

HOKKAIDO UNIVERSITY

Title	Development of Chromatin Immunoprecipitation for the Analysis of Histone Modifications in Red Macroalga Neopyropia yezoensis (Rhodophyta)
Author(s)	Ueda, Shinnosuke; Mizuta, Hiroyuki; Uji, Toshiki
Citation	Molecular Biotechnology, 65, 590-597 https://doi.org/10.1007/s12033-022-00562-5
Issue Date	2024-06-13
Doc URL	http://hdl.handle.net/2115/92645
Rights	This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature 's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s12033-022-00562-5
Туре	article (author version)
File Information	FinalFile_manuscript. revised 0822.pdf

6

Instructions for use

Development of chromatin immunoprecipitation for the analysis of 1 $\mathbf{2}$ histone modifications in red macroalga Neopyropia yezoensis 3 (Rhodophyta) 4 $\mathbf{5}$ 6 Abstract 7 Epigenetic regulation by histone modification can activate or repress 8 transcription through changes in chromatin dynamics and regulates 9 development and the response to environmental signals in both animals and 10 plants. Chromatin immunoprecipitation (ChIP) is an indispensable tool to 11 identify histones with specific post-translational modifications. The lack of a 12ChIP technique for macroalgae has hindered understanding of the role of histone modification in the expression of genes in this organism. In this 1314study, a ChIP method with several modifications, based on existing protocols for plant cells, has been developed for the red macroalga, Neopyropia 1516 vezoensis, that consists of a heterogeneous alternation of macroscopic leaflike gametophytes and microscopic filamentous sporophytes. ChIP method 1718 coupled with qPCR enables the identification of a histone mark in 19 generation-specific genes from N. yezoensis. The results indicate that acetylation of histone H3 at lysine 9 in the 5' flanking and coding regions 20 from generation-specific genes was maintained at relatively high levels, even 21in generation-repressed gene expression. The use of this ChIP method will 22

23	contribute significantly to identify epigenetic regulatory mechanisms through
24	histone modifications that control a variety of biological processes in red
25	macroalgae.
26	
27	Key words: chromatin immunoprecipitation (ChIP); epigenetics; histone
28	modifications; red algae; life cycle
29	
30	Introduction
31	Histones are subject to an assortment of dynamic and reversible post-
32	translational modifications (e.g., methylation, acetylation, phosphorylation,
33	ubiquitination, etc.) that serve as a "histone code" to active or repress gene
34	transcription (Jenuwein and Allis, 2001). For example, histone acetylation
35	marks (especially H3 and H4 acetylation) are associated with gene activation
36	to increase DNA access, which results from the neutralization of the basic
37	charge in histones and the weak interaction of histones with DNA (cis effects;
38	Allis and Jenuwein, 2016; Onufriev and Schiessel, 2019). Furthermore, the
39	presence or absence of methylation on Lys or Arg in histones alters their
40	association with reader proteins, which results in modifications of chromatin
41	structure and either transcriptional repression or activation (Teperino et al.,
42	2010). Thus, unraveling the role of the "histone code" will provide insight
43	into many physiological processes affected by alterations in gene expression.
44	In contrast to animals and plant, however, knowledge on the roles of post-

translational modifications of histone molecules in macroalgae remains 45limited, because of a lack of tools for histone modifications studies, except 46 47for the model brown alga *Ectocarpus* (Bourdareau et al. 2021). 48Chromatin immunoprecipitations (ChIP) is a powerful tool to investigate interactions between DNA-binding proteins and genomic DNA. It provides 49 50important information about the role of DNA-binding proteins and putative 51target genes (Nelson et al., 2006). ChIP is also used to analyze the abundance 52and distribution of histone carrying specific covalent modifications under diverse conditions. Two methods for ChIP have been developed: X-ChIP 53(cross-linked chromatin followed by immunoprecipitation) and N-ChIP 5455(native chromatin immunoprecipitation). In X-ChIP, chromatin is cross-56linked using formaldehyde and then sheered by sonication or fragmented with enzymes. This is applicable to non-histone proteins that bind weakly (or 5758indirectly) to DNA (Orlando, 2000). In N-ChIP, chromatin is isolated without cross-linking and micrococcal nuclease (MNase) is used to digest the linker 5960 DNA between the nucleosomes to maintain a native chromatin state (O'neill and Turner, 2003; Huang et al., 2020). Although N-ChIP requires stable 61 62 interactions between DNA and proteins, such as histones, it has advantages 63 with respect to antibody specificity for analyzing histones modifications 64 (O'neill and Turner, 2003). Thus, it is important to develop N-ChIP methods in macroalgae to clarify their roles of histone modifications. 65 66 The red alga, *Pyropia/Neopyropia* (formerly *Porphyra*), belongs to the

