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The information-geometric statistical analysis on the stability of model reductions, reported previously
[Imbrišak and Nomura, Phys. Rev. C 107, 034304 (2023)] with a focus on the manifold boundary approximation
method in the application to the nuclear density-dependent point-coupling model of infinite nuclear matter,
is extended to the numerically more challenging case of finite nuclei. A simple procedure is presented for
determining the binding energies of doubly magic nuclei within the relativistic mean-field framework using
the Woods-Saxon potential. The proposed procedure, employing the Fisher information matrix combined with
algorithmic differentiation, is shown to provide reliable estimates of parameter uncertainties of the nuclear energy
density functional for finite nuclei, while reducing the time-consuming sampling of the parameter space, which
would be required in the numerically more involved Bayesian statistical techniques.
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I. INTRODUCTION

The nuclear energy density functionals (EDFs) are a widely
used framework for describing nuclear structure phenomena.
Many such EDFs are based on the relativistic mean-field
(RMF) Lagrangian in the finite-range meson-exchange model
[1]. The density-dependent meson-nucleon couplings have
been successfully applied in this framework to describe
asymmetric nuclear matter [2]. Alternatively, since the ex-
change of heavy mesons cannot be resolved at low energies,
the self-consistent RMF framework can be formulated in
terms of point-coupling nucleon interactions. This approach
yields comparable results to the meson-exchange coupling
approach for finite nuclei [3,4]. For example, the success-
ful phenomenological finite-range interaction, denoted as the
density-dependent meson-exchange (DD-ME2), is mapped to
the point-coupling framework by relating the strength param-
eter of the isoscalar-scalar derivative term to different values
of the mass of the phenomenological σ meson in the DD-
ME2 model [5]. The resulting “best-fit model”, such as the
density-dependent point-coupling (DD-PC1) functional (see,
e.g., [6]), requires the fine-tuning of the density dependence
of the isoscalar-scalar and isovector-vector interaction terms
to nuclear matter and ground-state properties of finite nuclei.

The issue of uncertainty quantification and error propaga-
tion in nuclear EDFs has recently attracted attention, focusing
on the study of error estimates by statistical analysis [7,8], as-
sessment of systematic errors [9,10], and correlation analysis
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[10,11]. However, statistical analysis is more challenging for
the point-coupling models since they are found to exhibit an
exponential range of sensitivity to parameter variations [6].
This behavior is found to be a feature of imprecise models,
that is, models that depend only on a few rigidly constrained
combinations of the parameters [12].

Recent advancements [13–16] in the understanding of
the behavior of model uncertainty have yielded new ap-
proaches, such as the manifold boundary approximation
method (MBAM) [17]. MBAM is a systematic procedure
for reducing model uncertainty by constructing progressively
more precise lower-dimensional models from an initial im-
precise higher-dimensional model. This construction is based
on the concepts from information geometry—an interdisci-
plinary field that introduces differential geometry concepts to
statistical problems [18,19].

MBAM has already been used to systematically construct
effective nuclear density functionals of successively lower di-
mensions and smaller impact of uncertainty. This method was
illustrated on the DD-PC1 functional evaluated for pseudodata
for infinite symmetric nuclear matter in Ref. [20]. In Ref. [21],
this analysis was extended to calculate the derivatives of ob-
servables with respect to model parameters, and it has become
possible to apply the MBAM to realistic models constrained
not only by the pseudodata related to the nuclear matter equa-
tion of state but also by observables measured in finite nuclei.
In our recent paper [22] we investigated the overall stability
of the MBAM procedure applied in the reduction of nuclear
structure models using methods of information geometry and
Monte Carlo simulations. In the illustrative application to the
DD-PC1 model of the nuclear EDF, we found that the main
conclusions obtained by using the MBAM method are stable
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under the variation of the parameters within the 1σ confidence
interval of the best-fitting model.

