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Magnetic skyrmions with topologically nontrivial spin textures form a variety of periodic structures depending
on microscopic interactions and lattice symmetry. We theoretically investigate a transformation between triangu-
lar and square skyrmion crystals against an external magnetic field in a polar tetragonal magnet. By performing
the simulated annealing for a classical spin model, we show that the competition of the Dzyaloshinskii-Moriya
interaction at multiple wave vectors is a key ingredient in inducing the structural transition in terms of the
skyrmion crystals. The present results indicate the importance of magnetic frustration in momentum space as the
origin of exotic topological phase transitions.
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I. INTRODUCTION

Noncoplanar spin textures have drawn extensive interest as
a new quantum magnet in condensed matter physics, since
they bring about fascinating physical phenomena owing to
emergent electromagnetic fields arising from the quantum
mechanical Berry phase. Various unconventional transport
phenomena induced by noncoplanar spin textures have been
explored, such as the topological Hall effect [1–9], nonre-
ciprocal transport [10–13], and magneto-optical effect [14].
Especially, a magnetic skyrmion crystal (SkX) is a typical
example of exhibiting the above physical phenomena, which
has been found in magnetic materials under distinct lattice
structures since its discovery in 2009 [15–17].

The SkX is formed by a periodic array of magnetic
skyrmion as particlelike topological spin textures. Among
them, most of the SkXs in materials are characterized by the
hexagonal packed structure [15,18–21], although some of the
materials host the tetragonal packed one [22–24]. These SkX
phases often emerge by introducing an external magnetic field
when the single-Q helical spiral state is stabilized at zero field;
the spin texture in the SkX is expressed as a superposition of
multiple spiral waves at different ordering wave vectors. Then,
the SkX is replaced by different magnetic phases, such as a
single-Q conical spiral state and a fully polarized state, with
a further increase of the magnetic field. In general, the SkX
phase appears as only one phase against the magnetic field.

Multiple SkX phases with different packed structures
have recently been observed in several materials by changing
the magnetic field and temperature. One of the examples
is the archetypal skyrmion-hosting chiral compound MnSi
[15], where a transition from a square SkX (S-SkX) to a
triangular SkX has been found as a metastable state after
thermal quenching [25]; similar structural transitions of the
SkX have also been found in other noncentrosymmetric
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magnets, such as Co8Zn8Mn4 [26–28]. Another example
is a centrosymmetric tetragonal magnet EuAl4. In contrast
to MnSi and Co8Zn8Mn4, two types of SkXs, which were
identified as the S-SkX and a rhombic SkX, have been ob-
served as thermodynamics phases by changing the magnetic
field [29–31]. In this compound, the model calculations have
shown that the competition of the interactions in momentum
space that arise from the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction mediated by itinerant electrons [32–34]
or frustrated exchange interactions plays an important role
[29,31]. More recently, such a structural transition of the
equilibrium SkX phases has also been observed in a polar
magnet EuNiGe3 with the Dzyaloshinskii-Moriya (DM)
interaction, whose direction is perpendicular to both bond and
out-of-plane directions [35,36]; for example, the DM vector
lies in the y direction when the two neighboring sites lie in
the x direction. In this material, it was suggested that the
long-range DM interaction, as well as the RKKY interaction,
contributes to the emergence of the multiple SkXs [37]. These
experimental findings indicate that exotic topological phase
transitions including multiple SkX phases are brought about
by competing exchange interactions at different wave vectors,
which is referred to as magnetic frustration in momentum
space, irrespective of the spatial inversion symmetry [38].

In the present study, we numerically investigate the in-
stability toward multiple SkXs against the external magnetic
field, which is induced by the competition between the long-
range RKKY and DM interactions at different wave vectors,
which leads to magnetic frustration in momentum space. For
that purpose, we analyze an effective spin model on a polar
square lattice, which is derived by extracting the important
interactions in momentum space. We construct the magnetic
phase diagram at low temperatures by performing the sim-
ulated annealing. As a result, we find that the competing
interactions in momentum space give rise to phase transitions
among the different types of SkX phases. We show that the
structural transition from the distorted triangular SkX (DT-
SkX) to the S-SkX occurs as found in EuNiGe3 [37], and that
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from the distorted S-SkX (DS-SkX) to the S-SkX occurs as
found in EuAl4 [29], depending on the degree of frustration in
momentum space. Our results provide an important essence to
induce multiple SkX phases, which will be useful for further
exploration of topological spin textures in noncentrosymmet-
ric magnets.

