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We investigate the convergence of chemical reaction networks (CRNs), aiming to establish an upper bound on
their reaction rates. The nonlinear characteristics and discrete composition of CRNs pose significant challenges
in this endeavor. To circumvent these complexities, we adopt an information geometric perspective, utilizing
the natural gradient to formulate a nonlinear system. This system effectively determines an upper bound for
the dynamics of CRNs. We corroborate our methodology through numerical simulations, which reveal that
our constructed system converges more rapidly than CRNs within a particular class of reactions. This class
is defined by the count of chemicals, the highest stoichiometric coefficients in the reactions, and the total number
of reactions involved. Further, we juxtapose our approach with traditional methods, illustrating that the latter
falls short in providing an upper bound for CRN reaction rates. Although our investigation centers on CRNs, the
widespread presence of hypergraphs across various disciplines, ranging from natural sciences to engineering,
indicates potential wider applications of our method, including in the realm of information science.
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I. INTRODUCTION

Over the past three decades, extensive research has been
dedicated to understanding stochastic and information ther-
modynamics, specifically focusing on bounds related to
entropy production and various physical quantities [1–4].
This trajectory persists, with newer studies shedding light on
thermodynamic uncertainty relations [5–9] and establishing
thermodynamic bounds on cross correlations [10–12]. Par-
allel to the work on physical systems, researchers have also
explored bounds in nonphysical realms such as biological
systems. For example, limits concerning population growth
have been studied [13–18].

Recent studies have unveiled the geometric structure of
chemical reaction networks (CRNs) and have also extended
these concepts to the domain of general hypergraphs [19–21].
Concurrently, topological analyses on CRNs and hypergraphs
have been performed [22–25]. Despite these advancements,
the intrinsic nonlinearity in CRNs presents a significant chal-
lenge for elucidating specific properties, leaving gaps in our
understanding.

Information geometry offers a framework that applies dif-
ferential geometry to probability distributions, facilitating the
exploration of their geometric structures [26,27]. Among its
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significant contributions is the concept of the natural gra-
dient (NG) [28], which has demonstrated effectiveness in
optimization problems, particularly in the realm of machine
learning. Additional studies have ventured into the accelera-
tion of information gradient flows [29] and have investigated
the biological significance of gradient flows [30]. Research
has also extended to constraints involving rates of statistical
divergences and mutual information [31]. Furthermore, there
are some information-geometric studies on CRNs [32–35].
These diverse applications underline the versatility of infor-
mation geometry, which we leverage in this paper.

In the present paper, we explore the upper bound on re-
action rates in general CRNs using NG. Initially, we present
a geometrical description of CRN dynamics [20,21]. Sub-
sequently, we categorize CRNs according to the number
of chemicals involved, the maximum coefficients in the re-
actions, and the total number of reactions. Utilizing this
classification, we formulate a nonlinear system that provides
an upper bound on reaction rates for a given class of CRNs.
Through numerical simulations, we find that the constructed
system exhibits a steeper gradient, facilitating faster con-
vergence. Importantly, this fast convergence minimizes the
Kullback-Leibler (KL) divergence to zero. In contrast, con-
ventional CRNs often maintain a nonzero KL divergence due
to nontrivial equilibrium points. We also note that conven-
tional methods are insufficient for achieving these results,
underscoring the uniqueness of our approach.

The remainder of this paper is structured as follows.
In Sec. II, we furnish an overview of CRNs. Section III
elucidates the challenges of establishing an upper bound on
CRNs using Newton’s method. Section IV is dedicated to
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explaining NG. In Sec. V, we introduce a dynamical system
that serves as an upper bound for CRNs in a specified class.
Numerical simulations are presented in Sec. VI. The paper
concludes with Sec. VII.

II. CHEMICAL REACTION NETWORKS

In this section, the primary aim is to formulate the geo-
metric representation of the dynamical equations governing
CRNs, as delineated in Refs. [20,21]. We commence by
presenting the standard notation for hypergraphs and CRNs.
Subsequently, we elucidate the dynamics intrinsic to CRNs,
as well as concepts of Legendre duality and detailed balance.
These elements are then combined to construct the geometric
expression of CRN dynamics.

A. Definition of CRNs

We begin with a hypergraph (V,E), where V := {vi}Nv
i=1 and

E := {ee}Ne
e=1 as a hypergraph provides a mathematical frame-

work to describe a chemical reaction. Suppose that a CRN of
interest involves NX chemicals, denoted as X1,X2, . . . ,XNX .
In the case of a CRN, each hypervertex vi is composed of a
combination of chemicals X1,X2, . . . ,XNX and given by

vi := γ1,iX1 + γ2,iX2 + · · · + γNX,iXNX . (2.1)

Each hyperedge ee corresponds to a chemical reaction and is
defined by a directed pair of two hypervertices ee := (v+

e , v−
e ),

which can be expressed as

α1,eX1 + α2,eX2 + · · · + αNX,eXNX

ee−→ β1,eX1 + β2,eX2 + · · · + βNX,eXNX . (2.2)

Here, v±
e are chosen from {vi}Nv

i=1 and, in Eq. (2.2),
v+

e = α1,eX1 + α2,eX2 + · · · + αNX,eXNX and v−
e = β1,eX1 +

β2,eX2 + · · · + βNX,eXNX . We also define the order of reaction
as follows:

m := max
i,e

{αi,e, βi,e}. (2.3)

To characterize CRNs, m in Eq. (2.3) will play an important
role.

