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HARDER’S CONJECTURE AND MIYAWAKI LIFT
HIDENORI KATSURADA AND CHUL-HEE LEE

ABSTRACT. Let k,j and n be positive integers such that k is odd , and both j and n are
even, satisfying 7 = n mod 4. Let f and g be primitive forms of weight 2k + j — 2 and
k+j/2—n/2—1, respectively, for SLa(Z). Then, we propose a conjecture on the congruence
between the Klingen-Eisenstein lift of the Miyawaki lift of f and g of type Il and a certain lift
of a vector-valued Hecke eigenform of weight (k + j, k) for Spy(Z). This conjecture implies
Harder’s conjecture. Through this formulation, we prove Harder’s conjecture in some cases.
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1. INTRODUCTION

Harder’s conjecture is one of the most important and interesting conjectures in the arith-
metic of automorphic forms. Let k£ and j be positive integers such that j is even. Then,
Harder’s conjecture predicts that the Fourier coefficients of a primitive form f of weight
2k + j — 2 for SLy(Z) are related with those of a certain Hecke eigenform of weight (k + 7, k)
for Sp,y(Z) modulo some prime ideal (cf. Conjecture 4.1).

One of main difficulties in treating this congruence arises from the fact that this is not
concerning the congruence between Hecke eigenvalues of two Hecke eigenforms of the same
weight. To overcome this issue, several approaches have been proposed (cf. [12], [13], [14], [4],
[6]). See also [9] for a paramodular form version. In [2], H. Atobe, M. Chida, T. Ibukiyama,
H. Katsurada and T. Yamauchi considered a conjecture concerning the congruence between
two liftings to higher degree of Hecke eigenforms (of integral weight) of degree two in the case
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2 H. KATSURADA AND C.-H. LEE

k is even. This implies Harder’s conjecture. As a result, they proved Harder’s congruence in
some cases. Moreover, in [3], combining the result in cited above with Galois representation
theoretic method, under certain mild conditions, they proved Harder’ conjecture in the case
k is even and j =0 mod 4.
In this paper, we treat the case k is odd. We explain it more precisely. For a non-increasing
sequence k = (ky, ..., k,) of non-negative integers we denote by My(Sp,,(Z)) and Sk(Sp,,(Z))
n

. . . A
the spaces of modular forms and cusp forms of weight k (or, weight k, if k = (k,...,k))
for Sp,,(Z), respectively. (For the definition of modular forms, see Section 2). Let n be a

positive even integer and suppose that j =mn mod 4. For the f above and a primitive form
g of weight k+ j/2—n/2— 1 for SLy(Z), let M,11(f, g) = Mﬁ%%_l(f, g) be the Miyawaki
lift of g and f of type II to the space of cusp forms of weight 2 +k + 4 — 1 for Sp,,,,(Z) (cf.
Theorem 4.4). For a sequence
n+1 n
3n

fi n j n j i 3n )
= (< —_1.....Z 1Ly N M
K (2+k+2 GRS S LT T 2

with & > n+2, let [M,,1+1(f, g)]* be the Klingen-Eisenstein lift of M,,.1(f, g) to My (Spay1(Z)).
Then, we propose the following conjecture:

Conjecture. (Conjecture 4.6) Let k,j and k be as above. Let f(z) € Sopyj—2(SLa(Z)) be a
primitive form and p a prime ideal of Q(f). Then under certain assumptions, there ezists a
Hecke eigenform F in S k)(Spo(Z)) such that

7 7

AAgn-‘—l(Fvg) (T) = )\[Mn_‘_l(f’g)]k (T) IIlOd p/

for any integral Hecke operator T. Here, A%, .| (F,g) is a certain lift of g and F to Sk(Span,1(Z)),
which will be defined in Theorem 4.53. (As for the definition of integral Hecke operators, see
Section 3.)

This conjecture implies Harder’s conjecture (cf. Theorem 4.8). Through this formulation,
we confirm Harder’s conjecture in some cases (cf. Corollaries 7.2 and 7.4).

This paper is organized as follows. In Section 2, we give a brief review of Siegel modular
forms, especially about their Q-structures and Z-structures. In Section 3, we give a summary
of several L-values. In Section 4, first we state Harder’s conjecture. Next we introduce several
lifts, and among other things define a certain lift of a primitive form and a vector-valued
modular form, and propose a conjecture on the congruence between it and the Klingen-
Eisenstein lift of the Miyawaki lift of type II, and explain how this conjecture implies Harder’s
conjecture. In Section 5, we consider the pullback formula of the Siegel Eisenstein series with
differential operators. In Section 6, we consider the congruence for vector-valued Klingen-
Eisenstein series, which is a generalization of [22] and [2]. Moreover, we give a formula for
the Fourier coefficients of the Klingen-Eisenstein series, from which we can confirm some
assumption in our main results. In Section 7, we state our main results, which confirm our
conjecture, and so Harder’s.

Acknowledgments. We thank Hiraku Atobe and David Yuen for helpful discussions.

NOTATION. Let R be a commutative ring. We denote by R* the unit group of R.
We denote by M,,,(R) the set of m x n-matrices with entries in R. In particular put

M,(R) = M, ,(R). Put GL,,(R) = {A € M,,(R) | det A € R*}, where det A denotes the
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determinant of a square matrix A. For an m X n-matrix X and an m X m-matrix A, we
write A[X] =X AX, where 'X denotes the transpose of X. Let Sym,,(R) denote the set of
symmetric matrices of degree n with entries in R. Furthermore, if R is an integral domain
of characteristic different from 2, let #H,,(R) denote the set of half-integral matrices of degree
n over R, that is, H,(R) is the subset of symmetric matrices of degree n with entries in the
field of fractions of R whose (4, j)-component belongs to R or %R according as ¢ = j or not.
We say that an element A of M, (R) is non-degenerate if det A # 0. For a subset S of M,,(R)
we denote by S™ the subset of S consisting of non-degenerate matrices. If S is a subset
of Sym,,(R) with R the field of real numbers, we denote by Ss¢ (resp. S>¢) the subset of
S consisting of positive definite (resp. positive semi-definite) matrices. The group GL,(R)
acts on the set Sym,,(R) by
GL,(R) x Sym, (R) 3 (g, A) — Alg] € Sym, ().

Let G be a subgroup of GL,(R). For a G-stable subset B of Sym,,(R) we denote by B/G the
set of equivalence classes of B under the action of G. We sometimes use the same symbol
B/G to denote a complete set of representatives of B/G. We abbreviate B/GL,(R) as B/~
if there is no fear of confusion. Let R’ be a subring of R. Then two symmetric matrices A
and A" with entries in R are said to be equivalent over R’ with each other and write A ~p A’
if there is an element X of GL,(R') such that A" = A[X]. We also write A ~ A’ if there is
X O
oY)

For an integer D € Z such that D = 0 or D = 1 mod 4, let dp be the discriminant of
Q(v/D), and put fp = \/g . We call an integer D a fundamental discriminant if it is the
discriminant of some quadratic extension of Q or 1. For a fundamental discriminant D,

let (%) be the character corresponding to Q(v/D)/Q. Here we make the convention that
<Q> = 1if D = 1. For an integer D such that D = 0 or = 1 mod 4, we define (D> = <0—D>

* 3 *

no fear of confusion. For square matrices X and Y we write X 1Y =

We put e(x) = exp(2my/—1z) for x € C, and for a prime number p we denote by e, () the
continuous additive character of Q, such that e,(z) = e(x) for z € Z[p~1].

Let K be an algebraic number field, and © = Oy the ring of integers in K. For a prime
ideal p we denote by K, and O, the p-adic completion of K and O, respectively, and put
O = Oy N K. In the special case where K = Q, Z,) = Z, N Q. For a prime ideal p of
9, we denote by ord,(*) the additive valuation of K, normalized so that ord,(w) = 1 for
a prime element w of K,. Moreover for any element a,b € O, we write b = a (mod p) if
ordy(a — b) > 0.

2. SIEGEL MODULAR FORMS

In this section, we review basic facts about Siegel modular forms in [2, Section 2| with a
little modification. We denote by H,, the Siegel upper half-space of degree n, i.e.,

H, ={Z € M,(C) | Z="'Z = X + V=1V, X,Y € M,(R),Y > 0}.
For any ring R and any positive integer n, we define the group GSp,,(R) by
GSp,(R) = {9 € My,(R) | gJ.'g = v(g)J, with some v(g) € R*},

where J, = ((1): _01"). We call v(g) the symplectic similitude of g. We also define the
symplectic group of degree n over R by

Sp,(R) = {g € GSp,(R) | v(g9) = 1}.
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In particular, if R is a subfield of R, we define
GSp, (R) = {g € GSp,(R) | v(g) > 0}.

We put '™ = Sp, (Z) for the sake of simplicity.

Let A = (ki,ko,...) be a finite or an infinite sequence of non-negative integers such that
ki > ki, for all i and k,,, = 0 for some m. We call this a dominant integral weight. We call
the biggest integer m such that k,,, # 0 a depth of A and write it by depth(A). It is well known
that the set of dominant integral weights A with depth(\) < n corresponds bijectively to the
isomorphism classes of irreducible polynomial representations of GL,(C). We denote this
representation by (p,.x, Vo). We also denote it by (pk, Vi) with k = (kq,..., k,) and call it
an irreducible polynomial representation of GL,,(C) of highest weight k. Moreover, we write
k' = (k1 —ky,...,kn_1—kn,0). Then, we have py = det™ @pi with (pr, Vi) an irreducible
polynomial representation of highest weight k/. Here we understand that (py, Vis) is the
trivial representation on C if ky = -+ - = k,,_1 = k,,. We fix a Hermitian inner product (x, )
on V' = Vi such that

(i (g)v,w) = (v, p ("g)w)  for g € GL,(C),v,w € V.

Now we define vector-valued Siegel modular forms of I'™. For any V'-valued function F
on H,,, and for any g = (4 B) € GSp,' (R), we put J(g,Z) = CZ + D and

Flplgl = p(J(g, 2)) ' F(gZ).