The organization of this paper is as follows. In Sec. II,
we introduce a spin model on a polar square lattice. We dis-
cuss the role of the momentum-resolved interaction. We also
present a numerical method based on the simulated annealing.
In Sec. III, we present the magnetic phase diagram, and then,
we discuss the phase transitions between the SkXs in detail.
Section IV is devoted to a summary of the present paper.
In the Appendix, we show the results for the different DM
interactions.

II. MODEL AND METHOD

We consider a spin model on a two-dimensional square
lattice with the lattice constant a = 1 under the polar point
group C4v , whose Hamiltonian is given by

H = −
∑

ν

[
JQν

SQν
· S−Qν

+ iDQν
· (SQν

× S−Qν
)
]

− H
∑

i

Sz
i , (1)

where the first term stands for the Qν component of
momentum-resolved interaction; SQν

= (Sx
Qν

, Sy
Qν

, Sz
Qν

) is the
Fourier transform of the localized classical spins Si =
(Sx

i , Sy
i , Sz

i ) with the length |Si| = 1. The former term rep-
resents the Heisenberg-type exchange interaction with the
coupling constant JQν

(= J−Qν
), while the latter term repre-

sents the DM interaction with the coupling constant DQν
(=

−D−Qν
). The second term stands for the Zeeman coupling to

take into account the effect of an external magnetic field along
the z direction.

In order to investigate the competition of the interactions in
momentum space, we consider the momentum-resolved inter-
actions at specific ordering wave vectors. We consider sixteen
interaction channels: ±Q1 = ±(π/3, 0), ±Q2 = ±(0, π/3),
±Q3 = ±(−π/6, π/2), ±Q4 = ±(−π/6,−π/2), ±Q5 =
±(π/2, π/6), ±Q6 = ±(π/2,−π/6), ±Q7 = ±(π/3, π/3),
and ±Q8 = ±(π/3,−π/3), which are schematically shown
in Fig. 1. Q1 and Q2 (Q7 and Q8) are symmetry-related wave
vectors, which are connected by both fourfold rotational and
mirror operations. Similarly, Q3–Q6 are symmetry-equivalent
to each other, which are connected by the fourfold rotational
operation or mirror operation; for example, Q3 is connected
to −Q5 by the fourfold rotational operation, while it is con-
nected to Q4 by the vertical mirror operation including the kx

axis. Accordingly, JQ1
= JQ2

= J1, JQ3
= JQ4

= JQ5
= JQ6

=
J2, and JQ7

= JQ8
= J3 for the isotropic exchange interaction

and |DQ1
| = |DQ2

| = D1, |DQ3
| = |DQ4

| = |DQ5
| = |DQ6

| =
D2, and |DQ7

| = |DQ8
| = D3 for the DM interaction. The DM

vector in polar crystals is perpendicular to both ordering wave
vectors and out-of-plane kz axis for high-symmetric wave
vectors; DQν

‖ k̂z × Qν for ν = 1, 2, 7, 8, where k̂z represents
the unit vector along the kz direction. Although the in-plane
direction of the DM vector at low-symmetric wave vectors

O

FIG. 1. Ordering wave vectors that give the dominant contribu-
tions in the momentum-resolved interactions. The coupling constants
in the (±Q1, ±Q2), (±Q3,±Q4,±Q5, ±Q6), and (±Q7, ±Q8) com-
ponents of the momentum-resolved interactions are given by J1, J2,
and J3 in the model in Eq. (1), respectively.

for ν = 3, 4, 5, 6 is not necessarily to take the perpendicular
direction to k̂z × Qν from the symmetry viewpoint [39], we
also set DQν

‖ k̂z × Qν for simplicity [40]. We neglect the
symmetric anisotropic exchange interaction and dipolar inter-
action, which can be a source of the SkXs [41–48]. We also
neglect the ferromagnetic interaction at Q = 0, which affects
the value of the saturation magnetic field.