When a CRN involves multiple chemical reactions, the
description provided above may be inadequate. To describe a
complex CRN, the stoichiometric matrix plays a crucial role.
The stoichiometric matrix S is defined as an NX × Ne matrix
and is given by

S := [
s1, s2, . . . , sNe

]
, (2.4)

where, for e = 1, 2, . . . , Ne,

se :=

⎡
⎢⎢⎣

β1,e − α1,e

β2,e − α2,e
...

βNX,e − αNX,e

⎤
⎥⎥⎦. (2.5)

That is, the ( j, e)th element of S is given by s j,e = β j,e − α j,e

for j = 1, 2, . . . , NX and e = 1, 2, . . . , Ne. In general, when a
CRN involves multiple chemical reactions, the stoichiometric

matrix provides a concise representation of the relationships
between the reactants and products.

The stoichiometric matrix S is also expressed as S =
−�B. Here, B ∈ {1, 0,−1}Nv×Ne is the incidence matrix
whose (i, e)th element is given for i = 1, 2, . . . , Nv and e =
1, 2, . . . , Ne by

bi,e :=
⎧⎨
⎩

1 (vi is the head of hyperedge ee: vi = v+
e )

−1 (vi is the tail of hyperedge ee: vi = v−
e )

0 (otherwise),
(2.6)

and � ∈ ZNX×Nv
�0 is given by

� := [
γ1, γ2, . . . , γNv

]
, (2.7)

where, using γ1,i, γ2,i, . . . , γNX,i in Eq. (2.1), γ i is defined as

γ i := [
γ1,i, γ2,i, . . . , γNX,i

]ᵀ
, (2.8)

for i = 1, 2, . . . , Nv. Having defined the necessary variables to
describe CRNs, we will now derive the equation that charac-
terizes the dynamics of CRNs in the remainder of this section.

B. Dynamics of CRNs

To analyze the dynamics of a CRN, we introduce
fluxes associated with each hyperedge. Let j+e (x) and
j−e (x) denote the currents from the head to the tail
and from the tail to the head of hyperedge ee, respec-
tively, where x is the chemical concentration vector. We
define j+(x) := [ j+1 (x), j+2 (x), . . . , j+Ne

(x)]ᵀ and j−(x) :=
[ j−1 (x), j−2 (x), . . . , j−Ne

(x)]ᵀ.
The law of mass action is widely observed to hold for

CRNs and is considered one of the fundamental characteris-
tics that differentiate CRNs from nonchemical hypergraphs.
Based on this, we make the assumption of mass action kinetics
for the forward and reverse reaction fluxes on hyperedge ee in
Eq. (2.2),

j±e (x) = k±
e

Nv∑
i=1

b±
i,e

NX∏
j=1

x
γ j,i

j , (2.9)

where, for i = 1, 2, . . . , NX and e = 1, 2, . . . , Ne,

b+
i,e := max(bi,e, 0), (2.10)

b−
i,e := − min(bi,e, 0), (2.11)

and k±
e are the reaction rate coefficients for the forward

and backward currents on ee. Expressed in vector notation,
Eq. (2.9) can be written as

j±(x) = k± ◦ (B±)ᵀx�ᵀ
(2.12)

= k± ◦ x(�B± )ᵀ, (2.13)

where

B+ := max(B,0), (2.14)

B− := − min(B,0), (2.15)

x�ᵀ
:= [xγ1 , xγ2 , . . . , xγNv ]ᵀ, (2.16)
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xγ i :=
NX∏
j=1

x
γ j,i

j , (2.17)

k± := [
k±

1 , k±
2 , . . . , k±

Ne

]ᵀ
. (2.18)

Here, 0 represents the zero matrix, which has the same
size as matrix B. The functions max(·, ·) and min(·, ·) are
applied elementwise, meaning that for each element [A]i, j

and [B]i, j , we have [max(A, B)]i, j = max([A]i, j, [B]i, j ) and
[min(A, B)]i, j = min([A]i, j, [B]i, j ), respectively. The notation
[·]i, j represents the element located at the ith row and jth
column. Moreover, the symbol ◦ denotes the elementwise
product, which is defined as follows:

x ◦ y :=

⎡
⎢⎢⎣

x1y1

x2y2
...

xNXyNX

⎤
⎥⎥⎦, (2.19)

where x := [x1, x2, . . . , xNX ]ᵀ, y := [y1, y2, . . . , yNX ]ᵀ.
The chemical concentration vector xt at time t satisfies the

chemical rate equation (CRE) given by [36–38]

ẋt = S j(xt ), (2.20)

where j(x) := j+(x) − j−(x).

C. Legendre duality of fluxes and forces

In the realm of physics, the relationship between fluxes
and forces is commonly expressed through Legendre dual-
ity, a concept that describes how forces and fluxes are dual
aspects of the same system. Their product results in entropy
production, denoted as 2〈 j, f 〉. In the context of chemical
thermodynamics, we define the force on a hyperedge ee in a
manner consistent with entropy production:

fe(x) := 1

2
ln

j+e (x)

j−e (x)
, (2.21)

for e = 1, 2, . . . , Ne. The corresponding vector form of
Eq. (2.21), f (x) := [ f1(x), f2(x), . . . , fNe (x)]ᵀ, can be ex-
pressed as

f (x) = 1

2
ln

j+(x)

j−(x)
, (2.22)

where the division and the logarithmic function are computed
elementwise.