From now on we identify py with det"” ®pw. We say that F is a C*°-modular form of weight
o or k with respect to I'™ if F is a C™-mapping from H, to V' satisfying the following
condition:

Flyly] = F for any vy € I,

We denote by M@ (I'™) = M(I'™) the space of C*°-modular forms of weight pi with
respect to I'™. We say that an element F of M*(I'™) is a (holomorphic) modular form
of weight py if F' is a holomorphic mapping from H,, to V' which has the following Fourier
expansion

F(zZ)= Y a(T,Fle(t(TZ), ZecH, a(T,F)eV
TeHn(Z)>0
where tr(7) is the trace of a matrix 7. We note that F' has the above Fourier expansion
automatically if n > 2. We denote by My (I'™) = M, (I"™) the space of modular forms
of weight py with respect to I'™. We say that F' € M, _(I"™) is a cusp form if we have
a(T, F) = 0 unless T is positive definite. We denote by Sy (I"™) = S, (I"™) the subspace
of M, (I'™) consisting of cusp forms.
For F,G € M*(I'™) the Petersson inner product is defined by

r.6) = [ TR, pVT )G () iz

where Y = Im(Z) and VY is a positive definite symmetric matrix such that vY s
This integral converges if F' and G are slowly increasing and at least one of them belongs to

S

Pk

——
(™). Ifk = (k,..., k), we simply write My(I"™) = My (I'™) and Sy,(I"™) = Sy (I'™).
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We note that
M(kﬂ',k)(F(Z)) = Moy ®Symj(F(2)) and S(k:+j,k)(F(2)> = Saetk ®Sym7(F(2))7

where Sym’ is the j-th symmetric tensor representation of GLy(C).
For a representation (p, V) of GL,(C), we denote by §(H,, V) the set of Fourier series F’
on H,, with values in V' of the following form:

F(Z)= Y a(AFe(tr(AZ)), Z€H,, a(A,F)eV.
A€Hn(Z)>0

For F € §(H,, V) and a positive integer r < n we define ®(F) = ®I'(F) as

= r((% 5, ) Aen

We make the convention that §(Ho, V) =V and @f(F) = a(Oy, F). Then, ®(F') belongs to

§(H,, V). For a representation (p, V') of GL,,(C), we denote by §(H,, V) = F(H,, (p,V)) the
subset of §(H,, V') consisting of elements F' such that the following condition is satisfied:

(K0) a(Algl, F) = p(g)a(A, F) for any g € GL,(C).

Now let £ = (l4,...,l,) be a dominant integral weight of length n of depth m. Then
we realize the representation space Vg in terms of bideterminants (cf. [17]). Let U = (u;)
be an m x n matrix of variables. For a positive integer a < m let SZ,, , denote the set of
strictly increasing sequences of positive integers not greater than n of length a. For each
J =1, Ja) € ST, we define Uy as

ul,j1 e ul,ja

ua?]l ct ua7ja

Then we say that a polynomial P(U) in U is a bideterminant of weight £ if P(U) is of the
following form:

m li—=liy1
=1 j=1
where (Ji1,. .., Jig,—1,.,) € SIZ;IZ'“. Here we make the convention that H?:_f"'“ Uy, =1if

l; = l;11. Let BDy be the set of all bideterminants of weight £. Here we make the convention
that BD, = {1} if £ = (0,...,0). For a commutative ring R and an R-algebra S let S[U],
denote the R-module of all S-linear combinations of P(U) for P(U) € BD,. Then we can
define an action of GL,,(C) on C[U], as

GL,(C) xC[U]e 2 (¢, P(U)) — P(Ug) € C[U]e,

and we can take the C-vector space C[U], as a representation space Vj of pp under this action.
Let m < n — 1 be a non-negative integer and U = (u;;) be an m X n matrix of variables.

Lot k = (ki ..., k) With k1 > - > ki > kst = - =k and K = (k1 — iy« s ki —
n—m
km+1,0,...,0). Here we make the convention that k = (ky,...,k;) and k' = (0,...,0)

if m = 0. Then under this notation and convention, M (I"™) can be regarded as a C-
subspace of Hol(H,)[U]x, where Hol(H,,) denotes the ring of holomorphic functions on H,.
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We sometimes write F/(Z)(U) for F € My (I'™) for Z € H, to highlight that F is C[U]-
valued. Moreover, the Fourier expansion of F' € My (I'™) can be expressed as

F(Z)= Y a(AFe(tr(AZ)),
A€Hn(Z)>0
where a(A, F) = a(A, F)(U) € C[U]y.
Let r be an integer such that m < r < n and let 1 = (ky,...,k—1,k;) and ' = (ky —

r—m
——
Kmits- - ke — ka1, 0,...,0). For the m x n matrix U, let U™ = (u;)1<j<m1<j<r and put

SO ) >

W' = C[U™]y. Then we can define a representation (7', W’) of GL,(C). The representations
(pwr, Vie) and (7', W) satisfy the following conditions:

(K1) W’ C V.

(K2) pk/<(% Zi))v =7/(g1)v for (% o2) € GL,(C) with ¢; € GL,(C) and v € W".

(K3) If v € Vi satisfies the condition

pk,<(1or (}Z))v = v for any h € GL,,_,.(C),

then v belongs to W',
Let F(Z) = X acu,@z)-, WA Fle(tr(AZ)) € F(H,,Vie) Then, in a way similar to [1,
(2.3.29)], we have )

ISVAEEESY a((‘g1 8>,F)e(tr(AlZl)) (Z, € H,).

A1 EHT‘(Z)ZO

Suppose that F' belongs to g’(Hn, Vi). Then, by (KO0),

pe((59)) (al(%8).F)) =al(%9)  F) for any h € GL,,(C).

Hence, by (K3), a((‘4 9).F) belongs to W’ for any A; € H,(Z)so. This implies that
O™ (F) belongs to §(H,, W’). We easily see that ®7(F') belongs to F(H,, W’), and therefore
o7 sends §(H,, Vir) to §(H,, W’). It is easily seen that it induces a mapping from M, (I’ (m)

to M ('), where p = det™ @p and 7 = det™ @7/ Let A, be the subgroup of rm

defined by
* *
A, = e ™ } )
' { <O(n—r,n+r) *)

For F € S.(I'™) the Klingen-Eisenstein series [F]2(Z, s) of F associated to p is defined by
detIm(Z) \s N
Flezs) = > ) For(2)],7-

AP det Im(pr?(2))

Here pr](Z) = Z; for Z = (tzzl gQ) € H, with Z; e H,,Z, € H,,_,, Z5 € M, ,,_,(C). We
2 4y
also write [F]2(Z,s) as [F|¥(Z, s) or [F](Z, s).
Suppose that k, is even and 2 Re(s)+k, > n+r+1. Then, [F]?(Z, s) converges absolutely
and uniformly on H,. This is proved by [23] in the scalar-valued case, and can be proved

similarly in general case. If [F']¥(Z, s) can be continued holomorphically in the neighborhood
of 0 as a function of s, we put [F]2(Z) = [F]2(Z,0). If [F]2(Z) is holomorphic as a function of
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Z, it belongs to My (I'™), and we say that it is the Klingen-Eisenstein lift of F' to M (I"™).
In particular, if k, > n+r+1, then [F]?(Z, s) is holomorphic at s = 0 as a function of s, and
[F]°(Z,0) belongs to My (I'™), and ®2([F]?) = F. We note that [F]?(Z) is not necessarily
a holomorphic as a function of Z if k, <n+r + 1.

For a positive integer k, we define E, (Z, s) as

Eui(Zs)= > (detIm(2))°|,

'yGAnyo\F(”)

and call it the Siegel-Eisenstein series of weight k with respect to I'™. The Siegel-Eisenstein
series E, x(Z,s) can be continued meromorphically to the whole s-plane as a function of s,

m n—m
A

. - ——
holomorphic at s = 0. We put E, x(Z) = E,4(Z,0). Let k= (k+1,....,k+1,k,... k) such

—
that k,1 > 0, and put px = det’* @pp and 7 = det” ®py with k' = (1,...,1,0,...,0) and

A . . . .
I'=(l,...,1). Then, for F' € S.(I'™)) we can define the Klingen-Eisenstein series [F]?<(Z, s)
of F associated to py if k is even and 2Re(s) + k > n +m + 1. We note that C[U™)]y is a
subspace of C[U]y spanned by (det U™)!, and hence we have a natural isomorphism

L S (D) 3 f s f = (det UMY f € §.(1),

We sometimes write [f]? or [f]* instead of [f]2« for f € Sy (I(™).

Let £ = (I3,...,1,) be a dominant integral weight of length n of depth m. Let V=V=
Q[U]e. Then, (pg|GL,(Q), V) is a representation of GL,(Q), and V @ C = V,. We consider
a Z-structure of V. To do this, we fix a basis S = Sg = {P} of Z[U],. We note here that
the bideterminants are not linearly independent over Z and even over C in general, so the
set BDy is not necessarily a basis of Z[U]e. Let R be a subring of C. Since the set S is also
linearly independent over C, an element a of R[U], is uniquely written as

a= ZapP with ap € R.
PeS

Let K be a number field, and O the ring of integers in K. For a prime ideal p of O and
a=a(U) =) pcsapP € K[U], with ap € K, define

ordy(a) = win ord,(ap).
We say that p divides a if ord,(a) > 0.

Remark 2.1. The definition of ord, does not depend on the choice of a basis of Z[U],. We
note that p does not divide a = a(U) if p does not divide a(Uy) for some element Uy of
My n(9O).

For a subring R of C, we denote by My (I"™)(R) the R-submodule of M, (I"™) consisting
of all modular forms F' such that a(7, F) € R[U]x for all T € H,,(Z)>o. Here, k' = (k1 —
km+1,...,k}m—/{Zm+1,0,...,0) for k = (k?l,...,kn) with k4 > --- ka>km+1 =...=k, as
stated before.

We consider tensor products of modular forms, which will be used on and after Sec-
tion 5. Let n; and ny be positive integers. Let k1 = (ki,..., km, kma1,- -+, kny) and ky =
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(k1y- -y kmy kmat, - - -, kny) be non-increasing sequences of integers such that k,, > k11 =
- =kp, =l fori=1,2. Then (px, ® px,, V1 ®V3) is a representation of GL,, (C) x GL,,(C).
ni—m nge—m

Put k] = (k1 — 1,...,kpn — 1,0,...,0) and k, = (ky — {,...,ky — [,0,...,0). Then,
P, @ pr, = (det’ Rpxr) ® (det! ®px,) with (pi, V/) a polynomial representation of high-
est weight k! for i = 1,2. To make our formulation smooth, we sometimes regard a modular
form of scalar weight k for I'™ as a function with values in the one-dimensional vector
space spanned by det U! with a non-negative integer [ < k, where U is an n x n matrix of
variables. Let U; and Us; be m x ny and m X ny matrices, respectively, of variables and for
a commutative ring R and an R-algebra S let

S[Uy, Uslye 1o, = {ZP (U1) P ( finite sum ) with P;(U;) € S[Ui (i = 1, 2)}.

