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Abstract

In this paper, we consider the computation of shortest paths and geodesics, which are
two types of path on the surface of a polyhedron in the three dimensional Euclidean
space. Here we say that a shortest path is a path with the minimum length connecting
two given points on the polyhedron, and a geodesic is a path whose length is minimal
against small perturbations. Note that the shortest path between two points is a

geodesic, but not all geodesics connecting those two points are the shortest path.

The shortest path problem on polyhedra is a fundamental problem in the field of
computational geometry and is also important in practice. This is a generalization
of the shortest path problem in graphs, which is one of the fundamental problems
in the field of discrete optimization, to polyhedra. Among the problems related to
shortest paths on polyhedra, the single source shortest path problem on polyhedra is a
particularly important problem and has been well studied and there are many previous
studies. In 1987, Mitchell, Mount, and Papadimitriou gave the MMP algorithm, which
is the first efficient computational method for the single source shortest path problem
on polyhedra, as the most relevant previous work to this paper. This was followed by
the CH algorithm proposed by Chen and Han in 1990, the ICH algorithm proposed
by Xin and Wang in 2009, and so on. For the all pairs shortest path problem (where

the starting and ending points are vertices), Ying, Wang, and He have proposed the
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Saddle Vertex Graph method, a graph-based framework. On the other hand, the
computation of geodesics, which are locally shortest paths, has not received much
attention in the field of computational geometry, and to the best of our knowledge,
there seems to be little research on this topic. This is in contrast to the fact that
geodesics on smooth surfaces are widely studied in mathematics, and that geodesics
as local shortest paths are an important research subject in physics for applications
such as mechanics and optics. Therefore, in this paper, we consider the computation
of geodesics on polyhedra. In Chapter 2, after giving basic definitions of geometry and
polyhedra, we define geodesics on polyhedra. In the following Chapter 3 and 4, we

consider two computational problems concerning geodesics on polyhedra.

In Chapter 3, we introduce the single source geodesics enumeration problem on
general polyhedra, including the case of nonconvex polyhedra, as a generalization of
the enumeration problem of the shortest paths of a single source on a graph. Then,
we define the basic data structure called complete geodesic interval tree for this prob-
lem, and discuss a method to compute it. Next, we consider reducing the number of
intervals in the data structure to reduce the time and memory required to enumerate
the geodesics. For this purpose, this paper proposes an improved data structure called
reduced geodesic interval tree by removing the overlap of intervals generated around
hyperbolic vertices (vertices such that the sum of angles measured around the vertex
along the faces is greater than 2m). Moreover, we show that the reduced geodesic
interval tree allows the result of geodesics enumeration to be succinctly encoded as
a single-pair geodesic graph. The complexity analysis shows that the both types of
geodesic interval trees can be generated in O(N log N) time and O(N) space, where
N is the number of intervals it contains. Furthermore, in the computer experiments,

it is observed that the reduced geodesic interval tree requires less storage space than



the complete geodesic interval tree and is better in terms of running time and memory
consumption.

In Chapter 4, we consider the computation of cut locus on convex polyhedra. As-
suming that a point s on the convex polyhedron P is specified, we can consider the
isoline for any positive real number R, such that the geodesic distance from the source
s is R. This is called a wavefront. Moreover, the set of points C' for which there exist
multiple shortest paths from the source s is called the cut locus. In the case of the
convex polyhedron P considered in this chapter, the cut locus C' is a graph consisting
of a set of points on P and a line segment connecting them. In this chapter, we assume
convexity of P and some other conditions for simplicity of discussion, and then mod-
ify the MMP algorithm by Mitchell, Mount, and Papadimitriou to construct explicit
wavefront propagation and cut locus in O(n?logn) time and O(n) space, where n is
the number of vertices of the polyhedron P. We also show that the generated intervals
can be modified to support geodesic queries in the O(n?) space by keeping all the gen-
erated intervals. In our experiments with artificial data, we observed that the practical
performance of the algorithm for geodesic queries is approximately O(n!®logn) time
and O(n'?) space.

In summary, in this paper, we have considered geodesics on polyhedra in three-
dimensional space and proposed efficient algorithms for the problems of enumerating
single source geodesics on a nonconvex polyhedron and computing a cut locus on a
convex polyhedron. We believe that these algorithms will be useful tools for various
applications involving geodesics on polyhedra in the future. It is an interesting task to

investigate the applicability of the proposed algorithms.
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Chapter 1

Introduction

1.1 Backgrounds

In this paper, we consider the computation of shortest paths and geodesics, which are
two types of path on the surface of a polyhedron in the three dimensional Euclidean
space. Here we say a path on a polyhedral surface to be a curve that connects two points
and passes only on the surface of the polyhedron. From now on, the entire surface of
a polyhedron is simply called a polyhedron. In differential geometry, a geodesic on a
smooth curved surface is defined as a locally shortest path. That is, a geodesic is a
path whose length is minimal against small perturbations. The concept of geodesic
can be defined similarly for polyhedrons. As a concept closely related to geodesics, the
path with the minimum length connecting two given points on a polyhedron is called
the shortest path on the polyhedron. Here, the shortest path between two points is a
geodesic, but it must be noted that not all geodesics connecting those two points are the
shortest path. The shortest path problem on polyhedra is a fundamental problem in

the field of computational geometry and is also important in practice. In this problem,



given a polyhedron P and a point s on P as input, it finds the shortest path from s to
all vertices of P. This is a generalization of the shortest path problem in graphs, which

is one of the fundamental problems in the field of discrete optimization, to polyhedra.

Among the problems related to shortest paths on polyhedra, the single source short-
est path problem on polyhedra is a particularly important problem and has been well
studied and there are many previous studies. In 1987, Mitchell, Mount, and Papadim-
itriou gave the MMP algorithm [12], which is the first efficient computational method
for the single source shortest path problem on polyhedra, as the most relevant previ-
ous work to this paper. This was followed by the CH algorithm [4] proposed by Chen
and Han in 1990, the ICH algorithm [21] proposed by Xin and Wang in 2009, and so
on. For the all pairs shortest path problem (where the starting and ending points are
vertices), Ying, Wang, and He have proposed the Saddle Vertex Graph method [22], a
graph-based framework. On the other hand, the computation of geodesics, which are
locally shortest paths, has not received much attention in the field of computational
geometry, and to the best of our knowledge, there seems to be little research on this
topic. This is in contrast to the fact that geodesics on smooth surfaces are widely
studied in mathematics, and that geodesics as local shortest paths are an important

research subject in physics for applications such as mechanics and optics.

1.2 Main Results

Therefore, in this paper, we consider the computation of geodesics on polyhedra. In
Chapter 2, after giving basic definitions of geometry and polyhedra, we define geodesics
on polyhedra. In the following Chapter 3 and 4, we consider two computational prob-

lems concerning geodesics on polyhedra.



e In Chapter 3, we introduce the single source geodesics enumeration problem on
general polyhedra, including the case of nonconvex polyhedra, as a generalization
of the enumeration problem of the shortest paths of a single source on a graph.
First, given (possibly nonconvex) polyhedron P, a point s € P and a positive
real number R, we define our single-source geodesics enumeration problem to be
the problem of building data structure 7 that enables to query, for any point ¢
on P, all geodesics from s to ¢t whose length is less than R. Such a query is called
a geodesics enumeration query. Then, we define the basic data structure called
complete geodesic interval tree for this problem, and discuss a method to com-
pute it. Next, we consider reducing the number of intervals in 7 in this problem
to reduce the time and memory required to enumerate the geodesics. For this
purpose, this paper proposes an improved data structure called reduced geodesic
interval tree by removing the overlap of intervals generated around hyperbolic
vertices (vertices such that the sum of angles measured around the vertex along
the faces is greater than 27). Moreover, we show that the reduced geodesic inter-
val tree allows a query result to be succinctly encoded as a single-pair geodesic
graph. The complexity analysis shows that the both types of geodesic interval
trees can be generated in O(Nlog N) time and O(N) space, where N is the
number of intervals it contains. Furthermore, in the computer experiments, it is
observed that the reduced geodesic interval tree requires less storage space than
the complete geodesic interval tree and is better in terms of running time and

memory consumption.

e In Chapter 4, we consider the computation of cut locus on convex polyhedra.
Assuming that a point s on the convex polyhedron P is specified, we can consider

the isoline for any positive real number R, such that the geodesic distance from
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the source s is R. This is called a wavefront. In general, a wavefront consists of
arcs, and two arcs on a face are connected at a point on the face. As the wavefront
advances with increasing R, these connection points move over the surface of the
polyhedron, and the set of all these points C' is called the cut locus. In other
words, the cut locus is the set of points for which there exist multiple shortest
paths from the source s. In the case of the convex polyhedron P considered in
this chapter, the cut locus C' is a graph consisting of a set of points on P and
a line segment connecting them. The cut locus C' is a partition of the entire
surface of P with respect to the set of points on the surface, corresponding to a
Voronoi diagram on the ordinary two-dimensional plane. However, the difference
is that, unlike the case of the two-dimensional plane, a cut locus on a convex
polyhedron is defined even if it has only one source. In this chapter, we assume
convexity of P and some other conditions for simplicity of discussion, and then
modify the MMP algorithm by Mitchell, Mount, and Papadimitriou to construct
explicit wavefront propagation and cut locus in O(n?logn) time and O(n) space,
where n is the number of vertices of the polyhedron P. We also show that the
generated intervals can be modified to support geodesic queries in the O(n?)
space by keeping all the generated intervals. In our experiments with artificial
data, we observed that the practical performance of the algorithm for geodesic

queries is approximately O(n'%logn) time and O(n'®) space.

In summary, in this paper, we have considered geodesics on polyhedra in three-

dimensional space and proposed efficient algorithms for the problems of enumerating

single source geodesics on a nonconvex polyhedron and computing a cut locus on a

convex polyhedron. We believe that these algorithms will be useful tools for various

applications involving geodesics on polyhedra in the future. It is an interesting task to
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investigate the applicability of the proposed algorithms.

1.3 Related work

There is a variety of research relating to geodesics on polyhedral meshes.

1.3.1 Shortest geodesics

The shortest path problem on a polyhedron has been extensively researched. On a
polyhedron without boundary, a shortest path is a geodesic [12], thus the shortest path
problem is equivalent to the shortest geodesic problem. Shortest geodesic algorithms
can be divided into exact algorithms and approximate algorithms. Since the interest
of this paper is exact algorithms, approximate algorithms are not discussed in detail

here. Detailed survey of this topic is given by [3, 7].

Interval propagation algorithms for the SSSP

The MMP algorithm given by Mitchell, Mount and Papadimitriou [12] is an important
exact algorithm for the SSSP on a polyhedron. It retains intervals on each edge, so that
the shortest path to any point within an interval has the same combinatorial structure
(faces, edges and vertices). Information required to reconstruct geodesics is appended
to these intervals. However, each interval only represents geodesics passing through a
particular face among the two faces incident to the edge. This can be interpreted that
each interval is assigned to a directed edge and only represents geodesics through one
side (in the original paper, it is the right side along the directed edge).

In the earliest stage of the MMP algorithm, intervals are created only for the edges

facing s. Each interval is propagated using the continuous Dijkstra scheme. When it



detects a shortest geodesic reaching a hyperbolic vertex (a vertex around which the
total angle measured along the faces is greater than 27), it generates the intervals
representing the geodesics passing through that vertex. Intervals on the same directed
edge are ordered, and a newly-propagated interval is inserted into the ordered list
of the intervals already-existing on the directed edge. Then, it performs trimming
among the new interval and adjacent intervals. By trimming, intervals are cut to
ensure shortestness against other intervals, and intervals on a directed edge become
disjoint. Intervals may become empty as a result of trimming, and such intervals
are not propagated. When no non-empty intervals are newly created and the priority
queue becomes empty, the algorithm terminates and outputs the shortest geodesics. Its
computational complexity given by the original authors is O(n*logn) time and O(n?)
space, where n is the number of the edges of the input polyhedron. However, according
to an experiment by Surazhsky et al. [17], its practical complexity is subquadratic
and could be considered as approximately O(n!?logn) time and O(n'?®) space. They
analyzed the reason behind it as that, the number of intervals per edge is approximately

O(n°®) in practice, despite the O(n) estimation by MMP.