67	Bangiales and is an important marine crop that is harvested to produce nori.
68	The life cycle of Bangiales generally consists of a heterogeneous alternation
69	of macroscopic leaf-like gametophytes and microscopic filamentous
70	sporophytes. The gametophytes, which are harvested to produce food for nori
71	or laver, form non-motile male (spermatia) and female (carpogonia) gametes
72	on the thallus during sexual reproduction. Fertilization occurs when the
73	female gametes are still retained on the gametophytes and successive cell
74	divisions produce clones of the zygotes that are referred as carpospores.
75	These develop into sporophytes, known as a Conchocelis phase, which was
76	previously considered to be another species, Conchocelis rosea (Drew 1949;
77	Kurogi 1953; Iwasaki 1961). The unravelling of the complete
78	Pyropia/Neopyropia life cycle with an alteration of two heteromorphic
79	generations contributes to the establishment of the mariculture system.
80	Pyropia/Neopyropia gametophytes usually grow in winter and
81	produce male and female gametes at the beginning of spring. This results in
82	the sporophytes that germinate from the zygotes growing in the summer
83	during exposure to high temperatures. Consistent with this observation,
84	previous studies showed differential expression of genes associated with heat
85	stress tolerance between gametophytes and sporophytes (Luo et al., 2014; Uji
86	et al., 2019). In addition to heat stress, generation phase-preferential genes
87	associated with stress response and development have been characterized in
88	Pyropia/Neopyropia (Uji et al., 2012; 2013; Inoue et al., 2015; Matsuda et al.,

89 2015; Uji et al., 2022).

90	To achieve the different expression pattern during generation,
91	modifications of chromosome structure appear to be necessary for the
92	transitions between the gametophyte and sporophyte stages of its life cycle.
93	Indeed, the differential expression of subtypes of histones during the
94	generation of Bangiales has been reported previously as well as the
95	identification of putative genes encoding histone-modifying enzymes, such as
96	histone acetyltransferase, deacetylases, histone-lysine N-methyltransferase,
97	histone-arginine N-methyltransferase, and lysine-specific histone
98	demethylase (Chan et al., 2012). However, there is scant evidence indicating
99	a role for chromatin remodeling in the generation transition of red
100	macroalgae.
101	In addition to its economic importance, fossil evidence (Butterfield,
102	2000) and molecular phylogenetic analysis (Sutherland et al. 2011) suggest
103	that Bangiales is an important group for elucidating the primitive
104	mechanisms that regulate gene expression. In this study, N-ChIP method with
105	several modifications based on existing protocols for plant cells (Saleh et al.
106	2008; Huang et al. 2018) has been developed in N. yezoensis. This new ChIP
107	method is suitable for the examination of the acetylation of histone H3 at
108	lysine 9 (H3K9ac) in differential expression genes between the gametophyte
109	and sporophyte stages of N. yezoensis. The method will increase our
110	understanding of the role of chromatin remodeling for regulating not only life

 $\mathbf{5}$

111 cycles in the ancient lineage but also many physiological processes involved

in improve productivity and quality of nori.

113

114 Materials and Methods

115 Algal materials

116 The leafy gametophytes and filamentous sporophytes of *N. yezoensis* strain

117 TU-1 (Kuwano et al., 1996) were cultured in a medium consisting of sterile

vitamin-free Provasoli's enriched seawater (PES; Provasoli, 1968) under a 10

119 h light/14 h dark photoperiod with cool-white, fluorescent lamps at a light

120 intensity of 40 μ mol photons m⁻² s⁻¹.

- 121
- 122 Chromatin extraction and shearing
- 123 For chromatin extraction, 0.1 g (FW) of gametophytes or sporophytes were
- 124 ground in liquid nitrogen with a pestle and mortar. The homogenates were
- mixed with 50 mL of nuclei isolation buffer [0.25 M sucrose, 15 mM 0.1 M

126 PIPES (pH 6.8), 5 mM MgCl₂, 60 mM KCl, 15 mM NaCl, 1 mM CaCl₂,

127 0.9% (w/v) Triton X-100] and kept on ice for 10 min, followed by filtering

128 through a nylon mesh (10 μ m) to remove cell debris. The filtered

homogenates were centrifuged at $6,500 \times g$ for 20 min at 4°C and the

130 supernatant was discarded for the isolation of nuclei. The nuclei pellets were

- repeatedly washed with 1 mL of nuclei isolation buffer and then with 1 mL of
- 132 TE buffer, and centrifuged at $6,500 \times g$ for 20 min at 4°C. The supernatant