Here we make the convention that P;(U;) € ((detU;))" )¢ if n; = m and ky = -+ = ky,
as stated above. Then, as a representation space W = Wik, of Pr;, @ pi, we can take

ClU, Ui, iy~ Let

W= kal,k; = Q[Uy, Ua]w x,-
Then W 2 V{ @ VJ and W ®g C = W. Let

M = My v, = Z[Uy, Us]is 1,
We note that

M = Z a7'177'2P7'1 (Ul)P’Q(U?) Ury i €L

PTl Eskﬁ ,P‘,—2 GSk/2

Here we make the convention that P, (Uy) = (detU;)*' ' if n; = m and ky = -+ = k,,.
Therefore, M is a lattice of W and M = Ly ® Ly with L; = Z[Uj]x (1 = 1,2). Thus
(P, ® Pz Vi ® V4) has also a Q-structure and Z-structure and we can define ord,(a ® b) for
a®be WK If dim¢ V; = 1, then we identify V7, V1 and L; with C,Q and Z, respectively,
and for a,b € Vi and w € V5, we write a®b and a®w as ab and aw, respectively through the
identiﬁcations VieVi2Viand Vi @ Vo = Vo @ V) = V. The tensor product My, (I'™)) ®
My, (I'"2)) is regarded as a C-subspace of (Hol(H,,) ® Hol(H,,))[U, Usli, k-

3. SEVERAL AUTOMORPHIC L-FUNCTIONS AND THEIR SPECIAL VALUES

In this section we review several arithmetical properties of Hecke eigenvalues and L values
of modular forms in [2, Section 2] without proof. Throughout this section, let k = (ky, ..., k)
with ky > -+ >k, > 0. Let L, = L(I'™ GSp;} (Q) N Ms,(Z)) be the Hecke algebra over
7. associated to the Hecke pair (I'™ GSp!(Q) N M,(Z)) and for a subring R of C put
L,(R) = L, ®z R. For an element T = I'™gI"™ € L, (C) and F € My (I"™) we can define
F|T as in [2, Section 3]. This defines an action of the Hecke algebra L,(C) on M. The
operator F' +— F|T with T € L, (C) is called the Hecke operator. We say that F'is a Hecke
eigenform if F' is a common eigenfunction of all Hecke operators T' €,, (C). Then we have

F|IT = Ap(T)F with Ap(T) € C for any T € L,(C).

We call A\p(T') the Hecke eigenvalue of T with respect to F'. For a Hecke eigenform F in
My (™), we denote by Q(F) the field generated over Q by all the Hecke eigenvalues Ap(T)
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with T' € L,(Q) and call it the Hecke field of F'. For two Hecke eigenforms F' and G we
sometimes write Q(F,G) = Q(F)Q(G). We say that an element T € L,,(Q) is integral with
respect to My (™) if F|T € My (I'™)(Z) for any F € M (I'™)(Z). We denote by L the
subset of L, (Q) consisting of all integral elements with respect to My (I"™). The following
two propositions are due to [2, Section 4].

Proposition 3.1. We have L,, C L& for any k = (ky,..., k,) with k, >n+ 1.

Proposition 3.2. Let k = (ky,...,k,) with k, > n+ 1. Let F be a Hecke eigenform in
Sk(I'™). Then Ap(T) belongs to Oqer) for any T € L&

For a non-zero rational number a, we define an element [a] = [a], of L, by [a], =
'™ (al,)I'™. For each integer m define an element 7'(m) of L,, by

T(m) = Z I'™(dy L. Ld,le;l - Le,) ™,

where dy,...,d,,eq,...,e, run over all positive integer satisfying
di‘di-i-l; €i+1|€i (Z = 1, e, — 1), dn|€n7 diei =m (Z = 1, Ce ,n).
Furthermore, for ¢ = 1,...,n and a prime number p put
Ti(p*) = '™ (1, Lpl Lp*1, ; Lpl,) ™.
As is well known, L, (Q) is generated over Q by T'(p), T;(p?) (i = 1,...,n), and [p~ ], for
all p. We note that T,(p?) = [p],. We note that L, is generated over Z by T(p) and
Ti(p?) (i =1,...,n) for all p.

Let L,, = L(I'™,GSp}(Q) N GLy,(Z[p~'])) be the Hecke algebra associated with the
pair (I'™, GSp," (Q) N GLy,(Z[p~'])). Then L,, can be considered as a subalgebra of L,
and is generated over Q by T'(p) and T;(p?) (i = 1,2,...,n), and [p~1],.

We now review the Satake p-parameters of L,, ,; let P,, = Q[XSE, Xli, ..., XF] be the ring of
Laurent polynomials in Xy, X1,..., X, over Q. Let W,, be the group of Q-automorphisms

of P, generated by all permutations in variables Xi,...,X,, and by the automorphisms
Ti, ..., T, defined by

7i(Xo) = XoX;, 7i(Xy) = X, L (X)) = X5 (5 #1).

Moreover, a group W,, isomorphic to W, acts on the set T, = (C*)"*! in a way similar to
the above. Then there exists a Q-algebra isomorphism @, ,, called the Satake isomorphism,
from L, , to the W, -invariant subring PnW" of P,,. Then for a Q-algebra homomorphism A
from L, , to C, there exists an element (ao(p, A), a1 (p, A), ..., an(p, A)) of T, satisfying

)\((I);’;(F(XO, X1, ’Xn))) - F(QO(pa )‘)7 ozl(p, /\)7 sy Oén(p, A))
for F € PW». The equivalence class of (ag(p, A),a1(p, A), ..., a,(p,\)) under the action of
W, is uniquely determined by A. We call this the Satake parameters of L, , determined
by A. Now let F be a Hecke eigenform in My (I"™). Then for each prime number p, F
defines a QQ-algebra homomorphism Ag, from L, , to C in a usual way, and we denote by
ao(p), a1(p), . .., an(p) the Satake parameters of L, , determined by F.
We write I'c(s) = 2(27)~*I'(s) and I'r(s) = 77%/2I'(s/2) as usual. Let

f(z) =) _alm, fe(mz)

m=1
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be a primitive form in Sg(SL2(Z)), that is, let f be a Hecke eigenform whose first coefficient
is 1. For a prime number p let £y ,(f) and f2,(f) be complex numbers such that £ ,(f) +
Bap(f) = alp, f) and By ,(f)B2,(f) = p*~!. Then for a Dirichlet character x we define the
Hecke L-function twisted by x as

Lis. f.x) = (0 = Buax@p™) (1 = Ban(Nx@)p™))

p

We write L(s, f,x) = L(s, f) if x is the principal character.

Let {fi,..., fa} be a basis of S(I"™) consisting of primitive forms. Let K be an algebraic
number field containing Q(f1) - - - Q(f4), and O the ring of integers in K. Let f be a primitive
form in S (SLy(Z)). Then Shimura [29] showed that there exist two complex numbers c(f),
uniquely determined up to multiplication by elements of Q(f)*, such that the following
Le()V=TL(L f,x)

T(0es(f)
[ < k—1 and a Dirichlet character y, where 7(x) is the Gauss sum of y, and s = s(l, x) = +
or — according as x(—1) = (=1)! or (=1)""1,

We note that the above value belongs to K (x). For short, we write

property holds: The value

belongs to Q(f)(x) for any positive integer

(V=1L f, X)
T(x)es(f)

We sometimes write s (f) = sy (f) and L(l, f, x: csa0 (f)) = L(l, fiesw)(f)) if x is the
principal character. We note that the value L(I, f, x; cs(f)) depends on the choice of ¢ (f),

but if (Xn)(_l) _ (_1)[-"-m7 then s := 5([7)() = s(m,n) and, the ratio EE%{}TA?ZE{};
L(l, f,x)

not depend on ¢4(f), which will be denoted by Lim f)

Let f be a primitive form in Sg(SLo(Z)). Let fi,..., fa be a basis of Sx(SLy(Z)) con-
sisting of primitive forms with f; = f and let ®; be the ideal of Q(f) generated by all
H?:Z(Afi (T'(m)) — Ap(T'(m)))’s (m € Z~y). For a prime ideal p of an algebraic number field,
let p, be the prime number such that (p,) = Z N p.

Let I be a Hecke eigenform in My (I"™), and for a prime number p we take the p-Satake
parameters ag(p), a1(p), ..., a,(p) of F' so that

L1, f.x:eo(f)) =

does

2 ki+-+kn—n(n+1)/2

ag(p) ai(p) - an(p) =p

We define the polynomial L,(X, F,Sp) by
Ly(X, F,Sp) = (1 — ap(p)X) H H (1 = ao(p)ai, (p) -~ s, (p)X)
r=11<ij <--<ir<n

and the spinor L function L(s, F,Sp) by

L(s, F,Sp) = H L,(p~%, F,Sp)~".

p
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We note that L(s, f, Sp) is the Hecke L-function L(s, f) if f is a primitive form. In this case
we write L,(s, f) for L,(s, f,Sp). We also define the polynomial L, (X, F, St) by

n

(1=X) [ ] = i) X)(1 = cws(p) ' X)

i=1
and the standard L-function L(s, F, St) by
L(s,F,St) = [[ Lp(p*, F,St)™".
p
For a Hecke eigenform F € S,(I'™) put
L(s, F,St)

L(s, F,8t) = Te(s) [ [ Te(s + k= ) =7=5

Remark 3.3. We note that for a positive integer m < k —r
L(m, F,St)

L(m, F,St) = Ay pm artmtm— G 0/2(F, F)

with an element A, p.,m € Z[27Y] such that ord,(A,xm) = 0 for any prime number p >
2k —r — 1.

Proposition 3.4. Let F' be a Hecke eigenform in Sp(I'"). We define ng = 3 if r > 5 with
r = 1mod 4 and ng = 1 otherwise. Let m be a positive integer ng < m < k — r such that
m=r (mod 2). Then, a(A, F)a(B, F)L(m, F, St) belongs to Q(F') for any A, B € H.(Z)~o.