Most of exact algorithms for the SSSP on a polyhedron, published after the MMP
algorithm, contain the concept of interval propagation. The CH algorithm by Chen
and Han [4] uses a FIFO queue instead of a priority queue. Its theoretical complexity
is O(n?) time and O(n) space, but its practical performance is not as good as the MMP
algorithm. The ICH (improved CH) algorithm by Xin and Wang [21] introduces into
the CH algorithm a priority queue as well as several new rules to exclude intervals not
contributing to any shortest paths. In theory, the usage of a priority queue increases its
time complexity to O(n?logn), but greatly improves its practical performance. While

the MMP algorithm requires inserting an interval into an ordered list and solving
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a quadratic equation to get the intersection of the interval and certain hyperbola,
the ICH algorithm does not. As a result, the ICH algorithm may outperform the
MMP algorithm despite the ICH algorithm may generate more intervals than the MMP
algorithm. Moreover, the ICH algorithm does not require the history of the propagated
intervals to be retained. As a result, the space complexity of the ICH algorithm is O(n),
which is significantly smaller than the MMP algorithm.

Saddle Vertex Graph

The Saddle Vertex Graph (SVG) by Ying, Wang and He [22] is an approach to the
vertex-to-vertex all-pairs shortest path problem on a polyhedron. They noticed that
a shortest geodesic between two hyperbolic vertices may be shared by multiple longer
shortest geodesics, and reduced the problem to the well-known shortest path problem
on a graph by precomputing shortest geodesics connecting two vertices without passing
through other vertices. However, when the given polyhedron is convex, it has no
hyperbolic vertices and there is no difference from precomputing the shortest path
for every pair of vertices. However, they observed real-world meshes contain 40-60%
hyperbolic vertices and more than 90% of shortest paths pass through at least one
hyperbolic vertex. Also, they considered the exact SVG is too large to be tractable for
large meshes and proposed a method to sparsify it, and evaluated error by computer

experiments.

1.3.2 General geodesics

Geodesics, which are not limited to shortest, also have been researched in the context

of geodesic tracing and path shortening.



Geodesic tracing

A classical problem about a smooth surface in differential geometry is to trace the
smooth geodesic from a given point p and a tangent direction v. Concerning the corre-
sponding problem on a polyhedron, this can be done at almost every point. However,
a geodesic cannot proceed beyond a spherical vertex (a vertex around which the total
angle measured along the faces is less than 27), and it cannot uniquely determine its
direction when it hits a hyperbolic vertex. To cope with this problem, Polthier and
Schmies suggested a straightest geodesic which goes through a vertex to halve the total
angle of the vertex [15]. However, it is not necessarily locally-shortest anymore, and
does not have continuity respect to p and v, i.e. it jumps when it moves onto or across
a non-Euclidean (i.e. spherical or hyperbolic) vertex, thus its nature vastly differs
from a geodesic on a smooth surface. To fill this gap, Cheng, Miao, Liu, Tu and He
suggested a method to trace smooth geodesics on a tangent-continuous curved surface
constructed from the input polyhedron using PN-triangles, and evaluated its accuracy

by computer experiments [5].

Path shortening

In this approach, an input polyline on a polyhedron is shortened until it becomes a
geodesic. The shortening process is performed according to local configuration of the
path. It is implemented in e.g. [19, 13, 20] and they used it to refine a path obtained by
Dijkstra’s algorithm on the edge graph or other approximate shortest path algorithms
on the polyhedron.

Recently, a flip-based algorithm was developed by Sharp and Crane [16]. An initial
path is given as an edge sequence, and until the path becomes a geodesic, the algorithm

modifies the triangulation by flipping an edge so that the new shortened path is still on
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the edges of the new triangulation. It works on intrinsic triangulations of a polyhedron
— that is, the new triangulation is intrinsically embedded in the original surface, and
its edges are no longer straight when it is viewed as an object in R3. It allows the
geometry of the original surface to remain unchanged by flipping. Their method can
yield not only open geodesics but also closed geodesics. Although they did not give
worst-case bounds, they proved that it always obtains a geodesic by finite operations,

and observed that its practical running time is on the order of milliseconds.

1.3.3 Cut-Locus

There are a few computational approaches on cut-loci on polyhedral meshes. Most of
them aim to approximate a cut-locus of a smooth surface, even though they work on
a polyhedral mesh. The distinction is important; cut-loci of polyhedra and smooth
surfaces are quite different (for further discussion, see Chapter 5).

Thaw [9] aims to compute a cut-locus of a convex smooth surface which is approxi-
mated by a convex polyhedron. It computes an approximation of the exponential map
using local unfolding of two adjacent triangles, which is similar to the MMP algorithm
and other related algorithms. Since their interest is computation of a cut-locus of a
convex smooth surface, they proposed an angle-based filtering method, which filters an
exact cut-locus into more scarce structure similar to that of the smooth surface.

A practical approach to this problem is given by Mancinelli, Livesu and Puppo [11].
Given an approximation of the distance field from the source, they use the discrete
Laplace operator to find the singularity of the distance field, as well as some topo-
logical information of the mesh to acquire the correct topology of the cut-locus. The
use of the discrete Laplace operator could be considered as a key to approximate a

smooth cut-locus, because the operator essentially regards the discretized surface as
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an approximation of a smooth surface.
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Chapter 2

Preliminaries

2.1 Polyhedra and geodesics

Throughout this paper, we simply use the term polyhedron (plural polyhedra) to mean a
(possibly non-convex) polyhedral surface, not solid polyhedron. We deal with simplicial
(which means triangulated) orientable polyhedra in R3, and the symbol P is dedicated

to mean such one.

Definition 2.1.1. Let v be a vertex of P. Let 7 be the sum of angles around v (measured

along the faces) and we call it the total angle of v. Following [15], we say that

o if 7 < 27, v is spherical;
e if 7 =2m, vis Fuclidean;

o if 7 > 27, v is hyperbolic.
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(a) spherical (b) hyperbolic

Figure 2.1: A spherical vertex and a hyperbolic vertex

Remark 2.1.2. If P is convex, every vertex is spherical or Euclidean. Note that the
angle defect 2m — 7 can be interpreted as the discrete Gaussian curvature at v. For

example, a discrete analog of the Gauss-Bonnet theorem holds for a polyhedron [6].

We define a geodesic as follows:

Definition 2.1.3. (geodesics) Let v be a path connecting s and ¢ on P. We say that

is a geodesic if and only if:

1. ~ is straight inside any face, and where v passes through an edge sequence £ =

(e1,...,€r), 7 is straight on the unfolding obtained from &;

2. where « passes through a vertex, the angle at the vertex made on the both sides

of v are greater than or equal to 7 (see Figure 2.2).
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JA

Figure 2.2: Geodesic passing through a vertex. Here a > 7 and > 7.

Upper: 3D perspective view, lower: top view

Lemma 2.1.4. A geodesic never passes through any spherical vertex.

Proof. Since the angle a and § at the vertex made on the both sides of v satisfy a > 7
and 5 > 7 (see Figure 2.2), the total angle of this vertex is 7 = a + > 27. O
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Remark 2.1.5. Although a geodesic does not pass through a spherical vertex, its end-
points may be spherical vertices. Moreover, a geodesic may pass through an arbitrarily

close neighbor of a spherical vertex.

Remark 2.1.6. In Figure 2.2, we depicted the angles at a vertex in two different styles:
in a 3D perspective view and a top view. Whenever we present a top-view style figure
(like the right one in Figure 2.2), angles described in it are intended to be measured

along the faces.

Intuitively, a geodesic is a locally-shortest path. Geodesics on a polyhedron, defined
above, can be used to approximate geodesics on a smooth surface, defined in differential
geometry. Nevertheless, there are some important differences between the discrete
geodesics and the smooth geodesics. Let us take a look at some examples.

Figure 2.3 shows the shortest geodesic (red) and other geodesics (green) on a discrete
ellipsoid. Since it is convex (and does not have Euclidean vertices), every vertex is
spherical and geodesics pass through no vertices. Instead, there are often multiple
similar geodesics that differ in how they “bypass” the vertices. As a result, when a
smooth surface is discretized into a polyhedron, a single geodesic on the smooth surface
often corresponds to multiple geodesics on the discretized polyhedral surface.

If the polyhedron has hyperbolic vertices, the geodesics can pass through them.
Figure 2.4 shows that the shortest geodesic (red) passes through consecutive four hy-
perbolic vertices, as well as some of non-shortest geodesics (green) also pass through
several vertices. These vertices are marked in yellow. In general, a geodesic can be
decomposed into a sequence of geodesics passing through no hyperbolic vertices. We

call them primitive geodesics.

Definition 2.1.7 (primitive geodesic). A geodesic passing through no hyperbolic vertices

is called a primitive geodesic.
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Figure 2.3: Geodesics on a discrete ellipsoid

Remark 2.1.8. Endpoints of a primitive geodesic may be hyperbolic vertices.

2.2 Geodesics and intervals

To explain how intervals can be used to express geodesics, we begin with an observation
of geodesics on a polyhedron. In Figure 2.5, a geodesic g from the source s, to ¢ on
a face o, is shown in red. Since g passes through a vertex v, it can be decomposed

into the two primitive geodesics, between sv and between vt. By Definition 2.1.3 (1),

15



Figure 2.4: Geodesics on a discrete torus

a primitive geodesic can be unfolded into a line segment. Particularly, the primitive
geodesic between vt can be unfolded into the line segment v¢ on the plane containing
o (Figure 2.6).

This unfolding of the geodesic between vt is shown in 2D in Figure 2.7. As a simple
observation, when one moves ¢ in the region shaded in yellow, the line segment vt still
gives a geodesic on the unfolding. This region is chosen so that the line segment vt

does not go out of the unfolding and satisfies the condition (2) in Definition 2.1.3 at v.

When ¢ is inside a face, one can extend the geodesic until hitting an edge, thus here
we only consider geodesics to a point on an edge. We introduce concept of intervals

generalizing the ones in the MMP algorithm (or other interval propagation algorithm)
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Figure 2.5: A geodesic from s to t via v

to express geodesics to a particular range on an edge. Figure 2.8 shows an outline of
this expression. The yellow and green line segments represent the range of the intervals
and indicates the range on which geodesics can be given in this unfolding. The region
darkly shaded in their respective color indicates the region in which the interval is
used in the geodesic query. As a remark, when a geodesic passes through no vertices,
we consider the unfolding of the whole geodesic from s, and when it passes through

multiple vertices, we consider the unfolding of the primitive geodesic between the last
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Figure 2.6: Geodesic and unfolding

vertex and ¢.

Figure 2.9 shows the intervals to express the geodesics immediately after passing
through a vertex. We call them pseudo-source intervals.

The actual data owned by an interval may be slightly altered for individual appli-

cations. We will see two versions of intervals in Chapter 3 and Chapter 4 accordingly.
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v t
+

Figure 2.7: The same unfolding in 2D

Figure 2.8: Geodesic and intervals

o+

Figure 2.9: pseudo-source intervals, made at a hyperbolic vertex
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Chapter 3

Enumeration of Geodesics

3.1 Our problem

Let P be a simplicial polyhedron in R®. When we give a source s on P, we want to
compute all geodesics from s to an arbitrary point ¢ on P. Since we have infinitely
many choice of ¢, we consider a query that inputs ¢ and outputs these geodesics. And
yet, there are likely to be infinitely many such geodesics and we give an upperbound
of their length R to obtain finite result.

It is widely known that single-source shortest path problems (SSSPs) for graphs
or polyhedra can be efficiently solved using a queue or a priority queue. Here, we
can think of a generalization of SSSPs, namely, single-source geodesics enumeration

problem on a polyhedron.

Definition 3.1.1 (single-source geodesics enumeration problem). Suppose that P is a sim-
plicial polyhedron in R?, s is a point on P and R is a positive real number. We define
our single-source geodesics enumeration problem to be the problem of building data

structure that enables to query, for any point ¢ on P, all geodesics from s to t whose
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length is less than R. We call an algorithm for this problem a single-source geodesics

enumeration algorithm, or simply geodesics enumeration algorithm.