133	was discarded and the pellet was resuspended in 500 μ L of micrococcal
134	nuclease buffer [50 mM Tris-HCl (pH 7.9), 5 mM CaCl ₂] by gently pipetting
135	up and down. The suspension was mixed with 0.5 μ L of micrococcal
136	nuclease (MNase, New England Biolabs), 5 μL of 10 mg/ml BSA, and 5 μL
137	of Protease Inhibitor Cocktail Set V (EDTA-free; FUJIFILM Wako Pure
138	Chemical Corporation, Osaka, Japan) and sonicated (40 kHz, 5min, 4°C) by
139	MCS-2 (AS ONE, Osaka, Japan), followed by incubation at 37°C for 15 min.
140	After stopping the reaction with the addition of 2.5 μL of 0.5 M EDTA, the
141	sample was centrifuged at 20,000 \times g for 10 min and the supernatant was
142	transferred to a new 1.5 ml microcentrifuge tube as soluble chromatin. A 5
143	μ L aliquot of each sample was set aside for verifying the efficiency of
144	chromatin shearing.
145	
146	Chromatin immunoprecipitation
147	Before immunoprecipitation, Protein G Mag Sepharose beads (Cytiva,
148	Tokyo, Japan) were rinsed with TE buffer three times, suspended in 1 mL
149	blocking buffer (50 μ L of 10 mg/mL sheared salmon sperm DNA
150	(Biodynamics Laboratory Inc, Tokyo, Japan), 50 μ L of 10 mg/mL BSA (New
151	England Biolabs), and 900 μ L of TE buffer) and gently rotated at 4°C

- 152 overnight to block the beads. Blocked beads were rinsed with TE buffer and
- 153 then resuspended with TE buffer equivalent to the amount of beads added.
- 154 For preclearing, 500 µL of chromatin solution was transferred to a 1.5 mL

155	tube containing 30 μL of blocked beads, 7 μL of Protease Inhibitor Cocktail
156	Set V (EDTA free), and 700 μL of TE buffer and rotated with a tube rotator
157	at 4°C for 2h. After removing the beads using a magnetic stand, 400 μL of
158	pre-cleared chromatin was split into three 1.5 mL tubes (antibody of interest,
159	negative and positive controls) containing 400 μ L of TE buffer. Pre-cleared
160	chromatin (10 $\mu L)$ was kept at 4°C to serve as an 'input' DNA control. For
161	immunoprecipitation, 2 μ L (2 μ g) of monoclonal antibody (anti-H3K9ac) and
162	$2 \ \mu L \ (2 \ \mu g)$ of monoclonal H3 antibody (positive control) were added to each
163	of the three tubes containing pre-cleared chromatin. The other tube without
164	any antibody served as a negative control. All tubes were incubated with
165	gentle rotation overnight at 4 °C. After incubation, 25 μ L of newly blocked
166	beads were added to each tube, which were incubated with gentle rotation at
167	4°C for 2 h. After removing the supernatant, the beads were washed three
168	times sequentially with low salt wash buffer [75 mM NaCl, 1 mM EDTA, 10
169	mM Tris-HCl (pH 8.1), 0.1% SDS, 1% Triton X-100]. For eluting the DNA,
170	200 or 190 μ L of ChIP elution buffer (1% SDS, 100 mM NaHCO ₃)
171	containing 1.0 µL of RNase A (100 mg/ml) (NIPPON GENE, Tokyo, Japan).
172	was added to each tube containing beads or chromatin solution for input,
173	respectively, and incubated at 68°C for 2 h. The antibodies were purchased
174	from Monoclonal Antibody Research Institute, Inc. (Nagano, Japan).
175	
176	ChIP-qPCR analysis

177	For ChIP-qPCR experiments, the eluted DNA was purified using a QIAquick
178	PCR Purification Kit (Qiagen, Hilden, Germany) following the
179	manufacturer's instructions. For each reaction, 1.0 μ l of DNA was used as a
180	template in a 20 μL reaction volume containing KOD SYBR® qPCR Mix
181	(TOYOBO, Osaka, Japan). ChIP-qPCR was performed based on the
182	manufacturer's instructions using a LightCycler® 480 System (Roche
183	Diagnostics, Basel, Switzerland) under the following conditions: 2 min at
184	98°C followed by 45 cycles of 10 s at 98°C, 10 s at 55°C, and 30 s at 68°C.
185	ChIP-qPCR data were analyzed to determine the pull-down efficiency
186	relative to the input. Ct values were used for performing the calculation,
187	which consisted of evaluating the fold-difference between the experimental
188	sample and normalized input as follows: ΔCt [normalized ChIP] = (Ct [ChIP]
189	- (Ct [Input] - Log ₂ (Input Dilution Factor))). The percentage (Input %) value
190	for each sample was calculated as follows: % Input = $2^{(-\Delta Ct [normalized))}$
191	^{ChIP])} *100. The "Input %" value represents the enrichment of a histone
192	modification in a specific region. qPCR was performed in triplicate. Table S1
193	lists the primers that were used for these analyses.
194	