Proof. We note that the value a(A, F)a(B, F')L(m, F, St) remains unchanged if we replace
F by vF with any v € C*. By the multiplicity one theorem for Hecke eigenforms (cf. [2,
Appendix A]), we can take some non-zero complex number « such that yF € S, (I'™)(Q(F)).
For this v, we see L(m,vF,St) € Q(F) by [28], Appendix A. This proves the assertion. [J

4. HARDER’S CONJECTURE AND ITS MODIFICATION

In this section, first we state the original Harder’s conjecture in [10], and we treat a
generalized version of this conjecture. Let R be a commutative ring, and a an ideal of R.
For two polynomials P(X) = >7" ja; X" and Q(X) = >, b; X" with coefficients in R, we
write

P(X)=Q(X) moda
if a; = b; (mod a) for any 0 < i < m. When R is a ring of integers in an algebraic number
field and p is a prime ideal of R, for two polynomial P(X), Q(X) € R,[X]| we sometimes write
P(X)=Q(X) modypif P(X)=Q(X) mod Ryp. Now we will state Harder’s conjecture.

Conjecture 4.1. ([10]) Let k and j be non-negative integers such that j is even and k >
3. Let f = > a(n, fle(nz) € Sop+j—2(SLa(Z)) be a primitive form, and suppose that a
“large” prime p of Q(f) divides L(k + j, f; csers)). Then, there exists a Hecke eigenform
F € Strjm(I'?), and a prime ideal p' | p in (any field containing) Q(f)Q(F) such that,
for all primes p

Ly(X, FSp) = L(X, f)(1 ~ 72 X) (1 p 1K) (mod ).

In particular, ’
Ae(T(p) =" 2+ P +alp, ) (mod p').
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To avoid the ambiguity on choosing cgk+;) (cf. [2, Remank 3.8. (2)]), we propose the
following conjecture, which we also call Harder’s conjecture.

Conjecture 4.2. Let k and j be non-negative integers such that k > 3 and j > 4 is even. Let

[ be as that in Conjecture 4.1. Suppose that a prime ideal p of Q(f) satisfies p, > 2k +j —2

L(k +J, f)
L(kj7 f) 7

or j =2 (mod 4). Then the same assertion as Conjecture 4.1 holds.

and that p divides where k; = k+7/2 or k+j/241 according as j =0 (mod 4)

The above conjecture does not address the congruence between the Hecke eigenvalues of
two Hecke eigenforms in the same space, and this is one of the reasons that it is not easy
to confirm it. To make it more approachable, we reformulate it in the case k is odd (cf.
Conjecture 4.6). For even k, see [2], [3].

To do so, first, we consider several lifts. The first two theorems are special cases of [2,
Theorem 4.2. (1)] and [2, Theorem 4.3], respectively.

Theorem 4.3. Let k,j,n be positive integers such that j,n are even and k is odd. Suppose

that k >n+3,5>n+4 and j =n mod 4. Put

n+1
7\

n
AN

7 N\ 7

J n J n J  3n j  3n
k:(— g L R A L WA 2).
2+k5+2 2—|—k5—|—2 2~|—2+ 2+2+

Then, for a primitive form g € Sky;/2-ns2-1(SLa(Z)) and a Hecke eigenform G € S(k+j7k)(F(2)),
there exists a Hecke eigenform A%, .1(G,g) € Sk(I'®"*V) such that

n .

L(s, A%, 11 (G, g),5t) = L(s,9,5t) [ [ L(s + k + % + g —1-14,G,Sp)
=1

Theorem 4.4. Let k,n,d be positive integers such that k > d. Let f be a primitive form in
Sor(SLy(Z)) and G a Hecke eigenform in S;(I'™).
(1) Suppose that k = n+d mod 2 and that | > k + n+ d. Then there exists a Hecke
n 2d
/ —N— - % N\
eigenform M¥ o, (f,G) € Sw(I'"F2D) with X' = (I,....,k+n+d,....k+n+d)
such that

2d
L(s, My, 04(f, G),St) = L(s,G.St) [[ L(s + k +d — i, f).
=1

(2) Suppose that k = d mod 2 and that k+d > 1. Then, there exists a Hecke eigenform
2d n

A

~

’ Ve ,—/\
ME (. G) € S (I 2Dy with k' = (k+d,....k+d,l,...,1) such that
2d

L(s, My, 04(f, G),St) = L(s,G.St) [ [ L(s + k +d — i, f).

i=1
In (1) and (2), we make the convention that L(s,G,St) = ((s) if n = 0.

We say that M¥,,,(f,G) in Theorem 4.4 (1) (resp. (2)) is the Miyawaki lift of f and

G of type I (resp, type II). We sometimes write M, ,,(f,G) instead of M¥, ,,(f, G) if
k' = (l,...,1). In this case, the Miyawaki lift of type I was constructed by Ikeda [19] under
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the non-vanishing condition. In the case n = 0 in Theorem 4.4, we write Jo4(f) instead of
MX,(f, @), and we call it the Duke-Imamoglu-Tkeda lift of f (cf. [18]).

Theorem 4.5. (1) Let k and 1 be positive even integers such that k > 1, and put k =
(k,k,k,k,1). Then, for a primitive form f € Sor_(SLa(Z)) and Hecke eigenform
G € Spi—2)(I'®), there exists a Hecke eigenform Ks(f, G) € Sk(I'®)) such that

2
L(s,K5(f,G),8t) = L(s,G,St) [ [ L(s + k —2— i, f).
i=1
(2) Let k and | be even positive integers such that k > 1. Then, for a primitive f €
Sor—4(SL2(Z)) and a Hecke eigenform G € S -2 (I'®), there exists a Hecke eigen-
form AY(f,G) € Sgpnn(I'™) such that
2
L(s, A{(f,G),St) = L(s,G,St) [[ L(s + k — 1 — i, f).
i=1
Proof. The assertion (2) for [ = k has been proved in [2, Theorem 4.2 (2)], and another case
can also be proved similarly. From now on we use the notation in [2, Appendix A]. To prove

(1), put
Y = e B (2],
where 1 is the Arthur parameter associated with G, and 7 is the irreducible (unitary
cuspidal automorphic self-dual) representation of PGL3(Ag) such that
2k — 7
).

L>(s,mf) = L(s + 5

Then, ¢ is one of the following forms:
e (i) Yo = mg[l] with 7 an irreducible representation of PGL7(Ag) such that

L>(s,m¢) = L(s, G, St).

o (ii) g = mo[1] B m[2] with m and 7 irreducible representations of PGL3(Ag) and
PGL3(Ag), respectively, such that

L>(s,mo) = L(s, g,5t) with g € S;_4(SL2(Z)),

2k — 3 .

9 ,fl) with f1 < SQk_Q(SLQ(Z))
Suppose that (i) holds. We note that the sets of positive eigenvalues of the infinitesimal
characters of mg o and 7y are {(2k—7)/2} and {k—1,k—2,l—>5}, respectively. Therefore,

we easily see that 1 satisfies the conditions in [2, Theorem A.1] except (f). Moreover, by [2,
Remark A.2 (4)], we have

L>(s,m) = L(s+

E(ﬂ'f X ﬂ_G)min(2,1) = g(ﬂ'f X 7TG) = —1= (_1)¥’

and 1) also satisfies the condition (f). Therefore the assertion follows from [2, Theorem A.1].

Suppose that (ii) holds. We note that the sets of positive eigenvalues of the infinitesimal
characters of 7y, and m o are {{ — 5} and {(2k — 3)/2}, respectively. Therefore, by [2,
Remark A.2 (4)] we have

2:2

e(my x 7T0)min(2’1)€(7'ff X ﬂl)mi“(Q’Q) =¢e(my xmy) =—1=(-1)7,
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and
2-2

5(7’(’1 X 7T0)min(2’1)6(71'1 X ﬂ_f)min(2,2) = (7T1 X 7T0> =—-1= (-1)7

Thus the assertion has been proved similarly to (i). U

Let F and G be Hecke eigenforms in My (I"™) and p a prime ideal of Q(F). We say that
F' is Hecke congruent to G modulo p if there is a prime ideal p’ of Q(F) - Q(G) lying above
p such that

Aao(T) = Ap(T) (mod p) for any T € LI,
We denote this property by
G =o F' (mod p).

Conjecture 4.6. Let k,j and n be positive integers. Suppose that
(a) n=k—1=75=0 mod 2 and j =n mod 4.
(b) k>n+1andj>n—1.

Put

n+1
7\

n
A

Ve

j n j noo 7 3n 7 3n N
k = (— k=1, Lakro 1,240 Ly 2).
2+ +2 2+ +2 2+2+ 2+2+
Let f and g be primitive forms in Sawyj—2(SLo(Z)) and in S, i _n_,(SLa(Z)), respectively.
2 2
Let p be a prime ideal of Q(f) such that p, > 2k + j — 2 and suppose that p divides

L(k+J, [) : : (@
LG/2+k+n/2—1,7) Then, there exists a Hecke eigenform F' € Sy (I"?)) such that

‘Al2<n+1 (Fv g) =ev [Mn-‘rl (fa g)]k (mOd p)

Remark 4.7. Since we have j+3n/2+2 > 3n/2+ 1, [M,41(f, 9)]¥ belongs to My (I'?"+D)
by [2, Propoition 2.1, (2)].

Theorem 4.8. Let the notation be as in Conjecture 4.6.

(1) Conjecture 4.2 holds for the case j =2 mod 4 if Conjecture 4.6 holds for n = 2.
(2) Suppose that 2k + j — 2 > 20. Then Conjecture 4.2 holds for the case j =0 mod 4
if Conjecture 4.6 holds for n = 4.

Proof. The assertion can be proved in the same way as [2, Theorem 4.8]. 0]

5. PULLBACK FORMULA

In this section, we review the pullback formula for the Siegel Eisenstein series with differ-
ential operators in [2, Section 5], and give a generalization of [2, Theorem 5.8]. We also give
an explicit differential operator which is used in the proof of our main results.

Now for an integer n > 2, fix a partition (nq,ns) with n = ny + ng with n; > 1. Let A
be a dominant integral weight with depth(A\) < min(ny, ny). For ¢ = 1,2, let (pn, x, Vi,0) be
the representation of GL,,(C) defined in Section 2. Put Vi, 0y = Viyx @ Vi, . We regard
H,, x H,, as a subset of H,, by the diagonal embedding.