One of the microscopic origins of the momentum-resolved
interactions, JQν

and DQν
, is the long-range RKKY interaction

in itinerant electron systems [49]. In this case, the important
Qν channel in the interaction is determined by the nesting
property of the Fermi surface. Another microscopic origin
of JQν

and DQν
is the frustrated exchange interaction in real

space [47].
Let us discuss the geometrical relation among Q1–Q8 in

Fig. 1. The wave vectors Q7 and Q8 correspond to high-
harmonic wave vectors of Q1 and Q2: Q7 = Q1 + Q2 and
Q8 = Q1 − Q2. Such a relation can lead to the instability
toward the S-SkX when the interaction at Q7 and Q8, i.e., J3 is
comparable to that at Q1 and Q2, J1 [50,51]. On the other hand,
by combining (Q3, Q4, Q5, Q6) and (Q7, Q8), the wave vec-
tors at Q3–Q8 can satisfy the relation as Q4 + Q5 − Q8 = 0
and Q3 + Q6 − Q7 = 0, which often leads to the instability
toward the DT-SkX [52]. Thus, the competing interactions
among the wave vectors Q1, Q2, Q7, and Q8 tend to favor the
S-SkX, while those among Q3, Q4, Q5, Q6, Q7, and Q8 tend to
favor the DT-SkX.

With this tendency in mind, we set the model parameters
(J1, J2, J3, D1, D2, D3, H ) in Eq. (1) as follows. We set J3 = 1
as the energy unit of the model, and consider it the dominant
interaction in the model. Since we examine the magnetic
instability under the competing interactions in momentum
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space, we set J2 = 0.95, and deal with J1 as a variable param-
eter (0 � J1 � 1). Thus, the interaction at (Q3, Q4, Q5, Q6)
gives the second largest contribution for J1 < 0.95, while that
at (Q1, Q2) gives the second largest contribution for J1 >

0.95. For the DM interaction, we parametrize D1 = (J1/J3)D,
D2 = (J2/J3)D, and D3 = D with D = 0.2. We discuss the
results for different choices of the DM interactions in the
Appendix. We change H as a variable parameter.

While changing J1 and H , we construct a magnetic phase
diagram at low temperatures. We adopt a numerical method
based on the simulated annealing following the manner in
Ref. [53]. We start a simulation from high temperatures
T0 =1–5, where the initial spin configuration is taken at ran-
dom. Then, we gradually reduce the temperature as Tn+1 =
0.999999Tn to the final lowest temperature T = 0.01, where
Tn is the nth-step temperature. In each temperature, we per-
form the local spin updates based on the standard Metropolis
algorithm. At the final temperature T , we further perform
105–106 Monte Carlo sweeps for measurements. The simu-
lations are independently done from a set of J1 and H . In
the vicinity of the phase boundaries, we start the simulations
from the spin configurations obtained at low temperatures.
The following results are calculated for the system size with
N = 122 under the periodic boundary condition, although we
confirm that the same results are obtained for N = 482.

We show several physical quantities to identify magnetic
phases obtained by the simulated annealing. The uniform
magnetization is given by

Mη = 1

N

∑

i

Sη
i , (2)

for η = x, y, z. The spin structure factor is given by

Sηη
s (q) = 1

N

∑

i j

Sη
i Sη

j eiq·(ri−r j ), (3)

where ri represents the position vector at site i, and q rep-
resents the wave vector in the first Brillouin zone. We also
compute the in-plane component of the spin structure fac-
tor given by S⊥

s (q) = Sxx
s (q) + Syy

s (q). Finally, the scalar spin
chirality is given by

χ sc = 1

2N

∑

i

∑

δ,δ′=±1

δδ′Si · (Si+δx̂ × Si+δ′ ŷ), (4)

where x̂ (ŷ) represents a shift by lattice constant in the x (y)
direction. The SkX phase exhibits nonzero χ sc.

III. RESULTS

Figure 2 shows the magnetic phase diagram obtained by
the simulated annealing. By changing J1 and H , we obtain
eight magnetic phases with different spin and scalar chirality
textures. Among them, we find that three SkX phases denoted
as DT-SkX, S-SkX, and DS-SkX are stabilized in the phase
diagram. We mainly discuss the details of these SkX phases.