Transcriptional analysis 195

- Total RNA from gametophytes and sporophytes (Fresh weight: 0.05–0.1 g) 196
- was separately extracted using the RNeasy Plant Mini Kit (Qiagen, Hilden, 197
- Germany) in liquid nitrogen with a mortar and pestle, following the 198

199	manufacturer's instructions. The extracted RNA was purified using a
200	TURBO DNA-free kit (Invitrogen/Life Technologies, Carlsbad, CA) to
201	obtain DNA-free RNA. First strand cDNA was synthesized from 0.5 μ g total
202	RNA using the PrimeScript II First Strand cDNA Synthesis Kit (TaKaRa
203	Bio, Shiga, Japan). The cDNA was diluted 10-fold for qRT-PCR analysis.
204	For each reaction, 1.0 μ l of the diluted cDNA was used as a template in a 20
205	μ L reaction volume containing KOD SYBR® qPCR Mix. Quantitative RT-
206	PCR was performed as per the manufacturer's instructions using a
207	LightCycler [®] 480 System under the following conditions: 2 min at 98°C
208	followed by 40 cycles of 10 s at 98°C, 10 s at 55°C and 30 s at 68°C. The
209	mRNA levels were calculated using the $2^{-\triangle \triangle Ct}$ method and normalized to the
210	expression of the 18S ribosomal RNA (18SrRNA) gene (Uji et al., 2016).
211	Relative expression levels were calculated as the ratio of the observed mRNA
212	levels present in the gametophytes. The PCR reactions were performed in
213	triplicate. Table S2 lists the primers that were used for these analyses.
214	

- 215 **Results and discussion**
- 216 Nuclei isolation from N. yezoensis
- 217 To establish the ChIP procedure (Fig. 1), a ChIP-qPCR experiment targeting
- 218 I8SrRNA in N. yezoensis gametophytes was performed using antibodies to
- 219 histone H3. Chromatin extracts from homogenates prepared from the
- 220 gametophytes were filtered through a 10 μm mesh to remove large cell

221	debris. It was also an important step to wash three times with 1 mL of nuclei
222	isolation buffer and TE buffer to remove large amounts of polysaccharides
223	and photosynthetic pigments (e.g., phycobiliproteins), respectively (Fig. 2).
224	The pull-down efficiency of Ny18SrRNA against H3 antibody (positive
225	control) and no antibody (mock) using chromatin extracts without washing
226	showed 0.39% and 0.20% relative to the input DNA in the gametophytes,
227	respectively. In contrast, the pull-down efficiency of Ny18SrRNA against H3
228	antibody and no antibody using chromatin extracts washed three times with
229	buffer showed 1.78% and 0.06%, respectively. Thus, repeated washes were
230	recommended using buffer before chromatin fragmentation.

232 Chromatin fragmentation

233 A suitable size distribution of DNA fragments is crucial for ChIP. Thus, the

size distribution of genomic DNA was checked by gel electrophoresis after

235 15 min of MNase digestion. Large amounts of chromatin fragments of

suitable size (100-250 bp) for further immunoprecipitation were produced by

237 MNase treatment with sonication, which promotes nuclease digestion of

238 samples containing polysaccharides (Fig. 3).

239

240 Chromatin immunoprecipitation and validation

- 241 Next, the quality of the fragmented chromatin and the pull-down efficiency
- of immunoprecipitation were checked to determine the enrichment of H3.