We consider V) ,, n,-valued differential operators D on scalar-valued functions of H,,, sat-
isfying Condition C(k, A\, n1,ns) below on automorphy.
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For irreducible representations (p;, V;) of GL,,,(C) for i = 1, 2, a (V; ® V3)-valued function
f on H,, xH,,, and g; = (A B) € Sp,,,(R), we write

(flp1,p21915 92]) Zl, Zy) = (p (C1Z1 4+ D1) 7' ® pa(CaZy + Dz)fl) [ 21, 922,), Z; € Hy,.
We regard Sp,,, (R) x Sp,,,(R) as a subgroup of Sp,,(R) by

(R)
A 0 By 0
0 A, 0 B .
dove)= | o D, 0 (g; € Sp,,, (R) for i = 1,2).
0 Cy 0 Dy
For variables Z = (z;;) of H,,, we denote by J; the following n x n symmetric matrix of

partial derivations

9 (1 +d;; 0O >
7 = —_— .
2 Oz 1<i,j<n

From now on, for an m x n matrix U = (u;;)1<i<m,1<j<n Of variables, we say that Q(U) is
a polynomial in U if it is a polynomial in u;; (1 < ¢ < m,1 < j < n). In particular if U
is an n X n symmetric matrix of variables, we say that Q(U) is a polynomial in U if it is a
polynomial in u;; (1 <i<j<n).

Fix k, A\, ny, and ny with depth(\) < min(n;,ne). Let D = P(dz) for a V) ,, n,-valued
polynomial P(T') in an n x n symmetric matrix 7. Assume that for any holomorphic function
F on H,, and any (g1, 92) € Sp,,, (R) x Sp,,,(R), the operator ID satisfies

(C(k’ >\7 n1, 712)) ResGD)(F‘k[L(gla g?)]) = (Res ]D)(F))’detk ®pn17)\,detk ®Prg,A [gla 92]7

where Res means the restriction of a function on Hl, to H,, x H,,. In such a case, we say
that the operator D satisfies Condition C(k, A\, nq,ns).

ARNVAT
"7 7y
Zy O\. . . :

0 ZQ) instead of Res D(F'(Z)). This condition on I can be roughly described
as the requirement that if F' is a Siegel modular form of degree n of weight &, then Res(D(F))
is a Siegel modular form of weight det® ®pn, » for each variable Z; for i = 1, 2. Here, if 2k > n,
the condition that p; and p, correspond to the same A is a necessary and sufficient condition
for the existence of D ([11]). We note that such a differential operator is uniquely determined
up to constant if k > nq + no.

For Z = ( ) € H,, with Z, € H,,,, Z» € H,,,, and Zy5 € M,, ,,,(C), we sometimes

write D(F) (

. . ~
Now, we consider some special type of A\. We assume that A = (I,...,[,0,...,0). We
A~ . . .
assume that A = ({,...,1,0,...,0). Let S be a 2m x 2m symmetric matrix of variables. Let

Dy, ,, be the differential operator in [5, (1.14)]. Then, for any holomorphic function F' on H,
and any (g1, g2) € Sp,,(R) x Sp,,,(R),

Res (Dfn,k<F‘k[L(gth)]> = (Res Din,k(F))ldetkH,detkH 91, 92],

and there exists a polynomial ﬁmvkv;ﬁl such that Dfn’k = ﬁm7k7k+l(0w) , where W' = (w;)
denotes the variables of H,,,.
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Now we review realization of representations of GL,, (C) x GL,,(C) by bideterminants.
Let U, V be m x n; and m X ny matrices of independent variables respectively. Let A =
(I,...,1,0,...,0) such that depth(\) = m. For integers n; and ny such that ny,ny > m, put

m ni—m m nao—m
ki'=(l,...,1,0,...,0) and ko' = (I,...,1,0,...,0), and let C[U, V]x 1 be the vector space
defined in Section 2. Then, we can take C[U, V]i i, as a representation space of py,, x ® pp, A
as explained in Section 2. We denote by U the following 2m x n matrix, where n = ny + no:

U 0
U= <o v) '
Then, by [2, Proposition 5.2, we obtain the following proposition.

Proposition 5.1. Notation being as above, consider A = (I,...,1,0,...,0) such that depth(\) =
m. For a partition (ny,n2) of n = ny + ng, we assume that m < min(ny,ny). Let T be an

n x n symmetric matriz. Then for Qan ny(T) = P i (UTU), the differential operator
Dk rnyne = Qranns(02) satisfies Condition C(k, A, ny,ny).

Remark 5.2. By Proposition 5.1, the operator Res Dy sn,m, sends M (™32 (resp.
ML) to Mgy (PEN@ME, (10 (1esp. My o, , (T0)O Mot o, (1)),

det® @pp; det” @pny,
In particular, Dk7,\,n17n2En1+n27k<<%l ZO2>,3> = (Res DgxnynoEnytnok(*,8))(Z1, Z2) belongs
to M3%, ®pn1)(lﬂ(”1)) ® M, Sy (I'"2)), and is slowly increasing as function of Z, and
Zy. Moreover, if | > 0 and ny = m, (Res Dy rmny)(Mp(LF72)) C S,k (™) ®

Mdetk ®Png,x (F(nQ)) .

®pm,/\

For our later purpose, we give an explicit formula for Qy x n, n, in the case A = (2,2,2,0,...,0)

and min(ny,ng) > 3. Let T = ( r T/;/

T ) be a symmetric matrix of variables of size 6. Define

Py(T) = —(det W)?,

3 y > - . . .
. . . 11 19 13 ia 15 g
Pl(T) = g § (_1>z1+22+13 det (T ( )) det (T ( >> |
i1 =1 4<ip<ig<6,1<iy<i5<ig<6 1 2 3 4 5 6
{ig,i5,i6}N{i1,i9,i3}=0

~

P3(T) = det Rdet S,
Py(T) = det T — Py(T) — PA(T) — P5(T),
and
Q2 (T) = 2(k — 1)(2k:3— 3)(k — 2)P0(T) N (k — 1):())2]{3 — 3)P1(T) N @%(T) - Py(T),

Remark 5.3. There is a misprint in [16]. The inequality ‘4 < iy < i3 < 6 on page 15, line
12 should read 4 <119 <113 <6’

Then, by [16, Section 4], we have the following lemma.
Lemma 5.4. Let A = (2,2,2,0,...,0). Let U and V be 3 x ny and 3 X ny matrices of

U 0
0 V)' Then we have

Q%,k = C(k)P3,k,k+27

variables, respectively. Put U = (
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and therefore,

Q%,k (UTtU) - C(k)Qk,A,m,nQ (T)7
where c(k) is a non-zero rational number and in particular, c(k) belongs to Z, for any prime
number p > 2k + 4.

Let nq, ny be positive integers such that ny < ns. Let A be a dominant integral weight
such that depth()\) < n;. For an integer r such that depth(\) < 7, we put p, = det® ®p,.,.
For a Hecke eigenform f € S, (I'™) we define D(s, f) as

D(s, f) = C(s)™" H C(25 — 20)"'L(s —r, f,St).

For any polynomial Q(U) with complex coefficients, we denote by Q(U) = Q(U) the poly-
nomial obtained by changing the coefficients of Q(U) by the complex conjugates. For any
function f, we write (6f)(Z) = f(—Z). This means that if f is a Fourier series of the
following form
f(Z) =" a(T)e(tr(T2))
T
with a(T) = a(T')(U) a polynomial in U, then we have

(01)(2) =Y a(T)e(tr(TZ)).

So if we take a(7T) to be real, we just have 0f = f.
The next theorem is a pullback formula due to [2, Theorem 5.6].

Theorem 5.5. Let A= (I,...,1,0,...,0),n1,n9,k and Dy x n, n, be those in Proposition 5.1.
Besides we assume that k is even and ny > ny. Let s € C such that 2Re(s)+k > ny+mna+1.
Then for any Hecke eigenform f € Spnl(F("l)) we have

(£ 2esmnsBnas (5 ) 5)) = elospu)DE2s K NI,

where c(s, pn,) 1S a function of s depending on p,, but not on ns.

Then we have a weak type of the pullback formula. Let & and [ be non-negative integers.

——
For the dominant integral A = (I,...,[,0,...,0) of depth my and integers ny, ny such that
mo < ny < no, let p,, = det® @ pny x and pp, = det® ®pn,.x be the representations of GL,, (C)
and GL,,(C), respectively, as above. We note that mg = 0 or mg = m according as [ = 0 or
[ > 0. Moreover, let Dy » », n, be the differential operator corresponding to the polynomial
Qk 1 np i Proposition 5.1. The following theorem can be proved in the same way as |2,
Theorem 5.7] using Theorem 5.5 (see also [15]).

Theorem 5.6. Let the notation be as above. We define a subspace ]\N/[pn1 (L)) of M, (I'™))
as

My, (I'"™)) = {F € M, (I'™) | ®;1(F) € 5,,,,(I""™)}

or Mpnl(F("l)) according asl > 0 orl = 0. Let {f, ;}1<j<a(m) be a basis of S, (I'™)) consist-
ing of Hecke eigenforms, and take Hecke eigenforms {Fj}aumyt1<j<a S0 that {[fmilpmt (1 <
j < d(m)), Fj (d(m) +1 < j < d)} forms a basis of M, (I'™). Suppose that k >
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max((n; + ne + 1)/2,[3m/2 + 2|) and that neither k = (ny + na + 2)/2 = 2 mod 4 nor
k= (ny+ny+3) =2 mod4. Then

d(m)
Drrnsna B o (g [?/) w0, o) Z (f ff ) [ ilom (Z)(U) [0 fin,s]onz (W)(V)
=1 m,jy Jmj
+ Z U)GW)(V)  (Z € Hyy, W € Hy,),

j=d(m)+1

where G is a certain element of M, (F(”Q)) Here, U and V' are m xn; and m X ng matrices

of variables, respectively, and we regard [fnilonl and Fy (resp. [0fmilo? and G;) as elements
of Hol[Ul, ~(resp. Hol[Vlx, ). Moreover c(0, pi) is a rational number, and in particular it

is p-adic unit for a prime number p such that p > 2(k +1).