For J1 � 0.9, five phases are stabilized, where the phase
boundaries do not show the J1 dependence: single-Q cycloidal
spiral (1Q CS) state, DT-SkX, triple-Q (3Q′) state, double-Q
I (2Q′ I) state, and fully polarized state as H increases. It is
noted that the phase boundaries between them are unchanged

 0

 1

 2

 0.5  0.6  0.7  0.8  0.9  1.0

fully polarized state

S-SkX

1Q CS

DT-SkX

DS-SkX

3Q’
2Q’ I

2Q’ II

FIG. 2. Magnetic phase diagram of the model in Eq. (1) on the
square lattice with the DM interaction, which is obtained by the
simulated annealing. 1Q, 2Q, and 3Q denote the single-Q, double-Q,
and triple-Q states, respectively, where Q′ represents the anisotropic
intensities of the spin moments at the multiple-Q wave vectors.
The vertical dashed line represents the boundary for J1 = J2; for
J1 < 0.95 (J1 > 0.95), the interaction at Q3, Q4, Q5, and Q6 is larger
(smaller) than that at Q1 and Q2.

up to J1 = 0, which means that the magnetic phases for
J1 � 0.9 are stabilized by the competition of the interactions
between (Q3, Q4, Q5, Q6) and (Q7, Q8) channels.

We show the H dependence of the magnetization along the
field direction Mz and the scalar chirality |χ sc| at J1 = 0.8
in Fig. 3(a). For H = 0, the 1Q CS state appears, which
is characterized by the spin density waves with Q7 or Q8
owing to J3 > J1, J2. The real-space spin configuration cor-
responds to the cycloidal spiral, whose spiral plane is
perpendicular to k̂z × Q7,8 so as to gain the energy by the
DM interaction in the polar system. When the magnetic field
increases, Mz continuously increases, as shown in Fig. 3(a).
Owing to the coplanar spin texture, there is no scalar spin
chirality degree of freedom in this state.

The 1Q CS state turns into the DT-SkX at H � 0.68 with
jumps of Mz and χ sc, as shown in Fig. 3(a). As shown by
the real-space spin configuration in the first row of Fig. 4(a),
the skyrmion core with Sz

i = −1, which is located at the
interstitial site, aligns in a distorted triangular-lattice way.
Reflecting the noncoplanar spin texture, this state accompa-
nies the uniform scalar chirality, as shown in Fig. 3(a) and
the second row of Fig. 4(a). In momentum-space picture,
this spin configuration consists of the triple-Q peak structure
at Q3, Q6, and Q7, where the intensity at Q7 is larger than
those at Q3 and Q6, as shown in the third and fourth rows
in Fig. 4(a); this is attributed to the interaction parameters
satisfying J3 > J2. The triple-Q wave vectors are chosen by
satisfying Q3 + Q6 − Q7 = 0, which avoids the energy loss
arising from the higher harmonics like Q3 + Q6. It is noted
that the DT-SkX with the triple-Q ordering wave vectors Q4,
Q5, and Q8 also appears as an energetically degenerate state
in the simulations depending on the initial spin configuration.

By further increasing the magnetic field, the DT-SkX
changes into the 3Q′ state at H � 1.73. The spin configuration
in this state is similar to that in the DT-SkX, although the spins
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(a)
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(c)

FIG. 3. H dependence of the z component of the magnetization
Mz and the scalar chirality |χ sc| for (a) J1 = 0.8, (b) J1 = 0.92,
and (c) J1 = 0.98. The vertical dashed lines represent the phase
boundaries between different magnetic phases.

located around the skyrmion core have the polarization along
the +z direction. This indicates the cancellation tendency of
the scalar chirality, which results in almost no uniform compo-
nent, as shown in Fig. 3(a). The 3Q′ state changes into the 2Q′
I state at H � 1.93, whose spin configuration is characterized
by the double-Q spin density waves at Q7 and Q8. The 2Q′ I
state finally turns into the fully polarized state at H � 2.08.

When J1 is comparable to J2, the instability toward other
SkX phases occurs, as shown in Fig. 2. For 0.9 � J1 � 0.95,

the increase of H in the DT-SkX phase leads to the phase
transition to the S-SkX. Both Mz and χ sc show jumps in
the transition, as shown in Fig. 3(b). In contrast to the DT-
SkX, the skyrmion core aligns in a square-lattice way, as
shown by the real-space spin configuration in the first row of
Fig. 4(b). Accordingly, the distribution of the scalar chirality
looks fourfold symmetric, as shown in the second row in
Fig. 4(b). The square-lattice symmetry is also found in the
spin structure factor in the third and fourth rows in Fig. 4(b);
the largest intensity is found at Q1 and Q2, while the sec-
ond largest one is found at Q7 and Q8. On the other hand,
there are almost no intensities at Q3–Q6. Thus, the S-SkX is
stabilized by the interplay between the momentum-resolved
interactions at Q1, Q2, Q7, and Q8. The relations as Q1 + Q2 −
Q7 = 0 and Q1 − Q2 − Q8 = 0 induce the instability toward
the S-SkX, which has been also found in similar tetragonal
magnets [50,51].

