

HOKKAIDO UNIVERSITY

Title	Recycling of calcined carbonated cement pastes as cementitious materials: Proposed CCUS technology for calcium looping
Author(s)	Kong, Y. K.; Ruan, S.; Kurumisawa, Kiyofumi
Citation	Journal of environmental chemical engineering, 10(5), 108247 https://doi.org/10.1016/j.jece.2022.108247
Issue Date	2022-10
Doc URL	http://hdl.handle.net/2115/92727
Rights	© <2022>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	PAPYK202103-1clean_versionpdf

1	27/6/2022
2	Recycling of calcined carbonated cement pastes as cementitious materials:
3	Proposed CCUS technology for calcium looping
4	Y.K. Kong ^{a,b} , S.Ruan ^b , Kiyofumi Kurumisawa ^{c*}
5	^a Division of Sustainable Resources Engineering, Graduate School of Engineering,
6	Hokkaido University, Japan
7	^b College of Civil Engineering and Architecture, Zhejiang University, Hangzhou
8	310058, China
9	^c Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido
10	University, Japan
11	
12	Abstract: In this study, calcined carbonated hydrated cement pastes (HCPs) were used
13	to partially replace ordinary Portland cement (OPC) as a cementitious material.
14	Calcined HCP can be derived from carbonated HCP after the release of CO ₂ for the
15	carbon capture, utilization, and storage (CCUS). Calcined carbonated HCP was
16	produced by calcining carbonated HCP at 1000 °C, also used in calcium looping. The
17	crystal phase compositions of the HCP, carbonated HCP, and calcined carbonated HCP
18	were identified. Various hardening and microstructural tests on the composite cement
19	paste mixtures blended with calcined carbonated HCP were performed. The initial

 $20 \qquad \mbox{results showed that the HCP could sequester CO_2, forming various calcium carbonates.}$

^{*}Kiyofumi Kurumisawa (<u>kurumi@eng.hokudai.ac.jp</u>, corresponding author); Y.K. Kong (<u>ykkong@elms.hokudai.ac.jp</u>); S. Ruan (<u>sruan001@zju.edu.cn</u>).

21 After carbonated HCP calcination, the main nanocrystalline phases of calcium silicate hydrate (C-S-H) and calcium carbonate decomposed, forming lime and wollastonite. 22 The 28-day compressive strength of the calcined carbonated HCP-OPC mixtures 23 increased with the replacement ratio up to 20%, owing to the filler effect of wollastonite. 24 25 The microstructural analysis revealed that the portlandite, C-S-H, and monocarboaluminate phases were formed after hydration. Finally, by recycling 26 demolition waste, this study proposed a technology roadmap for CCUS to achieve this 27 goal, and a life cycle assessment was conducted to evaluate and compare the 28 environmental impacts of producing 1 t of calcined carbonated HCP-OPC mixtures and 29 plain OPC paste. 30

31

Keywords: Carbon capture, utilization, and storage; Calcium looping; Calcined
 carbonated cement paste; Compressive strength; Microstructural analysis; Life cycle
 assessment.

35 1. Introduction

37 Continuous greenhouse gas emissions from human activities have been one of the most severe environmental problems for decades [1]. Greenhouse gases are mainly 38 emitted by industries, of which cement production generates a large volume of CO₂ 39 emissions. [1]. The industrial sector that manufactures ordinary Portland cement (OPC) 40 generates approximately 5%–9% of the total CO₂ anthropogenic emissions [2] [3]. If 41 greenhouse gas emissions are not controlled or mitigated, product proliferation will 42 43 pose a significant threat to the ecosystem [4]. The two main methods used to reduce CO₂ emissions during concrete production 44 are (1) decreasing the amount of cement produced and (2) capturing the emitted CO_2 45 46 within the life cycle of concrete structures [5] [6]. Conventionally, supplementary cementitious materials (SCMs) such as fly ash and granulated ground blast-furnace slag 47 are utilized to partially or wholly replace OPC in concrete [7] [8]. Although SCMs are 48 49 faced with reaching global limits, the demand for OPC is continuously increasing [5]. Another approach to decreasing the total CO₂ emissions of concrete structures is 50 through carbon capture, utilization, and storage (CCUS), characterized by sustainability 51 and energy savings [9]. CCUS is the process of reducing the CO₂ volume and achieving 52 benefits by converting CO₂ into high-value products for different industries [9] [10]. In 53 the past, CO₂ was sequestered in silica-rich natural rocks [6]. However, the demand for 54 silicate rocks is very high, owing to the large volume of emitted CO₂ [11]. It is estimated 55 that to sequester 1 t of CO₂, approximately 1.6-3.7 t of carbonatable materials are 56

required, depending on the CO₂ uptake capacity of the materials used [6]. In addition, 57 the associated mining activities and transportation of natural rocks for carbonation can 58 59 cause significant environmental impacts. To address these limitations, researchers have focused on using demolished concrete structures to replace natural rocks [12] [13]. 60 61 The use of demolished concrete, characterized by its high alkalinity and abundant Ca^{2+} content, to capture CO_2 has become prevalent in recent years [14] [9]. Unlike the 62 limited natural rock resources, an estimated 900 Mt of demolished concrete is generated 63 annually in Europe, the U.S., and Japan [15]. The components of demolished concrete 64 65 include aggregates and fully hydrated cement paste (HCP), which is rich in portlandite (Ca(OH)₂) and can sequester CO₂ [16] [17]. For demolished concrete, portlandite in 66 HCP should be carbonated. However, because of the initially formed calcium carbonate 67 68 at the surface of the concrete structure, further carbonation can be prevented by these carbonate products, indicating that the inner portlandite is still not consumed [18] [19]. 69 The carbonation of HCP commences with the penetration of CO₂ into the cement matrix, 70 which dissolves in the pore solution to form CO_3^{2-} ions [12]. These two ions react with 71 portlandite and calcium silicate hydrate (C-S-H), forming various calcium carbonates, 72 such as calcite, vaterite, aragonite, silica gel, and hydrated iron oxides [20] [21]. 73 Adopting HCP from construction waste to capture CO₂ can recycle demolished concrete 74 and produce carbonated cement paste with a significant value. Some researchers have 75 revealed the pozzolanic reactivity of carbonated HCP powders, reporting that they can 76 be utilized as SCMs to partially replace OPC in concrete mixtures [22]. However, the 77

properties of carbonated HCP after CO₂ release through calcination have not been
 investigated in detail.

80 Numerous studies on using recycled concrete to sequestrate CO₂ have been conducted; most studies focused on the CO₂ capture efficiency of HCP, phase 81 assemblage of HCP after carbonation, and cementitious properties of HCP carbonation 82 [23] [24] [19]. However, a significant aspect of CCUS is the release and reuse of stored 83 (almost pure) CO₂ to manufacture valuable bioproducts [9] [10], which has been 84 neglected by researchers in civil engineering. As mentioned above, the main phase of 85 86 sequestered CO₂ in HCP carbonation is calcium carbonate (CaCO₃). Currently, the conventional method for decomposing CaCO₃ is calcination [25]. This approach has 87 been introduced in the thermochemical energy storage system, which relies on the 88 89 carbonation-calcination reaction of CaCO₃/CaO, known as calcium looping (CaL) [26] [27]. For CaL, calcium carbonates are typically derived from natural resources, such as 90 natural limestone and dolomite. Combining CCUS technology with construction and 91 92 demolition waste to capture CO₂ to generate CaCO₃ is more sustainable than collecting natural limestone [27]. Moreover, the traditional CaL requires somewhat high 93 temperatures to convert CaO into CaCO₃. The calcination of CaCO₃ may still be energy-94 consuming for CaCO₃ decomposition to release CO₂, requiring a temperature range of 95 919-1199 °C (1193-1473 K). Under H₂O steaming conditions, the decomposition 96 temperature can be decreased to 899 °C (1173 K) compared to the direct calcination by 97 combusting fossil fuels [28]. The calcination of carbonated HCP decomposes various 98

calcium carbonates and the remaining noncarbonated C-S-H when the temperature
reaches 700–900 °C, as expressed by Equations (1) and (2) [29].

101

102
$$CaCO_3 \rightarrow CaO + CO_2 \uparrow (Calcination)$$
 (1)

103 C-S-H
$$\rightarrow$$
 CaO + SiO₂ + H₂O \uparrow (Calcination) (2)

104

Calcium oxide (CaO) and silica (SiO₂) are cementitious components produced after 105 the calcination of carbonated HCP. CaO is the major chemical oxide in lime that 106 107 improves the early-age strength of concrete [30], and SiO₂ is highly rich in silica fume, which exhibits strong pozzolanic reactivity and can refine the pore structure of hardened 108 pastes [31]. Lime and silica fume are extensively utilized in construction [30] [32] [33]. 109 110 Barbhuiya et al. [34] reported that the early-age compressive strength of fly-ash-based concrete could be improved by adding hydrated lime and silica fume. Das et al. [30] 111 observed that fly-ash-based geopolymer concrete attained the highest compressive 112 strength when 7.5% and 2.0% fly ash were replaced with lime and silica fume, 113 respectively. Calcination of carbonated HCP may be the best approach to releasing and 114 utilizing captured CO₂. In a previous study, the authors developed a CO₂ sponge 115 through HCP calcination to recapture CO₂ under saturation conditions. A technology 116 roadmap for recycling HCP, carbonated HCP, and calcined HCP in CCUS was plotted, 117 as reported in Ref. [35]. Therefore, in the previous study, the authors achieved CaL by 118 recycling HCP from demolition waste to repeatedly sequester and release CO₂. In this 119 study, the cementitious potential of calcined carbonated HCP was investigated to extend 120

and complete the entire recycling cycle of CCUS using HCP. If the cementing effects
of calcined carbonated HCP are revealed, CaL products will not be limited to the form
of storage media for CO₂.