In contrast to the simple case of infinite nuclear matter,
where one would have to solve only a simple iterative proce-
dure to obtain the Dirac mass and binding energy, finite nuclei
require a careful description of the nuclear many-body prob-
lem. Broadly speaking, statistical analysis can be performed
either in the Bayesian framework, i.e., by employing elaborate
Monte Carlo simulations, or in the “classical” framework,
found by computing the Fisher information matrix (FIM) and
its inverse (the covariance matrix) from the chosen statistical
model (see, e.g., [10]). The latter approach should be, in prin-
ciple, less time-consuming than running an extensive Monte
Carlo simulation. However, when computing the FIM, one has
to constrain the first derivatives of the chosen statistical model,
either numerically or analytically. Attempting a simple ex-
tension of existing implementations of RMF FORTRAN codes
[23–26] would introduce uncertainties due to employing nu-
merical differentiation. We, therefore, intend to implement a
simple proof-of-concept version of a finite nucleus code in
PYTHON, in which well-tested libraries for algorithmic differ-
entiation (AD) exist.

The analysis presented below is based on a procedure
for determining the RMF binding energies, starting from a
simple and widespread [25,26] assumption of a Woods-Saxon
potential, often used to compute the starting point for density-
dependent potentials. This paper compares numerically esti-
mating parameter errors using a chosen Bayesian statistical
technique—the Markov chain Monte Carlo (MCMC) to the
faster method of directly determining the covariance matrix
without sampling but using the AD-determined FIM.

The paper is organized as follows. In Sec. II, we give an
overview of the RMF procedure implemented in the present
analysis, and in Sec. III we describe the inputs used for our
PYTHON routines. In Sec. IV we present the results of our
statistical analysis. Finally, a conclusion is given in Sec. V.

II. NUMERICAL IMPLEMENTATION
OF THE RMF PROCEDURE

In this section, we briefly overview the overall relativis-
tic Lagrangian (Sec. II A) and the chosen pairing model
(Sec. II B). We describe the matrix elements for the Dirac
equation for the proton and neutron single-particle energies
in the spherical system (Sec. II C). and the functional form of
the Woods-Saxon potential that is implemented in our PYTHON

codes (Sec. II D).

A. Relativistic Lagrangian

The relativistic Lagrangian governing point-coupling mod-
els is based on a set of bilinear currents

ψ̄Oτ�ψ,Oτ ∈ {1, τi}, � ∈ {1, γμ, γ5, γ5γμ, σμν}, (1)

where ψ is the Dirac spinor, used to describe nucleons,
τi’s are the Pauli matrices for isospin, and � represents the
Dirac matrices. The resulting Lagrangian may be divided into
the free-particle Lfree, bilinear current L4 f , bilinear current
derivative Lder, and the electromagnetic Lem components [27]:

L = Lfree + L4 f + Lder + Lem. (2)

The interacting parts of the Lagrangian are composed of
four types of fermion interactions: the isoscalar-scalar (ψ̄ψ )2,
isovector-vector (ψ̄γμψ )(ψ̄γ μψ ), isovector-scalar (ψ̄ �τψ ) ·
(ψ̄ �τψ ), and the isovector-vector type (ψ̄ �τγμψ ) · (ψ̄ �τγ μψ ).

In the point-coupling models, the interacting terms are
added to the Lagrangian by multiplying the bilinear currents
by their respective couplings (denoted by δS , αS , αV , αT S , and
αTV ) that are dependent on the baryon density, ρ̂, defined as

ρ̂uμ = ψ̄γ μψ, (3)

where uμ is the four-velocity uμ = (1 − v2)−1/2(1, �v). The
considered class of point-coupling models employs only
second-order terms, disregarding, e.g., six-fermion and eight-
fermion vertices but, instead, promotes the coupling constants
to functions of nucleon density [27]. These models are built on
the same building blocks as in the meson-exchange models,
wherein the single-particle properties are tied to the three
meson fields: the isoscalar-scalar σ meson, the isoscalar-
vector ω meson, and the isovector-vector ρ meson, without
the isovector-scalar term [5].