3.2 Intervals for geodesics enumeration

The basic concept of intervals is already explained in Section 2.2. Here we give a formal
definition of intervals. As we stated before, the following formal definition of intervals
is applied only in this chapter; We will introduce another version of intervals (enriched

intervals) in Chapter 4.
Definition 3.2.1. An interval [ is defined to be the following data structure:

e [.Parent: the interval which generated I (by propagation)

1.Edge: the target edge

I.Face: the target face

I.Extent: the target line segment on I.Edge (identified with I itself)

I.Center: the unfolded position of the last vertex
e [.Depth: the length of the geodesic between s and the last vertex

It is used to express all geodesics reaching the line segment I.Extent on the edge I.Edge
through the last vertex. If the geodesics have not passed through a hyperbolic vertex
yet, I.Center is the unfolded position of s and I.Depth is 0.

We regard I to be oriented so that [.Face is seen on the left side along I.Edge.
We define the starting point of I with respect to this orientation. Moreover, I has the

following two functions:
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e [.Project(p : p € I.Face) := the intersection point of I.Edge and the line con-
necting p and I.Center

e [.Distance(p : p € I.Face) := (the distance of p and I.Center) + I.Depth

The interval I can yield a geodesic at p € I.Face if I.Project(p) € I.Extent, and its
length is given by I.Distance(p).

Remark 3.2.2. I.Center can be expressed in either the 3D global coordinate system or
a 2D local coordinate system on I.Face. 2D local coordinates are slightly faster and
memory efficient, as well as ensure that given coordinates are always on the plane. Our
implementation uses the 3D global coordinate system in input and output, but uses a
2D local coordinate system in internal storage and computation, and converts one to
the other when necessary. That means, our algorithms could run on a polyhedron in

higher-dimensional Euclidean space as well.

Remark 3.2.3. Our algorithms can also work on a self-intersecting polyhedral surface.
In this case, geodesics are not bent at the intersection and pass through it as if there
were no intersection — geodesics are completely defined locally. On the other hand, we
assume the orientability of the surface, which may not be the case for a self-intersecting
(or higher-dimensional) polyhedron. If this is an issue, one can take the orientable dou-
ble covering of the surface, as demonstrated in Figure 3.1. In this figure, geodesics are
computed on a discretized version of the orientable double covering, which is homeo-
morphic to the sphere, of the (non-orientable) Roman surface (a realization of the real
projective plane in R?). The source s is given once, but the target ¢ is given twice,
correspondingly to its two images on the double covering. In the figure, two different

colors are used accordingly.
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Figure 3.1: Geodesics on a discretized Roman surface

Remark 3.2.4. Our implementation uses the half-edge data structure as the internal
representation of a polyhedron, thus every edge is directed. Here the 2D local coordi-
nate system is defined by the directed edge e = I.Edge so that its origin is the starting
point of e, its positive = direction is the direction of e, its y axis is orthogonal to the x
axis and any point inside I.Face has positive y value. Complex numbers are convenient

for expressing the local coordinates, because

e we often need an 1D parametric coordinate on e as well. Since a real number
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is considered to be a complex number whose imaginary part is zero, we can

naturally treat it as a special case of 2D local coordinates;

e when we express [.Center in the 2D local coordinate system, we need to apply
coordinate transformation to propagate an interval. This transformation consists
of 2D rotation and translation, which can be expressed in terms of complex

multiplication and addition;

e functions such as abs and arg are also useful to implement our algorithm.

3.3 Naive geodesics enumeration algorithm

We can make a naive geodesics enumeration algorithm by propagating intervals without
the trimming process in the MMP algorithm. All intervals generated in this way form
a tree structure by the Parent pointer. we call it the complete geodesic interval tree or
the complete GIT.

This algorithm firstly performs initialization of generating several intervals, and
proceeds by processing events. We define propagation to be the act of generating one

or more new intervals by processing an event. Events consist of the following two types:

e cdge event : when a geodesic given by I reaches I.Extent for the first time

— this event is associated with [

— time of occurrence: (the distance of I.Extent and I.Center) + I.Depth
e vertex event : when a geodesic reaches a vertex v

— this event is associated with the interval I of which the starting point is v
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Algorithm 1 (Building the geodesic interval tree)

1: function BUILDGEODESICINTERVALTREE(s: source, R: upperbound of length)

2: @ := the event queue

3: INITIALIZE(Q, $)

4: while the time of occurence of the top event of ) < R do
5: Q).Popr().HANDLE(Q)

6: end while

7. end function

— time of occurrence: (the distance of v and I.Center) + I.Depth

We introduce an event queue to manage the order of events. It is a priority queue,
and lets the algorithm process events in the ascending order of their time of occurrence.

The outline is described in Algorithm 1 as a pseudocode.

Remark 3.3.1. In Algorithm 1 (and Definition 3.1.1), we assume that R is given ahead
of time. Alternatively, we can rewrite the line 4 with another arbitrary terminating
condition (or as an infinite loop which can be stopped by a human), and when the loop
terminates, R can be obtained as the time of occurrence of the top event of (). This

also applies to the improved algorithm in the next section.

3.3.1 Initialization

Firstly, the intervals for all edges facing s are generated. Figure 3.2 shows the cases of
s being inside a face (left), inside an edge (middle), and at a vertex (right). For each
I of these initial intervals, I.Parent is Null, /.Center is s, I.Depth is 0, I.Extent is the
whole [.Edge, and I.Face is the face containing both s and [.Edge. For each I, the

associated edge event and vertex event are inserted into the event queue. (Algorithm 2)
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Figure 3.2: Initialization

Algorithm 2 (Initialization)
1: function INITIALIZE(Q, s)

2: I, ... I, := the initial intervals

3: foriinl...k do

4: Q).PusH(EdgeEvent(/;))
5: Q.PusH(VertexEvent([;))
6: end for

7. end function

3.3.2 Procedure for edge events

When an edge event occurs, the associated interval I is projected from I.Center into
the opposite edges of I.Edge (Figure 3.3). The projection result is on either one edge
(left) or two edges (right). For each newly created interval I; (left: Iy, right: I, I3),
I; Parent = I, I;.Depth = [.Depth and I;.Face is the triangular face in Figure 3.3.
I;.Center is obtained by certain 3D rotation around I.Edge to make it coplanar with
I;.Face. For each I;, the associated edge event is inserted into the event queue. In the
two-interval case (right), the vertex event at the intermediate vertex v is associated with

the interval starting at v (that is I) and inserted into the event queue. (Algorithm 3)
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Figure 3.3: Projection of an interval

Algorithm 3 (Processing an edge event)

1: function EDGEEVENT.HANDLE(Q)

2:

3:

4:

8:

9:

I := the associated interval

if [ is projected into one interval I; then
Q.PusH(EdgeEvent (1))

else // I is projected into two intervals [; and I
Q.PusH(EdgeEvent(I;))
Q.PusH(EdgeEvent(15))
Q).PusH(VertexEvent (1))

end if

10: end function

3.3.3 Procedure for vertex events

When a vertex event occurs, the associated interval I is recorded on v as it gives

the geodesic arriving at v. If v is hyperbolic, one or more pseudo-source intervals are

generated. In Figure 2.9, one interval in the left subfigure, two intervals in the right are
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Algorithm 4 (Processing a vertex event, for the complete GIT)

1: function VERTEXEVENT.HANDLE(Q)

2:

3:

4.

10:

11:

12:

13:

14:

I := the associated interval
v := the starting point of
Record I on v
if v is not hyperbolic then
return
end if
I, ... I, := the corresponding pseudo-source intervals
forvinl...kdo
Q). PusH(EdgeEvent(I;))
end for
foriin2...k do
Q.PusH(VertexEvent([;))

end for

15: end function

generated. For each newly-created interval I;, I;.Parent = I, I;.Center = v, I;.Depth
is the length of the geodesic to v (= the time of occurrence of this event), and the

associated edge event and vertex event (if exists) are inserted into the event queue.

(Algorithm 4)

3.3.4 Geodesics enumeration query

After building the complete geodesic interval tree, it can accept the geodesics enumer-

ation query which inputs a point ¢ on P and outputs the set G of geodesics from s to
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t, whose length is less than R. First, we must determine which intervals are responsible

for the output. It can be done using the GETINTERVALS function:
Definition 3.3.2. We define the GETINTERVALS(t) function as follows:
o If ¢ is a vertex v, GETINTERVALS(t) returns the set of intervals recorded on wv.

e If ¢ is on an edge e, GETINTERVALS(t) returns the set of all generated intervals

I such that I.Edge = e, t € I.Extent and I.Distance(t) < R.

e If ¢ is on a face f, GETINTERVALS(¢) returns the set of all generated intervals [

such that I.Face = f, I.Project(t) € I.Extent and [.Distance(t) < R.

For each obtained interval, using Algorithm 5, the geodesic is constructed from ¢
to s by backtracking I.Parent. The whole procedure is given by Algorithm 6. In the
pseudocode, INTERSECT is the function of getting the intersection, and ADDFRONT is

the operation of inserting a point at the front of the list.

3.4 Improved geodesics enumeration algorithm

The difference between the MMP algorithm and the geodesics enumeration algorithm
in the previous section based on the complete geodesic interval tree is that, since we are
also interested in non-shortest geodesics, our intervals are never trimmed. However,
this change largely increases the computational complexity. Here, when P is non-
convex, we can reduce required amount of time and memory by placing pseudo-source
intervals without overlap. We can understand the redundancy of the naive algorithm
using Figure 3.4. In the figure, the source s is indicated as the yellow cross sign (x)

and the target ¢ is indicated as the yellow plus sign (4). While multiple geodesics
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Algorithm 5 (Construct a geodesic)

1: function CONSTRUCTGEODESIC(/, p)

2:

3:

4.

8:

9:

10:

g = (p)
while [.Parent # Null do
e := I.Parent.Edge
p := INTERSECT(e, the line segment connecting p and I.Center)
g.ADDFRONT(p)
I := [.Parent
end while
9. ADDFRONT(s)

return g

11: end function

Algorithm 6 (Geodesics enumeration query, for the complete GIT)

1: function GEODESICENUMQUERY (t)

2:

3:

4.

5:

6:

G := () (the set of geodesics for output)
for I in GETINTERVALS(¢) do

G.ADD(CONSTRUCTGEODESIC(/, t)) > Algorithm 5
end for

return G

7. end function

are outgoing from s, they merge at some hyperbolic vertices until reaching ¢ and they

all share some part near t. However, the naive algorithm cannot recognize and utilize

this property; the shared part of the geodesics is independently encoded in multiple

intervals and rediscovered for each geodesic during the query process. The basic idea
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of improvement is shown in Figure 3.5. In this figure, a geodesic g; already arrived
at a hyperbolic vertex and yielded a pseudo-source interval I;. Now, another geodesic
go arrives at the vertex. Although g, can go through the dotted blue line, I; can be
chosen to exclude the region already searched by I;. As we will see later, we can still

restore all geodesics in the query process.

3.4.1 Procedure of reduction

For the purpose of generalizing this argument, for each hyperbolic vertex v, we arbi-
trarily choose an edge e, among those incident to v and we fix the choice (Figure 3.6).
It allows us to numericalize the direction of g (seen from v) into o (measured along the
faces). When ¢ is incoming into v, we call a the incoming angle of g, and when g is
outgoing from v, we call a the outgoing angle of g. Also, we use the term outgoing angle
range ¢ = [p,v] (v — p < 7) to assert that all values within this range are considered
as outgoing angles, here 7 is the total angle of v. By convention, if u > v then ¢ is
empty, and if ¥ > 7 then all values within ¢ are subject to the “mod 7”7 operation.
Let us explain how it works in the example shown in Figure 3.7. In this figure, the
five geodesics gy, . . ., g5 of incoming angles vy, .. ., as (respectively) arrive at the vertex
in this order. Here we assume a1 < as < a5 < a4 < ag < a1 + 7. Each incoming angle

«; is mapped to the corresponding outgoing angle range ¢; = [u;, v;] as follows:

1. «y: the outgoing angle range is t; = [y + 7,4 — 7 + 7] and corresponding one

pseudo-source interval (not shown) is generated.

2. g o is limited by gy while 15 is not, thus 1o = [y — 7+ 7,90 — 7+ 7] and two

corresponding pseudo-source intervals (not shown) are created.
3. ag: neither g nor gy limits ¢3, thus t3 = [az + 7, a3 — 7 + 7.