Therefore, the extensive use of calcined carbonated HCP is proposed, and a novel 124 approach for CCUS can be developed. Previous studies mainly focused on the seeding 125 effect and SCM-like properties of carbonated HCP powders during the hydration of 126 OPC-based mixtures containing carbonated HCP powders [36]. Moreover, the disposal 127 of by-products generated from CO₂-released carbonated HCP has not been investigated 128 129 extensively. In this study, calcined carbonated HCP was systematically investigated, in which HCP underwent carbonation and calcination. The cementing effects of the 130 calcined carbonated HCP were evaluated through macro- and micro-structural 131 132 evaluations. Moreover, a life cycle assessment for evaluating environmental impacts during the production of calcined carbonated HCP-OPC mixtures was conducted. It is 133 believed that this study will facilitate the development of CCUS for practical 134 135 applications.

136

137 **2. Experimental program**

138

139 2.1. Materials and preparation of specimens

140 2.1.1. Preparation of HCP, carbonated HCP, and calcined carbonated HCP

141 Before preparing carbonated HCP, HCP was manufactured using Type CEM I OPC

142 with a strength class of 42.5 N, complying with ASTM C150 [37]. In actual construction

143	work, HCP can be obtained from demolished concrete using comminution and magnetic
144	methods, which are advanced techniques for producing recycled aggregate concrete [38]
145	[39]. HCP specimens were cast in 100 mm \times 100 mm \times 100 mm molds with a constant
146	water-to-cementitious material (W/CM) ratio of 0.5, according to ASTM C305
147	requirements [40]. The hardened specimens were cured at 23±0.5 °C and relative
148	humidity of 100%. After curing for one day, the HCP samples were demolded and
149	hydrated at 60 \pm 0.5 °C for 90 days, accelerating hydration to simulate the OPC paste
150	derived from demolition waste, consistent with Skocek et al. [6]. The hydration degree
151	of the clinker was close to 90% (not 100%) under the above curing conditions.
152	Moreover, a curing temperature of 60 ± 0.5 °C would not significantly change the
153	microstructure of the cement paste but could accelerate the hydration process [41]. The
154	HCP specimens were then pulverized into 75 μm powders by ball milling and
155	carbonated for 24 h to produce carbonated HCP; the carbonation was conducted in an
156	autoclave, providing a pure CO ₂ environment (99.9%) with a constant gas pressure of
157	1.5 MPa. Most recent studies on CaL have been focused on carbonation under low CO_2
158	partial pressure, indicating that low CO ₂ concentrations in the flue gas in the power
159	plant were used. However, for thermochemical energy storage in the CaL to sequester
160	CO ₂ , a high CO ₂ concentration (pure CO ₂ environment) is required [26]. The
161	carbonation autoclave set can be found in Refs. [35] [42]. The weight differences before
162	and after carbonation were measured. After each carbonated HCP specimen cooled
163	down to room temperature, it was calcined in a muffle furnace to produce calcined
164	carbonated HCP. The initial temperature was 30 °C, which was increased to 1000 °C at

a constant heating rate of 4 °C/min. The final temperature (1000 °C) was maintained for 2 h to completely decompose calcium carbonate. This calcination temperature range was consistent with our previous study, and the decomposition products of calcium carbonates were obtained [35]. After calcination, the calcined carbonated HCP was removed and weighed.

170

171 2.1.2. Preparation of composite cement paste

Composite cement pastes were prepared using Type CEM I with a strength class of 172 173 42.5 N, OPC-calcined carbonated HCP, and tap water. The chemical compositions of OPC were determined using X-ray fluorescence spectrometry (XRF), as listed in Table 174 1. Four groups of paste mixtures were produced and subjected to tests to evaluate the 175 176 influence of HCP calcination on the properties of the OPC pastes. Specifically, they comprised three groups of OPC pastes partially replaced with calcined carbonated HCP 177 (calcined carbonated HCP-OPC pastes) and one group of plain OPC pastes as the 178 reference (Ref.). For consistency, the W/CM ratio was maintained at 0.40 for all the 179 mixtures. The mixing proportions are listed in Table 2. For clarity, each experimental 180 group was labelled "MN," where N denotes the replacement ratio of calcined 181 carbonated HCP in the binder, ranging from 10% to 30%. 182

183 A Hobart mixer was used to produce paste mixtures according to ASTM C305, and 184 the mixtures were cast in 20 mm \times 20 mm \times 20 mm molds. Immediately after casting, 185 the fresh paste mixtures were placed on a vibration table and compacted until no visible 186 bubbles appeared on the surfaces of the samples. Next, the samples were covered by a

187	thin cling film and cured at 23 \pm 0.5 °C for 24 h. After curing for one day, the samples
188	were demolded and immersed in a water tank at 23 ± 0.5 °C to prevent drying shrinkage.
189	
190	2.2. Test methods
191	2.2.1. Compressive strength
192	A hydraulic compression machine was used to determine the 28-day compressive
193	strength of the specimens according to ASTM C109 [43]. The test results for each
194	mixture were calculated as the average strength of triplicate specimens.
195	
196	2.2.2. X-ray diffraction (XRD)
197	XRD was conducted to investigate the phase formations of the paste samples.
198	Before the XRD test, the paste samples were crushed and oven-dried for one day.
199	Subsequently, the crushed samples were milled to fine powders ($\leq 75 \ \mu m$) before the
200	XRD tests. XRD patterns were analyzed using an XRD Bruker D8 Advance instrument.
201	The CuKa X-ray ($\lambda = 1.5418$ Å) was generated at 40 mA and 40 kV. Scanning
202	measurements were conducted within a 2 θ range from 5° to 90° in a step size of 0.02°.
203	
204	2.2.3. Thermogravimetric analysis (TGA)
205	For parallel comparison, milled fine-sized powders of approximately 5.0 mg were
206	used to conduct TGA using a Mettler Toledo STARe System TGA2. The powders were
207	heated from 30 °C up to 1000 °C in open vessels in an N2 atmosphere at a heating rate

208	of 15 °C/min. The thermogravimetric (TG) and derivative thermogravimetric (DTG)
209	curves of the paste samples were plotted.

211 2.2.4. Fourier-transform infrared spectroscopy (FTIR)

A Nicolet iS50 FTIR spectrometer with a frequency range of 4000–400 cm⁻¹ at a 4 cm⁻¹ resolution was used to obtain the FTIR data of the specimens. Thirty-two scans were recorded for each sample. KBr discs were prepared by pressing pellets composed of the samples and KBr at a ratio of 1:100.

- 216
- 217 **3. Results and discussion**
- 218

~ · ~	0 1	DC	•	•
219	3.1.	Before	m ₁ x	ing
210	5.1.	Derore	111173	

220 3.1.1. Weight variations in HCP after carbonation and calcination

Table 3 lists the content for each processing procedure and the weight change ratio 221 after each processing step. A weight increase in HCP was observed after carbonation 222 with an increase ratio of 21.25% because CO₂ was sequestered. A decrease in weight 223 was observed when the carbonated HCP was calcined at 1000 °C. This weight decrease 224 could be attributed to the decomposition of specific phases within the carbonated HCP, 225 and the phases should contain various types of calcium carbonates. The weight decrease 226 ratio of 35.35% was higher than the above weight increase ratio, indicating that other 227 phases other than calcium carbonates decomposed, as discussed later. 228

229

230 **3.1.2.** XRD patterns

Fig. 1 shows the XRD patterns of the HCP, carbonated HCP, and calcined 231 carbonated HCP. Various hydration products, that is, portlandite $(2\theta = 18.0^{\circ}, 34.2^{\circ},$ 232 47.1°, 54.4°, and 62.6°), C-S-H ($2\theta = 26.5^{\circ}$ and 29.3°), and monocarboaluminate phases, 233 $C_4A\bar{C}H_{11}$ (2 θ = 11.6°), were observed in the HCP [22] [44] [45]. In addition, a slight 234 peak was detected at $2\theta = 39.3^{\circ}$, which was attributed to calcite formed by natural 235 carbonation. The presence of calcite leads to the formation of monocarboaluminate [46]. 236 Compared to the HCP, a significant decrease in the intensity of portlandite was detected 237 238 in the carbonated HCP. In contrast, a conspicuous appearance of calcium carbonate was observed at $2\theta = 23.0^{\circ}$, 29.4° , 32.5° , 39.3° , 43.2° , 45.9° , and 48.5° , indicating that HCP 239 carbonation consumed the most portlandite, forming various calcium carbonates [47]. 240 241 The C-S-H did not appear to be significantly carbonated during HCP carbonation, which might be attributed to the preformed calcite layer preventing further C-S-H 242 carbonation [48] [49]. Regarding the calcined carbonated HCP, the crystal phases of 243 calcium carbonates and nanocrystalline phases of C-S-H mentioned above almost 244 vanished [50], whereas CaO was detected ($2\theta = 37.3^{\circ}$), corresponding to the C-S-H 245 decomposition expressed by Equation (2). Moreover, wollastonite (CaSiO₃) was 246 detected at peaks of 23.1°, 32.0°, 41.2°, and 44.8° and a continuous zig-zag pattern of 247 55°-60° [51] [52] [53]. As expressed by Equations (1) and (2), calcination decomposes 248 calcium carbonates and C-S-H, releasing CO₂ and evaporated H₂O [51]. Calcination 249 could also release pore solutions and gel water, which explains why the weight decrease 250 ratio after calcination exceeded the weight increase ratio after carbonation. Furthermore, 251

the lime and quartz could react in the muffle forming wollastonite at high temperatures
up to 1000 °C, owing to the decomposition of C-S-H and calcite, as expressed by
Equation (3) [54].