B. Pairing

Pairing is a crucial nuclear correlation in open-shell nuclei
and is, therefore, necessary to describe nuclei that are not
doubly magic [28]. Although it is not necessary to include
pairing for the set of doubly magic nuclei, we do not restrict
our codes in that manner. This is to ensure that the analysis
presented below can be easily extended to future work dealing
with open-shell nuclei where pairing correlations play a role.
In the constant gap approximation [29], each single-particle
state is occupied according to the occupation probability, v2

i ,
calculated by using the BCS formula

v2
i = 1

2

[
1 − εi − λ√

(εi − λ)2 + �2

]
, (4)

where λ is the chemical potential and � is the gap parameter.
The chemical potential is determined separately for protons
and neutrons by finding a solution to the equations for the
chemical potentials for protons and neutrons,∑

i

v2
i,p(λp) = Z, (5)

∑
i

v2
i,n(λn) = N, (6)

so that the total numbers of neutrons and protons are con-
served. The pairing energy can then be computed from a
simple expression

Epair = −G
∑

i

(viui )
2, (7)

where ui is the unoccupation amplitude satisfying u2
i = 1 −

v2
i , and G is a constant determined from the self-consistency

condition

� = G
∑

i

uivi. (8)
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Since the sum necessary for computing the pairing energy
diverges, one often introduces cutoff energy [23,28].

C. The spherical system

The procedure is based on solving the Dirac equation for
the single-particle energies for protons and neutrons in the
spherical system. First, the single-particle wave function is
decomposed into the isospin wave function χti (t ), the spin
wave function χ1/2(s), the angular momentum wave function
Yl (θ, φ), and two spinor radial components, f (r) and g(r).
Due to symmetry considerations, the solutions are separable
in terms of the total angular momentum j, and parity π ,
yielding the following relations:

l ( j, π ) = j + π/2, (9)

l̃ ( j, π ) = j − π/2, (10)

κ ( j, π ) = π ( j + 1/2). (11)

The maximal radial quantum number needs to be truncated in
practical calculations to obtain finite matrices. The maximum
radial quantum number for the expansion of radial functions f
and g (nmax and ñmax, respectively) are determined as functions
of the final major shell quantum number NF . The value of the
maximal radial quantum number of the function g is greater
than the maximal value for f to avoid spurious solutions.
These states of a high radial quantum number close to the
Fermi surface arise from the lack of coupling for the fnmax state
to the g states through the σ · ∇ term when a truncation of the
quantum number is applied [23–25], i.e.,

nmax = NF − l ( j, π )

2
, (12)

ñmax = NF + 1. (13)

In this separation, a joint spin and angular momentum quan-
tum numbers, |l jm〉, are represented with the two-dimensional
spinor

�l jm(θ, φ, s) = [χ1/2(s) ⊗ Yl (θ, φ)] jm. (14)

The full wave function can then be written as

ψ (r, θ, φ, s, t ) =
(

f (r)�l jm(θ, φ, s)

ig(r)�l̃ jm(θ, φ, s)

)
. (15)

After separating the isospin, spin, and angular momentum
components, one can use the simplified Hamiltonian for a
single ( j, π ) block for protons and neutrons, whose solution
depends only on the radial coordinate

ψ jπ (r) =
(

f jπ (r)
ig jπ (r)

)
. (16)

Both f and g functions are expanded using the relativistic
quantum harmonic oscillator basis

Rn,l = Nn,l L
l+1/2
n (ξ 2)ξ l e−ξ 2/2, (17)

where the radial coordinate has been rescaled to a dimension-
less quantity ξ using the scaling parameter b0 =

√
1.011A1/3.

FIG. 1. Reduced χ 2
red value of the finite-nucleus model as a func-

tion of NF for the Woods-Saxon potential. The dashed lines represent
the execution time of the χ 2

red function and the computation time of
the Woods-Saxon FIM.

The expansion includes a finite range of radial quantum num-
bers that are different for f and g functions(

f

g

)
=

(∑nmax
n fnRn,l∑ñmax
ñ gñRñ,̃l

)
. (18)

The limits nmax and ñmax are dependent on the total quantum
number NF and angular momentum.