32



Figure 3.4: Geodesics on a pumpkin
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g1 g2

Figure 3.5: When g, arrives at a hyperbolic vertex after g;, Is.Extent is chosen not to

have overlap with I;.Extent.

Figure 3.6: Fix e, and encode the direction of g into «
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Figure 3.7: Incoming angles «; and outgoing angle ranges ¢;. t5 = ()

4. ay: 4 is limited by g9 and g3, thus 1y = [e — 7+ 7, a3 + 7).

5. as: 5 is limited by g and g4 thus ¢5 is temporarily computed as t5 = [ag — 7 +

T, a4 + w]. However, it is empty and no pseudo-source intervals are created.

Since the outline, initialization and procedure for edge events (Algorithm 1, 2, 3)
are identical, we only explain the procedure for vertex events and geodesics query. All
intervals generated in this way form a tree structure by the Parent pointer. we call it

the reduced geodesic interval tree or the reduced GIT.

Remark 3.4.1. In the reduced geodesic interval tree, only pseudo-source intervals gener-
ated at the same vertex are ensured to be disjoint. There may be an overlap between
two non-pseudo-source intervals, or between a pseudo-source interval and a non-pseudo-

source interval.
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3.4.2 Procedure for vertex events

Like the naive version, when a vertex event occurs, the associated interval I is recorded
on v. If v is hyperbolic, it performs the procedure of the reduction explained in the
previous subsection, and, if the resulting outgoing angle range is not empty, pseudo-
source intervals are generated and the associated edge events and vertex events (if

exist) are inserted into the event queue. (Algorithm 7)

3.4.3 Geodesics enumeration query

In this subsection, we discuss the geodesics enumeration query for the reduced geodesic
interval tree, which inputs a point ¢ on P and outputs the set G of directed geodesics
from s to t, whose length is less than R.

In the complete geodesic interval tree, a geodesic is given for each pair (I,p) by
the CONSTRUCTGEODESIC function (Algorithm 5). On the other hand, in the reduced
geodesic interval tree, geodesics of the same path between the last vertex v and p
are given together for the pair (I,p). The primitive geodesic between vp is given
by the CONSTRUCTPRIMITIVEGEODESIC function (Algorithm 8). The geodesic is
constructed from ¢ to s, and every time it hits a hyperbolic vertex, possible branches

must be enumerated.

Let us take a look at the example illustrated in Figure 3.8. In this figure, each arrow
indicates the direction from s to ¢, although the actual query is performed backwards.
Let us assume that we have just found a geodesic g outgoing from v, and there are
three geodesics g1, go and g3 incoming into v, and each of g; and g, is connectable with
g as a geodesic while g3 is not. Then, for each of g; and ¢o, we check it can satisfy the

length upperbound, and if so, we connect it with ¢ and perform this process recursively.
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Algorithm 7 (Processing a vertex event, for the reduced GIT)

1: function VERTEXEVENT.HANDLE(Q)

2: I := the associated interval
3: v := the starting point of /
4: Record I on v
5: if v is not hyperbolic then return
6: « := the incoming angle of the geodesic at v
7: 7 := the total angle of v
8: 0:=71—21
9: if there exist no incoming angles within (o — §, ) then
10: p=a+m
11: else
12: p := (the largest incoming angle within (« — §,)) — 7+ 7
13: end if
14: if there exist no incoming angles within (o, o + §) then
15: Vi=a—T+T
16: else
17: v := (the smallest incoming angle within (o, +9)) +7
18: end if
19: if 4 > v then return
20: I ... I} := the pseudo-source intervals for the outgoing angle range [u, V]
21: for:inl...kdo
22: Q).PusH(EdgeEvent(1;))
23: end for
24: foriin 2...k do
25: Q).PusH(VertexEvent(I;))
26: end for

27: end function
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Figure 3.8: During the geodesics query, a geodesic is traced backwards. For the geodesic
g outgoing from v, we enumerate all connectable geodesics (g; and go) incoming into
v and check whether each can satisfy the upperbound. We recursively perform this

process.

In general, we can use a simple depth-first search here. For each interval I, I.Depth
is the minimum of the depths of these geodesics grouped together. Since G contains
at least one geodesic represented by the pair (I,¢) if and only if the minimum of their
lengths is less than R, the procedure of the GETINTERVALS function (Definition 3.3.2)
is identical. The whole procedure is given by Algorithm 9. In the pseudocode, RE-
MOVELAST is the operation of removing the last point from the sequence, and is used

for endpoints of primitive geodesics not to appear twice.
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Algorithm 8 (Construction of a primitive geodesic)

1: function CONSTRUCTPRIMITIVEGEODESIC(I, p) // p € I.Face

2 g:=(p)

3: // when reached s, I.Parent = Null

4: // when reached a hyperbolic vertex, /.Parent.Depth < I.Depth
5: while [.Parent # Null and I.Parent.Depth = I.Depth do

6: e := [.Parent.Edge

7: p := INTERSECT (e, the line segment connecting p and I.Center)
8: 9. ADDFRONT(p)

9: I := I.Parent

10: end while
11: 9. ADDFRONT(/.Center) > I.Center is s or a hyperbolic vertex
12: return (g, I.Parent = Null) > tuple of a path and a Boolean value

13: end function

3.4.4 Constructing single-pair geodesic graph

Since a geodesic is a sequence of primitive geodesics, we can reduce G into a graph
whose edges are primitive geodesics (Figure 3.9). We call it a single-pair geodesic graph,
or simply a geodesic graph. It can be computed directly using the reduced geodesic

interval tree.

Definition 3.4.2 (Single-pair geodesic graph). The (single-pair) geodesic graph G with

respect to G, is the directed graph satisfying the following conditions:

e The vertices of Qﬁ are s,t and the vertices of P through which at least one

. . R
geodesic in Gg; passes.
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Algorithm 9 (Geodesics enumeration query, for the reduced GIT)

1: function GEODESICENUMQUERY (1)

2:

3:

4:

10:

11:

12:

13:

14:

15:

G:=10

for I in GETINTERVALS(¢) do > Definition 3.3.2
d := DI1STANCE(t, I.Center) > length of the primitive geodesic
GEODESICENUMQUERYREC(G, (t), I, t, d)

end for

return G

. end function

: function GEODESICENUMQUERYREC(G, g, I, p, d)

(h, ISSOURCE) := CONSTRUCTPRIMITIVEGEODESIC(I, p) > Algorithm 8
h.REMOVELAST()

if ISSOURCE then

G.ADD(h + g) > + denotes concatenation of sequences
return

end if

v := the starting point of h > this is a hyperbolic vertex

« := the outgoing angle of h at v
for all J : the intervals of incoming angle within [a 4+ 7, — 7 + 7] at v do
[ := DISTANCE(v, J.Center) > length of the primitive geodesic
if d+ 1+ J.Depth < R then
GEODESICENUMQUERYREC(G, h+ g, J, v, d+1) > recursive call
end if

end for

16: end function
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Figure 3.9: Concept of geodesic graph. Each arc represents a primitive geodesic. The

red arc is connectable to the green arcs and the blue arcs.

e The edges of GZ are the directed primitive geodesics connecting two vertices of

GR, such that each of them is contained in at least one directed geodesic in GE.

Remark 3.4.3. In a geodesic graph G s and t act as the source and the sink (respec-

tively). Even if s (resp. t) is placed at a vertex and geodesics pass through the vertex,
we regard s (resp. t), as a vertex of GZ, to be distinct from any other vertex of P. This
convention allows us to design the algorithm without special treatment of s (resp. t)

being a vertex or not.

Remark 3.4.4. A geodesic graph can have multi-edges. That is, there may exist pairs

of edges such that the both endpoints coincide.

Remark 3.4.5. Our geodesic graph bears some resemblance to the Saddle Vertex Graph
(SVG) [22], but fundamentally differs as follows:

e The SVG only considers shortest geodesics, while our geodesic graph considers

non-shortest geodesics as well.

e The SVG considers shortest geodesics for all pairs of vertices, while our geodesic

graph only considers geodesics connecting s and t.

e More importantly, the SVG is constructed before their geodesic query and the

query is performed on the SVG, while our geodesic query is performed on the
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reduced geodesic interval tree and yields a geodesic graph. In other words, our

geodesic graph is a representation of the query result.

Remark 3.4.6. Our geodesic graph G is an exact representation of the query result
for the given s, t and R. The naive representation G often have many overlapped
sub-geodesics. In this situation, we can compress them into a graph, eliminating re-

dundancy that can be combinatorially reconstructed from the graph.

Remark 3.4.7. Every figure in this paper that renders computed geodesics (such as
Figure 2.4 and Figure 3.4) is a 3D-rendered version of a geodesic graph presented in

this subsection.

A geodesic graph is constructed from ¢ to s using Algorithm 10. We use a modified
version of Dijkstra’s algorithm to determine the shortest possible length from ¢ for each

primitive geodesic. We have two points to remark:

e When ¢ is given, an interval can yield at most two primitive geodesics, and each
primitive geodesic can be specified by the pair (I, ISTARGET) where I is an inter-
val and ISTARGET is a Boolean value indicating whether the primitive geodesic
ends with ¢ (otherwise it ends with the starting point of 7). Note that ISTARGET
is set to be TRUE only through the initialization of the algorithm since we re-
gard t to be a vertex of GF distinct from any other vertex (Remark 3.4.3). Since
we can assume that no duplicated intervals are supplied by the GETINTERVALS
function, we need to check visitedness only when ISTARGET is set to FALSE (the

line 11-14).

e In the line 23, [ is the length of the primitive geodesic given by (J, FALSE). A

conceptual figure is described in Figure 3.9. Let the red curve be the primitive
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geodesic and denoted as h. Not necessarily all geodesics in GE contain h. Let the
green part and blue part be the subgraph of GE between su and vt respectively
through which a geodesic containing h can pass (in general the green and blue
subgraph may be overlapped). Then, the distance between su on the green
subgraph is J.Depth, because of the construction method of the reduced geodesic
interval tree. Moreover, the distance between vt on the blue subgraph is d,
because of the construction algorithm of the geodesic graph, which is derived
from Dijkstra’s algorithm. Therefore the minimum length of geodesics between
st containing h is J.Depth + [+ d, and h is contained in G as an edge if and only
if it is less than R.

3.5 Performance

In this section, since we evaluate both the naive version that generates a complete
geodesic interval tree and the improved version that generates a reduced geodesic in-
terval tree, we call them geodesic interval trees. Since the size of an output geodesic
interval tree greatly depends on the geometry, it is difficult to express it only in terms
of input size and R. The efficiency of a reduced geodesic interval tree is due to its small
size compared with the corresponding complete one, and we evaluate it by experiments

in the next subsection. First, we state an output-sensitive complexity evaluation:

Theorem 3.5.1. Let 7 be a (complete or reduced) geodesic interval tree and N = |T|
be the number of intervals in it. The corresponding algorithm for generating 7 runs

in O(N log N) time and O(N) space.