255

$$256 \quad \text{CaO} + \text{SiO}_2 \rightarrow \text{CaSiO}_3 \text{ (Calcination)} \tag{3}$$

- 257
- 258 3.1.3. TG-DTG curves

Fig. 2 shows the TGA results for the HCP, carbonated HCP, and calcined 259 carbonated HCP, consistent with the XRD results. The DTG curves for the three 260 different samples varied significantly, suggesting the formation of different products in 261 the HCP after carbonation and calcination. When the temperature increased from 30 to 262 263 150 °C, the nanocrystalline phases of C-S-H in the HCP and carbonated HCP dehydrated, indicating that C-S-H essentially remained noncarbonated [13]. However, 264 no weight decrease was observed in the calcined carbonated HCP, possibly owing to 265 266 hydrated product decomposition caused by calcination. As the temperature increased to 400-450 °C, a significant weight decrease was detected in the HCP, attributed to 267 portlandite decomposition [55]; in contrast, the carbonated HCP underwent a slight 268 weight decrease, suggesting that a small portion of the portlandite was noncarbonated. 269 A low and broad maximum appeared on the DTG curve of the calcined carbonated HCP 270 at approximately 400 °C, which should correspond to portlandite decomposition in 271 agreement with the XRD patterns [56]. When heating temperature continued increasing 272 to 800 °C, a broad and high peak occurred in the carbonated HCP because of the 273

decarbonation of the calcium carbonates. However, a broad and short peak appeared in 274 the HCP curve, attributed to the weak natural carbonation of HCP within its long curing 275 276 period [49]. Based on the TG results, the CO₂ uptake ratio was calculated using the weight loss difference of the carbonated HCP and calcined carbonated HCP at 500-277 900 °C, which was 21.61%. This value is close to the weight increase ratio of the HCP 278 after carbonation, indicating that weight gain is generally associated with CO₂ 279 sequestration. It was difficult to observe the weight variation in the calcined carbonated 280 HCP at high temperatures (above 900 °C), demonstrating that CO₂ was entirely released 281 282 during calcination.

283

284 3.2. After producing composite cement paste

285 3.2.1. Compressive strength

The 28-day compressive strength results for each paste mixture were determined 286 (Fig. 3) to evaluate the influence of HCP calcination on the mechanical properties of 287 288 the OPC pastes. Overall, the compressive strength first increased with increasing replacement ratio and then decreased. The reference group specimen exhibited a 28-289 day compressive strength of 37.8 MPa. The compressive strength values of M10 and 290 M20 were higher than that of the reference group, but the compressive strength of M30 291 decreased significantly. Thus, the strength of the paste mixture increased when the 292 calcined carbonated HCP replacement ratio increased from 0% to 20%, beyond which 293 the strength development of the paste was significantly hindered. Therefore, an 294 optimum calcined carbonated HCP replacement ratio of 20% improved the compressive 295

strength by up to 8%. The strength improvement caused by HCP calcination might be 296 attributed to the effect of wollastonite. Previous studies have investigated the possibility 297 298 of mixing ground wollastonite powder in cement pastes and revealed the cementitious properties of wollastonite [52]. Wahab et al. [57] found that using wollastonite to 299 replace 20% sand could improve the mechanical properties of mortar mixtures. Kalla 300 et al. [58] observed that when 10%-15% of cement was replaced with wollastonite, the 301 permeability and chloride diffusion coefficients of concrete mixtures decreased. Both 302 studies reported an optimum ratio of 20% for using wollastonite to replace other 303 304 construction materials, consistent with the compressive strength results. The beneficial effect of wollastonite on hydration behavior can be attributed to the filler effect and 305 reduced heat generation [53] [52]. The surface areas of finer wollastonite provide 306 307 additional nucleation sites for C-S-H growth [59]. However, with a slight increase in the replacement ratio, the dilution effect caused by the calcined carbonated HCP may 308 decrease the strength of the paste mixtures [60]. Hence, it is possible to utilize calcined 309 310 carbonated HCP to partially replace cement at the optimum content, maintaining the same or improved mechanical properties. 311

312

313 3.2.2. XRD

Fig. 4 shows the XRD patterns of the paste mixtures after curing for 28 days. Common hydration products, including portlandite, C-S-H, and monocarboaluminate, were detected in all the groups. A low and narrow peak at $2\theta = 39.3^{\circ}$ was observed, related to atmospheric carbonation during curing and measurements. No significant

318	differences between the M10, M20, and reference groups were observed. However, a
319	sharp peak with a significantly high portlandite intensity ($2\theta = 18.0^{\circ}$) was observed in
320	M30, owing to the high replacement ratio of calcined carbonated HCP containing a
321	comparatively larger amount of CaO, which reacted with H2O to form portlandite.
322	Moreover, the C-S-H intensity at $2\theta = 29.3^{\circ}$ was lower than that of the reference group,
323	probably because the higher calcined carbonated HCP content diluted the clinker [60].
324	The XRD results are consistent with the compressive strength results. The calcined
325	carbonated HCP increased the strength, although the degree of improvement was
326	insignificant. Moreover, the XRD patterns of the Ref., M10, and M20 groups were
327	similar. A significant decrease in the compressive strength of M30 was observed from
328	the XRD patterns, with a significantly higher portlandite intensity and lower C-S-H
329	intensity than those of the other groups.

331 3.2.3. TGA

Fig. 5 shows the DTG and TG curves of the paste mixtures. The TGA results were consistent with the XRD patterns and compressive strength measurements. Three main decomposition steps were observed in the DTG curves in agreement with previous findings [13] [55] [56] [31], identified as follows:

(1) 30–300 °C: Dehydration of water bonded to C-S-H.

337 (2) 300–500 °C: Decomposition of portlandite.

338 (3) 500 - 900 °C: Decarbonation of various calcium carbonates, including
339 amorphous calcium carbonates, vaterite, aragonite, and calcite.

The weight loss percentages of the paste mixtures associated with the water and CO₂ 340 contents are listed in Table 4. The carbonation degree, represented by amorphous 341 342 calcium carbonates (~650 °C), was also reflected. A minimal difference in weight loss was observed for all the paste mixtures, consistent with the similar XRD patterns among 343 the reference and experimental groups. Moreover, the total weight loss of the 344 experimental groups increased with an increase in the calcined carbonated HCP content, 345 attributed to the increased portlandite content. A similar total weight loss of 346 approximately 21% revealed by these mixtures was consistent with the 28-day 347 compressive strength results, indicating a relationship between the extent of hydration 348 and the mechanical properties [13]. 349

350

351 3.2.4. FTIR

Fig. 6 shows the FTIR spectra of the OPC pastes containing partially replaced 352 calcined carbonated HCP after curing for 28 days. No significant differences among the 353 four groups of paste mixtures were observed, consistent with the XRD patterns and TG-354 DTG curves. Six major bands were observed in all the specimens. First, a sharp 355 absorption at 3644 cm⁻¹ was detected, associated with the symmetrical stretching 356 vibration of hydroxyl groups [61]. A wide band at a wavenumber of approximately 3500 357 cm⁻¹ revealed the existence of portlandite in the reference and experimental groups [62]. 358 All the specimens showed a narrow absorption band at wavenumbers of 1500-1750 cm⁻ 359 ¹, corresponding to the water content (for example, gel water) in the cement matrix. 360 Subsequently, a significant band at approximately 1450 cm⁻¹ was detected, owing to the 361

362	v_2 bending vibration of C-O [61]. As mentioned earlier, the existence of C-O was
363	attributed to natural carbonation, in agreement with the TGA results. A broad absorption
364	band was observed at approximately 970 cm ⁻¹ , associated with the Si-O in-plane
365	stretching vibration of the Q2 tetrahedra in C-S-H gels [63]. No distinct shifts in the
366	wavenumber of Si-O stretching bands were observed for the reference and experimental
367	groups. This indicates that an increased replacement ratio of calcined carbonated HCP
368	in the binder system would not significantly influence Si polymerization, consistent
369	with the characterization and mechanical test results.

