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Highlights

A Deep Registration Method for Accurate Quantification of Joint Space Narrowing Progression
in Rheumatoid Arthritis
Haolin Wang,Yafei Ou,Wanxuan Fang,Prasoon Ambalathankandy,Naoto Goto,Gen Ota,Taichi Okino,Jun Fukae,Kenneth
Sutherland,Masayuki Ikebe,Tamotsu Kamishima

• An intra-subject rigid registration network for bone displacement measurement.

• Achieved sub-pixel accuracy monitoring of joint space in rheumatoid arthritis.

• Significantly improved robustness for scaling, rotation, and noise.

• Misalignment visualization for reliability assessment.
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A B S T R A C T

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that leads to progressive
articular destruction and severe disability. Joint space narrowing (JSN) has been regarded as an
important indicator for RA progression and has received significant attention. Radiology plays
a crucial role in the diagnosis and monitoring of RA through the assessment of joint space. A
new framework for monitoring joint space by quantifying joint space narrowing (JSN) progression
through image registration in radiographic images has emerged as a promising research direction.
This framework offers the advantage of high accuracy; however, challenges still exist in reducing
mismatches and improving reliability. In this work, we utilize a deep intra-subject rigid registration
network to automatically quantify JSN progression in the early stages of RA. In our experiments, the
mean-square error of the Euclidean distance between the moving and fixed images was 0.0031, the
standard deviation was 0.0661 mm and the mismatching rate was 0.48%. Our method achieves sub-
pixel level accuracy, surpassing manual measurements significantly. The proposed method is robust to
noise, rotation and scaling of joints. Moreover, it provides misalignment visualization, which can assist
radiologists and rheumatologists in assessing the reliability of quantification, exhibiting potential for
future clinical applications. As a result, we are optimistic that our proposed method will make a
significant contribution to the automatic quantification of JSN progression in RA. Code is available
at https://github.com/pokeblow/Deep-Registration-QJSN-Finger.git.

1. Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune in-

flammatory disease marked by joint swelling and tenderness,
resulting in progressive articular destruction combined with
severe disability. Joint space narrowing (JSN) caused by car-
tilage destruction can have a significant impact on functional
status (Pfeil et al., 2013). Early diagnosis and treatment with
disease-modifying antirheumatic drug (DMARD) therapy
can prevent irreversible disability by halting RA before
damage occurs to the joints, thereby avoiding or signifi-
cantly slowing the progression of joint damage in 90% of
patients (Platten et al., 2017). Therefore, using inexpensive,
convenient, widely available imaging techniques with high
sensitivity and specificity is essential for early diagnosis of
RA and early intervention and management (Aletaha and
Smolen, 2018).

Radiography has proven to be effective in identifying
RA patients at a higher risk of further damage progression.
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Detecting early joint damage through radiography holds
significant prognostic value both in clinical practice and
clinical trials. The gold standard for assessing radiographic
joint destruction in RA is the Sharp/van der Heijde scor-
ing method (SvdH) (Van der Heijde, 2000) or the Genant-
modified Sharp score (GSS) (Genant et al., 1998), in which
radiologists and rheumatologists visually assess and score
JSN progression and bone erosion of the hands, wrists and
feet (Rydell et al., 2021). Rheumatologists traditionally mea-
sure JSN progression visually, relying on their training and
expertise. However, even experienced rheumatologists face
significant challenges in visually measuring JSN progression
of 0.30 mm or less (Kato et al., 2019; Minh et al., 2022).
Computer-aided diagnosis (CAD) has shown great potential
to handle the challenges by quantitatively extracting joint
space features in RA (Peloschek et al., 2007; Langs et al.,
2008; Huo et al., 2015; Ou et al., 2023), which is widely used
in clinical settings for rapid diagnosis (Hirano et al., 2019) or
high-precision monitoring of RA progression (Okino et al.,
2023).

1.1. Medical image analysis in joint space of RA
According to the nature of the methods and their output

metrics, previous works on joint space quantification for
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Table 1
Feature comparison of mainstream frameworks of joint space
quantification in RA.

Method Output Sensitivity Detectable Purpose

Margin detection JSW Medium Early stage Both
Classification SvdH Low All stages Qualitative
Registration JSN High Early stage Quantitative

RA can be divided into three frameworks: edge detection
based joint space width (JSW) quantification, classification
based SvdH scoring, and registration based JSN progression
quantification. As shown in Table 2, each of these three
frameworks have their advantages and disadvantages under
different evaluation standards.

The margin detection based JSW quantification frame-
work was the earliest computer-aided methodology in RA. It
can be performed as follows: (i) Detect the bone margin by
using a supervised machine learning (ML) network (Langs
et al., 2008) or image features (Huo et al., 2015) such as
intensity, gradient and derivative. (ii) Fit polynomial func-
tions to bone margin curves. (iii) Quantify JSW according to
the distance between polynomial functions. This framework
has wide application. With the quantified absolute JSW, the
SvdH score can be determined for qualitative diagnosis,
while JSN progression (relative JSW) can be calculated
for quantitative monitoring. However, this framework has
some limitations: (i) Since this framework relies on margin
information to determine the JSW, it is only suitable for use
in the early stages of RA when there is a clear bone margin.
(ii) This framework can only achieve pixel-level accuracy,
limiting the sensitivity of joint space monitoring.