243	The pull-down efficiency of Ny18SrRNA against H3 antibody and no
244	antibody without blocking beads was 4.67% and 1.52% relative to the input
245	DNA in the gametophytes, respectively (Fig. 4). In contrast, the pull-down
246	efficiency of Ny18SrRNA against H3 antibody and no antibody using
247	blocking beads showed 1.31% and 0.06% relative to the input DNA in the
248	gametophytes, respectively. The fold positive control relative to mock
249	treatment with and without blocking beads was 3.07- and 21.83-fold,
250	respectively. Finally, in this protocol, we obtained a quantity of DNA that was
251	sufficient to conduct 50 qPCR assays.
252	To test the quality of chromatin and the efficiency of
253	immunoprecipitation, the protocol was applied to study histone modification
254	patterns of the generation-preferential genes in N. yezoensis. Based on
255	previous studies (Uji et al., 2012; Inoue et al., 2015; Matsuda et al., 2015),
256	two highly upregulated genes for each generation, gametophyte and
257	sporophyte (Table 1) were selected. As illustrated in Figure 5, the transcripts
258	of NyBPO and NyKPA1 were in high abundance in sporophytes compared
259	with gametophytes. In contrast, the expression of NyAly and NyKPA2 was
260	decreased at sporophyte stages, whereas they were overexpressed in
261	gametophytes. As shown in Fig. 6, ChIP-qPCR exhibited higher levels of
262	H3K9ac enrichment for both the 5'flanking and coding regions in the
263	generation with increased gene expression, with the exception of NyBPO.
264	Histone acetylation and methylation are important chromatin modifications

265	that regulate gene expression during development and the response to
266	environmental stress in animals and plants (Loidl 2004; Vastenhouw et al.
267	2012; Ali et al., 2022). In particularly, H3K9ac is closely associated with
268	genes exhibiting high expression levels (Zhou et al., 2010; Kurita et al.
269	2017). In the present study, the strong correlation between the enrichment
270	levels of H3K9ac with transcription was not observed, suggesting that other
271	histone marks, such as histone methylation, highly regulate the
272	transcriptional dynamics of the N. yezoensis life cycle. A previous study
273	showed that the induction of NyKPA1 transcripts occurred rapidly in the
274	gametophytes exposed to cold stress (Uji et al. 2012). Thus, the enrichment
275	of H3K9ac, even in generations with suppressed expression, may be
276	necessary for the synthesis of mRNA in response to environmental stress. In
277	a microalga Nannochloropsis, H3K9ac was predominantly enriched in the 5'
278	flanking regions and the distribution was relatively sparse in the exon regions
279	(Wei and Xu 2018). In contrast, a decrease in acetylation in exon regions was
280	not observed in N. yezoensis genes in the present study.
281	A previous study showed variations in the daily expression of genes
282	encoding MSI1-like WD40 repeat (MSIL) proteins and SET-domain proteins
283	in the gametophytes of N. yezoensis (Kominami et al., 2022). MSIL proteins,
284	which are conserved histone-binding proteins in eukaryotes, function
285	together with histone deacetylases and methyltransferases in mammals and
286	plants (Hennig et al. 2005). SET-domain proteins methylate lysine residues in

histone tails and play a fundamental role in the epigenetic regulation of gene
activation and silencing in all eukaryotes (Rea et al. 2000). Thus, our ChIP
method can elucidate the role of histone post-translational modifications
associated with diurnal rhythm regulation in *N. yezoensis*.

291In addition to histone modifications, epigenetic studies have revealed 292 that DNA methylation and non-coding RNAs can alter the configuration of 293chromatin, which results in various chromatin states that epigenetically 294regulate transcriptional outputs (Ahmad et al. 2010; Skvortsova et al. 2018). 295To date, DNA methylation patterns during heat stress (Yu et al. 2018) and 296noncoding small RNAs in generations as well as under osmotic stress (He et 297al. 2012; Cao et al., 2019) has been identified in Bangiales. However, 298knowledge of epigenetic regulation of gene expression in red algae remains 299scant. Future studies clarifying the link among epigenetic regulators will 300 provide insight into the role of primitive gene expression systems. 301

302 Conclusion

A ChIP method based on ChIP-qPCR, which can determine the histone modification status at different genomic regions has been developed in *N. yezoensis*. This method may be used for the analysis of the genome-wide distribution of specific histone modifications combined with high-throughput sequencing, such as ChIP-seq analyses. Thus, the method described here is an essential tool for elucidating the role of the "histone code" for many

222	1 • 1 • 1	•	1 1 • •		1	1 1.	
200	nhysiological	nrocesses inv	olved in i	mnrove n	roductivity	r and anali	ty of nori
000	physiological	processes my		mprove p	rouuctivity	and quan	ty 01 11011.

311 Acknowledgments

- 312 We wish to thank Drs. Katsutoshi Arai, Takafumi Fujimoto, and Toshiya
- 313 Nishimura (Hokkaido University, Japan) for kindly providing the
- 314 LightCycler 480 system.

315

316 **Conflict of interest**

- 317 The authors declare that this research was conducted in the absence of any
- 318 commercial or financial relationships that could be construed as a potential
- 319 conflict of interest.
- 320

321 Data availability statement

- 322 The data that support the findings of this study are available from the
- 323 corresponding author upon reasonable request.