For each ( j, π ) block, the Dirac equation is solved using
the effective mass M and potential V . The aforementioned
ansatz, ψ = ( f (r), ig(r)), yields the following matrix equa-
tion:(

V + M − m h̄c
(
∂r − κ−1

r

)
−h̄c

(
∂r + κ+1

r

)
V − M − m

)(
f

g

)
jπ

= ε

(
f

g

)
jπ

.

(19)

Using the relativistic harmonic oscillator basis introduced in
Eq. (17), this matrix equation can be structured as

(
A BT

B −C

)⎛⎜⎝ f1
...

gñmax

⎞⎟⎠ = ε

⎛⎜⎝ f1
...

gñmax

⎞⎟⎠, (20)

using three matrices Ann′ , Bñ,n′ , and Cñ,̃n′ :

An,n′ =
∫ ∞

0
r2drRn,lRn′,l (V + M − m), (21)

Bñ,n′ = h̄c
∫ ∞

0
r2drRñ,̃l

(
−∂r − κ + 1

r

)
Rn′,l , (22)

Cñ,̃n′ =
∫ ∞

0
r2drRñ,̃l Rñ′ ,̃l (M + m − V ). (23)

Once the wave functions are known, the pairing is introduced
as an additional weight to the density of each eigenstate, v2

i ,
as outlined in Sec. II A using Eq. (6).

D. The Woods-Saxon potential

We shall apply the finite nucleus procedure to the sim-
ple case of the Woods-Saxon potential. The Woods-Saxon
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TABLE I. The data set consisting of the charge radii, rch, and
single neutron, εn, and proton, εp, energies for occupied states. The
single-particle energies are computed using the Woods-Saxon poten-
tial as determined in Ref. [30].

Nucleus rch (fm)

4He 1.65
16O 2.41
40Ca 3.29

εn (MeV)

1s1/2 1p3/2 1p1/2 2s1/2 1d5/2 1d3/2

4He −25.30
16O −43.20 −24.68 −19.04
40Ca −53.34 −39.40 −35.40 −24.95 −18.51 −17.42

εp (MeV)

1s1/2 1p3/2 1p1/2 2s1/2 1d5/2 1d3/2

4He −24.95
16O −40.08 −22.39 −18.36
40Ca −45.80 −33.08 −30.32 −19.53 −14.96 −13.23

potential is also the first step for more complex density-
dependent potentials. The shape of the Woods-Saxon potential
is known, and this potential does not depend on the nucleon
densities. Therefore, unlike density-dependent potentials, the
procedure need not be run iteratively, thus reducing computa-
tional complexity for various numerical tests.

The shape of the potential has been adapted from [30], the
authors of which developed a relativistic equivalent of the
simple Woods-Saxon potential. In their model, a set of 12
parameters was used to constrain the shape of the Woods-
Saxon potential by describing both the potential and the
effective mass. Their model accomplishes this by introduc-
ing four different potentials—the normal (Up and Un) and
spin-orbit potentials (Wp and Wn) for protons and neutrons.
These potentials were tied to the vector V and scalar S poten-

tials in the Dirac equation by considering their nonrelativistic
limit as

U = V + S, (24)

W = V − S. (25)

The strengths of all four potentials are regulated by the over-
all potential strength V0 and modulating factors for different
numbers of protons and neutrons, κ , and for the strength of the
spin-orbit contribution, λp and λn. The shape of the potentials
is regulated by four diffusivities, ap, an, als

p , and als
n , and four

radii Rn
0, Rp

0 , Rn
0,ls, and Rp

0,ls.
1 The resulting potentials are given

as follows:

Up(r) = V0
(
1 + κ N−Z

A

)
1 + e

r−R
p
0 A1/3

ap

+ UC (r), (26)

Un(r) = V0
(
1 − κ N−Z

A

)
1 + e

r−Rn
0A1/3

an

, (27)

Wp(r) = V0λp
(
1 + κ N−Z

A

)
1 + e

r−Rp
0,lsA1/3

als
p

+ WC (r), (28)