371 **4. Further discussion**

Consistent with previous findings [22] [16] [64], the ability of HCP to sequester 372 373 CO₂ leads to the formation of carbonated HCP. After the calcination of carbonated HCP, the crystal phases of portlandite, C-S-H, and calcium carbonates decomposed, and new 374 phases of lime and wollastonite were formed. With dehydration and decarbonation, 375 water and CO₂ were released, generating the discrepancy between the weight increase 376 in HCP after carbonation and the weight decrease in carbonated HCP after calcination. 377 Furthermore, the mechanical properties of the OPC pastes partially replaced with 378 calcined carbonated HCP were consistent with the hydration degree. Facilitated by 379 microscopic investigations, the hydration behaviors of the calcined carbonated HCP-380 OPC pastes are discussed below. 381

382

384	Based on the detailed investigation of Ref., M10, M20, and M30, the hydration
385	mechanism of the calcined carbonated HCP-OPC paste mixtures is evident. Fig. 7
386	depicts the underlying mechanisms of the hydration behavior. Based on the mechanical
387	and microscopic test results, the cementing effect of calcined carbonated HCP was
388	observed, owing to the presence of lime, silica, and wollastonite, which were formed
389	from the dehydrated C-S-H, portlandite, and decarbonated calcium carbonates. After
390	mixing, the added wollastonite in the calcined carbonated HCP provided nucleation
391	sites for cement hydration, favoring C-S-H growth. In addition, silica reacted with
392	Ca(OH) ₂ -rich pore solutions to generate additional C-S-H, improving the compressive
393	strength [65]. The slight improvement in the 28-day compressive strength might also
394	be influenced by the filling effect of wollastonite, leading to pore densification.
395	Furthermore, the dilution effect of the calcined carbonated HCP should be considered,
396	as wollastonite did not contribute to the strength gain. Because of these two contrasting
397	effects on cement hydration, an optimum replacement ratio (20%) of calcined
398	carbonated HCP existed in the binder system, at which the strength enhancement effect
399	could compensate for the dilution effect. Above this optimum replacement ratio, the
400	dilution effect was the dominant mechanism, and the mechanical properties of the
401	composite cement pastes decreased significantly. Moreover, a higher amount of
402	calcined carbonated HCP produced a higher portlandite content, which might cover the
403	calcium silicate surface and prevent further hydration.

405 4.2. Proposed CCUS technology routine

Regarding the cementing effect of calcined carbonated HCP, recycling carbonated 406 HCPs in CCUS is feasible. Fig. 8 shows a technology roadmap of CCUS using 407 demolished concrete structures. During this process, CO₂ undergoes five stages: 1) 408 emission from the concrete structure, 2) capture by HCP, 3) transportation, 4) 409 calcination for release, and 5) reuse. CCUS starts from the assumed 1 t of CO₂ emitted 410 during the production and demolition of concrete structures. According to the 411 Intergovernmental Panel on Climate Change [66], CO₂ can be generated within the 412 entire life cycle of a concrete structure, from concrete production to the demolition of 413 414 the structure, as shown by the rectangle plotted by the dashed line in the roadmap. The total amount of HCP used was 1000 kg. The CO₂ flow was quantitatively evaluated in 415 each step, and the CO₂ sequestering and release ratios were based on the experimental 416 417 results of this study. After demolition, concrete waste can be sorted into aggregates and HCP. The aggregates can be used as recycled aggregates for producing new concrete, 418 and the HCP can be used as the sequestering media for the emitted CO₂ during the 419 420 service life of the concrete structure. A total of 210 kg of CO₂ was captured in the HCP as the formed calcium carbonates in the first recycling phase and transported (for 421 422 example, using a lorry) without pipeline networks, significantly decreasing the energy penalty [11]. Carbonated HCP can be calcined to release CO₂, which can be further 423 dried, purified, and stored to manufacture valuable industrial products, such as biofuels 424 and plastic [67]. The 786 kg calcined carbonated HCP produced during the CO₂ release 425 stage can be used as a cementitious material in concrete, as mentioned previously. With 426 such a technology roadmap, 210 kg of CO₂ can be captured and utilized from concrete 427

demolition wastes, and 786 kg of valuable calcined carbonated HCP can be collected for concrete production in a recycling phase, which is somewhat efficient and ecofriendly.

431

432 4.3. Life cycle assessment (LCA) for producing 1 t calcined carbonated HCP–OPC
433 mixtures

A typical "cradle-to-grave" LCA was conducted according to the International Organization for Standards 14040 (ISO 14040) [68]. In this study, the CML 2002 approach, one of the most widely used methodologies, was used to evaluate and compare the environmental impacts of producing 1 ton of M20 and OPC pastes [68].

438

439 4.3.1. Goal, scope, and system boundary

The system boundary covers raw material production to the final product packing 440 [69]. Two materials, that is, plain OPC paste and calcined carbonated HCP-OPC paste, 441 were adopted to compare their environmental impacts. M20 (80 wt.% OPC and 20 wt.% 442 calcined carbonated HCP with a W/CM ratio of 0.4) and OPC paste (100 wt.% OPC 443 with a W/CM ratio of 0.4) were selected. M20 was chosen for the LCA because it 444 exhibited the best strength performance among the three mixtures with different 445 replacement ratios. The functional unit of the LCA was 1 t of M20 and OPC pastes 446 under the same curing conditions (Table 5). The process flow diagrams for the M20 and 447 OPC pastes are shown in Fig. 9, where the dashed lines represent the system boundaries 448 for both materials. Before analysis, some assumptions were made. 1) The transportation 449

and use phases might have environmental impacts, although these two phases were 450 assumed to be the same with the various types of concrete. 2) All OPC pastes used to 451 452 produce the M20 and OPC pastes were obtained from Europe for consistency. 3) Because the demolished concrete could be derived entirely from the waste, the 453 environmental impacts caused by recycling demolished concrete were neglected in this 454 LCA; however, the CCUS technology for manufacturing calcined carbonated HCP 455 should be considered. The CCUS technology process can be considered a roadmap (Fig. 456 8). 457

458

459 4.3.2. Inventory

For the LCA, inventory data for the raw materials and processing procedures were acquired from the Ecoinvent database and existing literature [70] [71] [72] [73] [74] [75]. The details of the raw materials used for manufacturing the M20 and OPC pastes are described below.

The OPC produced from the clinker and gypsum was set as CEM I 42.5 N-type 464 cement. Boesch and Hellweg reported life-cycle impact assessment (LCIA) results for 465 cement production in Europe [76]. Hence, the detailed OPC production processes, 466 including crushing, milling, blending, and calcination, are not described in this paper 467 [73]. The environmental impact data for tap water were collected directly from the 468 Ecoinvent database. The production of calcined carbonated HCP powder is complicated 469 because of its CCUS process, which consists of crushing and screening HCP from 470 demolished waste, sequestering CO₂ in HCP, and calcining carbonated HCP. The 471

472	environmental impacts of the crushing and milling phases are explained in Table of
473	Bond Work Index by Minerals ¹ . Mercante et al. [75] reported the energy and material
474	input for sorting and recycling mixed construction and demolition waste (concrete), in
475	which diesel fuel, electrical energy, and water accounted for 1.02 L, 2.59 kWh, and 1.00
476	L, respectively, for 1 t waste. Owing to the limited research on recycling HCP from
477	demolition waste, the life cycle inventory of HCP collection was performed for the
478	recycled aggregate production, as reported in [77] [78] [79] [80]. HCP carbonation
479	requires gas pressure. As mentioned above, CO2 gas pressure of 1.5 MPa was applied
480	for carbonation. Therefore, the LCIA data for carbonation were used as compressed air
481	with an average generation of <30 kW 12 bar gauge according to the Ecoinvent database.
482	The required CO ₂ volume for HCP carbonation to produce 143 kg of calcined
483	carbonated HCP was calculated based on the experimentally used autoclave. Based on
484	the experimental results for the weight change ratio and TGA for the HCP, carbonated
485	HCP, and calcined carbonated HCP, 220 kg of carbonated HCP and 174 kg of HCP were
486	required. Typically, HCP accounts for 25 wt.% in concrete; therefore, the estimated total
487	weight of demolished concrete was 696 kg [81]. Considering the time required for
488	carbonation to reach equilibrium (the gas pressure inside the chamber does not change
489	with time), the required CO ₂ volume for HCP carbonation was 3.08 m^3 . Finally, the
490	calcination of carbonated HCP (also called CO ₂ separation) was conducted at 1000 °C,
491	but the actual decomposition temperature of CaCO3 generally ranged from 500 to

¹ Table of Bond Work Index by Minerals: <u>https://www.911metallurgist.com/blog/table-of-bond-work-index-by-minerals</u>

900 °C, as measured using TGA. Therefore, it was assumed that the starting temperature 492 was room temperature, and CaCO3 decomposition was completed at 900 °C. The 493 494 calcination process for converting calcium carbonates into CaO is the most energyintensive stage [82]. Giordano et al. [83] reported in detail the LCA of postcombustion 495 CO₂ capture, in which the LCIA of CO₂ separation related to natural gas combustion in 496 an auxiliary gas turbine (functional unit of per ton CO₂) was used to calculate the 497 environmental impacts of the calcination phase of the proposed CCUS roadmap. Based 498 on the above discussion, the LCIA of the CCUS technology in the proposed roadmap 499 500 is presented in Table 6.

501

502 4.3.3. Impact assessment of M20 and OPC paste production

503 Five baseline categories were adopted to estimate the environmental impacts of 504 producing M20 and OPC pastes. These categories are global warming potential (GWP), 505 ozone depletion potential (ODP), photochemical ozone creation potential (POCP), 506 acidification potential (AP), and eutrophication potential (EP) [84]. The functional units 507 of GWP, ODP, POCP, AP, and EP are kg CO₂-eq., kg CFC-11-eq., kg C₂H₄-eq., kg SO₂-508 eq., and kg PO₄³⁻-eq., respectively.