Compared to the DT-SkX, the S-SkX exhibits a smaller
spin chirality, as shown in Fig. 3(b). This is intuitively un-
derstood from the difference in the skyrmion density, which is
determined by the ordering wave vectors. As shown in the first
row of Figs. 4(a) and 4(b), the number of the skyrmion core in
the 12 × 12 spins is eight for the DT-SkX, while that is four
for the S-SkX. In addition, one finds that the magnetization
for the DT-SkX is smaller than that for the S-SkX, since the
number of the skyrmion core with Sz

i = −1 is larger for the
former SkX. In other words, the region with the positive z-spin
component is wider for the S-SkX compared to the DT-SkX.
As a result, the S-SkX is stabilized in the higher-field region
compared to the DT-SkX.

Let us discuss the relevant materials in experiments. The
phase transition from the DT-SkX to the S-SkX against H
has been found in a polar tetragonal compound EuNiGe3

[37,54–56], where the recent small-angle neutron scattering
measurements have revealed the emergence of the structural
phase transition in terms of the SkX phases [37]. In this mate-
rial, a similar model with competing exchange interactions in
momentum space exhibits such a phase transition. From the
fact that the positions of the ordering wave vectors are differ-
ent between the previous and present models, one finds that
magnetic frustration in momentum space commonly plays an
important role in inducing multiple SkX phases.

When J1 is larger than J2, the DT-SkX is no longer stabi-
lized. Instead of the DT-SkX, the DS-SkX appears in the phase
diagram in Fig. 2. The spin and scalar chirality configurations
of the DS-SkX are shown in the first and second rows of
Fig. 4(c), respectively. Although the skyrmion core aligns in
the square-lattice way, which is similar to the S-SkX, it is
elongated along the [110] direction. Indeed, the intensities of
the spin structure factor at Q7 and Q8 are different from each
other, as shown in the third and fourth rows of Fig. 4(c). Since
the DS-SkX turns into the S-SkX as H increases, this phase
transition is also regarded as the phase transition in terms of
the different types of SkXs. In contrast to the phase transition
between the DT-SkX and S-SkX, the magnetization and scalar
chirality continuously behave in the phase transition between
the DS-SkX and S-SkX, as shown in Fig. 3(c). A similar
phase sequence has also been found in the centrosymmetric
tetragonal compound EuAl4, where the importance of the
competing interactions in momentum space was pointed out
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FIG. 4. (First row) Real-space spin configurations in (a) the DT-SkX at J1 = 0.8 and H = 1, (b) the S-SkX at J1 = 0.92 and H = 1.6,
and (c) the DS-SkX at J1 = 0.98 and H = 0.8. The arrows represent the direction of the in-plane spin moments and the color shows its z
component. (Second row) Real-space scalar spin chirality. (Third and fourth rows) The square root of the (third row) xy and (fourth row) z
components of the spin structure factor in the first Brillouin zone, which are calculated for the system size with N = 482.

[29]. The present result indicates that the momentum-resolved
DM interaction also becomes a source of inducing multiple
SkX phases in noncentrosymmetric magnets.

For J1 > J2, the 1Q CS and 2Q′ I states remain stable in the
low- and high-field regions, respectively. Meanwhile, the 3Q′
state is replaced by the 2Q′ II state, whose spin configuration
is characterized by the Q1, Q2, Q7, and Q8 components in the
spin moments. Similarly to the 3Q′ state, there is no almost
scalar chirality in this state, as shown in Fig. 3(c).

IV. SUMMARY

To summarize, we have investigated the structural phase
transitions in terms of the SkX spin textures in polar tetrago-
nal magnets. By focusing on the role of magnetic frustration
in momentum space, we obtain three types of SkX phases
at low temperatures by performing the simulated annealing.
Especially, we find two characteristic phase transitions when
the magnetic field changes: One is the transition between the
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FIG. 5. H dependence of the z component of the magnetization
Mz and the scalar chirality |χ sc| for (a) D = 0.1 and (b) D = 0.3.
The other parameters are the same as those in Fig. 3. 1Q represents
the single-Q conical spiral state. The vertical dashed lines represent
the phase boundaries between different magnetic phases.