To overcome these limitations, a ML classification based
SvdH scoring framework was proposed for rapid diagnosis
at any stage of progression. In this framework, a supervised
trained classifier, such as CNN (Hirano et al., 2019) or SVM
(Nakatsu et al., 2020) is used to classify hand joint images
from level 0 to level 4. This framework can be used in any
stage of RA and can help rheumatologists make qualitative
assessments. However, due to the inherent characteristics of
classification, this framework is not suitable for quantitative
analysis and has low sensitivity.

JSN progression is an important indicator for drug man-
agement in RA and has received widespread attention. How-
ever, over the course of one year, JSN progression can be
less than one pixel, making it difficult to detect, as shown in
Fig. 1. To quantitatively monitor JSN progression with high
accuracy, a registration based JSN progression quantification
framework was proposed (Ou et al., 2023, 2019). Taking
the metacarpophalangeal (MCP) joint as an example, this
method can be performed as follows: (i) Segment the prox-
imal phalanx bone and metacarpal bone. (ii) Measure the
displacements of the proximal phalanx bone and metacarpal
bone between the baseline and follow-up finger joint images
respectively by using an image registration algorithm. (iii)
Calculate the displacement difference between the proximal

Figure 1: JSN progression of a MCP joint for the little finger
over a period of 10 months. From left to right the images are
baseline, five-month, and ten-month images (spatial resolution:
0.175 mm/pixel). JSN progression is usually less than one pixel
per year, making it difficult for radiologists and rheumatologists
to detect. Operating with an algorithm with pixel level accuracy
to quantify JSN progression over a period of one year may not
be possible. JSN progression measured at five and ten months
relative to baseline using our method are -0.197 pixel and 0.174
pixel, respectively.

phalanx bone and metacarpal bone to measure JSN progres-
sion.

Compared to other frameworks, this framework has po-
tential for higher sensitivity and lower mean error. However,
it also has some limitations: (i) Changes in bone character-
istics caused by bone erosion in advanced RA can reduce
the accuracy of the rigid registration algorithm and even
cause mismatching. For the above reason, this framework is
mostly used in the early stages of RA. (ii) Considering that
the registration algorithm can only provide JSN progression,
this limits its application for qualitative diagnosis.

1.2. ML-based image registration in medical
image analysis

Registration in medical image processing refers to the
process of aligning multiple medical images on a common
coordinate system. It is an important step in many medical
image analysis tasks (Chen et al., 2022). ML-based medical
image registration algorithms have recently gained popular-
ity (Chen et al., 2021). Registration algorithms can be cat-
egorized into rigid and non-rigid (deformable) registration
based on the deformation model type. Non-rigid registration
has broad applications in tissues or organs such as the brain,
thorax, lung (Fu et al., 2020), and can be used to detect lung
motion (Ehrhardt et al., 2010) and tumor regression (Ney-
lon et al., 2017). For rigid registration, the transformation
parameters are obtained based on the convolutional neural
network to achieve image registration. A 2D/3D target regis-
tration for X-ray images using convolutional neural networks
was presented to obtain transformation parameters (Miao
et al., 2016). In our work, inspired by these advancements,
we focus on the overall displacement of bones, enabling the
rigid registration algorithm to achieve higher quantification
accuracy. By utilizing the potential of deep learning, the
problems of traditional computation-based image registra-
tion methods mentioned in the previous subsection can be
addressed. This work is limited to detecting JSN progression
of the same patient over consecutive time points (Stoel,
2020), that is, intra-subject registration.

Haolin Wang, et al.: Page 2 of 13



A Deep Registration Method for Accurate Quantification of JSN Progression in RA

dx dydθdz

(A)

(B)

JSN = dy0 - dy1

Fixed

Segmentation (§ 2.1)

Se
gm

en
ta

tio
n

N
et

w
or

k

Registration
Network

dx0

dy0

dz0

dθ0

dx1

dy1

dz1

dθ1

Registration  (§ 2.2)

Upper P0 Lower P1

JSN

Moving

Figure 2: (A) Overview of our proposed deep learning image registration based JSN progression quantification methodology. This
work can be divided into two steps: joint segmentation and JSN progression quantization. Using a MCP joint as an example,
this work can be performed as follow: (i) A supervised U-net++ based network is implemented to segment the proximal phalanx
bone and metacarpal bone region of the MCP joint (§ 2.1). (ii) An un-supervised ResNet-like based deep registration network is
proposed to quantify the rigid transformation parameters of the proximal phalanx bone and metacarpal bone region (§ 2.2). (iii)
The JSN progression can be obtained by calculating the displacement difference of the y-axis between the two bones. (B) Four
rigid transformation parameters are shown that are used in this work; 𝑑𝑧: scaling, 𝑑𝜃: rotation, 𝑑𝑥: displacement on the x-axis,
𝑑𝑦: displacement on the y-axis.