Based on this classification, the impact assessment of the raw materials used for producing M20 and plain OPC paste and the total environmental impact were determined (Table 7). Cement production in manufacturing 1 t of M20 and OPC paste was dominant in GWP, ODP, POCP, AP, and EP. For the OPC paste, water production generally had no significant impact in these five categories, and the highest degree of

514	the environmental impact of water production was 1.21% for ODP. For M20, calcined
515	carbonated HCP production may result in high greenhouse gas emissions. However,
516	because of the lower amount of calcined carbonated HCP in M20, the environmental
517	impact of HCP calcination (3.63%) was significantly lower than that of cement
518	production (96.35%) in GWP. The most significant effect of the calcined carbonated
519	HCP was observed for the ODP, which accounted for 16.35% of the total impact. The
520	difference ratios of LCIA for the GWP, ODP, POCP, AP, and EP between these two
521	materials were calculated as (LCIAM20 - LCIAOPC paste)/LCIAOPC paste (Table 7) to
522	compare the environmental impacts of M20 and OPC pastes. The results showed that
523	the total environmental impacts of producing 1 t of M20 were less severe than those of
524	OPC paste, particularly for EP, which decreased by up to 17.7%. Thus, calcined
525	carbonated HCPs satisfy the required mechanical properties of construction materials
526	and are ecofriendlier than conventional cement-based materials.

528 4.4. Limitations of CCUS technology

Although the CO₂ transport routine from the emission source to the reuse in bioproduct manufacture was qualitatively and quantitatively clarified in the proposed technology route. Calcination of carbonated HCP for releasing captured CO₂ is still not an ideal method because of the non-negligible energy consumption. In future studies, the release of CO₂ from carbonated HCP without calcination should be further investigated. If solved, the CaL technique can also be improved. However, CCUS technology still faces various penalties and limitations, such as energy consumption,

536	financial needs, and public awareness. [85] [86]. Leonzio et al. [85] reported a net
537	present value of 0.554 trillion euros and a payback period of 2.85 years for the best
538	CCUS supply chain. Saito et al. [87] conducted a survey to assess the current status of
539	general public awareness and opinion on CCUS in Japan. They observed a somewhat
540	low level of climate change consciousness and a passive attitude toward CCUS policies.
541	Moreover, two cases of CO ₂ storage are discussed, demonstrating the restrictions of
542	CCUS in many countries. The CO ₂ -EOR project in Gao 89 is a CO ₂ geological storage
543	project in China. CO ₂ injection and storage were analyzed by Ma et al. [88]. Four CO ₂
544	gas wells, that is, Gao 89-4, Gao 89-5, Gao 89-16, and Gao 89-17, were selected to
545	calculate the accumulated amount of CO ₂ injected and generated. A total of 62,000 tons
546	of CO ₂ was injected, and a total of 58634.71 tons of CO ₂ was stored underground by
547	the end of 2011. During this process, investment in the project cannot be ignored. Such
548	techniques for reducing and storing anthropogenic CO2 are limited and significantly
549	less effective than expected. Another example is the multicriteria analysis conducted by
550	Vögele et al., which evaluated the feasibility of CCUS in Germany [11]. They compared
551	the possible impacts of deploying CCUS in six scenarios (REF, REF_high, CCS,
552	CCS_high, REG, and REG_high), which differed in renewables and certificate prices.
553	The results indicate a gloomy future for the CCUS technology in Germany. Because of
554	the overall cost of the electricity supply system and the cost sensitivity to changes in
555	the CO ₂ allowance, several disadvantages exist in the operation phase of the electricity
556	supply equipped with CCUS technology. The uncertainties in the feasibility of this
557	technique account for a higher risk, hindering CCUS development. Governmental

558	regulations regarding CCUS may raise companies' unwillingness to apply CCUS.
559	Hence, simultaneously achieving economy, energy conservation, and public acceptance
560	is still a considerable task for researchers and workers in CCUS.

562 **5.** Conclusions

563

In this study, the phase compositions of calcined carbonated HCP and the effect 564 of calcined carbonated HCP powders on the performance of OPC-based pastes were 565 566 investigated. Calcined carbonated HCP was manufactured using HCPs subjected to carbonation and calcination. Various tests, including the compressive strength test, 567 XRD, TGA, and FTIR, were performed. An LCA was then conducted to evaluate and 568 569 compare the environmental impacts of producing 1 t of M20 and OPC pastes. The following conclusions were drawn. 570 Based on the TGA results, HCP carbonation significantly consumed portlandite 571 (1)to form calcium carbonates, with a CO₂ uptake ratio of 21.61%. C-S-H in the HCP 572

573 generally remained noncarbonated, which may be attributed to the newly formed calcite,

574 preventing further gaseous CO₂ penetration.

575 (2) The calcination of carbonated HCP decomposed the main nanocrystal phase of
576 C-S-H and the crystal phases of portlandite and various calcium carbonates, forming
577 lime and wollastonite.

578 (3) At the same W/CM ratio of 0.4, the partial replacement of calcined carbonated 579 HCP increased the 28-day compressive strength by up to 8%, with an optimum replacement ratio of 20%. This was because of the filler effect of wollastonite and the
early-age strength improvement effect of lime; above the optimum replacement ratio,
the strength significantly decreased because of the dilution effect.

(4) Based on the microscopic characterizations, the major crystal phases in calcined
carbonated HCP – OPC pastes were identified, including C-S-H, portlandite,
monocarboaluminate, and some calcium carbonates formed by natural carbonation. The
crystal phases generally remained unchanged with an increasing replacement ratio of
calcined carbonated HCP.

(5) Finally, a conceptual technology roadmap for CCUS adopting HCP was
proposed. In addition, the LCA impacts of producing 1 t of M20 were less severe than
those of plain OPC paste in the five environmental impact categories (GWP, ODP,
POCP, AP, and EP). This study provides a reference for applying demolition waste in
CCUS and concrete production.

Conflict of interest

595 The authors declare that there is no conflict of interest.

Data availability statement

- 598 Some or all data, models, and codes that support the findings of this study are
- available from the corresponding author upon reasonable request.

601 Tables

Component	Cement
CaO	63.57
SiO ₂	20.58
Al ₂ O ₃	4.97
Fe ₂ O ₃	3.76
SO_3	2.00
MgO	2.29
f-CaO	0.75
Na ₂ Oeq	0.53
LOI	1.40

Table 1. Chemical compositions of OPC by mass (wt.%).

603

604 Table 2. Mixing proportions.

Mixture ID		OPC/g HCP- calcination/g Water/g		Total	Replacement
	OI C/g			weight/g	ratio/%
Ref.	42.86	0			0
M10	38.57	4.29	1714	60	10
M20	34.29	8.57	17.14	00	20
M30	30.00	12.86			30

Table 3. Details of samples at each processing stage.

Samula	Contont	Destant Dessaring manager		Weight/g *		
Sample	Content	Processing procedure	Before	After	ratio/%	
НСР	Fully hydrated cement paste	Hydrated for 3 months at 60 ± 0.5 °C	-	-	-	
HCP- carbonation	Carbonated HCP	Carbonation for 24 hours at constant gas pressure of 1.5 MPa and constant temperature of 60 ± 0.5 °C	120.0	145.5	21.25	
HCP- calcination	Calcined HCP- carbonation	Calcination at 1000 °C	135.8	87.8	35.35	

607 *Weights of samples before and after processing are listed in the fourth and fifth

608 columns, respectively. These abbreviations were also used in the figures.

609

	Min	Weight loss percentage (%)							
IVIIX	VIIX	30-300 °C	300-500 °C	500-900 °C	H ₂ O	CO ₂	Total		
]	Ref.	9.02	5.76	6.65	14.78	6.65	21.43		
l	M10	9.31	5.75	6.08	15.06	6.08	21.14		
l	M20	9.37	5.94	5.92	15.31	5.92	21.23		
l	M30	9.71	6.40	6.65	16.11	6.65	22.76		

Table 4. Quantification of water and CO₂ contents calculated using TGA.

611

Table 5. Production of 1 t M20 and OPC paste.

Raw materials	OPC	HCP-	Water/kg
	cement/kg	calcination	
		/kg	
M20	572	143	285
OPC paste	715	0	285

613

Table 6. Environmental impacts of producing 143 kg calcined HCP.

Procedure	GWP/kg CO ₂ -eq.	ODP/kg CFC-11-eq.	POCP/kg C ₂ H ₄ -eq.	AP/kg SO ₂ -eq.	EP/kg PO4 ³⁻ -eq.
Crushing and screening	8.004	1.559×10 ⁻⁶	2.847×10 ⁻³	0.056	3.605×10 ⁻³
Carbon capture	0.010	3.883×10 ⁻¹³	4.231×10 ⁻⁷	3.125×10 ⁻⁴	8.690×10 ⁻⁹
Calcination	11.448	9.850×10 ⁻⁷	5.220×10 ⁻⁴	6.490×10 ⁻³	1.130×10 ⁻³
Total environmental impacts	19.462	2.544×10 ⁻⁶	3.369×10 ⁻³	0.0630	4.735×10 ⁻³

Table 7. Environmental impacts of producing 1 t M20 and OPC paste.