324

325 Funding

- 326 This work was supported by the Grant-in-Aid for Young Scientists [grant
- number19K15907 and 22K05779 to TU] from the Japan Society for the
- 328 Promotion of Science.

329

330 References

332	Ahmad, A., Zhang, Y., & Cao, X.F. (2010). Decoding the epigenetic language
333 334	of plant development. <i>Molecular Plant</i> , 3, 719–728.
335	Ali, S., Khan, N. & Tang, Y. (2022). Epigenetic marks for mitigating abiotic
336	stresses in plants. Journal of Plant Physiology, 275, 153740.
337	
338	Allis, C.D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic
339	control. Nature Reviews Genetics, 17, 487–500.
340	
341	Bourdareau, S., Tirichine, L., Lombard, B. Loew, D., Scornet, D., Wu, Y.,
342	Coelho, S.M. & Cock, J. M. (2021). Histone modifications during the life cycle
343	of the brown alga Ectocarpus. Genome Biology, 22, 12.
344	
345	Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: implications
346	for the evolution of sex, multicellularity, and the
347	Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26,
348	386–404.
349	
350	Cao, M., Wang, D., Kong, F., Wang, J., Xu, K. & Mao, Y. (2019). A genome-
351	wide identification of osmotic stress-responsive microRNAs in Pyropia
352	haitanensis (Bangiales, Rhodophyta). Frontiers in Marine Science, 6, 766.
353	
354	Chan, C.X., Blouin, N.A., Zhuang, Y., Zäuner, S., Prochnik, S.E., Lindquist,
355	E., Lin, S., Benning, C., Lohr, M., Yarish, C., Gantt, E., Grossman, A.R., Lu,
356	S., Müller, K.W., Stiller, J., Brawley, S.H., Bhattacharya, D. (2012). Porphyra
357	(Bangiophyceae) transcriptomes provide insights into red algal development
358	and metabolism. Journal of Phycology, 48, 1328–1342.
359	
360	Drew, K. (1949). Conchocelis-phase in the life history of <i>Porphyra umbilicalis</i>
361	(L.) Kütz. Nature, 164, 748–749.
362	
363	He, L., Huang, A., Shen, S., Niu, J., & Wang, G. (2012). Comparative analysis
364	of microRNAs between sporophyte and gametophyte of Porphyra yezoensis.

365	Comparative and Functional Genomics, 912843. doi: 10.1155/2012/912843.
366	
367	Hennig, L., Bouveret, R., & Gruissem, W. (2005). MSII-like proteins: an
368	escort service for chromatin assembly and remodeling complexes. <i>Trends in</i>
369	<i>Cell Biology</i> , 15, 295–302
370	
371	Huang, X.R., Pan, Q.W., Lin, Y., Gu, T.T., & Li, Y. (2020). A native chromatin
372	immunoprecipitation (ChIP) protocol for studying histone modifications in
373	strawberry fruits. Plant Methods, 16. DOI 10.1186/s13007-020-0556-z
374	
375	Inoue, A., Mashino, C., Uji, T., Saga, N., Mikami, K., & Ojima, T. (2015).
376	Characterization of an eukaryotic PL-7 alginate lyase in the marine red alga
377	Pyropia yezoensis. Current Biotechnology, 4, 240–248.
378	
379	Iwasaki, H. (1961). The life cycle of Porphyra tenera in vitro. Biological
380	Bulletin of the Marine Biological Laboratory, Woods Hole, 121, 173–187.
381	
382	Jenuwein, T., & Allis, C.D. (2001). Translating the histone code. Science, 293,
383	1074–1080.
384	
385	Kim, J.M., To, T.K., Ishida, J., Morosawa, T., Kawashima, M., Matsui, A.,
386	Toyoda, T., Kimura, H., Shinozaki, K., & Seki, M. (2008). Alterations of lysine
387	modifications on the histone H3 N-tail under drought stress conditions in
388	Arabidopsis thaliana. Plant & Cell Physiology, 49, 1580–1588.
389	
390	Kominami, S., Mizuta, H., & Uji, T. (2022). Transcriptome profiling in the
391	marine red alga Neopyropia yezoensis under light/dark cycle. Marine
392	Biotechnology, 24, 393–407.
393	
394	Kurita, K., Sakamoto, T., Yagi, N., Sakamoto, Y., Ito, A., Nishino, N., Sako, K.,
395	Yoshida, M., Kimura, H., Seki M., & Matsunaga S. (2017). Live imaging of
396	H3K9 acetylation in plant cells. Scientific Reports 7, 45894.
397	
398	Kurogi, M. (1953). Studies of the life history of Porphyra. I. The germination

