. For those nuclei with large quadrupole deforma-
tion, i.e., with N � 90, the sdg-IBM produces the Kπ = 4+
band of one-g-boson character, which exhibits a much larger
B(E4; 4+

Kπ =4+ → 0+
1 ) transition than in the sd-IBM. On the

other hand, the g-boson effects on low-spin non-yrast states
have been shown to be marginal for most of the deformed
nuclei, in which cases the sd-IBM appears to reproduce the
experimental data rather well. Now that we have a way of
incorporating the quadrupole and hexadecapole degrees of
freedom in the IBM in a unified manner, it can be applied
to identify regions of the nuclear chart, including the experi-
mentally unexplored ones, in which hexadecapole correlations
may play prominent roles.
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