Wn(r) = V0λn
(
1 − κ N−Z

A

)
1 + e

r−Rn
0,lsA1/3

als
n

. (29)

An additional component describing the repulsive Coulomb
potential UC is added to the potential of protons using the
homogeneously charged sphere potential

UC (r) =
{

Ze2
(

3
Rp

0 A1/3 − r2

(Rp
0 )3A

)
, r � Rp

0A1/3

Ze2

r , r > Rp
0A1/3

, (30)

WC (r) =
{

Ze2
(

3
Rp

0 A1/3 − r2

(Rp
0 )3A

)
, r � Rp

0A1/3

Ze2

r , r > Rp
0A1/3

. (31)

1The notation of [30] has been simplified and the signature of the
spin-orbit potentials has been absorbed into λn and λp for conve-
nience.

TABLE II. Results of the Woods-Saxon potential fitting using the FIM-based techniques and the MCMC method for the charge radius and
single-particle energy data set given in Table I. In the last two columns shown are Z scores defined in Eq. (35).

Parameter Ref. [30] σMCMC σFIM MCMC interval Confidence |Z (σMCMC)| |Z (σFIM)|
Rn

0 (fm) 1.2334 0.0095 0.0112 1.24 ± 0.01 [1.23, 1.25] 0.79 0.66
Rp

0 (fm) 1.2496 0.0108 0.0168 1.25 ± 0.01 [1.24, 1.26] 0.28 0.18
Rn

0,ls (fm) 1.1443 0.0273 0.0320 1.15 ± 0.03 [1.13, 1.18] 0.27 0.23
Rp

0,ls (fm) 1.1401 0.0389 0.0563 1.14 ± 0.04 [1.10, 1.18] 0.11 0.07
an (fm) 0.6150 0.0097 0.0098 0.62 ± 0.01 [0.61, 0.63] 0.56 0.55
ap (fm) 0.6124 0.0107 0.0108 0.61 ± 0.01 [0.60, 0.63] 0.20 0.20
als

n (fm) 0.6476 0.0601 0.0746 0.66 ± 0.06 [0.60, 0.72] 0.23 0.18
als

p (fm) 0.6469 0.0848 0.1271 0.64 ± 0.08 [0.56, 0.72] 0.05 0.03
λn −11.1175 0.3391 0.4167 −11.3 ± 0.3 [–11.65, −10.98] 0.49 0.39
λp −8.9698 0.4287 0.7025 −9.0 ± 0.4 [−9.47, −8.61] 0.07 0.04
V0 (MeV) −71.2800 0.1941 0.2228 −71.2 ± 0.2 [−71.37, −70.99] 0.45 0.39
κ 0.4616
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FIG. 2. Relative error of the different FIM components, color-coded as a function of NF and numerical derivative step h. The relative
error compares the AD-derived FIM estimate, g(A)

μν , to the numerical estimate g(N )
μν . On the bottom-right panel, the sum of all relative errors,∑

μν R(gμν ), is plotted.

E. Fisher information matrix

We want to compute error estimates for the problem of
fitting a model f a(p) to measurements ya, assuming measure-
ment errors σ a. Here, we use indices from the beginning of the
Latin alphabet for Nm measurements, and the Greek letters for
Np model parameters [labeled as p = (p1, . . . , pNp )]. In the
standard maximum likelihood method, the best-fitting value

of pμ is found by minimizing the χ2 value,

χ2(p) =
Nm∑

a=1

(
ya − f a(p)

σ a

)2

. (32)

A useful derived quantity is the reduced χ2 value χ2
red =

χ2/(Nm − Np), which should be close to 1 for models that are
neither overfitted nor underfitted.
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FIG. 3. Values of the individual Markov chains of the MCMC sampling as a function of the MCMC step.

We find parameter uncertainties using the Cramer-Rao
bound on the covariance matrix σ , which is based on the
inverse of the FIM, denoted by gμν [19]:

gμν (p) =
∑

a

∂μ f a∂ν f a

(σ a)2 . (33)

We compute model derivatives using algorithmic differenti-
ation implemented in the AUTOGRAD package. Using AD
procedures, we eliminate numerical errors related to using
numerical differentiation approximations.