- and development of carpospores. Bulletin of Tohoku Regional Fisheries *Research Laboratory*, 2, 67–103.
- 401
- 402 Kuwano, K., Aruga, Y. & Saga, N. (1996). Cryopreservation of clonal 403 gametophytic thalli of *Porphyra* (Rhodophyta). *Plant Science*. 116, 117–124.
- 404
- Loidl, P. (2004). A plant dialect of the histone language. *Trends in Plant* Science, 9, 84–90. DOI 10.1016/j.tplants.2003.12.007
- 407

Luo, Q., Zhu, Z., Zhu, Z., Yang, R., Qian, F., Chen, H., & Yan, X. (2014).
Different responses to heat shock stress revealed heteromorphic adaptation
strategy of *Pyropia haitanensis* (Bangiales, Rhodophyta). *PLoS One*, 9. doi:
10.1371/journal.pone.0094354

- 412
- Matsuda, R., Ozgur, R., Higashi, Y., Takechi, K., Takano, H., & Takio, S.
 (2015). Preferential expression of a bromoperoxidase in sporophytes of a red
 alga, *Pyropia yezoensis*. *Marine Biotechnology*, 17, 199–210.
- 416
- 417 Nelson, J.D., Denisenko, O., & Bomsztyk, K. (2006). Protocol for the fast
 418 chromatin immunoprecipitation (ChIP) method. *Nature Protocols*, 1, 179–185.
- 419
- 420 O'neill, L.P., & Turner, B.M. (2003). Immunoprecipitation of native chromatin:
 421 NChIP. *Methods*, 31, 76–82.
- 422
- 423 Onufriev, A.V., & Schiessel, H. (2019). The nucleosome: from structure to 424 function through physics. *Current Opinion in Structural Biology*, 56, 119–130.
- 425
- 426 Orlando, V. (2000). Mapping chromosomal proteins in vivo by formaldehyde-
- 427 crosslinked-chromatin immunoprecipitation. *Trends in Biochemical Sciences*,
 428 25, 99–104.
- 429
- 430 Provasoli, L. (1996). Media and prospects for the cultivation of marine algae.
- 431 In: Watanabe A, Hattori A (eds) Culture and collections of algae, Proc U S-
- 432 Japan Conf, Hakone, Jpn Soc Plant Physiol, Tokyo, 1968, 63–75.

434	Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M.,
435	Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., & Jenuwein, T. (2000).
436	Regulation of chromatin structure by site-specific histone H3
437	methyltransferases. Nature, 406, 593-599.
438	
439	Saleh, A., Alvarez-Venegas, R., & Avramova, Z. (2008). An efficient
440	chromatin
441	immunoprecipitation (ChIP) protocol for studying histone modifications in
442	Arabidopsis plants. Nature Protocols, 3, 1018–1025.
443	
444	Skvortsova, K., Iovino, N., & Bogdanović, O. (2018). Functions and
445	mechanisms of epigenetic inheritance in animals. Nature Reviews Molecular
446	<i>Cell Biology</i> , 19, 774–790.
447	
448	Sutherland, J.E., Lindstrom, S.C., Nelson, W.A., Brodie, J., Lynch, M.D.J.,
449	Hwang, M.S., Choi, HG., Miyata, M., Kikuchi, N., Oliveira, M.C., Farr, T.,
450	Neefus, C., Mols-Mortensen, A., Milstein, D., & Müller, K.M. (2011). A new
451	look at an ancient order: Generic revision of the Bangiales
452	(Rhodophyta). Journal of Phycology, 47, 1131–1151.
453	
454	Teperino, R., Schoonjans, K., & Auwerx, J. (2010). Histone methyl
455	transferases and demethylases; Can they link metabolism and transcription?
456	<i>Cell Metabolism</i> , 12, 321–327.
457	
458	Uji, T., Gondaira, Y., Fukuda, S., Mizuta, H., & Saga, N. (2019).
459	Characterization and expression profiles of small heat shock proteins in the
460	marine red alga Pyropia yezoensis. Cell Stress Chaperones, 24, 223–233.
461	
462	Uji, T., Hirata, R., Mikami, K., Mizuta, H., & Saga, N. (2012). Molecular
463	characterization and expression analysis of sodium pump genes in the marine
464	red alga Porphyra yezoensis. Molecular Biology Reports, 39, 7973-7980.
465	
466	Uji, T., Matsuda, R., Takechi, K., Takano, H., Mizuta, H., & Takio, S. (2016).