We introduce a quantity called frenetic activity, particularly
on hyperedge ee, to describe the rate of change in the state of
the system ee [20,21] as

ωe(x) := 2
√

j+e (x) j−e (x) (2.23)

for e = 1, 2, . . . , Ne. The vector form of Eq. (2.23), denoted
as ω(x) := [ω1(x), ω2(x), . . . , ωNe (x)]ᵀ, can be expressed as

ω(x) = 2
√

j+(x) ◦ j−(x). (2.24)

Then, the following strictly convex smooth function
�∗

ω(x)( f (x)), which is called the dissipation function, estab-
lishes the Legendre duality between force f (x), Eq. (2.22),

and flux j(x), Eq. (2.24):

�∗
ω(x)( f (x)) := ω(x)ᵀ[cosh( f (x)) − 1], (2.25)

where

cosh( f (x)) :=

⎡
⎢⎢⎢⎢⎣

cosh( f1(x))

cosh( f2(x))
...

cosh( fNe (x))

⎤
⎥⎥⎥⎥⎦, (2.26)

f (x) := [
f1(x), f2(x), . . . , fNe (x)

]ᵀ
, (2.27)

1 := [1, 1, . . . , 1︸ ︷︷ ︸
Ne

]ᵀ. (2.28)

As a result, we have1

j(x) = ∂ f �
∗
ω(x)( f (x)). (2.29)

Note that

∂ f �
∗
ω(x)( f (x)) = ω(x) ◦ sinh( f (x)) (2.30)

=

⎡
⎢⎢⎣

ω1(x) sinh( f1(x))
ω2(x) sinh( f2(x))

...

ωNe (x) sinh( fNe (x))

⎤
⎥⎥⎦. (2.31)

Combining Eqs. (2.20) and (2.29), we get

ẋt = S∂ f �
∗
ω(xt )( f (xt )). (2.32)

While Eq. (2.32) is a well-defined differential equation, it
lacks an explicit functional form for f (x), thus limiting its
predictive capability. The functional form of f (x) based on
thermodynamics and kinetics will be elaborated in the subse-
quent subsection.

D. Chemical reaction dynamics

Until this point, the discussion has centered on the general
description of dynamics on hypergraphs. Going forward, the
focus will be exclusively on CRNs. In the realm of chemical
thermodynamics, it is a common assumption to employ mass
action kinetics to describe reaction rates. Within this frame-
work, a specific definition of force is accepted and widely used
[20,21,36,37]:

f (x) = −1

2

(
Sᵀ ln x − ln

k+

k−

)
. (2.33)

To clarify the geometric meaning of Eq. (2.33), we introduce
the Bregman divergence Dφ (x‖y) associated with potential
φ(·):2

Dφ (x‖y) := φ(x) − φ(y) − 〈x − y, ∂xφ(y)〉. (2.34)

The derivative of Eq. (2.34) is given by

∂xDφ (x‖y) = ∂xφ(x) − ∂xφ(y). (2.35)

1We have used the following notation: ∂ f �
∗
ω(x)( f (x)) =

∂ f �
∗
ω(x)( f )| f= f (x).

2We have used the notation ∂xφ(y) = ∂xφ(x)|x=y.
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The KL divergence is Eq. (2.34) with the following potential:3

φKL(x) :=
NX∑
i=1

xi ln xi. (2.36)

Then, the KL divergence is defined by DφKL (·‖·) := DKL(·‖·)
and reads

DKL(x‖y) =
NX∑
i=1

xi ln
xi

yi
−

NX∑
i=1

xi +
NX∑
i=1

yi, (2.37)

and its derivative takes the following form:

∂xDKL(x‖y) =

⎡
⎢⎢⎣

ln x1 − ln y1

ln x2 − ln y2
...

ln xNX − ln yNX

⎤
⎥⎥⎦. (2.38)

Then, Eq. (2.33) is rewritten as

f (x) = − 1
2 Sᵀ∂xDKL(x‖x̂) + f ne. (2.39)

The definition of x̂ will be given in the following subsec-
tion, and f ne 	∈ Im[Sᵀ] represents the nonequilibrium force
incurred to the system [19].

Mass action kinetics also offers the following definitions of
the flux and activity [20,21,36,37]:

j(x) = (k+ ◦ (B+)ᵀ − k− ◦ (B−)ᵀ)x�ᵀ
. (2.40)

Substituting Eq. (2.40) into Eq. (2.24), we also get the activity
for CRNs:

ω(x) = 2
√

k+ ◦ k− ◦ xRᵀ/2, (2.41)

where

R := �(B+ + B−). (2.42)

In the remaining part of this section, we will present the
geometric expression of the equation for CRNs.

E. Geometric expression of an equilibrium CRE

Up to this point, the discussion has centered on the geomet-
ric relationships that exist among the chemical concentration,
potential, force, and flux in a CRN. Subsequently, the CRE
specified in Eq. (2.20) can be reformulated into a geometric
expression [36–38]. To accomplish this, the detailed balance
condition (DBC) must be taken into account. The DBC, a
criterion for the dynamic stability of a system at equilibrium,
is described in the following section [20,21]:

ln
k+

k− = Sᵀ ln xeq. (2.43)

Here, xeq represents the equilibrium chemical concentration
vector, which is dependent on both the initial concentration
vector xini and the specific CRE under consideration. Ad-
ditionally, if Eq. (2.43) is met, then f ne = 0. Generally, at
equilibrium, net fluxes cease ( j = 0), allowing us to define a
set of equilibrium chemical concentration vectors as follows:

Veq := {x > 0| j(x) = 0}. (2.44)

3See Appendix A for details.