Materials	Mixture	GWP/kg	ODP/kg	POCP/kg	AP/kg	EP/kg
	type	CO ₂ -eq.	CFC-11-eq.	C ₂ H ₄ -eq.	SO ₂ -eq.	PO_4^{3-} -eq.
ODC	M20	516.516	1.282×10 ⁻⁵	0.024	1.293	0.168
OPC	OPC paste	645.645	1.602×10 ⁻⁵	0.030	1.616	0.210

Watan	M20	0.122	1.967×10 ⁻⁷	2.327×10 ⁻¹²	2.454×10 ⁻⁵	6.505×10 ⁻⁹
water	OPC paste	0.122	1.967×10 ⁻⁷	2.327×10 ⁻¹²	2.454×10 ⁻⁵	6.505×10 ⁻⁹
HCP-	M20	19.462	2.544×10 ⁻⁶	3.369×10 ⁻³	0.0630	4.735×10 ⁻³
calcination	OPC paste	0	0	0	0	0
Total	M20	536.101	1.556×10 ⁻⁵	0.027	1.356	0.173
environmental impacts	OPC paste	645.767	1.622×10 ⁻⁵	0.030	1.616	0.210
Difference ratio (%)		-17.0	-4.1	-8.8	-16.1	-17.7

- [1] E. Benhelal, G. Zahedi, E. Shamsaei, A. Bahadori, Global strategies and potentials
 to curb CO₂ emissions in cement industry, J. Clean. Prod. 51 (2013) 142-161.
 https://doi.org/10.1016/j.jclepro.2012.10.049.
- [2] C. Chen, G. Habert, Y. Bouzidi, A. Jullien, Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation, J. Clean. Prod. 18 (2010) 478-485.
 https://doi.org/10.1016/j.jclepro.2009.12.014b.
- [3] J. Li, L. Spanu, J. Heo, W. Zhang, D.W. Gardner, C. Carraro, R. Maboudian, P.J.M.
 Monteiro, Sequestration of solid carbon in concrete: A large-scale enabler of
 lower-carbon intensity hydrogen from natural gas, MRS Bull. 46 (8) (2021)
 680-686. <u>https://doi.org/10.1557/s43577-021-00118-z</u>.
- [4] X.F. Zhang, S.Y. Zhang, Z.Y. Hu, G. Yu, C.H. Pei, R.N. Sa, Identification of connection units with high ghg emissions for low-carbon product structure design, J. Clean. Prod. 27 (2012) 118-125.
 <u>https://doi.org/10.1016/j.jclepro.2012.01.011</u>.
- [5] K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential
 economically viable solutions for a low- CO₂ cement-based materials industry,
 Cem. Concr. Res. 114 (2018) 2-26.
 https://doi.org/10.1016/j.cemconres.2018.03.015.
- [6] J. Skocek, M. Zajac, M. Ben Haha, Carbon capture and utilization by mineralization
 of cement pastes derived from recycled concrete, Sci. Rep. 10 (1) (2020) 5614.
 https://doi.org/10.1038/s41598-020-62503-z.
- [7] C. Ridtirud, C. Prinya, Influences of the ratios of high-calcium fly ash to lowcalcium fly ash on the strength and drying shrinkage of geopolymer mortar, Adv.
 Mater. Res. 931-932 (2014) 416-420.
 https://doi.org/10.4028/www.scientific.net/AMR.931-932.416.
- [8] L.A. Qureshi, B. Ali, A. Ali, Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete, Constr. Build. Mater. 263
 (2020) 120636. <u>https://doi.org/10.1016/j.conbuildmat.2020.120636</u>.
- [9] F.M. Baena-Moreno, M. Rodríguez-Galán, F. Vega, B. Alonso-Fariñas, L.F. Vilches
 Arenas, B. Navarrete, Carbon capture and utilization technologies: A literature
 review and recent advances, Energ. Sources. A 41 (12) (2019) 1403-1433.
 https://doi.org/10.1080/15567036.2018.1548518.
- [10] R. Zevenhoven, J. Fagerlund, J.K. Songok, CO₂ mineral sequestration:
 Developments toward large-scale application, Greenhouse Gases: Sci. Technol.
 1 (1) (2011) 48-57. <u>https://doi.org/10.1002/ghg3.7</u>.
- [11] S. Vögele, D. Rübbelke, P. Mayer, W. Kuckshinrichs, Germany's "no" to carbon
 capture and storage: Just a question of lacking acceptance?, Appl. Energy 214
 (2018) 205-218. https://doi.org/10.1016/j.apenergy.2018.01.077.

[12] B. Šavija, M. Luković, Carbonation of cement paste: Understanding, challenges, 661 opportunities. Constr. Build. Mater. 117 (2016)and 285-301. 662 https://doi.org/10.1016/j.conbuildmat.2016.04.138. 663 [13] S. Ruan, C. Unluer, Influence of mix design on the carbonation, mechanical 664 properties and microstructure of reactive mgo cement-based concrete, Cem. 665 666 Concr. Compos. 80 (2017)104-114. https://doi.org/10.1016/j.cemconcomp.2017.03.004. 667 [14] E.R. Bobicki, Q. Liu, Z. Xu, H. Zeng, Carbon capture and storage using alkaline 668 industrial wastes, Prog. Energy Combust. Sci. 38(2) (2012) 302-320. 669 [15] N.D. Oikonomou, Recycled concrete aggregates, Cem. Concr. Compos. 27 (2) 670 (2005) 315-318. https://doi.org/10.1016/j.cemconcomp.2004.02.020. 671 [16] P.H.R. Borges, J.O. Costa, N.B. Milestone, C.J. Lynsdale, R.E. Streatfield, 672 673 Carbonation of CH and C-S-H in composite cement pastes containing high of BFS. Cem. Concr. Res. 40 (2)(2010)284-292. 674 amounts https://doi.org/10.1016/j.cemconres.2009.10.020. 675 [17] L. Wang, J. Wang, X. Qian, P. Chen, Y. Xu, J. Guo, An environmentally friendly 676 method to improve the quality of recycled concrete aggregates, Constr. Build. 677 678 Mater. 144 (2017) 432-441. https://doi.org/10.1016/j.conbuildmat.2017.03.191. [18] M. Zajac, J. Skocek, J. Skibsted, M. Ben Haha, CO₂ mineralization of demolished 679 concrete wastes into a supplementary cementitious material - a new CCU 680 approach for the cement industry, RILEM Technical Letters 6 (0) (2021) 53-60. 681 https://doi.org/10.21809/rilemtechlett.2021.141. 682 [19] M. Zajac, J. Skocek, P. Durdzinski, F. Bullerjahn, J. Skibsted, M. Ben Haha, Effect 683 684 of carbonated cement paste on composite cement hydration and performance, Cem. Concr. Res. 134 (2020)106090. 685 https://doi.org/10.1016/j.cemconres.2020.106090. 686 [20] S. Ortaboy, J. Li, G. Geng, R. Myers, P. Monteiro, R. Maboudian, C. Carraro, 687 Effects of CO₂ and temperature on the structure and chemistry of C-(A-)S-H 688 investigated by Raman spectroscopy, RSC Adv. 7 (2017) 48925-48933. 689 https://doi.org/10.1039/C7RA07266J. 690 [21] M. Fernández Bertos, S.J.R. Simons, C.D. Hills, P.J. Carey, A review of accelerated 691 carbonation technology in the treatment of cement-based materials and 692 sequestration of CO₂, J. Hazard. Mater. 112 (3) (2004) 193-205. 693 https://doi.org/10.1016/j.jhazmat.2004.04.019. 694 [22] B. Lu, C. Shi, J. Zhang, J. Wang, Effects of carbonated hardened cement paste 695 powder on hydration and microstructure of portland cement, Constr. Build. 696 Mater. 186 (2018) 699-708. https://doi.org/10.1016/j.conbuildmat.2018.07.159. 697 [23] L. Liu, Y. Ji, F. Gao, L. Zhang, Z. Zhang, X. Liu, Study on high-efficiency CO₂ 698 absorption by fresh cement paste, Constr. Build. Mater. (2020) 121364. 699 https://doi.org/10.1016/j.conbuildmat.2020.121364. 700 [24] R. Hay, J. Li, K. Celik, Phase evolution, micromechanical properties, and 701 of calcium (alumino)silicate hydrates C-(A-)S-H 702 morphology under carbonation, Cem. Concr. Res. 152 (2022)106683. 703 https://doi.org/10.1016/j.cemconres.2021.106683. 704