6. CONGRUENCE FOR KLINGEN-EISENSTEIN LIFTS

To explain why Conjecture 4.6 is reasonable, we consider congruence for Klingen-FEisenstein
mo

series, which is a generalization of [2, Section 6] and [22]. For A = (k—1,...,k—1,0,0...)

mo m—mgo
7\

and a positive integer m such that k > [ and m > mg, put k/, = (k—1,... k — 1,0,... ,0).
Let (pm.x, Vina) be an irreducible polynomial representation of GL,,(C) of highest weight k!,
and p,, = det! QP2

Let U and V' be myxn, and mg X ny matrices of variables, respectively, where min(ny, ny) >
mo. Then we can take V,,, x = C[Uli;, , Vi, » = C[V]i, and every element F' of M, (Irm)H®

M

pny (I (n2)) is expressed as

F(Zy,Z,) = > (A, Ag; YU, V)e(tr(A1 Z, + Ay Zy))
Ay GHnl (Z)Zo,AQEHnQ (Z)ZO
with ¢(Ay, Ay; F)(U, V) € C[U, Vi, 1, . For a subring R of C, we denote by (M,,, (M) @
M, (I'™)))(R) the submodule of M,, (I'™))® M, (I"™)) consisting of all F’s such that

(A1, Ag; F)(U, V) € R[U, V], 1, forall Ay € Hy, (Z)>0, Az € Hy,(Z)>0. We also note that
every element F of M, (I'™)) @ V,,, » is expressed as

F(Z)= > cA;F)(U V)e(tr(AiZ,))
A1€Hn, (Z)s0
with c(Ay; F)(U, V) € C[U, V]k%vk?@' We then define a submodule (Mpn1 (F ) @ Vi a)(R)
of M, (™)) ® V,, » consisting of all F’s such that c(A;; F)(U,V) € R[U, Vi L for all
A1 € Hon ()0
For positive integers n and [, put
[n/2]
Z(n, 1) = (1= [T ¢t +2j —20).

i=1

We define Enyl as

En,l(Z) = Z(TL, Z)En,l(Z>
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and we set
. | / —mo(k—1) I Zl @)
gkl,m,m(zlv Z2) - (k - l)(2ﬂ' _1) ]D)l,)\,m,mEm-i-nz,l 0] Zy )"

Moreover, for positive integers m, [ and a Hecke eigenform F € Sy (™)) put

Z(m,1)
Con f(F) = —0 11 — g, F,St).
Z(m, 1)
We also use the same symbol C,,,;(f) to denote the value mL(l — my, I, St) for a
my,

Hecke eigenform f € S, (I (mo)). As stated before, we have the following isomorphism:
(1) L Sp(IM)) 5 F s F = (detU)'F e S, (I™),

where U is mg X mq matrix of variables. Then we note that Cp;(F) = Cpy(F) for a Hecke
eigenform F € Sy (I'™0)).
Now, for our later purpose, we rewrite a special case of Theorem 5.6 as follows.

Proposition 6.1. Let ny, ny be integers such that mg < ny < ng and let k,l be even positive
integers such that k > 1. Then we have

d(mo)
gk,l,nl,m(Zl? ZZ) = Tmo Z Cn1+n2,l(fmo,j)[fmo,j]gzzlg (Zl)(U)[efmo,j}z:?o (ZZ)(V)
j—l
+ Z (Zz)(v)
j=d(mg)+1

where Y, s a certain rational number which is p-unit for any prime number p > 2k, and
Gj(Z3)(V) is an element of M, (I"™2).

We write Epnyn, (21, Z2) as

E ity s (21, Za) = Z gklmm)N Zy)e(tr(NZy)).

N€Hn,

Then g(,C l)n o). Delongs to M, (™)) ® V,,, ». To consider congruence between Klingen-
Elsenstem lift and another modular form of the same weight, we rewrite the above proposition

as follows:

Corollary 6.2. Under the same notation and the assumption as above, let N € H,(Z)o.
Then,

m

Iy (Z1) = Yoo Z ontnod (Frno 1) o s o (Z0)(U)a(N, [fno g2 ) (V)

+ Z Ya(N,G;)(V).
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Observe that the first term on the right-hand side of the above is invariant if we multiply
fmo,; by an element of C*.
For Ty € H,, and T € H,,, put

Ty R/2\ =~
) im0 = 5 a(fy ) Bua)
)

REMn, ny (Z

X Q1 ms ((t;}Q };/22) U, V)7

where @i\ n, n, is the polynomial in Proposition 5.1 corresponding to I » , n, - Then we
have

5]67177117”2 (Zl, ZQ) = Z €k,lny,na (Tb T2)(U7 V)E(tr(lel + TQZQ))’
T GHnl (2)207T2€,Hn2 (Z)EO
and therefore

Iy (Z0) = D ertnnnn (T, N) (U, V)e(tr(TZ1)).
T€Hn, (Z)

Therefore, in view of [2, Proposition 6.5], similarly to [2, Corollary 6.7], we prove the following
proposition:

Proposition 6.3. For each N € H,,,(Z)~¢ let gX,“) be that defined above. Then

g((le,)m,nz),N(Zl) € (Mpn1 (F(m)) ® Vnz,k)(@)

and moreover
96ttty (21) € (M, (1) © Vi, 2)(Zi)
for any prime number p > 2k.

The following propositions can be proved in the same way as [2, Proposition 6.8] and |2,
Proposition 6.9], respectively.

Proposition 6.4. Let the notation and the assumptions be as in Theorem 5.6, and let
mo < m. Then for any Hecke eigenform f in S,,, (CmoN(Q(f), [flem € Mpm(F(m))(@(f)).

Pmg

Proposition 6.5. Let the notation and the assumption be as in Proposition 6.1. Let f be a
Hecke eigenform in Sp(I'™0). Then, for any N € H,,(Z)=o and Ny € H,,(Z)<o, the value

Coy ot (F)a(V, (7102 ) (V)a(Na, £) belongs 10 @)V, , where F is that in (1).
Theorem 6.6. Let k and [ be positive even integers such that k > 1 > [3mqg/2+42] and putk =

mo n2—mo . . .
(k,....k,0,....1) and My (") = M,,, (Ir'"2)). Let F € Sp(I'™) be a Hecke eigenform,
and p a prime ideal of Q(F) with p, > 2k. Suppose that p divides |a(A1, F)|*L(l —mq, F, St)
and does not divide

Cany. 1 (F)a(Ar, Fla(A, [F]¥)
for some Ay € Humy(Z)so and A € Hp,(Z)so, where [FI& = [F]02 as stated in Section 2.

o~ pmo
Then there exists a Hecke eigenform G &€ Mk(F("Q)) such that G is not a constant multiple
of [F]* and
G = [F]¥ (mod p).



HARDER’S CONJECTURE AND MIYAWAKI LIFT 21

Proof. The assertion in the case k = [ has been proved in [22] in more general setting and
the other case can also be proved using the same argument as in the proof of [2, Theorem
6.11]. OJ

Remark 6.7. The case ny = 1,ny = 2 and my = 1 is investigated by [32] in more precise
way.

mo n2—mo mo na—mo
7\

—N— - ——
Let k = (k,...,k,l,...;0) and k' = (k—1,...,k—1,0,...,0) as above. To confirm the
condition in Theorem 6.6, we give a formula for computing L(l —my, F, St)a(T, F)a(N, [F¥)
for a Hecke eigenform F' in Sk( mo)) T € Hypny(Z)so and N € H,,(Z)o. Let €ktmoms (L N)(U, V)
(m

be as in (2) and put gy = g . Recall that U and V' are mg xmg and mg X ny matrices,

(k, l ,mo,n2),N
respectively, of variables. We note that € mqn, (T, N)(U, V) can be expressed as
(3) €k tmoms (T, N)(U, V) = (det U)* e 1o (T, N)(V)

with €; (T, N) = €xx(T, N)(V) € C[V]w. Then gy is expressed as
gv(W) = Y (detU)" ex (T, N)e(tr(TW)).
TEHmy(Z)

Now, for a positive integer m, let T'(m) be the element of L,,, defined in Section 3. For a
positive integer m = p; - - - p, with p; a prime number, we define the Hecke operator T =
T(py)---T(p,). We make the convention that 7" = T'(1). We note that 7™ = T(m) if
p1,- .., pr are distinct, but in general it is not. For each m € Z~o and N € H,,,(Z)~o, write
gy | T (W) as

gy T™W) = > (det U)*epu(m, T, N)e(tr(TW))

TEHmO (Z)>O

with e;@k(m, T, N) € (C[V]k/
Let My, = My, (™)) or S (1)) according as k = I or not, and let {F};}?_; be a basis
of My, consisting of Hecke eigenforms. Furthermore write

Fj| T (2) = Ay Fj(2).
Then the following proposition follows from Corollary 6.2.

Proposition 6.8. Notation being as above, we have
exxc(m, T, N) ZAJma T, F;)B(F})

for any N € Hyy(Z)so, T € Hiny(Z)so and m € Zsgo, where B(F;) is a certain element of
C[V]w, and in particular we have

B(FJ) = Vmocmo+n27l(pj)a<N7 [Fj]k>
if Fy € Sp(I'™0)). Here, Y, is the rational number in Proposition 6.1.

We note that Con, 1 (F) = [[i2(msne) /2111 €(28 + 1 = 20)Crng 0 1 (F') for a Hecke eigenform
F in Sj,(1'm0)). Hence by the above proposition, we have the following formula:
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Proposition 6.9. For Ny € Hpy(Z)s0, N € Hpy(Z)~o let ey, = exx(m,Ni,N). Let F be
a Hecke eigenform in S,(I'™0)) and {Fj}‘}:l a basis of My, consisting of Hecke eigen-
forms such that Fy = F. For positive integers my,...,mq put A = A(my,...,mg) =
det()\j7mi)1§i,j§d. Then,

no €1 >\1,2 cee >\1,d
AYpnoCongt(F)a(Ny, F)a(N, [F]k) = 11 C(2i+1—20) A
i=[(mo+n2)/2]+1 €4 )\d’g - >\d,d

Corollary 6.10. Let the notation and the assumption as above. Let p be a prime ideal of
Q(F) such that p, > 2k. Suppose that p divides neither [[2,, 1) /241 (20 + 1 — 21) nor

€1 )\1’2 e )\Ld
oo . Then, p does not divide Copn, ;(F)a(Ny, F)a(N, [F]%).
(F] )‘d,Q c. )\d,d

Proof. By Proposition 3.2, A is an algebraic integer, and by the assumption, 7,,, is a p-unit.
Thus the assertion holds. U

The following lemma will be used in the next section.

Lemma 6.11. Let N € H5(Z)~o. Then for any T € H3(Z)so and a prime number p, we
have the following formula for exx(m,T,N):

erk(p, T, N) =erx(pT, N) + p* Cepp(p™'T, N)

+pF? > exx(p”'T[D],N)
DeGL2(Z)diag(1,p,p)GL2(Z)/GL2(Z)
+p*? > erx(p'T[D], N).

DEGLy(Z)diag(1,1,p)GL3(Z)/GLa (Z)
Here we make the convention that € (S, N) =0 if S is not half-integral.
Proof. The assertion follows from [1, Exercise 4.2.10]. O

Let V be the 3 x 5 matrix of variables stated above.