III. INPUT SELECTION

We analyze the statistical properties of the RMF procedure
on charge-radius, rch, and single-particle energy data. To this
end, we choose a set of doubly magic nuclei: 4He, 16O, and
40Ca. Since the parameter space consists of 12 parameters
and only three nuclei, the chosen data set consists of their
charge-radii and the single-particle energies of protons and
neutrons for occupied states, computed using the values of
Ref. [30]. For statistical analyses, these parameter values
were taken as the best-fitting values for the Woods-Saxon
potential.

Using charge radii and the energies of the occupied single-
particle states results in 23 data points, ensuring enough
degrees of freedom for a twelve-parameter model. A further

simplification comes from the fact that the proton and neu-
tron numbers are the same in all three nuclei, excluding the
parameter κ and thereby reducing the parameter space to 11
dimensions. We compute the charge-radius, rch, from the root-
mean-square radius, 〈r2〉, (as in, e.g., [26]) using the proton
density distribution, as rch =

√
〈r2〉 + 0.64. A homoscedas-

tic error of 0.1 fm and 0.1 MeV has been chosen arbitrarily
since the data set consists of the model evaluation and not
of spectral measurements. The difference in charge radius
and single-particle energy values is smaller than the chosen
error.

The corresponding reduced χ2
red value of the finite-nucleus

model as a function of NF for the Woods-Saxon potential is
shown in Fig. 1. The choice of a different error would only
shift the χ2

red curve upwards or downwards. The figure also
shows the execution time as a function of the maximal total
quantum number NF , displayed as a dashed line. The sim-
ple relation χ2

red ≈ 1 should hold to minimize the impact of
overfitting and underfitting. The model accomplishes this near
NF ≈ 5. Since the execution time of the χ2

red function rises
progressively with a larger NF , the value of the NF parameter
is set to 5 for statistical analyses. The execution time for
the FIM matrix for this model shows similar behavior. The
chosen data set is shown in Table I and is computed using a
NF = 15, which is set outside the examined NF range in Fig. 1
in order to avoid the artificial χ2 = 0 data point. The value

024321-6
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FIG. 4. MCMC-derived sampling of the Woods-Saxon potential shown as two-dimensional sections of the parameter space.

of NF is chosen to be large enough so that the values of all
computed parameters differ by less than 10% of the adopted
value for the homoscedastic error between neighboring values
of NF .

IV. RESULTS

We apply the finite nucleus procedure to compute pa-
rameter uncertainties for the Woods-Saxon potential. We
estimate errors of the model parameters obtained by comput-
ing the diagonal elements of the FIM, σFIM, as presented in
Table II. Below we compare the values of the FIM com-
ponents computed using AD and those computed using

numerical differentiation. We also compare the FIM-derived
error estimates to those of the MCMC technique.

The numerical differentiation is compared to the one that
employs a symmetric differentiation step h. Figure 2 shows
the relative error, R, for the different components of the FIM,
which is computed as

R(gμν ) =
∣∣∣∣∣g(A)

μν − g(N )
μν

g(A)
μν

∣∣∣∣∣. (34)

Here, g(A)
μν is our AD-derived FIM estimate of the μν matrix

component of the FIM, and g(N )
μν is the numerical estimate

computed with a differentiation step h. In Fig. 2 we show

024321-7
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these relative errors computed for different values of h and
NF . For very small values of h < 10−7 the numerical errors
due to floating point precision accumulate, while for h > 10−2

the finite difference approximation tends to break down. This
behavior is observed for all NF , and the relative error values
do not depend strongly on NF . To assess the overall worst-case
error scenario, we compute the sum of all relative errors,∑

μν R(gμν ). This quantity is shown in the bottom right panel
of Fig. 2, and suggests that the optimal h is consistently
h ≈ 10−4 for the entire range of NF . We conclude that the
AD implementation provides accurate estimates of the FIM
and that any discrepancy to the numerical derivative can be
attributed to the inherent issues of numerical derivatives.