- [25] Y. Wang, S. Y. Lin, Y. Suzuki., Limestone calcination with CO₂ capture (I), 705 decomposition behavior in a CO₂ atmosphere, Energy Fuels 21 (2007) 3317-706 3321. https://doi.org/10.1021/ef700318c. 707 [26] C. Ortiz, J.M. Valverde, R. Chacartegui, L.A. Perez-Magueda, P. Giménez, The 708 calcium-looping (CaCO₃/CaO) process for thermochemical energy storage in 709 710 concentrating solar power plants, Renew. Sustain. Energy Rev. 113 (2019) 109252. https://doi.org/10.1016/j.rser.2019.109252. 711 [27] G. Colelli, R. Chacartegui, C. Ortiz, A. Carro, A.P. Arena, V. Verda, Life cycle and 712 environmental assessment of calcium looping (CaL) in solar thermochemical 713 257 (2022)714 energy storage, Energ. Convers. Manage. 115428. https://doi.org/10.1016/j.enconman.2022.115428. 715 [28] S. Lin, T. Kiga, Y. Wang, K. Nakayama, Energy analysis of CaCO₃ calcination with 716 (2011) CO_2 capture, Energy Procedia 4 356-361. 717 718 https://doi.org/10.1016/j.egypro.2011.01.062. [29] Z.C. Wang, Q. Bai, G. Dresen, R. Wirth, B. Evans, High-temperature deformation 719 of calcite single crystals, J. Geophys. Res. Solid Earth 101 (B9) (1996) 20377-720 20390. https://doi.org/10.1029/96jb01186. 721 [30] S.K. Das, S.M. Mustakim, A. Adesina, J. Mishra, T.S. Alomayri, H.S. Assaedi, C.R. 722 Kaze, Fresh, strength and microstructure properties of geopolymer concrete 723 incorporating lime and silica fume as replacement of fly ash, J. Build. Eng. 32 724 (2020) 101780. https://doi.org/10.1016/j.jobe.2020.101780. 725 [31] J. Li, Q. Jin, W. Zhang, C. Li, P.J.M. Monteiro, Microstructure and durability 726 performance of sustainable cementitious composites containing high-volume 727 regenerative biosilica, Resour. Conserv. Recycl. 178 (2022) 106038. 728 https://doi.org/10.1016/j.resconrec.2021.106038. 729 [32] H. Mehdizadeh, E. Najafi Kani, A. Palomo Sanchez, A. Fernandez-Jimenez, 730 731 Rheology of activated phosphorus slag with lime and alkaline salts, Cem. Concr. Res. 113 (2018) 121-129. https://doi.org/10.1016/j.cemconres.2018.07.010. 732 [33] M. Mazloom, A.A. Ramezanianpour, J.J. Brooks, Effect of silica fume on 733 734 mechanical properties of high-strength concrete, Cem. Concr. Compos. 26 (4) (2004) 347-357. https://doi.org/10.1016/S0958-9465(03)00017-9. 735 [34] S.A. Barbhuiya, J.K. Gbagbo, M.I. Russell, P.A.M. Basheer, Properties of fly ash 736 concrete modified with hydrated lime and silica fume, Constr. Build. Mater. 23 737 738 (10) (2009) 3233-3239. <u>https://doi.org/10.1016/j.conbuildmat.2009.06.001</u>. [35] Y.K. Kong, Y. Song, K. Kurumisawa, T. Wang, D. Yan, Q. Zeng, X. Zhou, S. Ruan, 739 Use of hydrated cement pastes (HCP) as a CO₂ sponge, J. CO₂ Util. 55 (2022) 740 101804. https://doi.org/10.1016/j.jcou.2021.101804. 741 [36] C. Unluer, A. Al-Tabbaa, Impact of hydrated magnesium carbonate additives on 742 the carbonation of reactive mgo cements, Cem. Concr. Res. 54 (2013) 87-97. 743
- [37] ASTM C150/C150M-20, Standard specification for Portland cement, ASTM
 International, West Conshohocken, PA (2020).

https://doi.org/10.1016/j.cemconres.2013.08.009.

[38] C. Shi, Y. Li, J. Zhang, W. Li, L. Chong, Z. Xie, Performance enhancement of 747 recycled concrete aggregate - a review, J. Clean. Prod. 112 (2016) 466-472. 748 https://doi.org/10.1016/j.jclepro.2015.08.057. 749 [39] A. Carriço, J.A. Bogas, S. Hu, S. Real, M.F. Costa Pereira, Novel separation 750 751 process for obtaining recycled cement and high-quality recycled sand from 752 waste hardened concrete, J. Clean. Prod. 309 (2021) 127375. https://doi.org/10.1016/j.jclepro.2021.127375. 753 [40] ASTM C305, Standard practice for mechanical mixing of hydraulic cement pastes 754 and mortars of plastic consistency, ASTM International, PA (2020). 755 [41] B. Lothenbach, T. Matschei, G. Möschner, F. Glasser, Thermodynamic modeling 756 of the effect of temperature on the hydration and porosity of portland cement, 757 Cem. Concr. Res. 38 (2008)1-18. 758 759 https://doi.org/10.1016/j.cemconres.2007.08.017. [42] T. Wang, H. Huang, X. Hu, M. Fang, Z. Luo, R. Guo, Accelerated mineral 760 carbonation curing of cement paste for CO₂ sequestration and enhanced 761 properties of blended calcium silicate, Chemical Engineering Journal 323 (2017) 762 763 320-329. https://doi.org/10.1016/j.cej.2017.03.157. [43] ASTM C109/C109M-20b, Standard test method for compressive strength of 764 hydraulic cement mortars (using 2-in. or [50 mm] cube specimens), ASTM 765 International, West Conshohocken, PA (2020). 766 [44] H. Ye, L. Huang, Degradation mechanisms of alkali-activated binders in sulfuric 767 acid: The role of calcium and aluminum availability, Constr. Build. Mater. 246 768 (2020) 118477. https://doi.org/10.1016/j.conbuildmat.2020.118477. 769 770 [45] J.L. Provis, A. Palomo, C. Shi, Advances in understanding alkali-activated materials, Cem. Concr. Res. 78 (2015)110-125. 771 https://doi.org/10.1016/j.cemconres.2015.04.013. 772 773 [46] R. Snellings, G. Mertens, J. Elsen, Supplementary cementitious materials, Rev. Mineral. Geochem. 74 (2012) 211-278. https://doi.org/10.2138/rmg.2012.74.6. 774 775 [47] M. Liu, S. Hong, Y. Wang, J. Zhang, D. Hou, B. Dong, Compositions and 776 microstructures of hardened cement paste with carbonation curing and further 777 water curing, Constr. Build. Mater. 267 (2021)121724. https://doi.org/10.1016/j.conbuildmat.2020.121724. 778 [48] R. Guo, Q. Chen, H. Huang, X. Hu, T. Wang, Carbonation curing of industrial solid 779 waste-based aerated concretes, Greenhouse Gases: Sci. Technol. 9 (4) (2019) 780 https://doi.org/10.1002/ghg.1862. 781 [49] X. Pan, C. Shi, X. Hu, Z. Ou, Effects of CO₂ surface treatment on strength and 782 permeability of one-day-aged cement mortar, Constr. Build. Mater. 154 (2017) 783 1087-1095. https://doi.org/10.1016/j.conbuildmat.2017.07.216. 784 [50] J. Li, W. Zhang, P.J.M. Monteiro, Synchrotron x-ray Raman scattering shows the 785 changes of the Ca environment in C-S-H exposed to high pressure, Cem. Concr. 786 Res. 132 (2020) 106066. https://doi.org/10.1016/j.cemconres.2020.106066. 787 [51] R.-S. Lin, Y. Han, X.-Y. Wang, Macro-meso-micro experimental studies of 788 calcined clay limestone cement (LC3) paste subjected to elevated temperature, 789

790	Cem. Concr. Compos. 116 (2021) 103871.
791	https://doi.org/10.1016/j.cemconcomp.2020.103871.
792	[52] B. Xu, B. Lothenbach, F. Winnefeld, Influence of wollastonite on hydration and
793	properties of magnesium potassium phosphate cements, Cem. Concr. Res. 131
794	(2020) 106012. https://doi.org/10.1016/j.cemconres.2020.106012.
795	[53] R.I. Khan, W. Ashraf, Effects of ground wollastonite on cement hydration kinetics
796	and strength development, Constr. Build. Mater. 218 (2019) 150-161.
797	https://doi.org/10.1016/j.conbuildmat.2019.05.061.
798	[54] K. Traoré, T.S. Kabré, P. Blanchart, Gehlenite and anorthite crystallisation from
799	kaolinite and calcite mix, Ceram. Intl. 29 (4) (2003) 377-383.
800	https://doi.org/10.1016/S0272-8842(02)00148-7.
801	[55] R. Hay, K. Celik, Accelerated carbonation of reactive magnesium oxide cement
802	(rmc)-based composite with supercritical carbon dioxide (scCO ₂), J. Clean.
803	Prod. 248 (2020) 119282. https://doi.org/10.1016/j.jclepro.2019.119282.
804	[56] G. Ye, X. Liu, G. De Schutter, A.M. Poppe, L. Taerwe, Influence of limestone
805	powder used as filler in SCC on hydration and microstructure of cement pastes,
806	Cem. Concr. Compos. 29 (2) (2007) 94-102.
807	https://doi.org/10.1016/j.cemconcomp.2006.09.003.
808	[57] M. Abdel Wahab, I. Abdel Latif, M. Kohail, A. Almasry, The use of wollastonite
809	to enhance the mechanical properties of mortar mixes, Constr. Build. Mater. 152
810	(2017) 304-309. https://doi.org/10.1016/j.conbuildmat.2017.07.005.
811	[58] P. Kalla, A. Rana, Y.B. Chad, A. Misra, L. Csetenyi, Durability studies on concrete
812	containing wollastonite, J. Clean. Prod. 87 (2015) 726-734.
813	https://doi.org/10.1016/j.jclepro.2014.10.038.
814	[59] W.A. Gutteridge, J.A. Dalziel, Filler cement: The effect of the secondary
815	component on the hydration of portland cement: Part I. A fine non-hydraulic
816	filler, Cem. Concr. Res. 20 (5) (1990) 778-782. https://doi.org/10.1016/0008-
817	<u>8846(90)90011-L</u> .
818	[60] Y. Briki, M. Zajac, M.B. Haha, K. Scrivener, Impact of limestone fineness on
819	cement hydration at early age, Cem. Concr. Res. 147 (2021) 106515.
820	https://doi.org/10.1016/j.cemconres.2021.106515.
821	[61] P. He, C. Shi, Z. Tu, C.S. Poon, J. Zhang, Effect of further water curing on
822	compressive strength and microstructure of CO2-cured concrete, Cem. Concr.
823	Compos. 72 (2016) 80-88. https://doi.org/10.1016/j.cemconcomp.2016.05.026.
824	[62] Z. Tian, H. Ye, Electrical resistivity of partially-saturated alkali-activated slag
825	containing sodium nitrite admixture, Cem. Concr. Compos. 120 (2021) 104053.
826	https://doi.org/10.1016/j.cemconcomp.2021.104053.
827	[63] W. Ashraf, J. Olek, Carbonation behavior of hydraulic and non-hydraulic calcium
828	silicates: Potential of utilizing low-lime calcium silicates in cement-based
829	materials, J. Mater. Sci. 51 (13) (2016) 6173-6191.
830	https://doi.org/10.1007/s10853-016-9909-4.
831	[64] K. Kobayashi, K. Suzuki, Y. Uno, Carbonation of concrete structures and
832	decomposition of C-S-H, Cem. Concr. Res. 24 (1) (1994) 55-61.
833	https://doi.org/10.1016/0008-8846(94)90082-5.