From Eq. (2.43), Eq. (2.44) is transformed into

Veq = {x > 0|∃η ∈ R|ker(Sᵀ )|, ln x = ln xeq + Uη}, (2.45)

where U := [u1, u2, . . . , u|ker(Sᵀ )|] and {ui}|ker(Sᵀ )|
i=1 are the

bases of ker(Sᵀ). We have introduced x̂ in Eq. (2.39). We here
impose the following relation to x̂:

x̂ ∈ Veq. (2.46)

Then Eq. (2.39) describes dynamics of gradient flow to Veq.
Equation (2.46) is equivalently written as

ln
k+

k− = Sᵀ ln x̂. (2.47)

Note that using x̂ instead of xeq provides us with a generalized
expression of the dynamical system.

Finally, we have arrived at the geometric expression of
a CRE, namely, combining Eqs. (2.32), (2.39), (2.41), and
(2.43), we get4

ẋt = S∂ f �
∗
ω(xt )

(− 1
2 Sᵀ∂xDKL(xt‖x̂)

)
, (2.48)

where x̂ ∈ Veq. Note that in Eq. (2.48), replacing x̂ with xeq

does not affect the dynamics of CRNs because SᵀUη = 0.
In Ref. [38], it is also mentioned that the KL divergence is
a Lyapunov function for the dynamics of CRNs.

III. DIFFICULTY OF CONSTRUCTING AN UPPER BOUND
ON THE REACTION RATES OF CRNS

In this section, we briefly revisit Newton’s method and
present a counterexample illustrating its limitations in estab-
lishing an upper bound on the reaction rates of CRNs.

A. Newton’s method

As stated in Sec. I, the objective of this paper is to
determine an upper bound on the reaction rates of CRNs.
One might assume that straightforward optimization methods
could achieve this. However, before discussing NG, we elu-
cidate the challenges of using Newton’s method [39] as an
optimization technique for this purpose. While the gradient
method is another elementary optimization technique, its in-
determinate step size precludes its consideration in this paper.
We now turn to a specific optimization problem:

min
x

f (x). (3.1)

Letting xt be the state at the t th iteration for t ∈ Z�0, Newton’s
method for Eq. (3.1) is given by

xt+1 = xt − [
∂2

x f (xt )
]−1

∂x f (xt ). (3.2)

In the case of CRNs, we have f (x) = Dφ (x‖x̂); then Eq. (3.2)
reads

xt+1 = xt − G−1
φ (xt )∂xDφ (xt‖x̂), (3.3)

where Gφ is the Hessian of φ(·).

4We have used the following notation: ∂xDKL(xt‖x̂) =
∂xDKL(x‖x̂)|x=xt .
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FIG. 1. Dependence of DKL(xt‖x̂) on t for the CRN in Eq. (3.4)
and their upper bound in the case of xeq = x̂.

B. Counterexample

We will demonstrate a counterexample to show that
Eq. (3.3) does not yield an upper bound for a CRN. We
consider the following CRN with NX = 2, m = 3, and Ne = 1:

2X1 � 3X2. (3.4)

For the simulations of Eq. (2.48), we set k±
e = 1, �t = 1.0 ×

10−4, xini = [3/4, 11/8]ᵀ, and x̂ = [1.0, 1.0]ᵀ. In Fig. 1, we
plot the dynamics of Eq. (3.4) as well as the dynamics ob-
tained using Newton’s method. At t = 1, the divergence of
Newton’s method is greater than that of the CRN, indicat-
ing that Newton’s method fails to bound the dynamics. This
observation is illustrated in the figure. The reason for this
discrepancy lies in the nonlinearity of Eq. (3.4).

IV. NATURAL GRADIENT

In this section, we explore the NG method and its applica-
bility to the problem of constraining reaction rates in CRNs.
As our proposed methodology hinges on NG, understanding
its theoretical underpinnings and its distinction from Newton’s
method is crucial.

A. Derivation of NG

In this section, we outline the derivation of the NG method,
which is grounded in information geometry. Specifically, we
will elucidate how the dynamics of a given vector xt at time t
are updated within the framework of NG:

xt+�t = xt + �xt (ε), (4.1)

where �xt (ε) is defined as.5

�xt (ε) = arg min
�x:Dφ′ (xt +�x‖xt )�ε

[ f (xt + �x) − f (xt )] (4.2)

≈ arg min
�x: 1

2 �xᵀGφ′ (xt )�x�ε

∂x f (xt )
ᵀ�x. (4.3)

Note that we have used the lowest-order approximation for
f (xt + �x) − f (xt ) and Dφ′ (xt + �x‖xt ). Here, Gφ′ (xt ) is

5We have used the following notation: ∂x f (xt ) = ∂x f (x)|x=xt

the Hessian given by

[Gφ′ (xt )]i, j := ∂2

∂xi∂x j
φ′(xt ), (4.4)

where [·]i, j is the (i, j)th element. In the case of Eq. (2.36),
Eq. (4.4) reads

[Gφ′ (xt )]i, j = δi, j
1

[xt ]i
, (4.5)

where δi, j is the Kronecker delta function and [·]i is the ith
element. To derive Eq. (4.3), we have used the following
expansion of the Bregman divergence:

Dφ′ (xt + �x‖xt )

= φ′(xt + �x) − φ′(xt ) − 〈(xt + �x) − xt , ∂xφ
′(xt )〉

(4.6)

≈ φ′(xt ) + ∂xφ(xt )
ᵀ�x + 1

2�xᵀGφ′ (xt )�x

−φ′(xt ) − 〈(xt + �x) − xt , ∂xφ
′(xt )〉 (4.7)

= 1
2�xᵀGφ′ (xt )�x. (4.8)

Note that �t in Eq. (4.1) is set to unity in the conventional
formulation of NG; in the following section, we will impose a
specific relationship between �t and ε in Eq. (4.1) to connect
NG and CRNs.