498	Fig. 1. Outline of the ChIP-aPCR protocol in <i>Neopyropia vezoensis</i> .
497	Figure legends
496	
495	
494	
493	expression. Plant Molecular Biology, 72, 585-595.
492	in Arabidopsis reveals correlation between multiple histone marks and gene
491	Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation
490	Zhou, J., Wang, X., He, K., Charron, J.B., Elling, A.A., & Deng, X.W. (2010).
489	
488	assay. Journal of Applied Phycology, 30, 2091–2100.
487	temperature stress using a methylation-sensitive amplified polymorphism
486	of changes in DNA methylation patterns in Pyropia haitanensis under high-
485	Yu, C., Xu, K., Wang, W. Xu, Y., Ji, D., Chen, C., & Xie, C. (2018). Detection
484	
483	microalgae Nannochloropsis spp. Journal of Phycology. 54, 358–367.
482	immunoprecipitation for profiling histone modifications in industrial
481	Wei, L., & Xu, J. (2018). Optimized methods of chromatin
480	
479	early embryogenesis. Current Opinion in Cell Biology, 24, 374–386.
478	Vastenhouw, N.L., & Schier, A.F. (2012). Bivalent histone modifications in
477	
476	yezoensis, a marine red alga. Phycology, 2, 45–59.
475	expression analysis of spondin-like and fasciclin-like genes in Neopyropia
474	Uji, T., Ueda, S., & Mizuta, H. (2022). Identification, characterization, and
473	
472	transient gene expression. Marine Biotechnology, 15, 188–196.
471	preferential gene promoter from the red alga Porphyra yezoensis using
470	Uji, T., Mizuta, H., & Saga, N. (2013). Characterization of the sporophyte-
469	
468	<i>yezoensis</i> (Rhodophyta). <i>Journal of Applied Phycology</i> , 28, 3501–3509.
467	Ethylene regulation of sexual reproduction in the marine red alga Pyropia

500 Fig. 2. Optimization of Chromatin extraction.

501	After filtering, chromatin extracts were not washed with any buffer (a),
502	washed three times with only nuclei isolation buffer (b), or with both nuclei
503	isolation buffer and TE buffer (c). The chromatin solution was treated with
504	sonication and MNase. ChIP-qPCR experiment targeting the Ny18SrRNA
505	gene was performed with an antibody specific to histone H3. Relative
506	amounts of the PCR products were calculated and normalized with respect to
507	the input chromatin. The results are presented as % Input (IP). Mock
508	indicates the signals from the no antibody controls. The data are presented as
509	means \pm standard deviations ($n = 3$).
510	
511	Fig. 3. Optimization of Chromatin shearing conditions.
512	After chromatin extraction, chromatin extracts were repeatedly washed three
513	times with nuclei isolation buffer and then with TE buffer. For shearing, the
514	chromatin solution pretreated without or with sonication was incubated with
515	MNase at 37°C for 15 min. M: DNA marker.
516	
517	Fig. 4. Optimization of Chromatin immunoprecipitation.
518	After chromatin extraction, chromatin extracts were repeatedly washed three

- 519 times with nuclei isolation buffer and then with TE buffer. Then, the
- 520 chromatin solution was treated with sonication and MNase. The ChIP-qPCR
- 521 experiment targeted the Ny18SrRNA gene with an antibody specific to

522 histone H3, without blocking beads (a) or with blocking beads (b).

523

524	Fig. 5. Relative expression levels of genera genes from <i>Neopyropia yezoensis</i>
525	in gametophytes and sporophytes. RNA samples were prepared from
526	gametophytes (GA) and sporophytes (SP), and expression levels were
527	determined using the Ny18SrRNA gene for normalization. Relative
528	expression levels were calculated as the ratio of the observed mRNA level
529	present in the gametophytes. The data are presented as means \pm standard
530	deviations $(n = 3)$.
531	
532	Fig.6. ChIP-qPCR analysis of generation-preferential genes in Neopyropia
533	yezoensis.
534	(a) Location of amplicons used in the ChIP-qPCR analysis. The boxed
535	regions indicate part of the coding sequence. The amplified sequences are
536	indicated by bars.
537	(b) The pull-down efficiencies of H3K9ac by ChIP-qPCR analysis
538	Chromatin was isolated from gametophytes (GA) and sporophytes (SP) and
539	ChIP-qPCR was targeted to NyBPO, NyKPA1, NyAly and NyKPA2 using an
540	antibody specific to histone H3K9ac. Chromatin extracts were repeatedly
541	washed three times with nuclei isolation buffer and then with TE buffer.
542	Then, the chromatin solution was treated with sonication and MNase. The
543	relative amounts of PCR products were calculated and normalized with

- respect to the input chromatin. The results are represented as % Input (IP).
- 545 Mock indicates the signals from the no antibody controls. The data are
- 546 presented as means \pm standard deviations (n = 3).

Fig.6