Title	Effect of an ultrathin Fe interlayer on the growth of MnGa and spin-orbit-torque induced magnetization switching
Author(s)	Ogawa, Mineto; Hara, Takuya; Hasebe, Shun; Yamanouchi, Michihiko; Uemura, Tetsuya
Citation	Applied Physics Express (APEX), 16(6), 063002 https://doi.org/10.35848/1882-0786/acdb2c
Issue Date	2023-06-14
Doc URL	http://hdl.handle.net/2115/92652
Rights	© [2023] The Japan Society of Applied Physics
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	supplementary data.pdf

Supplementary Data for

Effect of an ultrathin Fe interlayer on the growth of MnGa and spin-orbit-torque induced magnetization switching

§1 Experimental conditions of current-induced magnetization switching for a MnGa(2)/Fe(0.6) bilayer and a MnGa(2) single layer

After the magnetization direction was aligned by applying an out-of-plane magnetic field of $\mu_0 H_z = -0.5$ T or 0.5 T, a current pulse I_P with a duration of 100 μ s was applied to the channel (+x direction) while varying the amplitude from -10 mA to 10 mA. For deterministic switching, an in-plane magnetic field $\mu_0 H_x = \pm 10$ mT was applied along the x-axis. R_{yx} was measured with a sensing current I of 100 μ A after application of each I_P .

Fig. S1.Measurement configuration for SOT-induced switching.

§2 Measurement of effective magnetic field originating SOT acting on the magnetization of domain walls

Since the coercive field is much smaller than H_k in both MnGa/Fe bilayer and MnGa single layer [see Figs. 3(a), (b)], the DWs were introduced during the magnetization reversal. Following the method proposed by C. Pai et al. [31], we measured the modulation of coercive field by the Slonczewski-like SOT assisted DW motion. The effective magnetic field originating from the Slonczewski-like SOT is given by $H_{\text{eff}} \mathbf{m} \times \mathbf{y}$, where \mathbf{m} is the unit vector along the magnetization, and \mathbf{y} is the unit vector along the y-axis. Thus, when the x-component of magnetization is induced in the DWs by the application of H_x , an effective magnetic field along z-axis is exerted on magnetization in the DWs, and it induces a shift in the out-of-plane hysteresis loop by an amount H_{eff} . The measurements were carried out in a cryostat kept at 250 K to reduce effects of Joule heating arising from the applied DC current.

§3 Effect of Rashba and Dresselhaus spin orbit interactions at Fe/GaAs interface on SOT efficiency

Chen et al. observed a sizable spin-orbit field (SOF) originated from Rashba and Dresselhaus spin orbit interactions at the epitaxial Fe/GaAs interface [33]. The magnitude of SOF is maximized (minimized) when the current direction is along [110] ([1-10]). If such SOF is produced in the Fe/GaAs interface, the SOT-induced effective field should have certain current direction dependence. Figure S2 shows $\mu_0 H_{\rm eff}$ as a function of $\mu_0 H_{\rm x}$ for a MnGa/Fe bilayer. The black squares (red triangles) in the figure indicate $\mu_0 H_{\rm eff}$ when the current and $H_{\rm x}$ directions are along [110] ([1-10]). No significant difference was observed, indicating that we have no direct evidence for the presence of such SOFs in our devices.

Fig. S2. $\mu_0 H_{\text{eff}}$ at I = 5 mA as a function of $\mu_0 H_x$ for a MnGa/Fe bilayer with different current direction.