DT-SkX and S-SkX and the other is the transition between
the DS-SkX and S-SkX. Our results indicate the importance
of competing interactions in momentum space, whose mech-
anism is related to that causing similar structural SkX phase
transitions in both noncentrosymmetric magnet EuNiGe3 and
centrosymmetric magnet EuAl4. Based on this mechanism,
further intriguing transitions with respect to the topological
spin textures are expected.
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APPENDIX : RESULTS FOR DIFFERENT
DM INTERACTIONS

In this Appendix, we discuss the results for the different
DM interactions. We fix J1 = 0.92; the other model param-
eters except for D are the same as those in the main text.
Figures 5(a) and 5(b) show the H dependence of Mz and |χ sc|
for D = 0.1 and D = 0.3, respectively, where the colors in
each region correspond to those in Fig. 3. Compared to the
result in Fig. 3(b), the phase transition from the DT-SkX to the
S-SkX is found for all D, which indicates that the magnitude
of the DM interaction is irrelevant to whether the structural
transition occurs. In addition, one finds that both DT-SkX and
S-SkX become robust for larger D, as usually expected in the
model exhibiting the SkX phase.
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T. H. Arima, and S. Seki, Phys. Rev. B 107, L020410
(2023).

[32] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
[33] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[34] K. Yosida, Phys. Rev. 106, 893 (1957).
[35] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241

(1958).
[36] T. Moriya, Phys. Rev. 120, 91 (1960).

[37] D. Singh, Y. Fujishiro, S. Hayami, S. H. Moody, T. Nomoto,
P. R. Baral, V. Ukleev, R. Cubitt, N.-J. Steinke, D. J. Gawryluk
et al., Nat. Commun. 14, 8050 (2023).

[38] S. Hayami and Y. Motome, J. Phys.: Condens. Matter 33,
443001 (2021).

[39] R. Yambe and S. Hayami, Phys. Rev. B 106, 174437 (2022).
[40] S. Hayami, Phys. Rev. B 109, 054422 (2024).
[41] D. Amoroso, P. Barone, and S. Picozzi, Nat. Commun. 11, 5784

(2020).
[42] S. Hayami and Y. Motome, Phys. Rev. B 103, 024439 (2021).
[43] S. Hayami and Y. Motome, Phys. Rev. B 103, 054422 (2021).
[44] D. Amoroso, P. Barone, and S. Picozzi, Nanomaterials 11, 1873

(2021).
[45] M. Hirschberger, S. Hayami, and Y. Tokura, New J. Phys. 23,

023039 (2021).
[46] O. I. Utesov, Phys. Rev. B 103, 064414 (2021).
[47] Z. Wang, Y. Su, S.-Z. Lin, and C. D. Batista, Phys. Rev. B 103,

104408 (2021).
[48] F. Nickel, A. Kubetzka, S. Haldar, R. Wiesendanger, S. Heinze,

and K. von Bergmann, Phys. Rev. B 108, L180411 (2023).
[49] S. Hayami and Y. Motome, Phys. Rev. Lett. 121, 137202

(2018).
[50] S. Hayami, J. Phys. Soc. Jpn. 91, 023705 (2022).
[51] S. Hayami and Y. Kato, J. Magn. Magn. Mater. 571, 170547

(2023).
[52] S. Hayami and R. Yambe, J. Phys. Soc. Jpn. 90, 073705 (2021).
[53] S. Hayami, J. Magn. Magn. Mater. 513, 167181 (2020).
[54] D. Ryan, J. Cadogan, R. Rejali, and C. Boyer, J. Phys.:

Condens. Matter 28, 266001 (2016).
[55] X. Fabrèges, A. Gukasov, P. Bonville, A. Maurya, A.

Thamizhavel, and S. K. Dhar, Phys. Rev. B 93, 214414 (2016).
[56] T. Matsumura, K. Kurauchi, M. Tsukagoshi, N. Higa, H.

Nakao, M. Kakihana, M. Hedo, T. Nakama, and Y. Ōnuki,
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