Proof. Since the number of the whole generated intervals is IV, the numbers of edge

events and vertex events are O(N). Thus, the size of the event queue is O(N) at
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Algorithm 10 (Construction of a geodesic graph, for the reduced GIT)

1:
2
3
4
o:
6
7
3
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

function CONSTRUCTGEODESICGRAPH(t)

@, := a priority queue
s := (0 (the set of visited intervals)
G := 0 (the set of edges of the output geodesic graph)

for I in GETINTERVALS(?) do > Definition 3.3.2
d := Di1STANCE(t, I.Center) > length of the primitive geodesic
Q,.PUsH((I, TRUE, priority: d))

end for

while @), is not empty do
(I, ISTARGET, priority: d) := @,.Pop()
if not ISTARGET then
if 7,;s contains I then continue
Z.ApD(1)
end if
p = if ISTARGET then ¢ else the starting point of [
(g9, ISSOURCE) := CONSTRUCTPRIMITIVEGEODESIC(/, p) > Algorithm 8
G.ADDEDGE(g)
if ISSOURCE then continue
v := the starting point of h > this is a hyperbolic vertex
« = the outgoing angle of g at v
for all J : the intervals of incoming angle within [+ 7, — 7+ 7] at v do
[ := DISTANCE(v, J.Center)
if (Z,is does not contain J) and (d + [ + J.Depth < R) then
Q..PusH((J, False, priority: d +1))
end if
end for
end while

return ¢

29: end function
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any time. Therefore, the pop operation of the event queue takes O(log N) time per
event. Concerning processing time of an event, an edge event can be processed in
constant time. A vertex event requires time proportional to the number of the intervals
it generates, but it sums up to O(N). Also, in the reduced version, the two adjacent
incoming angles of an incoming angle must be acquired, but it can be done in O(log V)
time per event using a balanced binary search tree. Therefore, the time complexity is
O(Nlog N). On the other hand, since the required space is the whole output tree T
and the event queue, and each interval or event consumes constant space, the space

complexity is O(N). O

3.5.1 Experimental Result

For the purpose of evaluating performance of our methods, we mainly use the Elephant
mesh contained in the CGAL (Computational Geometry Algorithms Library) [18]. The
proposed methods consist of two parts, i.e., the construction of a geodesic interval tree,
and the geodesics query or the construction of a geodesic graph. Since the geodesics
query consumes much less (often negligible) time, we only evaluate the performance of
the construction of a geodesic interval tree, except Figure 3.25. We implemented our
(single-threaded) algorithms in C++ and tested them using a machine with Intel(R)
Core(TM) 19-9980XE CPU @ 3.00GHz and 128GB RAM running Linux. Except Fig-
ure 3.18, 3.19 and 3.25, we ran our program for 300 seconds and took statistics every
second. In Figure 3.18 and 3.19, we manually recorded the amount of memory con-
sumption measured by the OS, when it elapsed 10, 20, 30, 40, 60, 80, 100, 125, 150,
180, 210, 240, 270 and 300 seconds since each program started.

Relation of R (normalized so that the mean edge length is 1) and running time is

shown in Figure 3.11, and its log-linear plot and log-log plot are shown in Figure 3.12
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and Figure 3.13. We can observe that the running time of the naive version grows
exponentially to R, while that of improved version grows more slowly. A log-linear plot
and log-log plot of the total number of generated intervals |7 | are shown in Figure 3.14
and Figure 3.15, and they exhibit a pattern similar to that of the computation time.
Figure 3.16 shows the slope of the log-log plot, i.e. A(log|7T1)/A(log R), which can be
considered as the exponent o when |7 is locally fit by kR“ (k and « are constants).
This value is increasing in the naive version but decreasing in the improved version, as
R increases. Figure 3.17 shows relation of | 7| and computation time, and exhibits a
pattern similar to the quasilinear growth. Memory consumption is shown in Figure 3.18
(to R) and Figure 3.19 (to |7]). We can observe that the memory consumption seems
to grow linearly to |7|. Figure 3.20 shows the ratio of the number of propagating
vertex events (vertex events that generated at least one interval) to the number of
hyperbolic vertex events (vertex events that occurs at a hyperbolic vertex), among
newly-processed events in one second. This value is 1 in the naive version but around
0.2 in the improved version in this instance, which means that, in the improved version,
there are less vertex events that actually generate intervals compared with the naive
version.

We also tested on a synthesized simple torus (Figure 3.22, 3.23, 3.24). We can
observe that, for sufficiently large R, the total number of generated intervals |7 in the
improved version is approximately ©(R?). We have not established a theory, but we

could guess the reason behind it as follows:

e For sufficiently (very) large R (and in generic cases), pseudo-source intervals are
likely to “fill up” all angles around hyperbolic vertices so that no new pseudo-

source intervals are generated.
e In this situation, the area “swept” by the imaginary wavefront of intervals is
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O(R?). That is, the number of vertex events is likely to be ©(R?). Since an
interval in the wavefront splits into two intervals when it meets a vertex, the
number of intervals in the wavefront is also likely to be ©(R?). Since |7 can be

obtained by summing the size of each generation, it is likely to be ©(R?).

To evaluate relationship of smoothness of the mesh and performance, we used the
recursively subdivided surfaces of Elephant using the Loop subdivision scheme [10]. In
Figure 3.21, the computation time is shown for the original mesh (orig), and the surface
subdivided once (subl) and twice (sub2). Here R is relative to the mean edge length
of the original mesh. We can see that the computation time of the improved version
becomes closer to that of the naive version as the mesh becomes more detailed. The
reason behind it is that, pseudo-source intervals become more unlikely to overlap in the
naive version, since the total angle of each vertex becomes closer to 2w. The surface
subdivided twice (sub2) from Elephant is used in Figure 3.25 to evaluate practical
performance. The detail of the experiment is explained in the caption of this figure,
but compared with the naive version, we can observe that the improved version took
nearly half computation time and used approximately 56% memory to produce this

result.
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Figure 3.10: Elephant (2775 vertices and 5558 faces). Figures 3.11-3.21 are concerned

on this mesh.
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Figure 3.22: Simple Torus. Figures 3.23-3.24 are concerned on this mesh.
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Figure 3.25: Surface (with 44460 vertices) obtained by subdividing twice from Ele-

phant, R = 131 (relative to the mean edge length); building the geodesic interval tree
took 60.4 seconds (naive), 30.3 seconds (improved) and the total memory consumption
(measured by the OS) is 5.5GB (naive), 3.1GB (improved); 83K intervals (naive), 46K

intervals (improved) are generated; geodesics query took less than 1ms (both version).
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Chapter 4

Cut-Locus on a Convex Polyhedron

4.1 Overview

As we have seen before, the interval is an useful framework for polyhedral geodesics,
and the MMP algorithm may be used as a starting point to make algorithms relating
to the geodesics. In this chapter, we study the problem of propagating the wavefront
and computing the cut locus on a convex polyhedron, and we propose an algorithm
based on the MMP algorithm. While our method has some limitations (discussed
later), we emphasize our actual implementation to computer program for instantaneous
visualization and numerical computation !.

As a toy example, look at Figure 4.1. Here we take the convex hull of Stanford
Bunny (the upper-left picture, viewed transparently). On this polyhedron, we choose
freely a source point indicated by x colored by yellow, then our algorithm creates the
time-evolution of wavefronts (yellow curve in the upper-right figure) instantaneously

and accurately enough, and finally it ends at the lower picture. Red dots represent

!The source code is available at https://github.com/Raysphere24 /Interval Wavefront
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Figure 4.1: Wavefront and cut-locus.

ridge points on the wavefront curve. As the time increases, the ridge points sweep out
the cut-locus colored by green. In Figure 4.2, the wavefront propagation is observed

from different viewpoints, and in Figure 4.3 the cut locus is viewed opaquely.

First, we fix basic terminologies precisely. Let P be a convex polyhedral surface

in Euclidean space R3. In this chapter, we only consider convex polyhedra, thus the

54



Figure 4.2: The wavefront W (r) (yellow curve) propagates from no.1l to no.8. In our
program, the viewpoint can be chosen freely in an interactive way; no.8 is a different

view of the right picture in Figure 4.1.

symbol P only represents a convex polyhedron. Let d : P x P — R denote the distance
function on P. Pick a point s of P, and call it the source point. Given r > 0, the

wavefront on P caused from s is defined by the set of points of P with iso-distance r
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Figure 4.3: Opaque renderings of the cut-locus (two different viewpoints)

from s:

W(r)={zeP|d(s,z)=r}

(also we may write it by W (r,s)). Suppose that the wavefront W (r) propagates on P
with a constant speed, as r varies. If s is an interior point of a face, then initially W (r)
is just a circle centered at s with small radius r on the face. As r increases, W (r) is
still a loop on P, until it collapses to the farthest point from s (Figure 4.2) or it occurs
a self-intersection and breaks off into multiple disjoint pieces (we call the moment a
bifurcation event, see Figure 4.8 (b)). Here our method has a limitation of incapable
of cope with a bifurcation event, and in that case, we are interested in the wavefront
propagation up to that moment. We will discuss this point later.

Geometrically, W (r) is made up of circular arcs. Two neighboring arcs may be
joined by a ridge point of W (r), which is a point having at least two distinct shortest
paths from s. A new ridge point is created when W (r) hits a vertex of P (we call it a

vertex event), see Figure 4.4. The locus of ridge points of W (r) for all > 0 is called
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Cut-locus C

Figure 4.4: Ridge points are born at vertices and sweep out the cut-locus (' < ro < 7).

the cut-locus C = C(P,s) on P (here let C' contain all vertices of P, at which vertex
events happen). It is a graph embedded in P and has a clear geometric meaning. When
one cuts P along C' by a scissor, the whole of P is expanded to the plane so that the
obtained unfolding (net, development) is a star-shaped polygon without any overlap —
every point of the unfolding can be joined with s by a line segment lying on it (Figure
4.5), which corresponds to a shortest path on P. We call it the source unfolding of P

centered at s.

Research in computational geometry on the cut-locus and its source unfolding has
been investigated so far by several authors, e.g., [4, 8, 9, 12, 14]. Nevertheless, our

approach seems to be new. Our problem is to interactively visualize the wavefront
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Figure 4.5: Source unfolding for the same example as in Figures 4.1 and 4.2; our
program immediately produces it just after the wavefront propagation ends. Concentric

circles on the unfolding represent the wavefronts on P.

propagation W (r) and compute the cut-locus C' as r varies, and to finally produce
the source unfolding of P precisely. That is designed for a practical and interactive
use — for instance, in our specifications, the source point s is chosen by a click on the
screen and the viewpoint for P can freely be rotated manually. Here is a key point that
we may assume that s lies in sufficiently general position; this practical assumption

enables us to classify geometric events arising in the propagation into several types
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Vi

Figure 4.6: Source unfolding of an icosahedron. One can create a number of examples

by choosing different source points.

(see §2), and then the algorithm becomes simple enough to be treated. Actually, our
computer program certainly works, even when we choose s lying on an edge or a vertex
in a visible sense (i.e., choose s within a very small distance (< 1) from the edge or

the vertex), see Figure 4.7.

The MMP algorithm aims to compute the shortest geodesic between two points;
it receives P and s as inputs, and results a specialized data structure called intervals,

which are subdivisions of all edges of P equipped with some additional information.
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Figure 4.7: Different source unfoldings. Manually selecting the source point s on a
vertex or edge contains a small invisible error. This enables our algorithm to work and

properly create the cut-locus.

However, the MMP algorithm itself and other existing algorithms are insufficient for
our practical purpose. We try to improve the MMP algorithm — one of our major ideas
is to introduce a new data structure, called an interval loop indexed by the parameter

r, which is a recursive sequence of enriched intervals I; (= [i(r))

Ir:10_11_12_"'_]k(7‘)_10-

Roughly speaking, I, is the data structure representing the wavefront W(r); each
enriched interval corresponds to a circular arc participating in W (r), and the sequence
is closed, because W (r) is assumed to be an oriented closed curve embedded in P.
Again, since our method disallows a bifurcation event, W (r) is connected and one
interval loop represents all of W (r).

As 7 increases, there arise some particular moments ry, e.g., a new ridge point is
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born from a vertex as depicted in Figure 4.4, a ridge point meets an edge, two or
more ridge points collide on a face, and so on. We call them geometric events of the
wavefront propagation.

Here we make a simplification to this event model. An interior point of an arc often
reaches an edge before either of the surrounding two ridge points meets the edge, and
then the arc is pushed out to the next face (or the next of the next, or so on), while
the two ridge points stay on the original face. Since we are primarily interested in the
ridge points, we do not recognize this phenomenon as an event, while the interval loop
does not precisely represent the wavefront. This definition makes our algorithm much
simpler, as we explain later (see Remark 4.2.2). This simplification could also improve
practical performance by a constant factor, which is hidden behind the big-O notation.

Until a new event occurs at the time ro (> ), we simply keep the same interval
loop I, and for " > rg, the data structure is updated to I, by certain manipulations

with the following three steps:

- Detection detects the forecast events from the data I., and updates the event

queue;
- Processing deletes and inserts temporarily several intervals related to that event;
- Trimming resolves overlaps of inserted intervals, and generates I,..