Theorem 6.12. Let k = (k,k,k,[,1) withl =k or k —2. Let Ay € H3(Z)so and A, €
Hs5(Z)so. Moreover, put

ifl=k

1
Pk<(t£;)2 }i{l?))(V) T etk - 27103, (V;‘;S/Q 52?{;) ) if=k-2

Here, Qg}kﬂ is the polynomial defined before Lemma 5.4, and c¢(k—2) is the non-zero rational
number in Lemma 5.4. Then

Ay, A)V) = Y Pk((tél?? }ZZ))(VM((Q%}Z?)75&1)-

REM3 5(Z)

(i )
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Proof. We prove the assertion in the case [ = k — 2. Let A = (2,2,2,0,0). Let Qr_2135 be
the polynomial in (2) with mg = n; = 3 and ny=5. By Lemma 5.4,

c(k —2)Qr—2.35( (tﬁ?g }?4/12) LU V) = ngl(UTﬂU),

U 0

where U = (O v

). Then, by (3) we have

c(k —2)Qr—2.35( (t}é;)g }34/12> LU, V) = (det U)k_lpk<(t£;)2 Z/f))(v).

O

We have an explicit formula [21] for a(T, Ey.,) for any semi-positive definite half-integral
matrix 7" over Z, and a Mathematica package [25] based on [8] for computing it. Therefore,
by using Proposition 6.9 and Theorem 6.12 we can compute the Fourier coefficients of the
Klingen-FEisenstein series in question.

7. MAIN RESULTS

In this section, we prove some cases of Conjecture 4.6, thereby proving the corresponding
case of Harder’s conjecture. For [ = 12,16, 20,22,26 let ¢; be the unique primitive form
in S;(SLy(Z)). We have the following Fourier coefficients for these forms: a(2, ¢12) = —24,
a(2,¢16) = 216, a(2, pag) = 456, a(2, da2) = —288, and a(2, ps) = —48. Let ¢3, be the
unique primitive form in Spy(SLo(7Z)) such that a(2, ¢3;) = 12(45 4 /144169). Let O be the
ring of integers in Q(¢3;). Then we have O = Z[§], where § = VL1169,

From the numerical tables in [31] based on [30] (see also [7]), we have

dime Sy(I <1>) =0, dime Sia,1410(F'®) = 1,
dime S(14,10) (r®y =1, dimg 5(14,14,14,12)(F(4)) =2,
dimg 5(14 14) (F ) =1, dimg 5(14,14,14,14)(F(4)) =3,

dime¢ S(21 J7) (F ) =1, dimc¢ 5(14,14,14,12,12)(F(5)) =2,
(4) dimg S(23,5) (r®y =1, dim¢ 5(14,14,14,14,14)(F(5)) =3.

For each (k,j) = (5,18),(7,14), or (10,4) let Gj;x be a Hecke eigenform in Sg ;) (I'®)
uniquely determined up to constant multiple. Let G14,14,12 be a Hecke eigenform in S(14,14,12) (1" (3))
uniquely determined up to constant multiple.

7.1. The (k,j) = (7,14) case. We consider Conjecture 4.6 with (k,j) = (7,14) and n = 2.
Let f = ¢96 and g = ¢12. The prime number 97 divides the ratio

L(k+4,/) _ LELJ)

L(k+j/2+1,f) L(15,f)

(cf. [26, p. 383] and [33, p. 240]; note that there appears to be a misprint for the value r4 in

[26] regarding the exponent of 5).
Let k = (14,14, 14,12,12). Then, by (4) and Theorems 4.3, 4.4 and 4.5, we have

Su(I'®) = (MG (f, 9))c,
5(14,14,14,12) (F(4)) = <A4[1](¢;—47 G14,10)7A411]<¢2_47 G14,10)>(Ca

=5-97
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and
5(14,14,14,12,12)(F(5)) = <Mg(¢16,M§4<f7 9))7A15<(G21,7,9)>C-
Hence we have Mk(F ®)) = (Sy)¢, where
Sk = { M5 (p16. M5 ([, 9)), AE(Gar7, 9), [AL (634, Gra10)],
(AL (621, Grao)], MG (f, )]}

(cf. Theorems 5.6 and 6.6 for the definition of Mk) Here, we give a list of the standard
L-functions for F' € Sy.

F L(s, F,St)
Mflf(gblﬁv Mil’)4(.fa g)) L(S> g, St) H?:l L(S + 14 — iv f) H?:l L(S +9 - iv ¢16)
.A}:]((Gglj, g) L(S, q, St) H?:l L(S —+ 14 — i, G2177, Sp)

(AL (¢35, Graa0)< | L(s, Gra0,St) [T, L(s + 13 — 4, 64,)¢
A (31, Grano)] | L(s, Grano, St) [T7_, L(s + 13 — i ¢24)
MG (f, 9)]* L(s, 9,8t [T7y L(s + 14 —i, )T, ((

TABLE 1. Standard L-functions for F' € S, k

(s —=7)C(s+7T)
(s =T)¢(s+7)
C(s—=94+19)((s+9—1))
14,14, 14,12, 12)

1 0 1/2
Let Bp=| 0 1 1/2]. Put
/2 1/2 1
_ 2 Bl R/2 Bl R/2 ~
n= Z Q3,k<<tR/2 B, >a< tR/2 B 7E3,12)-
ReMg 3(Z)
B1 R/2
(tR/Q B )20

Then, by [16, Theorem 4.8], we have
|a(By, MG (f, 9)PL(9, M5*(f, 9), St) = dn
with d € ZXW) Then, by a computation with Mathematica [34], we have
n = —6063676416 =0 mod 97,
and we see that 97 divides
|a(By, MG (f, 9)PL(9, M5 (f, 9), St).-
10 1/2 0 1/2

0 1 1/2 0 0 100 00
Let A=|[1/2 1/2 1 1/2 0 |. Then, substituting V for {0 1 0 0 0] in The-
0O 0 1/2 1 0 00100
/2 0 0 0 1
orem 6.12, by a computation with Mathematica
100 00
c(12)el4vk(B1,A)( 01000 ):—w¢o mod 97.
00100 g
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Here ¢(12) is the non-zero rational number in Lemma 5.4. We note that ¢(12) belongs to
Z}y. Moreover, 97 does not divide ((—13). This implies that 97 does not divide

97)"
610,12(M§4<f7 g))a<B17 M§4<f7 g>a’(A’ [Mé4(f7 g)]k)7

and, therefore by applying Theorem 6.6 with k = (14, 14,14,12,12), mo = 3 and ny = 5,
there exists a Hecke eigenform H € Sy such that H # [M*(f, g)]* and

H =, [M§4(f, g)]k mod 97.

Then, we have
(5) Lo(X, H,St) = Lo( X, [ME*(f, 9)],St)  mod 97.
Here, L,(X, F,-) denotes the p-th Euler factor for L(s, F'-) as defined in Section 3.

F L2(X, F, St)

o ST | (8B~ (3 1+ 7 )
( X +2X2)( 3X 1 2x?)
( 23X 23X2 X3> L2(2712X, Gy 7, Sp) L2(2- 13X, Giar 7, Sp)

[‘Aﬁlll(d)étb Gl4,10)]k ( P) 29

AL (g5, Grago)[ | (1= 27X) (1= L) (14 3EBH0X X;) (1 4 w " 2X2) La(X, Gia10,St)
VA4, g)) (1+ 28X 28X2 _ x3)(1 - 28X)(1 - 27X)(1 — %)(1 ~ &)

(1+ % + )(1 + 32X +2X?)

A‘g(G21,7,g)
1- 27X) (1-50) (1 - 220X 4 22 (1 - 220X 4 5 x2) Ly(X, Gy 10, St)

TABLE 2. Euler 2- factors LQ(X F, St) for F' € Sy, k = (14,14, 14,12,12).

Let p} and p}, be prime ideals of O = Z[f] such that pjp, = (97), defined by (97,6 + 33)
and (97,0 — 34) respectively. Recall that § = 1Hv1HI09

From Table 2, it is straightforward to identify the following irreducible factors of Ly (X, F, St)
for F' € Sk, when considered modulo a prime of Z or Z[0]:

Ly(X, ME (616, M3H(£,9)),8t) = (1= X)(3 — X)(41 — X)(45 — X)(65 — X)(69 — X)
x (71 — X)(2+ 65X + X?)(49 + 81X + X?) mod 97,

Ly(X, A¥(Ga17,9),St) = (1 — X)(3 — X)(65 — X) x (other factors) mod 97,

Lo(X, [AS (63, Gra10)]%, St) = (31 — X)(72 — X)(49 + 12X + X?)(2 + 24X + X?)

x (other factors) mod p,

Lo(X, [AY (643, Graao)]*, 88) = (31 — X)(35 — X)(61 — X)(70 — X)(72 — X)(79 - X)

x (other factors) mod pj,

Ly (X, [AY (634 Gra10)]*, St) = (31 — X)(35 — X)(61 — X)(70 — X)(72 — X)(79 — X))
X (other factors) mod pf,
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Lo( X, [A (¢34, G1410)],St) = (31 — X)(72 — X)(49 + 12X + X?)(2 + 24X + X?)
X (other factors) mod pj,
and
Lo (X, [M5*(f,9)],8t) = (1 — X)(3 — X)(31 — X)(36 — X)(41 — X)(45 — X)
X (62 — X)(65 — X)(69— X)(71 — X)(72—X) mod 97.

This leads to the conclusion that F € Sy \{A¥(Ga17,9), [Mi*(f,g)]¥} cannot be H. Con-
sequently, it must be the case that H is identical to AX(Gay7,9).