To find the solution of Eq. (4.3), we employ the method of
Lagrange multipliers where the Lagrange function reads

L(�x, λ) := ∂x f (xt )
ᵀ�x − λ

(
1
2�xᵀGφ′ (xt )�x − ε

)
. (4.9)

The derivative of Eq. (4.9) with respect to �x takes the fol-
lowing form:

∂

∂�x
L(�x, λ) = ∂x f (xt ) − λGφ′ (xt )�x. (4.10)

Then, the solution of Eq. (4.10) is given by

�x = 1

λ
G−1

φ′ (xt )∂x f (xt ). (4.11)

The derivative of Eq. (4.9) with respect to λ has the following
form:

∂

∂λ
L(�x, λ) = −

(
1

2
�xᵀGφ′ (xt )�x − ε

)
. (4.12)

Taking Eq. (4.11) into account, the solution of Eq. (4.12) is
written as

λ2 = ∂x f (xt )ᵀG−1
φ′ (xt )∂x f (xt )

2ε
. (4.13)

Combining Eqs. (4.11) and (4.13) and taking account of the
nature of the minimization problems, the solution of Eq. (4.3)
takes the following form:

�xt (ε) = −
√

2ε

∂x f (xt )ᵀG−1
φ′ (xt )∂x f (xt )

G−1
φ′ (xt )∂x f (xt ).

(4.14)

Here, we have added a negative sign to Eq. (4.14) to decrease
the value of f (x) by Eq. (4.1). Note that φ′(·) in Eq. (4.14)
may be different from φ(·) appearing in Sec. II. In the case of
CRNs, f (xt ) in Eq. (4.14) represents DKL(xt‖x̂). As shown in
Eq. (4.14), ε is a key parameter in NG. From the perspective of
applying NG to CRNs, the relationship between ε in NG and
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�t in CRNs, when discretized, is still missing. Therefore, NG
cannot be directly applied to CRNs. In the following section,
we will explain how to address this challenge and develop a
general upper bound on the dynamics of CRNs.

B. Comparison with Newton’s method

In this section, we compare NG with Newton’s method.
Newton’s method is a special case of NG when Eq. (4.14) is
adjusted according to certain conditions. Specifically, the con-
ditions are φ(·) = φ′(·) and ε = ∂x f (xt )ᵀG−1

φ′ (xt )∂x f (xt ). The
equation thus becomes equivalent to Eq. (3.3). This equiva-
lency leads us to introduce a systematic NG-based method to
determine the direction and step size for a gradient system that
bounds CRNs of a specific class.

V. UPPER BOUND ON REACTION RATES

In this section, we construct a nonlinear system that gives
an upper bound on reaction rates of CRNs in a given class.
The class is characterized by several topological numbers of
CRNs: Nv, Ne, and m.

A. Upper bound system

Comparing discretized CRE dynamics with NG dynamics,
represented by Eq. (4.1), presents a challenge. The difficulty
arises from the absence of an established relationship between
ε, the constraint parameter in NG, and �t , the time step in
the discretized CRE. To address this issue, we propose the
following relationship between ε and �t :

ε = Dφ′ (xt + ‖ẋt‖Fet�t‖xt ), (5.1)

where ‖ · ‖F is the Frobenius norm and et is a vector that
satisfies ‖et‖F = 1. In NG, �xt (ε) in Eq. (4.1) becomes larger
when ε is increased. Therefore, for the rest of this subsection,
we describe procedures for computing ‖ẋt‖F and et that max-
imize Eq. (5.1).

Then, we try to compute the maximum value of ε in
Eq. (5.1). Note that S : RNe → RNX and S is a NX × Ne matrix.
From Eq. (2.48), we get

‖ẋt‖F = ∥∥S∂ f �
∗
ω(xt )

(− 1
2 Sᵀ∂xDφ (xt‖x̂)

)∥∥
F (5.2)

� ‖S‖F

∥∥∂ f �
∗
ω(xt )

(− 1
2 Sᵀ∂xDφ (xt‖x̂)

)∥∥
F (5.3)

� ‖S‖F

∥∥∂ f �
∗
ω(xt )

(∥∥− 1
2 Sᵀ∂xDφ (xt‖x̂)

∥∥
abs

)∥∥
F (5.4)

� ‖S‖F

∥∥∂ f �
∗
ω(xt )

(
1
2‖Sᵀ‖F‖∂xDφ (xt‖x̂)‖NX→Ne

F

)∥∥
F.

(5.5)

Here, ‖ · ‖abs and ‖ · ‖NX→Ne
F are defined as, respectively,

‖v‖abs := [|v1|, |v2|, . . . , |vNX |]ᵀ, (5.6)

‖v‖NX→Ne
F := [‖v‖F, ‖v‖F, . . . , ‖v‖F︸ ︷︷ ︸

Ne

]ᵀ (5.7)

for v := [v1, v2, . . . , vNX ]ᵀ. From Eq. (2.31), we have

∂ f �
∗
ω(x)(‖ f (x)‖abs) = ω(x) ◦ sinh(‖ f (x)‖abs), (5.8)

∂ f �
∗
ω(x)

(‖ f (x)‖NX→Ne
F

) = ω(x) ◦ sinh
(‖ f (x)‖NX→Ne

F

)
.

(5.9)

Given S : RNe → RNX and v ∈ RNX , we have the following
inequality for e = 1, 2, . . . , Ne:

[‖Sᵀv‖abs]e � ‖Sᵀ‖F‖v‖F (5.10)

= [‖Sᵀ‖F‖v‖NX→Ne
F

]
e
, (5.11)

where [·]e is the eth element. Then, we have finished comput-
ing the bound on ‖ẋt‖F within a given class of CRNs.