The last step is similar as in the original MMP algorithm, while the first two steps
contain several new ideas. Detection (re-)computes the forecast events and updates
the event queue, which involves insertion, deletion and/or replacement of some events.
Processing produces a provisional interval loop, which may have overlapped intervals.
Trimming makes it a valid interval loop in a true sense. Our algorithm ends when

W (r) collapses to the farthest point or is found to be inconsistent (which occurs at
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some moment after an occurrence of a bifurcation event or a non-generic event). Then
we obtain the cut-locus C' and the distance from s to every vertex passed though.
As for the computational complexity, our algorithm takes O(n*logn) time and O(n)
space, where n is the number of vertices of P, and it can be modified to be able to find
the shortest geodesic with O(n?) space (see subsection 4.4.1).

A particular feature of our algorithm is that, unlike the MMP algorithm, we can
visualize the ongoing wavefront propagation, i.e., we compute the set W(r) of points
having shortest paths of length r from s all at once, as well as partially-constructed
cut-locus during execution. As a remark, in [14] Mount describes how to find the cut-
locus C' by the information of obtained intervals — for each face o one can detect CNo
by computing an associated Vorono: diagram. However, it requires a bit heavy new
task additionally to the MMP and it seems not quite obvious how to implement it to
computer program which actually works. In contrast, our algorithm instantly produces
the complete information of the cut-locus C.

In general, bifurcation events may occur, and then W (r) break off into several
connected components. This phenomenon is the most difficult obstacle for tracing
the wavefront propagation beyond the MMP algorithm. In fact, our algorithm is
designed to depend only on the local data (data of neighboring arcs participating in the
wavefront), not global data of the wavefront, and therefore, our implemented program

may stop at a certain moment after some bifurcation event actually happens.

4.2 Preliminaries

Throughout this chapter, let P be a convex simplicial polyhedron such that every vertex

v of P is spherical, i.e., the sum of angles around v (measured along the faces) is less
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than 27 [1, 8] (see Section 2.1). We assume that every face of P is an oriented triangle
so that the orientation is anti-clockwise when one sees the 3D body from outside.

Let us assume two points s and ¢t on P are given. Among all paths on the surface
connecting s and ¢, we can consider a shortest one (there may be multiple shortest
paths connecting s and ¢). The length of a shortest path connecting s and ¢ defines the
distance d(s,t) on P. A shortest path « is a geodesic, which is defined by Definition

2.1.3 [12]. Since every vertex is spherical, y satisfies the following properties:

1. ~ is straight inside any face, and where v passes through an edge sequence € =

(é1,...,ex), v is straight on the unfolding obtained from &;
2. 7y never passes through any vertex.

Given a convex polyhedron P and a point s € P, the wavefront W (r) (= W (r, s))
for » > 0 and the cut-locus C(P, s) are defined as in Section 4.1. As r increases, the

geometric shape of the wavefront changes.

Definition 4.2.1. (Geometric events) We define several events of the wavefront prop-

agation at r = ry as follows:
(v) a vertex event occurs when W (rg) hits a vertex of P;
(e) an edge event occurs when a ridge point of W(ry) hits an edge;

(c) a collision event occurs when multiple ridge points of W(r) (r < rg) collide at
once, and result in a single ridge point of W (1) (19 < r’), or (a component of)

the wavefront converges at the point and disappears.

(b) a bifurcation event occurs when W (rg) intersects itself and breaks off into several

pieces for r > .
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We divide edge events (e) into the following two patterns. Let A and B be neigh-
boring arcs in W (rg) joined by the ridge point a which hits an edge e. Unfold the two

faces incident to e, and divide the plane by the line containing e. We set

(ec) a cross event: if the centers of A and B are located in the same half-plane;
(es) a swap event: if the centers of A and B are located in opposite half-planes.
Furthermore, among collision events, we distinguish the following special one:

(cf) the final event occurs when the wavefront reaches the farthest point and disap-

pears.

Remark 4.2.2. At some moment, the wavefront can be tangent to an edge at some point
and go through to partially propagate to the next face. We do not include this case into
the above list of geometric events, as the arc simply expands on the unfolding along the
edge. In other words, our data structure does not need to be changed. As seen later
(8§4.3.6), it makes our algorithm much simpler, while our instantaneous visualization
of the wavefronts does not depict this partial propagation precisely (but it does not
affect the calculation of the cut-locus). By this definition, we can ensure that every
interval appears exactly once in the interval loop, and every interval with non-empty
true extent (see §4.3.3) is involved in exactly two (vertex, edge or swap) events, where
it is propagated in the first one and removed in the second one. Otherwise, it requires
special treatment of intervals which appear twice in the interval loop, which also have
one or more descendants. Also, they would be involved in three events, where it is
propagated in the first one and removed in the second and third ones, whereas some

intervals are still involved in only two events. See also Remark 4.3.2.

Definition 4.2.3. (Generic source point)
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(i) We say that the source point s is generic if the following three properties hold:

(1) s is an interior point of a face,

(2) every ridge point of W(r) for any r > 0 does not pass through vertices and

does not move along an edge,

(3) every collision (including the final) event happens in the interior of a face,
and the number of ridge points collide at once is three in the final event and

two otherwise.

(ii) When choosing s to be generic, the wavefront propagation admits only geometric

events as depicted in Figure 4.8; we call them generic geometric events.

In this chapter, as mentioned in Section 4.1, we consider the wavefront propagation
with a generic source s for the period until the final event or a bifurcation event
happens.

The cut-locus C' = C(P,s) is a graph embedded on P whose edges are linear
segments. If there happens a vertex event at a vertex v with r = ry, the propagation
around v creates the cut-locus, i.e., W(ry —¢) for small € > 0 on the unfolding around
v is locally one circular arc, while W (rg + ¢) has one ridge point locally (Figure 4.4 in

Section 4.1). Then v is an end of the cut-locus C. Therefore, we see that

Lemma 4.2.4. If the source s is generic and the bifurcation event does not appear during
the wavefront propagation, then the obtained cut-locus C' is connected and has a tree
structure with leaves at vertices of P and nodes with degree 3, which are points at

which collision events and the final event happen.

Remark 4.2.5. If the source point s is generic, the shape of the cut-locus C(P,s) is

stable with respect to small perturbations of s. Namely, for sufficiently near generic s,
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Figure 4.8: Generic geometric events: the wavefront propagates from the yellow one to

(v)

the (dark) red one. (v) Vertex event: a new ridge point is created at a vertex, and no
ridge point tends to a vertex as r increases; (ec), (es) Cross/Swap edge event: a ridge
point hits an edge (it does not move along the edge); there are two types — two arcs
come across the edge from the same side or from the opposite side; (¢) Collision event:
only two ridge points collide at once inside a face; (b) Bifurcation event: two local
components of the wavefront get to be tangent to each other, and breaks off into two

pieces; (cf) Final event: the triangle-shaped wavefront goes to shrink and disappears.

C(P,s) and C(P,s') are the same graph so that corresponding two edges have almost
the same length. Now suppose that the source point s is not generic. Even though
the cut-locus C'(P,s) exists but possesses some degenerate vertices or edges. When
perturbing s to a generic s’, such degenerate points locally break into generic geometric
events as indicated in Figure 4.8, and the new cut locus C(P, s’) should be sufficiently

close to C(P, s).

66



Remark 4.2.6. Theoretically, it is possible to determine whether a chosen point s is
generic or not, if we have an unfolding of the whole of P in advance. In our specifi-
cations, however, we are not supposed to have such prior information; rather to say,
as mentioned before, we are aiming to produce a nice planar unfolding. In practice,
non-generic geometric events do not occur unless we intentionally set up such input of

P and s.

Remark 4.2.7. In the contexts of differential geometry and singularity theory, wave-
fronts, caustics, cut-loci and ridge points on a smooth surface have been well investi-
gated, see e.g., Arnol’d [2]. Our classification of generic geometric events is motivated

as a sort of corresponding discrete analog.

4.3 Main algorithm

4.3.1 MMP algorithm

The MMP algorithm [12] (and Mount’s earlier algorithm [14]) encodes geodesics as the

data structure named by intervals:
e Input: a polyhedron P and a source point s on P.

e Output: a set of intervals for each edge, which enables us to find the shortest

geodesic from s to any given point ¢ on P.
e Complexity: O(n?logn) time, O(n?) space, where n is the number of edges of P.

An interval I is a segment, called the extent of I, in an edge e of P endowed with
additional data being necessary to find the shortest path from s to points of the extent.

Intervals are inductively propagated — each interval generates a new one (its child
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interval) step-by-step by manipulations called projection and trimming. The algorithm
uses a priority queue to manage the order of the propagation of the intervals. The
priority of an interval is the shortest distance between the source point s and its extent,

and any smaller value means to be propagated earlier.

4.3.2 Our problem

Our main problem is to reveal some richer structure of geodesics on P by describing
the wavefront propagation interactively and accurately, where we deal with not only
a single geodesic from a source point s but also all geodesics from s at once. At the
final moment, we obtain the entire cut-locus C'(P, s) and the source unfolding, provided
that the bifurcation event does not occur in the whole process; otherwise, our algorithm
stops at some moment after that bifurcation event.

Our algorithm runs in the following time and space complexity:
e Input: a convex polyhedron P and a point s € P.

e Output: the cut locus C (P, s).

e Complexity: O(n?logn) time, O(n) space.

Furthermore, as an option, our algorithm can also support shortest path query using

extra space complexity;
e Input: a convex polyhedron P and a point s € P.

e Output: the cut locus C(P,s) and a set of intervals for each face, to be able to

find shortest geodesic from s to any given point ¢ on P.
e Complexity: O(n?logn) time, O(n?) space.
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e Input of query: a point ¢t on P.

e Output of query: the shortest path(s) from s to t.

4.3.3 Data structure

The wavefront W (r) is an oriented closed embedded curve on P consisting of circular

arcs on faces. For each circular arc A, we introduce the notion of an enriched interval

I (= 1,) as a data structure to express the arc A equipped with some additional data.

Definition 4.3.1. We define an enriched interval I as a data structure shown in Table 1.

Each item is denoted by I.[——] for notational convention.
I.Face the oriented face o which contains the arc A
I.Center | the center p4 of the arc A on the plane H, containing o
I.Edge | the oriented edge e of ¢ into which A is projected from py
I .Extent | the (foreseen) extent e4 associated with A
I.Prev the enriched interval associated with the previous arc connecting to A
I.Next the enriched interval associated with the next arc connecting from A
I.Ridge | the ridge point to which A is adjacent as the start point
I.Parent | the enriched interval which generates I

Table 4.1: An enriched interval 1

In the previous chapter, we had the /.Depth member in Definition 3.2.1. However,

since we are only considering a convex polyhedron in this chapter, we do not need

I.Depth to be explicitly stored here (it is always zero).
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We also define an interval loop
L={i 10, 1)}
to be a finite sequence of enriched intervals that satisfy
Ii(r).Prev = Ii(i)l and ]Z-(r).Next = ]Z-(i)l
for 0 < i < k(r), where we put I,EZZ)H = 1" and 1) := I,S(Z).

An enriched interval is similar but different from the notion of an interval used in

Mount’s algorithm [14] and the MMP [12]. Main differences are, e.g.,
- all enriched interval in the wavefront make up an interval loop;

- an interval loop is a circular doubly-linked list: each enriched interval has the
previous and the next interval corresponding to adjacency of arcs and orientation

of the wavefront;
- our enriched interval depends on 7;
- an enriched interval may have the empty extent with non-trivial additional data.

Each item in Table 4.1 in Definition 4.3.1 depends on r; those are created at the time

when the corresponding arc A is born, and are valid until A disappears. In particular,
- the data in I.Face, I.Center, I.Edge and I.Parent are fixed when A is born;

- the data in I.Extent, I.Prev, [.Next and I.Ridge are updated at every moment

where some geometric event involving A happens.

Below we explain the meaning of each item in Table 4.1.
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An arc

To begin, let r; > 0 be fixed. Suppose that a circular arc A participating in W (r;)
lies on a face (oriented triangle) o of P. Let H, denote the affine plane containing o
in R3, then there is a unique point p4 € H, such that A is an arc in the circle on H,
centered at ps with radius ry. Take a point ¢t € A and the shortest path v on P from
s to t. We find an unfolding of P expanded on H,, on which ~ is represented by a
line segment, as shown in Figure 4.9. The 3D coordinates of the point p4 is explicitly
obtained from the 3D coordinates of s € P by inductively operating certain rotations

of R3 along edges which ~ intersects.