We use the MCMC technique to sample the χ2 posterior
distribution, as implemented in the package EMCEE [31]. We
use samples of 24 Markov chains of length 1000. The number
of initialized chains is chosen to fulfill the MCMC require-
ment that the number of Markov chain walkers be greater than
the number of dimensions of the parameter space. In Fig. 3 we
plot the values of the MCMC samples of the parameter space
as a function of the step in the Markov chain in which they
are produced. We see that the values stabilize after ≈50 initial
steps, indicating the expected burn-in phase for the MCMC
method [31]. The sampled data points corresponding to the
initial 50 steps are excluded from further analysis.

In Fig. 4 we show both the two-dimensional and one-
dimensional marginal distributions of the MCMC samples in
the parameter space. The blue lines show the value expected
from the literature, which is well aligned with the distribution
of the MCMC samples in all panels in Fig. 4. The error es-
timates computed with MCMC sampling are listed alongside
the FIM-based technique in Table II. The medians and the 1σ

confidence interval derived with the MCMC sampling are well
aligned with the estimates in Ref. [30]. To assess the degree
of statistical differences between the parameters estimated in
Ref. [30], pμ

0 , and the MCMC-based best-fitting parameter
values of our data set, pμ, we list in the last two columns of
Table II the Z scores, defined by

Zμ(σ ) = pμ
0 − pμ

σ
. (35)

We find that the differences are generally not statistically
significant (i.e., they are less than 1σ ), regardless of whether
σFIM or σMCMC is considered. The FIM method is based on
the assumption of the Gaussianity of errors, while the MCMC

algorithm is not constrained in that way. Using longer MCMC
chains would remove the remaining numerical differences
between σFIM and σMCMC in Table II. Choosing to compute
error estimates via MCMC sampling over FIM would only be
useful if there is a need to analyze the impact of non-Gaussian
errors.

In contrast to simply considering the diagonal elements
of the FIM inverse, by reliably computing the FIM with the
aid of AD, one can perform error analysis without invoking
the time-consuming sampling of the parameter space. The
resulting estimates, σFIM, are in agreement with the MCMC
estimates, σMCMC, as shown in Table II.

V. CONCLUSION

Uncertainties related to parameter estimation for nuclear
EDFs have recently become a topic under rigorous investi-
gations. By extending our previous study of [22], in which
methods of information geometry was applied to EDFs in
the case of infinite nuclear matter, in this work we have
presented a statistical analysis of a simple procedure for deter-
mining the RMF binding energies for a set of doubly-magic
nuclei with the Woods-Saxon potential. We have compared
error estimates between the faster procedure that employs the
FIM and the numerically more challenging Bayesian MCMC
method. Even in the complex case of finite nuclei, EDF pa-
rameter uncertainties can be reliably estimated by using the
FIM combined with algorithmic differentiation. The proposed
approach to error analysis has the advantage of avoid-
ing the time-consuming sampling of the parameter space,
which would otherwise be required in Bayesian statistical
techniques.

In our next step, by using the optimized Woods-Saxon
potential resulting from the present analysis, we will apply
nuclear structure codes to give error estimates for the point-
coupling models, such as the universal EDF DD-PC1, for
a realistic study of finite nuclei. Work along this line is in
progress, and will be reported elsewhere.

ACKNOWLEDGMENTS

The work of M.I. is financed within the Tenure Track Pilot
Programme of the Croatian Science Foundation and the École
Polytechnique Fédérale de Lausanne, and Project No. TTP-
2018-07-3554 Exotic Nuclear Structure and Dynamics, with
funds from the Croatian-Swiss Research Programme.

[1] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.
75, 121 (2003).

[2] D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring,
Phys. Rep. 409, 101 (2005).

[3] B. A. Nikolaus, T. Hoch, and D. G. Madland, Phys. Rev. C 46,
1757 (1992).

[4] T. Bürvenich, D. G. Madland, J. A. Maruhn, and P.-G. Reinhard,
Phys. Rev. C 65, 044308 (2002).
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