Next, we compute et as follows:

et = arg max
e:‖e‖F=1

Dφ′ (xt + ‖ẋt‖Fe�t‖xt ) (5.12)

≈ arg max
e:‖e‖F=1

(
1
2‖ẋt‖2

F(�t )2eᵀGφ′ (xt )e
)

(5.13)

= arg max
e:‖e‖F=1

eᵀGφ′ (xt )e. (5.14)

Thus, et is the eigenvector associated with the maximum
eigenvalue of Gφ′ (xt ). Substituting Eq. (5.5) and the solution
of Eq. (5.14) into Eq. (5.1), we can calculate the maximum
value of ε within a given class of CRNs.

B. S and R of an upper bound system

To identify the upper bound described by Eq. (5.5) for
CRNs under certain constraints, both S in Eq. (2.4) and R
in Eq. (2.42) must be carefully designed. We introduce a
method for determining Sub and Rub specific to a class of
CRNs characterized by NX as the number of chemicals, m as
the highest coefficient in chemical reactions, and Ne as the
number of reactions. The Sub and Rub matrices are of dimen-
sions NX × Ne, and their elements at the (i, e)-th position are
defined as follows:

[Sub]i,e := m, (5.15)

[Rub]i,e := 1[xi � 1] min
i

([R]i,e) + 1[xi > 1] max
i

([R]i,e).

(5.16)

Here, 1[·] denotes the indicator function, and [·]i,e represents
the (i, e)-th element. The reader may think that 1[·] is not
necessary. This reflects the fact that xn � xm for x ∈ [1,∞)
and n � m but xn � xm for x ∈ (0, 1] and n � m. By solving
Eq. (4.14) with Eqs. (5.1), (5.5), (5.14), (5.15), and (5.16), we
can compute the upper bound for a given class. In other words,
we use the following inequality to construct an upper bound
system:

‖ẋt‖F � ‖Sub‖F

∥∥∂ f �
∗
ωub(xt )

(
1
2‖Sᵀ

ub‖F‖∂xDφ (xt‖x̂)‖NX→Ne
F

)∥∥
F,

(5.17)

where

ωub(x) := 2
√

k+ ◦ k− ◦ xRᵀ
ub/2. (5.18)

C. Upper bound system with the KL constraint

We utilize Eq. (2.36), represented as φ′(·) = φKL(·),
as the potential function for the Bregman divergence
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FIG. 2. Dependence of DKL(xt‖x̂) on time t for the CRN in
Eq. (6.1) and its upper bound in the case of xeq = x̂.

in the constraint of NG.6. Subsequently, by substituting
‖∂xDKL(xt‖x̂)‖NX→Ne

F into Eq. (5.5), we can determine the
maximum value of ‖ẋt‖F as stated in Eq. (5.5).

VI. NUMERICAL SIMULATIONS

In this section, numerical simulations are conducted to
elucidate the upper-bound dynamics for a specified class of
CRNs. We consider CRNs with various values of NX, Ne, and
m. The initial condition is chosen as x̂ = [1.0, 1.0, 1.0, 1.0]ᵀ

and the time step as �t = 1.0 × 10−5. The rate constants k±
e

are fixed at 1 for all e ranging from 1 to Ne. Simulations are
executed for a total of 3.0 × 104 steps. The initial chemical
concentration vector at time t = 0 is denoted as xini.

A. Case where CRNs that convergence to x̂

First, we consider the following CRN and set xini =
[1/2, 1/2, 3/2, 3/2]ᵀ, x̂ = [1.0, 1.0, 1.0, 1.0]ᵀ, and �t =
1.0 × 10−5:

4X1 + 4X2 � 4X3 + 4X4. (6.1)

In this case, we have xeq = x̂. In Fig. 2, we plot the dy-
namics of Eq. (6.1) and that of the system constructed in
Sec. V. The system constructed in Sec. V provides a tighter
bound. In Fig. 3, we show the time difference of the KL
divergence −�DKL(xt‖x̂) per �t . We have used xt on the
solution of Eq. (6.1) with xini = [1/2, 1/2, 3/2, 3/2]ᵀ; that
is, −�DKL(xt‖x̂) of the CRN in Eq. (6.1) and the system
constructed in Sec. V on the orbit of the CRN in Eq. (6.1).
As shown in Fig. 3, the system constructed in Sec. V shows
faster convergence at each xt . Note that in the above exam-
ple, limt→∞ xt = x̂; as a result, DKL(xt‖x̂) goes to zero for
large t . In general, this does not hold. We provide illustrative
examples in the following subsection.

6While there are many different candidates for φ′(·), the L2 con-
straint is often used. Then, we explain the case of the L2 constraint
in Appendix B

FIG. 3. Relationship between DKL(xt‖x̂) and −�DKL(xt‖x̂) for
the CRN in Eq. (6.1) and its upper bound in the case of xeq = x̂. We
have used xt on the solution of Eq. (6.1).

B. Case where CRNs that do not convergence to x̂

We initially consider CRNs that are bounded by the upper
bound dynamics with NX = 3, m � 2, and Ne = 1 and com-
pare them from the perspective of reaction rates. Here, we
contemplate six distinct reactions with identical topological
characteristics (NX = 3, m � 2, and Ne = 1):

X1 + X2 � X3, (6.2a)

X1 + X2 � 2X3, (6.2b)

X1 + 2X2 � X3, (6.2c)

2X1 + 2X2 � X3. (6.2d)

In Fig. 4, we present numerical simulations of CRNs for
the system (6.2). We set xini = [15/16, 15/16, 9/8], x̂ =
[1.0, 1.0, 1.0]ᵀ, and �t = 10−4. Figure 4 demonstrates that
the system constructed in Sec. V functions effectively as the
upper bound for the given CRNs.