Basic data structure for an arc

Suppose that p4 is outside o, and only one edge of o, say ey, cuts any segments between
pa and points of A. The rays from p,4 to the arc A meet another edge of ¢ in opposite

side of ey with respect to the location of A.

1. Suppose that I = I, is projected from the center ps to only one edge e and
yields I; (see the left picture of Figure 4.10). The direction of e is chosen to be
compatible with the orientation of A. We first define the true extent associated
with A by the subrange e4 C e which A will actually pass through, see Figure
4.11. It can be the empty set (see the right picture of Figure 4.11). Notice
that the true extent e, is fixed after all the events involving A have occurred.
Therefore, in the middle of the process, what we can do is only to provisionally
find a foreseen extent, which we denote by €4, and update it just after the next

event happens (indeed, this procedure is the heart of our algorithm, which will
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Figure 4.9: A circular arc on a face o (the upper figure depicts an unfolding on the

plane H,).

be described in detail later in the following sections). For now, we put
I=14:=(0,e,pa,€4),
where each is referred to as

I.Face = o, [.Edge =e, [.Center = py, [.Extent=¢éy4
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Figure 4.10: Interval I is projected from I.Center to opposite edges.

and we will append some additional data to this data structure and use the same

notation I or [4; we call it an enriched interval or simply nterval.

. Suppose that I = I4 is projected from p4 to two edges e; and e; whose order is
determined by the orientation of o and yields I; and I, (see the right picture of
Figure 4.10). Then A is divided into two pieces, say Aj, A, projected into ey, ey,
respectively. If each sub-arc A; has the non-empty foreseen extent, €4, # () C e;

(1 =1,2), then we associate to A an ordered pair of two enriched intervals
L — 1, with [; =14, = (0,e;,pa,€4,) (i=1,2).
We say that [, and I are twins.

. Suppose that the source point s is an interior point of o with edges eg, e, e

(anti-clockwise). We then define the initial loop by a triple of enriched intervals

.[0—.[1—]2—[0 with Il = (0'761'78762') (220,1,2)
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Figure 4.11: True extents
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Parent of an arc

Let 14 be an enriched interval associated with an arc A (or one of twins) in a face o.
If the true extent is non-empty, then the arc A will pass through the extent and go
into the next face 7 sharing the edge with 0. Let A’ be the new resulting arc in 7, and
T4 the corresponding interval for A" (or I A, — Iy, if A" has two associated enriched

intervals). We say that I, is propagated to I/, and also call I, its parent:
Iy .Parent := I 4, (or Iy .Parent:=1I4 (i=1,2)).

Throughout this chapter, A’, B, B”, - -- mean the resulting arcs to which their parents
A,B,B,---, respectively, are propagated.

This item is used as follows. For instance, if an enriched interval I satisfies
[.Prev = [.Parent,

then we understand that the parent is non-empty, say A, and the arc represented by
I is nothing but the resulting arc A’ to which A is propagated. Here, I.Ridge must be
empty, for the endpoint of A’ is not a ridge point. If neighboring intervals I — J have
the same parents

I.Parent = J.Parent,

then they are twins (i.e., [ = I; and J = I,).

Previous/next arcs and ridge points

An arc A connects with two other arcs in the same wavefront; according to the orien-
tation of the wavefront, let B be the previous arc and C' the next one. Then, for their

intervals, we write —Igp — I4 — Io— and set
I4.Prev:=1Ip, I5.Next:=Iq.
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Here B, A or A,C can be a twin. Let a and ¢ be the joint point BN A and AN C,
respectively. We make a convention that any information of a (resp. ¢) will be appended

to and stored in I4 (resp. I¢). For instance, if a is a ridge point, we set
I4.Ridge = a.

If not, this item is Nil. When some events happen, items I.Prev, [.Next and /.Ridge
may be updated.

We recall that there are two patterns of edge events as noted in §2; let 14 — Ip be
neighboring intervals where arcs A and B are joined by a ridge point a = Ig.Ridge

which hits an edge. Then the two patterns can easily be distinguished as follows:
e ('ross event. both extents of [, and Iy are non-empty;
e Swap event: one of the extents of 14 or Ig is empty.

Furthermore, we call a swap event to be of type CW (resp. CCW) if [4.Extent (resp.
Ip.Extent) is empty (clockwise/counter-clockwise). Note that by definition, at least

one extent is non-empty.

4.3.4 QOur algorithm

A basic idea is to express the wavefront propagation W (r) by updating interval loops

step-by-step
IT0:>IT1:>17"2:>"‘ (027’0<7’1<T2<"'>.

1. Initial loop: Suppose that s is in the interior of o. Then I is given by Iy — I; —
I, — I of directed edges of o.
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2. Events: Generic geometric events in §2 are interpreted as change of the data

structure of enriched intervals, named events.

In our algorithm, we append two more items to the data structure of each [
(Table 4.2). Since an interval [ has at most one associated forecast event, we
store it as I.Forecast if it exists. Also we use another new item [.IsPropagated
to ask whether the arc has been propagated or not (see §4.3.6). The default of
I.Forecast is Nil (indicating it does not exist), and that of I.IsPropagated is No.

I .Forecast the forecast event for I if exists; otherwise, Nil

I.IsPropagated | Yes/No for the inquiry whether or not I has been propagated

Table 4.2: Additional items in an interval 1.

3. Manipulation: Each I, is updated to I at an event — some intervals in I,

Ti41
are removed, some new intervals are inserted, and items of remaining intervals
are updated. Each event activates three editing processes named by Detection,
Processing and Trimming. The algorithm halts when the final event occurs and

the wavefront disappears, or when some exception arises, e.g., a bifurcation event

or non-generic event happens.

Pseudocode of our algorithm is described in Algorithm 11. Each process will be

described below.

4.3.5 Event Detection

Suppose that we have an interval loop I, which represents the wavefront W (r;). Let

I =14, 14, or 14, be an enriched interval belonging to it, associated with an arc A or
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Algorithm 11 (Main algorithm)

Create the initial interval loop

while the wavefront exists do
for each interval I whose adjacency changed in the previous step do
Trim temporary extents of I and remove redundant intervals
Detect the forecast and update the event queue
end for
Process the top-most event in the event queue

end while

twin sub-arcs on a face o = I4.Face.

Detecting the earliest event for an arc

We first detect which geometric event for A will happen without any consideration on

the propagation of other arcs.

o Vertex event
By the existence of a pair of twins I4, and I4,, we foresee that a vertex event

will happen at the vertex they meet. We store the event in I4,.

o (Collision event

In case that consecutive I4, Ip and Io have the same face and Ig.Extent is
empty, we foresee that the arc B will collapse and a collision event will happen
at the equidistant point (circumcenter) from three points, I4.Center, Ip.Center

and I-.Center. We store the event in Ipg.

o (ross event

In case that consecutive 4 and Ig have the same edge and both extents are not
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empty, we foresee that the ridge point between them hits the edge and a cross
event will happen at the point 4.Extent and Ig.Extent meet. We store the event

in IB.

e Swap event
In case that an interval I has the empty extent and the next or previous interval
is its parent, we foresee a swap event will happen. There are two types of swap
events, CW and CCW, depending on its parent is the previous or next of I. We

store the event in /.

For each event, the predicted time can exactly be calculated from the point at which

the event will happen.

Priority queue

Since the earliest forecast event cannot be modified by other events and occurs next
for certain, we use a priority queue to schedule all forecast events by their predicted
times and choose the earliest one to be processed; we call it the event queue.

A pseudocode for Detection of the forecast for each enriched interval of the loop
is described in Algorithm 12. Referring to this queue, we can find the earliest event

among the forecast events of all enriched intervals belonging to I,,.

4.3.6 Event Processing

As the result of Detection process, now we have the earliest forecast event of the loop
L.,. First we delete several intervals of I, involved in that event, and then create and

insert new intervals, and make some changes of items in remaining intervals of I, .
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Algorithm 12 (Detection at each enriched interval I)
if I.Extent = () then

if [.Prev.Face = I.Face = [.Next.Face then
A collision event will occur; calculate the predicted time
end if
if I.Prev = I.Parent and I.Next.Extent # () then
A CW swap event will occur; calculate the predicted time
end if
if I.Next = I.Parent and [.Prev.Extent # () then
A CCW swap event will occur; calculate the predicted time
end if
else (i.e. I.Extent # ()
if I and I.Prev are twins then
A vertex event will occur; calculate the predicted time
end if
if 1.Edge = I.Prev.Edge then
A cross event will occur; calculate the predicted time
end if
end if

Below we describe Processing for each type of events in typical situations (in fact, it is
often to need to consider several divided cases, but we avoid a messy description here).
Recognition of propagated arcs

If an arc A has a non-empty true extent, ey # (), then let £4 be the one closer to A

of the two endpoints of e4 (if both endpoints have equal distance, take one of them).
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Afterwards, just when A arrives at the point 4, some event (vertex, cross/swap)
happens at that point and A starts to propagate to the next face. At this moment,
we update the item I4.IsPropagated to be Yes (from No, the default) and create a
new interval I, representing the resulting arc A’ and insert it to the interval loop.
Here, of course, it can happen that A starts to propagate to multiple faces, and it
creates multiple new intervals, say, [as, [4»,---. Afterwards, the arc A arrives at the
other endpoint of e4 and some other event happens at that point. At this moment
we recognize that all the propagation of A has been done; namely, we remove 4 from
the interval loop. We remark again that we do not take any attention to a ‘partial
propagation’ caused by tangency of A with some edge (Remark 4.2.2). That makes

the algorithm much simpler.

Temporary extents

In Processing at an event, each newly-created interval /4 may be assigned incomplete
data at some items. For instance, if an arc A is resulted by propagating an arc (= the
parent of A), the data structure I, is created at that moment and the item I4.Extent
is temporarily filled in by the image of its parent’s extent [4.Parent.Extent via the
projection from the center py = I4.Center (Figure 4.12). Such a temporary extent
for A may have overlaps with extents of previous/next intervals. The next process
Trimming corrects the overlaps and produces a foreseen extent €4 (§4.3.7). Afterwards,
at every event which is related to A, I4.Extent is updated by new €4, and finally, if no
more related event occurs, then the latest €4 means the true extent e4. In Figure 4.13,
we explain a consecutive process updating the extents; the detail of manipulation at

each event will be described below.
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Figure 4.12: Temporary extents in Processing; overlaps are resolved in Trimming

Cross event

Consider the cross event such that both neighboring arcs joined by the ridge point, say
A and B in order, have non-empty true extents just before the event happens. The edge
(blue) is locally divided into the two extents. Each of arcs A and B has two patterns
according to whether it has already been propagated or not yet; this information (Yes
or No) is stored in I.IsPropagated. There are four patterns, see Figure 4.14. In the
first and second ones, we simply remove the interval Iz (resp. I4) from the interval

loop, and instead, suitably insert a new interval 14 (resp. Ip/) to produce the new
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Figure 4.13: An example of updating I.Extent at consecutive several events. (1) An
arc A is born on this face (propagated from its parent) and temporary extents for a
twin is made; those do not need to be edited yet. (2) A cross event has just created a
new arc B; Processing puts a temporary extent in /g.Extent, but soon after, Trimming
updates I4,.Extent and Ip.Extent by resolving overlaps. (3) Another cross event has
created the third arc C; after Trimming, it turns out that Iz.Extent = (). Since A and
C' are not neighboring, foreseen extents of A; and C; (i = 1,2) may have overlaps, and
do not need to be edited yet. (4) The next is a collision event; Processing deletes I
and Trimming edits all extents and deletes [4, (resolve the redundant twin). There
remains —/4, — I¢, — Ic,— in the interval loop. Finally, /4, will soon be deleted at the

coming cross event.

loop, e.g., in case of (No-Yes), we do the manipulation

- -1

—Iy—Ig—Ip— — _[A_[{é’j_IB’_

For the third pattern, just before the cross event happens, both arcs A and B have not
yet arrived at £4 and &g, respectively, thus both I.IsPropagated are still being ‘No’. If
both arcs have already been propagated, that is the fourth one.
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Figure 4.14: There are four patterns for cross events where the cut-locus (green) inter-

sects with an edge (blue), referring to (/4.IsPropagated - Ig.IsPropagated).