Theorem 7.1. We have
Alg(G21,7>g) =ev [M%)Ll(f?g)]k mod 97.
By Theorem 4.8, we obtain the following:

Corollary 7.2. Conjecture 4.2 holds for (k,j) = (7,14) with f = ¢96, F = Gz and
p=(97).
7.2. The (k,j) = (5,18) case. We consider Conjecture 4.6 with (k,j) = (5, 18) and n = 2.
Let f = ¢96 and g = ¢12. The prime number 43 divides

L(k+j,f)  L(23,[)

Lk+j/2+1,f) L(15, f) =23 143

(cf. [26, p. 383]).
Let k = (14,14,14,14,14) and k' = (14, 14,14). Then, by (4) and by Theorems 4.3, 4.4
and 4.5, we have

Su(rWy = {0}, Su(I®) = Ts(f))c,  Su(l®) = (M(f, 9))c,
S1a(IF™) = (M (d22,92(f)), Ta(93,), Ia(30))cs

and
S1a(F®) = (ME (a0, MGU(f, 9)), K5 (d22, Grara12), Ak (Gas s, 9))e-
Hence we have
Mo (I'®) = My (I'®) = (Es 1, D2 ()], ME(f, 9))e
and My(I'®) = My(I'®) = (S)¢, where
Sic = { Es 10, [T (NI MG (f, @)%, MG (22, T (P, [Ta(@30)], [Ta(d20)],
M (20, M5 ([, 9)), K5 (22, Grana2), AS(Gazs5, 9)

(cf. Theorems 5.6 and 6.6 for the definition of Mk) Here, we give a list of the standard
L-functions for F' € Sk.
Let By and A be as in (I), and

BQI

o O =
o = O
_— o O
o
=
o,
sy
w
I
—_
~
[\
O =~
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F L(s, F,St)

E5 14 C(S) H?:l(C(S — 14+ Z)C(S + 14 — Z))

0:2(f )k [Ty L(s + 14 — i, £)C(s) TTi=y (C(s — 12+ 8)¢ (s + 12 — 7))
[IMGH(f, g)]* L(s,9.8) TI_) L(s + 14 — i, /) [T2_,(C(s — 11+ i)¢(s + 11 — i)
[W(qﬁm, (PN | Ty L(s + 14 — 4, £)¢(s) TTioy Ls + 12 — i, 22)¢ (s — 9)¢ (s +9)
[9a(o5)] C(3) TTiy L(s + 14 =, 641)C(s = 9)C(s +9)

[Ja( 24)] C(s) [T,y L(s + 14 — i, 05,)C(s — 9)¢(s +9)

ME (o0, MEH(f, 9)) | L(s,9,5t) TTo_y L(s + 14 — i, f) TT7_; L(s + 11 — i, ¢ap)

K (o2, Grananz) | L(s, Granans, St) [Ty L(s + 12 — i, ¢oy)

AX(Gas5,9) L(s,9,5t) [T-_y L(s + 14 — i, G35, Sp)

TABLE 3. Standard L-functions for F' € Sk, k = (14, 14,14, 14, 14).

Let Fy = MIN(f, 9)]¥, Fy = Es14, F5 = [Jo(f)]¥. For a prime number ¢ and i = 1,2,3, put
1 1 1
Ni(q) = Ar(T(q)), and A = [A(2) X2(2) A3(2)|. By [1, Exercise 4.3.17] and [27, (8.1)], we
) A(3) A2(3) As(3)
ave

AL(2) = —293760, A;(3) = 486349920,

A2(2) = (1428 (142 (1 421, Ao (3) = (1 +3%) (1 4+ 3'%)(1 + 31,
and

A3(2) = (—48 4+ 21 +21)(1 + 21, A3(3) = (—195804 + 33 + 312)(1 + 3'1).

Therefore we have A # 0 mod 43.
For B € Hg(Z)>Q put

nB.B) = Y a((tﬁb Ré2)753714>.

ReM3 3(2)

(4 )

m = 1(By, By), 1y = 1(Bi,2By) + 2"1(By, By),
and
n3 = n(B1,3B1) + 4 x 3''n(By, Bs).

Then, by using the same method as in [16, Theorem 4.8] combined with Lemma 6.11, we

have
m 1 1

|a(By, M3*(f, 9)PLAL, M (f,9),St) = di |2 Aa(2) As(2)| A7

ns A2(3) As(3)

with d; € Z (43)" By using Mathematica,

2687696148060
n(Blu Bl) = - )
23
94888664687216034861660
U(Bla QBI) ==

23 ’
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205845507642515587623184635360

B.,3B)) = —
77( 1 3 1) 23 )
970186595803740
n(B1, Bz) = — 53 :
3853803861382600440
n(Bla Bd) = - 23 )
and
m 1 1

T Aa(2) A(2)| = —3473745417074087386524297436594176000 = 0 mod 43.
n3 A2(3)  As(3)

This implies that 43 divides
|a(B1, M5'(f. 9)PL(11, M5 (£, ). St).
Let
e1x = €1ax(B1, A),
eax = €1ax(2B1, A) + 2 €141(Ba, A),
esx = €1ax(3B1, A) +4 x 3% €141 (Bs, A).
Then, by Proposition 6.9, we have

AC10,14(M§4(f7 g9))a(Bu, M§4<f7 g)a(A, [M§4(fa 9)]¥)

€1k 1 1
= d1C(—17> 6271{ )\2(2) )\3(2)
6371( )\2(3) )\3(3)

with d; € Z(X43). By a computation with Mathematica,

1226172627792
61471((31; A) = 5 )
1754669488958870503824
614,1{(231, A) = - )
55
3609821538245110292761071744
(6) 614’1{(3.81, A) = —
55
952461422270064
514,k(BQaA) = 55
50292943071075936
614,1((33, A) = - 5 )
and
€1k 1 1
J 13063602201123519956013021344563200000
€2k )\2(2) )\3(2) = — 11 ;_:é 0 mod 43.

€3k )\2(3) )\3(3)
Moreover 43 does not divide ((—17). This implies that 43 does not divide

C10,14(M;134(f7 g))a(By, M§4(fv g))a(A, [M§4(f, 9x).
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Therefore, by Theorem 6.6 with k = (14,14, 14,14, 14), my = 3 and ny = 5, there is a Hecke
eigenform H € Sy such that H # [M3*(f, g)]* and

H =, [M3*(f, 9)]* mod 43.
We note that p := 439 is a prime ideal of ©. We have
Ly(X, H,St) = Ly(X, [MG'(f, ¢)],St) mod p.

F Ly(X, F, St)

Es14 (1- )H g(1 - 21X)(1 —277X)

[Ta ()] Q1+ + % )(1 5 4+ 2X)(1 - X)[[ (1 - 2/X)(1 —27'X)

MGH(f. 9))* (1+ M—% X3)(1+ i +X7)( +3X L ax?) T (1 - 21X) (1 — 277 X)
OV (G, Ta £ | (1= 221 = X)(1 - B+ 5+ )+ )

x(1+ 35 +2X3)(1+ 2+2X)

[Ta(as)]" (1- 29X)( - X)(1- 2*9) lel La(271X, 63,)
[34(¢54)]k (1—29X)(1—)2(>(1— 29)1_[1 1L ( 4X ¢24 ,
M (620, MG (f9)) | (1+ 5 — 255 - X9 (1= 5% + 51+ 5 + %)
x(1— 53X + 2X2)(1+ 35 + 2X2)
Ks(pa2, G1a14.12) (1+ 96{4( + )(1 + %)2( + 2X2)L2(X G14,14,12, 5t)
A¥(Ga35,9) (142X — 23X2 — X3 L(2712X, Gz 5,5p) La(2713 X, Ga3 5, Sp)

TABLE 4. Euler 2 factors Ly(X, F,St) for F € Sk, k = (14, 14,14, 14, 14).

From Table 4, it is straightforward to identify the following irreducible factors of Ly (X, F, St)
for F' € Sy, when considered modulo p:

La(X, Es14,8t) = (1 — X)(2— X)(4 — X)(8 — X)(11 — X)(16 — X)
x (22 — X) (27— X)(32 — X)(35 — X)(39 — X) mod p,

Ly (X, [Jo(£)], St) = (1 = X)(8 = X)(16 — X)(27 — X)(32 — X)(35 — X))
x (39 — X)(22 + 10X + X?)(2 420X + X?) mod p,

Lo(X, [MGH(f, 9], St) = (1 — X)(16 — X)(20 — X)(28 — X)(32 — X)(35 — X)
x (39 — X)(22 + 10X + X?)(2 4+ 20X + X?) mod p,

Lo (X, MG (622, 92(f))]*, 8t) = (31 — X)(35 — X)(61 — X)(70 — X)(72 — X)(79 — X)
X (other factors) mod p,

La(X, [94(64)]%, St) =

(1-X)(32 - X)(39 — X) x (4 quad. factors) mod p if Lo(X,p5,) is irreducible  mod p
(1—X)(32—X)(39— X) x (8 linear factors) mod p otherwise,
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Lo(X, [Ta(¢31)]*, St) =

(1—-X)(32—X)(39 — X) x (4 quad. factors) mod p if La(X, ¢py,) is irreducible  mod p
(1—-X)(32—X)(39— X) x (8 linear factors) mod p otherwise,

Lo (X, M (20, M3*(f, 9)), St) = (1 — X)(20 — X)(28 — X)(22 + 10X + X?)
X (22 + 14X + X?)(2 4 20X + X?)(2 4 28X + X?) mod p,

Ly (X, K5(¢22,G14,14712), St) = (5 — X)(10 — X)(13 — X)(26 — X)

x (other factors) mod p,

La(X, A (G, 9),58) = (1— X)(20 = X)(28 — X)
X (other factors) mod p.

By comparing the irreducible factors of Ly(X, [Mi*(f, g)]¥, St) with those of F' € Sy mod-
ulo p, we can conclude that H = A¥(Ga33, 9).
Hence, we have the following theorem.

Theorem 7.3. We have
Ag(G23757 g) =ev [Mil’)4(f7 g)]k mOd 43
By Theorem 4.8, we obtain the following:

Corollary 7.4. Conjecture 4.2 holds for (k,j) = (5,18) with f = ¢, F = Gazp and
p=(43).

Remark 7.5. (1) If we use the Galois representation theoretic method, we can shorten
the verification of non-congruences in Subsections 7.1 and 7.2.
(2) Since we have

L(j/2+2,M57(f,9),St) = L(j /2 + 2,9, St)L(k + j + 1, f)L(k + 4, ),

it is expected that the divisibility of L(j/2 + 2,M§+]/2(f, g),St) by a prime ideal p
follows from the divisibility of L(k + j, f) by p. In the Saito-Kurokawa lift case, such
a result was given using the period relation due to Kohnen and Skoruppa [24] (cf. |2,
Proposition 6.12] ). However, such a result has not been given in the Miyawaki lift of
type Il because we have no such a period relation at present. We note that such a
period relation was conjectured in the case of Miyawaki lift of type I by Ikeda [19].

(3) Harder’s conjecture for (k,j) = (5,18) has been already proved by Ibukiyama [13]
combined with Ishimoto [20].

(4) To compute (6) using Theorem 6.12, it is necessary to sum over all R € Ms5(Z) such

that <5}§12 Rf) > 0. We note that there are 25,912,907 matrices R that satisfy this

condition, which indicates the significant computational complexity involved. This
particular computation is the most challenging one discussed in this paper.
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