Next, we consider CRNs with higher nonlinearity. Here we
consider the CRN in Eq. (6.1) and the following five different

FIG. 4. Dependence of DKL(xt‖x̂) on time t for several CRNs in
Eq. (6.2) and their upper bound in the case of xeq 	= x̂.
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FIG. 5. Dependence of DKL(xt‖x̂) on time t for several CRNs in
Eqs. (6.3) and their upper bound in the case of xeq 	= x̂.

reactions, which have the same topological quantities (NX =
4, m � 4, and Ne = 1) as Eq. (6.1):

X1 + 4X2 � 4X3 + 4X4, (6.3a)

X1 + 2X2 � X3 + 3X4, (6.3b)

4X1 � 4X2 + 4X3 + 4X4, (6.3c)

X1 � 2X2 + 2X3 + 3X4, (6.3d)

2X1 � 3X2 + 2X3 + 3X4. (6.3e)

Note that xeq is a function of xini, and CRNs in Eqs. (6.3) have
different xeq.

We set xini = [9/8, 87/80, 27/20, 27/20]ᵀ, x̂ =
[1.0, 1.0, 1.0, 1.0]ᵀ, and �t = 1.0 × 10−5. In Fig. 5, we plot
the dynamics of Eqs. (6.3) and that of the system constructed
in Sec. V. It clearly shows that the system constructed
in Sec. V gives an upper bound on CRNs. The CRNs in
Eqs. (6.3) have equilibrium states different from x̂ because
of ker(Sᵀ); then the gap in DKL(xt‖x̂) remains for t � 0
and the upper bound is relatively loose. In this scenario,
the discrepancy between the upper bound and individual
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FIG. 6. Dependence of DKL(xt‖x̂) on time t for the CRNs in
Eq. (6.4) and its upper bound in the case of xeq 	= x̂.
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FIG. 7. Dependence of DKL(xt‖x̂) on time t for the CRN in
Eq. (6.4c) and its upper bound in the case of xeq = x̂.

CRNs is broader compared to previous examples. This can
be intuitively understood as follows. With a larger NX, the
dimension of kerSᵀ increases, leading to a greater number
of conserved quantities. Conversely, in the case of the upper
bound system, the dimension of kerSᵀ remains unchanged.
Therefore, for substantial NX values, CRN dynamics are
subject to more stringent constraints. Consequently, it is
logical for the gap between the upper bound and the dynamics
of a specific CRN to widen. To conclude, it is noteworthy that
in the aforementioned examples, limt→∞ xt 	= x̂. This implies
that DKL(xt‖x̂) remains positive for large t .

C. Case of Ne > 1

We have considered the case of Ne = 1. Then, we consider
the fully connected CRNs whose hypervertices are given by

V1 = {X1 + X2,X2 + X3,X3 + X4,X4 + X1}, (6.4a)

V2 = {X1 + 3X2 + 4X3,X2 + 2X3,

4X1 + X3 + X4,X1 + 3X2 + X4}, (6.4b)

0

0.001

0.002

0.003

0.004

0.005

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

−Δ
D K

L
(x

t
‖x̂

)

DKL(xt‖x̂)

type 3
upper bound

FIG. 8. Dependence of DKL(xt‖x̂) on time t for the CRN in
Eq. (6.4c) and its upper bound in the case of xeq = x̂.
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FIG. 9. Dependence of DKL(xt‖x̂) on time t for the CRN in
Eq. (6.5) and its upper bound.

V3 = {4X1 + 3X2 + 4X3, 4X2 + 2X3 + 4X4,

4X1 + 4X3 + X4, 2X1 + 3X2 + 4X4}. (6.4c)

The CRNs in Eqs. (6.4) belong to the class of CRNs labeled by
NX = 4, Ne = 6, and m = 4. We call the CRNs in Eqs. (6.4)
types 1, 2, and 3 from above.

We plot the dynamics of the CRNs in Eqs. (6.4) and its
upper bound in the case of xeq 	= x̂. In Fig. 6, we set xini =
[9/8, 87/80, 27/20, 27/20]ᵀ, x̂ = [1.0, 1.0, 1.0, 1.0]ᵀ, k±

e =
1, and �t = 1.0 × 10−5. Figure 6 clearly demonstrates the
upper bound holds for Ne > 1.

We show the dependence of DKL(xt‖x̂) on time t for the
CRN in Eq. (6.4c) and its upper bound in the case of xeq = x̂.
In Fig. 7, we set x̂ = [1.2547, 1.1021, 1.1951, 1.3388]ᵀ. In
Fig. 8, we also show the dependence of DKL(xt‖x̂) on time t
for the CRN in Eq. (6.4c) and its upper bound in the case of
xeq = x̂.

D. Examples of tighter bounds

Thus far, the upper bound can be rather loose, depending
on numerical conditions, more specifically for large Nx, Ne,

FIG. 10. Dependence of DKL(xt‖x̂) on time t for the CRN in
Eq. (6.6) and its upper bound.
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FIG. 11. Dependence of DKL(xt‖x̂) for t for m = 1, 2, 3, 4. We
set NX = 4 and Ne = 1.

and m. In this section, we introduce a set of straightforward
examples where the upper bound system yields a tight bound.
We examine a CRN characterized by Ne = 1, m = 1, and
NX = 1:

X1 � ∅. (6.5)

In Fig. 9, we plot the dynamics of Eq. (6.5) and its up-
per bound. We set �t = 1.0 × 10−4, xini = [15/16], and x̂ =
[1.0].