Swap event

At a swap event, let A, B be the neighboring arcs joined by a ridge point which hits
an edge (Figure 4.15). Then, one of them has already been propagated, say it A; just
before the event, A’ is joined with B and the extent of A’ is empty. Just after the
event, A" disappears and an arc B’ newly arises. Namely, arcs A’ and B’ are swapped.

The manipulation on enriched intervals is as follows:

r--"

— Iy — Iy — Ip— — _IA_L],B,/J_]B_ (CW)

—Ips—Ip — Ip— — _IA_[I}QG_]B_ (CCW)

Vertex event

Suppose that an arc A in ¢ meets a vertex v of o and the cut-locus is created in another
face 7. The arc A is represented by twin arcs, say A, Ay, whose extents are joined at v.
For example, look at the left picture of Figure 4.16 which is an unfolding around v on
the plane H.. Just before the event happens, the twins have already been propagated,

and moreover A; has also been propagated, so intervals I, I4; and I,y exist. Then
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Figure 4.15: CW/CCW swap events

bc;

pa,

Figure 4.16: Vertex event and collision event

we do the manipulation

—Iag = Iay — Iy — Ly — Lag— = —Ly — Ly — Lay ! — Lay—
Remark 4.3.2. Our algorithm may belatedly detect a vertex event which has actually
occurred in the past. This delay is due to our simplification rule to ignore the tangency
of the wavefront and an edge. In Figure 4.17, the arc A gets to be tangent to the edge

e, and soon after, it meets a vertex v, but we do not recognize this ‘partial propagation’

of A, because I4.IsPropagated is still being ‘No’. When A reaches the endpoint 4 of
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Figure 4.17: Delayed vertex event

its extent ey C e, we update [4.IsPropagated to be ‘Yes’, and only then new twins
I, — 14, are recognized. The next Detection step now detects this vertex event at v.

Processing and Trimming perform and draw the cut-locus created at v belatedly.

Collision event

A collision event happens when three consecutive arcs, say A, B, C' in order, lie on the
same face and B.Extent is empty (Figure 4.16, the right). Note that the final event is
detected as three collision events that occur at the same point. If W (r) consists of only
three arcs and intervals, the collision event is the final event: just stop the algorithm.

Otherwise, the manipulation is simply to delete Ig:

—IA—IB—[C— — —IA—Ic—

4.3.7 Trimming

After Processing is finished, some of temporary extents of new /remaining intervals need

to be corrected. This editing process is based on a similar one called trimming in the
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MMP algorithm, but slightly modified. For each pair of neighboring non-twin intervals
sharing the same face created in Processing, we check whether there is an overlap or
not; if so, we correct it and update their items [.Extent. Let I — J be such a pair of
intervals. We can divide into two possible cases according to whether I.Edge is equal
to J.Edge or not. The former case is the same as described in the MMP algorithm,
but the latter case is our original generalization. In the former case, we calculate the
ridge point which hits the common edge of I and J, and set it as the end point of 1
and the starting point of J. In the latter case, we calculate the possible ridge point
hitting each edge of I and J. Namely, if the ridge point hits I.Edge, set it as the end
point of I and set J.Extent to be empty, and if the ridge point hits J.Edge, set it as
the starting point of J and set I.Extent to be empty.

In the process, it can happen that at least one of twin intervals has the empty
extent. We say that they are redundant twin. By definition, each of twin intervals
must have non-empty extent, thus we need to resolve the redundant twin. If only one
of their extents is empty, remove the interval, and if both extents are empty, remove
one of them, e.g., let the first interval remain (notice that any enriched interval with
the empty extent is still in use in the expression of the wavefront). Finally we produce

the new interval loop.

4.4 Computational Complexity

4.4.1 Theoretical Upperbound

We assume that the source point s is generic and the wavefront collapses to the farthest
point without any bifurcation events during the propagation. Let n be the number of

vertices of P. Then the number b of (undirected) edges is 3(n — 2) and the number ¢
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of faces is 2(n — 2); indeed, we have 2b = 3¢ and n — b+ ¢ = 2 (the Euler characteristic

of the 2-sphere).

Lemma 4.4.1. The number of the vertex events is n. The number of the collision events

is n — 2 (here the final event is counted as one collision event).

Proof. The number of ridge point on the wavefront increases by one at a vertex event,
decreases by one at a collision event except the final event, and decreases by three in

the final event. Other types of events do not change the number. O]
Lemma 4.4.2. At any given time r, the number of the ridge points is O(n).

Proof. The number of the ridge points in W (r) is equal to or less than the number of

vertex events happened, so it is O(n). ]
Lemma 4.4.3. The sum of the numbers of the edge (cross/swap) events is O(n?).

Proof. Tt is equal to how many times the cut-locus C intersects the edges. For each
edge e, let a an intersection point of C' and e. a determines a sub-tree of C', which
consists of the ridge points going to a. Those sub-trees are disjoint, therefore the
number of possible intersection C' M e is at most n (since every ridge originated from
at least one vertex). Thus the number of all intersections is bounded by nb, therefore

O(n?). O

Lemma 4.4.4. All vertex events take O(n) time in total to be processed. Each of other

events takes O(1) time per event to be processed.

Proof. The total number of calculation caused by all vertex events is estimated to be
2b (= 6(n — 2)), which is the number of directed edges. A cross event or swap event

takes O(1) time, because it has at most two intervals to be propagated or deleted. A
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collision event takes O(1) time, because it has only one interval to be deleted and two

adjacent intervals to be updated. [
Theorem 4.4.5. Our algorithm takes O(n?logn) time and O(n) space.

Proof. While each event takes O(1) time on average to be processed, it requires O(logn)
time to be scheduled using a priority queue. The overall number of the events is O(n?),
thus the time complexity is O(n*logn). There are O(n) intervals in the interval loop
at any given time. Because at most one event is associated with an interval, there
are O(n) events in the event queue at any given time. thus the space complexity is

O(n). O

Our algorithm can support the shortest path query using extra space complexity:

Theorem 4.4.6. Our algorithm takes O(n?logn) time and O(n?) space for supporting
the shortest path query.

Proof. To do this, all intervals that are generated and removed from the wavefront
during the algorithm running are required to the path query. They must be retained in
the memory. For each edge, intervals are separated by the intersections with the cut-
locus. Therefore there are O(n?) intervals overall and the space complexity is O(n?).

The time complexity does not change. O]

4.4.2 Experimental Result

An experimental result regarding computational complexity is shown below. We took
the recursively subdivided surfaces of a regular octahedron using the Loop subdivision

scheme [10] (Figure 4.18).
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Figure 4.18: Level-4 subdivided surface of an octahedron and its source unfolding

The table below shows the level (how many times the subdivision performed from
the initial octahedron), the number of vertices, the number of faces, the overall com-
putation time, the memory usage, the number of total processed events, and the com-
putation time per event. Here the O(n?) space variant (supporting the shortest path

query) is used.

level | vertices | faces | time (sec.) | memory (MB) | events | us/event
4 1026 2048 0.051 11 15737 3.2
D 4096 8192 0.506 71| 125350 4.0
6 16386 | 32768 4.315 481 | 889247 4.8
7 65538 | 131072 40.214 3788 | 7158370 5.6

Like an experimental result of the MMP algorithm by Surazhsky et al. [17], ex-
perimental performance of our algorithm is sub-quadratic, both in terms of time and

space. This is due to the fact that estimation of the number of edge events given by
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Lemma 4.4.3 is too pessimistic and sub-quadratic in practice. Note that the memory
usage is measured by the runtime, and in fact, contains the 3D mesh data as well as
other miscellaneous things that make our program actually works. We can see that the
computation time per event is clearly linearly correlating with logn, and considering
that, an experimentally-estimated complexity in this example is given by O(n'4"logn)

time and O(n'*") space, since the number of events is estimated to be O(n'*7),
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Chapter 5

Conclusion and Future Work

In Chapter 3, we have formulated the single-source geodesics enumeration problem and
presented two data structures for the problem: the complete geodesic interval tree and
the reduced geodesic interval tree. Although we could not provide their worst-case
bounds in terms of the input size, experiments suggested that the reduced geodesic in-
terval tree is practically more efficient on a nonconvex polyhedron in terms of running
time and memory consumption. On the assumption of reasonable complexity of the
input mesh, our method allows geodesics to be computed in reasonable time, which
opens up possibility of finding useful non-shortest geodesics which traditional shortest
path algorithms cannot find. We have given the complexity of our algorithms in terms
of the size of the output geodesic interval trees. However, it largely depends on the ge-
ometry of the polyhedron, and a (non-trivial) complexity estimation is likely to include
not only the input size (such as the number of vertices) and R, but also geometrical
characteristics of the polyhedron (such as discretized curvatures). Therefore, rigorous
analysis of complexity may involve mathematical study of geodesics themselves on a

polyhedron. Geodesics yielded by our method can be used to approximate geodesics on
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a smooth surface, although more accurate or efficient algorithms tailored for smooth

surfaces could be developed.

In Chapter 4, we have proposed a novel generalization of the MMP algorithm; it
produces an interactive visualization of the wavefront propagation and the cut-locus on
a convex polyhedral surface P, and finally provides a nice planar unfolding of P without
any overlap, instantaneously and accurately. Here we consider generic source points,
that is sufficient for our practical purpose, and indeed, that enables us to classify what
kind of geometric events arises in the wavefront propagation and makes the algorithm
simple enough to be treated. A main idea is to introduce the notion of an interval loop,
which is a new data structure representing the wavefront. It is propagated as the time
(distance) r increases. The computational complexity of our algorithm is the same as
the original MMP, while our actual use is supposed for polyhedra with a reasonable size
of number n of vertices. We have successfully implemented our algorithm to computer —
it works well as expected and we have demonstrated a number of outputs. There is still
large room for further development. Extension of our method to non-convex polyhedra
might be straightforward. However, a major downside of our method is that it cannot
deal with bifurcation events, which are practically common to occur and more so in
non-convex cases. In principle, brute-force detection of the bifurcation events should
be possible with an increased time complexity of O(n®logn) by checking every pair
of arcs existing on a common face. As we discussed in Section 4.1, we can compute
cut-loci on a convex polyhedron in O(n?logn) time using Voronoi diagrams, even with
existence of a bifurcation event. However, this strategy does not work on a non-convex
polyhedron because, on a non-convex polyhedron, the intersection of a cut-locus and
a face is not always a Voronoi diagram. In fact, it is not even an additively-weighted

Voronoi diagram in general. Therefore, it would be valuable if one could develop an
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algorithm of O(n%logn) time complexity capable of work on non-convex polyhedra
with existence of bifurcation events.

As we discussed in Chapter 2, there are often multiple similar geodesics on a poly-
hedron due to the existence of spherical vertices (see Figures 2.3 and 2.4). When we
see the polyhedron as the exact description of the geometry of our interest, they are
certainly distinct geodesics, which is the viewpoint we took in this paper. However,
we sometimes have to see the polyhedron as an approximate description of a smooth
surface of our interest. From this viewpoint, this property of polyhedral geodesics is
unfavorable, because these similar geodesics often correspond to a single geodesic on
the smooth surface. This distinction is crucial to deal with a cut locus of a 3D triangu-
lar mesh, as every spherical vertex generates a branch of the cut locus on a polyhedron
(see Figures 4.3, 4.6 and 4.18). As a result, when we take a sequence of polyhedra that
converges to a smooth surface, the cut loci of the polyhedra usually do not converge
to the cut locus of the smooth surface. In this sense, cut loci of a polyhedron and a
smooth surface are different in nature. In fact, we can unfold a convex polyhedron into
a plane by cutting along a cut locus (see Figure 4.5, 4.6 and 4.18), whereas this feature
is not available on a smooth surface. It is challenging to compute a cut locus of a 3D
mesh as a smooth surface. Firstly, the problem is not mathematically well-defined un-
less we fix an interpolation method to produce a smooth surface from the mesh, while
it may be practically sufficient to supply a method to filter the polyhedral cut-locus
into more scarce cut-locus of the corresponding smooth surface. Secondly, computing
geodesics on a smooth surface is not as easy as on a polyhedron, because we cannot

unfold the surface into a plane. Thus, it could be another future work.
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