124 cementitious materials, Cem. Concr. Res. (2019)105806. 836 https://doi.org/10.1016/j.cemconres.2019.105806. 837 [66] IPCC, Fourth assessment report (AR4), Working Group I, UNEP, New York, 2007. 838 839 [67] C. Andrade, M.A. Sanjuán, Updating carbon storage capacity of Spanish cements, Sustainability (12)(2018)4806. https://www.mdpi.com/2071-10 840 1050/10/12/4806. 841 [68] L.C. Dreyer, A.L. Niemann, M.Z. Hauschild, Comparison of three different lcia 842 methods: EDIP97, CML2001 and Eco-indicator 99, Int. J. Life Cycle Asses. 8 843 (4) (2003) 191-200. https://doi.org/10.1007/BF02978471. 844 [69] J.B. Guinée, E. Lindeijer, Handbook on life cycle assessment: Operational guide 845 846 to the ISO standards, Dordrecht: Kluwer Academic Publishers; 2002. [70] R. Lacy, M. Molina, M. Vaca, C. Serralde, G. Hernandez, G. Rios, E. Guzman, R. 847 Hernandez, R. Perez, Life-cycle ghg assessment of carbon capture, use and 848 geological storage (CCUS) for linked primary energy and electricity production, 849 850 Int. J. Greenhouse Gas Ctrl. 42 (2015) 165-174. https://doi.org/10.1016/j.ijggc.2015.07.017. 851 [71] E. Batuecas, F. Liendo, T. Tommasi, S. Bensaid, F.A. Deorsola, D. Fino, Recycling 852 CO₂ from flue gas for CaCO₃ nanoparticles production as cement filler: A life 853 cycle assessment, J. CO₂ Util. 45 (2021)101446. 854 https://doi.org/10.1016/j.jcou.2021.101446. 855 [72] S. Ruan, C. Unluer, Comparative life cycle assessment of reactive MgO and 856 857 Portland cement production, J. Clean. Prod. 137 (2016) 258-273. https://doi.org/10.1016/j.jclepro.2016.07.071. 858 [73] D. Huntzinger, T. Eatmon, A life-cycle assessment of Portland cement 859 manufacturing: Comparing the traditional process with alternative technologies, 860 J. Clean. 668-675. Prod. 17 (2009)861 https://doi.org/10.1016/j.jclepro.2008.04.007. 862 [74] T. Stengel, P. Schießl, 22 - life cycle assessment (lca) of ultra high performance 863 concrete (uhpc) structures, in: F. Pacheco-Torgal, L.F. Cabeza, J. Labrincha, A. 864 de Magalhães (Eds.), Eco-efficient construction and building materials, 865 Woodhead Publishing2014, pp. 528-564. 866 [75] I.T. Mercante, M.D. Bovea, V. Ibáñez-Forés, A.P. Arena, Life cycle assessment of 867 construction and demolition waste management systems: A Spanish case study, 868 Int. J. Life Cycle Asses. 17 (2) (2012) 232-241. https://doi.org/10.1007/s11367-869 011-0350-2. 870 [76] M.E. Boesch, S. Hellweg, Identifying improvement potentials in cement 871 production with life cycle assessment, Environ. Sci. Technol. 44 (23) (2010) 872 9143-9149. https://doi.org/10.1021/es100771k. 873 [77] L. Caneda-Martínez, M. Monasterio, J. Moreno-Juez, S. Martínez-Ramírez, R. 874 García, M. Frías, Behaviour and properties of eco-cement pastes elaborated with 875 recycled concrete powder from construction and demolition wastes, Mater. 14 876 (5) (2021) 1299. https://www.mdpi.com/1996-1944/14/5/1299. 877 38

[65] P.J.M. Monteiro, G. Geng, D. Marchon, J. Li, P. Alapati, K.E. Kurtis, M.J.A. Qomi,

Advances in characterizing and understanding the microstructure of

834

878	[78] SM. Jian, B. Wu, N. Hu, Environmental impacts of three waste concrete recycling
879	strategies for prefabricated components through comparative life cycle
880	assessment, J. Clean. Prod. 328 (2021) 129463.
881	https://doi.org/10.1016/j.jclepro.2021.129463.
882	[79] W. Xing, V.W.Y. Tam, K.N. Le, J.L. Hao, J. Wang, Life cycle assessment of
883	recycled aggregate concrete on its environmental impacts: A critical review,
884	Constr. Build. Mater. 317 (2022) 125950.
885	https://doi.org/10.1016/j.conbuildmat.2021.125950.
886	[80] R. Kurda, J.D. Silvestre, J. de Brito, Life cycle assessment of concrete made with
887	high volume of recycled concrete aggregates and fly ash, Resour. Conserv.
888	Recycl. 139 (2018) 407-417. https://doi.org/10.1016/j.resconrec.2018.07.004.
889	[81] S.H. Chu, Y.K. Kong, Mathematical model for strength of alkali-activated
890	materials, J. Build. Eng. 44 (2021) 103189.
891	https://doi.org/10.1016/j.jobe.2021.103189.
892	[82] T. Wang, DC. Xiao, CH. Huang, YK. Hsieh, CS. Tan, CF. Wang, CO ₂ uptake
893	performance and life cycle assessment of cao-based sorbents prepared from
894	waste oyster shells blended with pmma nanosphere scaffolds, J. Hazard. Mater.
895	270 (2014) 92-101. https://doi.org/10.1016/j.jhazmat.2014.01.026.
896	[83] L. Giordano, D. Roizard, E. Favre, Life cycle assessment of post-combustion CO ₂
897	capture: A comparison between membrane separation and chemical absorption
898	processes, Int. J. Greenhouse Gas Ctrl. 68 (2018) 146-163.
899	https://doi.org/10.1016/j.ijggc.2017.11.008.
900	[84] P. Van den Heede, N. De Belie, Environmental impact and life cycle assessment
901	(LCA) of traditional and 'green' concretes: Literature review and theoretical
902	calculations, Cem. Concr. Compos. 34 (4) (2012) 431-442.
903	https://doi.org/10.1016/j.cemconcomp.2012.01.004.
904	[85] G. Leonzio, D. Bogle, P.U. Foscolo, E. Zondervan, Optimization of CCUS supply
905	chains in the UK: A strategic role for emissions reduction, Chem. Eng. Res. Des.
906	155 (2020) 211-228. https://doi.org/10.1016/j.cherd.2020.01.002.
907	[86] Q. Li, Z.A. Chen, J.T. Zhang, L.C. Liu, X.C. Li, L. Jia, Positioning and revision of
908	CCUS technology development in china, Int. J. Greenhouse Gas Ctrl. 46 (2016)
909	282-293. https://doi.org/10.1016/j.ijggc.2015.02.024.
910	[87] A. Saito, K. Itaoka, M. Akai, Those who care about ccs-results from a Japanese
911	survey on public understanding of CCS, Int. J. Greenhouse Gas Ctrl. 84 (2019)
912	121-130. https://doi.org/10.1016/j.ijggc.2019.02.014.
913	[88] J. Ma, Y. Yang, H. Wang, L. Li, Z. Wang, D. Li, How much CO2 is stored and
914	verified through CCS/CCUS in China?, Energy Procedia 154 (2018) 60-65.
915	https://doi.org/10.1016/j.egypro.2018.11.011.
916	

917 List of Figures

- 918 Fig. 1. XRD patterns of HCP, HCP-carbonation and HCP-calcination.
- 919 Fig. 2. TG and DTG curves of HCP, HCP-carbonation and HCP-calcination.
- 920 Fig. 3. Compressive strength results.
- 921 Fig. 4. XRD patterns of paste samples.
- 922 Fig. 5. TG and DTG curves of paste samples.
- 923 Fig. 6. FTIR spectra of paste samples.
- 924 Fig. 7. Hydration behaviors of HCP-calcination-OPC pastes.
- 925 Fig. 8. Technology roadmap for CCUS using demolition waste.
- 926 Fig. 9. The process and system boundaries of 1 tonne (a) M20 production and (b) OPC
- 927 paste production.

Fig. 1. XRD patterns of HCP, HCP-carbonation and HCP-calcination.

933 Fig. 2. TG and DTG curves of HCP, HCP-carbonation and HCP-calcination.

Fig. 4. XRD patterns of paste samples.

Fig. 5. TG and DTG curves of paste samples.

Fig. 6. FTIR spectra of paste samples.

Fig. 7. Hydration behaviors of HCP-calcination-OPC pastes.

Fig. 8. Technology roadmap for CCUS using demolition waste

OPC paste production.