We consider the following CRN with Ne = 1, m = 1, and
NX = 2:

X1 � X2. (6.6)

In Fig. 10, we plot the dynamics of Eq. (6.6) and its upper
bound. We set �t = 1.0 × 10−4, xini = [15/16, 17/16]ᵀ, and
x̂ = [1.0, 1.0]ᵀ.

E. Comparison of the upper bounds

In this section, we examine the behavior of the up-
per bound under varying parameters. The parameters are

0
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0.001
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FIG. 12. Relationship between DKL(xt‖x̂) and −�DKL(xt‖x̂) for
NX = 4 and Ne = 1.
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FIG. 13. Dependence of DKL(xt‖x̂) for t for m = 1, 2, 3, 4. We
set NX = 1 and m = 1.

NX = 4, Ne = 1, xini = [3/4, 3/4, 5/4, 5/4]ᵀ, and xeq =
[1.0, 1.0, 1.0, 1.0]ᵀ. Figure 11 depicts the dependence of
DKL(xt‖x̂) on t for m = 1, 2, 3, 4. Figure 12 portrays the re-
lationship between DKL(xt‖x̂) and −�DKL(xt‖x̂) for NX = 4
and Ne = 1. The figures indicate that higher values of m are
associated with increased rates of convergence. This behavior
is consistent with the expectation that nonlinearity in CRNs
tends to influence reaction rates.

We further confirm this trend by varying NX, Ne, and m,
respectively. We consider the case of NX = 1 and m = 1.
In Fig. 13, we plot the dynamics of the upper bound sys-
tem. We set �t = 1.0 × 10−4, xini = [15/16], and x̂ = [1.0].
We consider the case of NX = 1 and Ne = 1. In Fig. 14,
we plot the dynamics of the upper bound system. We set
�t = 1.0 × 10−4, xini = [15/16], and x̂ = [1.0]. We consider
the case of Ne = 1 and m = 1. In Fig. 15, we plot the dy-
namics of the upper bound system. We set �t = 1.0 × 10−4,
xini = [15/16, 1.0, . . . , 1.0︸ ︷︷ ︸

NX−1

]ᵀ, and x̂ = [1.0, 1.0, . . . , 1.0︸ ︷︷ ︸
NX−1

]ᵀ.

As shown in Figs. 13–15, the upper bound system becomes
faster with NX, Ne, and m increased, respectively.

FIG. 14. Dependence of DKL(xt‖x̂) for t for m = 1, 2, 3, 4. We
set NX = 1 and Ne = 1.
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FIG. 15. Dependence of DKL(xt‖x̂) for t for m = 1, 2, 3, 4. We
set Ne = 1 and m = 1.

VII. CONCLUSIONS

In this paper, we developed a framework based on NG
to establish an upper bound on the dynamics of a specific
subset of CRNs. The nonlinearity commonly present in CRNs
presents a challenge, which is addressed here. While the
primary focus has been on CRNs, the methods and discus-
sions are applicable to a wider range of hypergraph dynamics.
The paper holds implications for fields beyond chemistry and
physics, including information science and machine learning.

ACKNOWLEDGMENTS

H.M. was supported by JSPS KAKENHI Grant No.
JP23H04489. T.J.K. was supported by JST (Grants No. JP-
MJCR2011 and No. JPMJCR1927) and JSPS (Grant No.
19H05799). L.-S.B. was partially funded by NSF Award No.
CHE-2002313.

APPENDIX A: DERIVATION OF THE KL DIVERGENCE
FROM THE BREGMAN DIVERGENCE

In this Appendix, we show that the Bregman divergence,
Eq. (2.34), with Eq. (2.36) is equivalent to the KL divergence,
Eq. (2.37). Let us define the following potential for α ∈ R:

φ
(α)
KL (x) :=

NX∑
i=1

xi(ln xi − α). (A1)

The Bregman divergence, Eq. (2.34), with Eq. (A1) is com-
puted as follows:

D
φ

(α)
KL

(x‖y) = φ
(α)
KL (x) − φ

(α)
KL (y) − 〈(x − y),∇φ

(α)
KL (y)〉 (A2)

=
NX∑
i=1

xi(ln xi − α) −
NX∑
i=1

yi(ln yi − α)

−
NX∑
i=1

(xi − yi )(ln yi − α + 1) (A3)
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=
NX∑
i=1

xi ln xi −
NX∑
i=1

yi ln yi

−
NX∑
i=1

(xi − yi ) ln yi −
NX∑
i=1

(xi − yi ) (A4)

=
NX∑
i=1

xi ln
xi

yi
−

NX∑
i=1

(xi − yi ) (A5)

= DKL(x‖y). (A6)

Thus, the Bregman divergence, Eq. (2.34), with Eq. (A1) is
equivalent to the KL divergence, Eq. (2.37), independently
from α. Furthermore, Eq. (2.36) is the special case of Eq. (A1)
with α = 0.

APPENDIX B: UPPER BOUND SYSTEM WITH THE L2

CONSTRAINT

In Sec. V, we have considered φKL(·), Eq. (2.36), as the
potential of the Bregman divergence in the constraint term
since the KL divergence is minimized in CRNs. However, we
are not limited to this choice, and it is expected that a different
potential in the constraint may give us a different bound.
Another simple candidate for the potential of the Bregman
divergence in the constraint is the L2 norm given by

φL2 (x) :=
NX∑
i=1

|xi|2. (B1)

In this case, DKL(xt + ‖ẋt‖Fet�t‖xt ) does not depend on
et and the Hessian GφL2 (xt ) becomes the identity matrix:
GφL2 (xt ) = 1.
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