1.3. Our contributions
In this work, a deep learning-based methodology is pro-

posed for JSN quantification. The following are our original
contribution:

1. Implementation of an image segmentation network
based on U-net++ to accurately segment joint images.

2. Proposal of a ResNet-like deep registration network to
measure bone displacement.

3. Achievement of sub-pixel accuracy in monitoring
joint space during the early stage of RA.

4. Significant improvement in robustness for scaling,
rotation, and noise compared to related works. This
reduces mismatching caused by inconsistent angles
between the upper and lower bones of the joint, vari-
able spatial resolutions of radiography images, and
inconsistent projection angles.

5. Provision of a misalignment visualization that enables
radiologists and rheumatologists to assess the reli-
ability of quantification. This feature has important
implications for the future clinical application of our
method.

The rest of this paper is organized as follows. § 2 de-
scribes the implementation of our methodology; including
joint segmentation network and JSN progression quantifi-
cation network and introduces the clinical datasets used in
this work. § 3 presents and discusses the segmentation and
registration results. § 4 concludes this work and discusses
possible future research directions for computer-aided mon-
itoring of RA.

7×
7 

co
nv

, 6
4

Segmentation Network
Input Output

0

1

Figure 3: Diagram of our segmentation network. The segmen-
tation network contains one convolutional layer (kernel size:
7 × 7, channels: 64) and a 5-layer Unet++ network.

2. Methodology and materials
In this work, a deep learning based JSN quantification

method is proposed. The proposed method aims to improve
the sensitivity, accuracy and robustness of JSN progression
monitoring in the early stages of RA. As shown in Fig. 2,
the proposed work contains two networks: a U-net++ based
joint segmentation network and a ResNet-like deep registra-
tion network for JSN progression quantification.

2.1. Joint segmentation
A network based on U-net++ with an added convolution

layer is proposed for joint segmentation, as illustrated in
Fig. 3. Consider a MCP joint as an example, the proximal
phalanx bone and metacarpal bone are segmented separately
using the U-net++ network. This enables the individual
measurement of displacement for the upper part (proximal
phalanx bone) and lower part (metacarpal bone) of the
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Figure 4: Structure diagram of image registration network. In this case, after a convolution layer of 3 × 3 convolution kernels
and a 1-channel convolution base and combined with its corresponding segmentation mask, the input image set is input into the
registration network. The registration network contains a layer of convolution and 4 layers of residual convolution modules with
64, 128, 256 and 512 channels, respectively. The final transformation parameters are obtained after a fully connection layer with
8 output values. These transformation parameters are used to deform the moving image to generate a transformed image. The
difference between the generated transformed image and the fixed image is defined as the loss, which is used to optimize the
registration network.

joint. The output of the segmentation network is defined as
𝑆, where 0 represents the metacarpal bone region (upper
region) and 1 represents the proximal phalanx bone region
(lower region).

2.2. JSN quantification by image registration
In this subsection, an unsupervised intra-subject rigid

registration network is proposed for quantifying JSN pro-
gression. The pipeline can be explained as follows: (i) Quan-
tify the transformation parameters between the baseline and
follow-up radiographic images using the registration net-
work, as shown in Fig. 4. (ii) Calculate JSN progression
based on the vertical displacement difference between the
upper and lower regions of the joint.

2.2.1. Transformation Parameterization
A 3D rigid transformation can be parametrized by three

in-plane and one out-of-plane transformation parameters
(Kaiser et al., 2014), as shown in Fig. 2 (A). The in-plane
transformation parameters include two displacement param-
eters 𝑑𝑥, 𝑑𝑦 and one rotation parameter 𝑑𝜃. The out-of-
plane transformation parameter is the scaling parameter 𝑑𝑧.
In our registration network, the upper and lower regions
are registered simultaneously. Two sets of parameters are
introduced, namely:

󳴂
𝑃0 ∣ 𝑑𝑧0, 𝑑𝜃0, 𝑑𝑥0, 𝑑𝑦0

󳴃
for the upper

region, and
󳴂
𝑃1 ∣ 𝑑𝑧1, 𝑑𝜃1, 𝑑𝑥1, 𝑑𝑦1

󳴃
for the lower region.

The vertical displacement parameter 𝑑𝑦 of 𝑃0 and 𝑃1 is used
to calculate the JSN progression.

2.2.2. Registration network
The rigid transformation parameters of the upper and

lower regions are obtained by simultaneously registering
both regions. The detailed operation is described as follows.

Given a fixed joint image 𝐹 and a moving joint image
𝐺, they can be divided into upper and lower regions. The
segmentation mask is denoted as 𝑆, where 0 represents the
upper bone region and 1 represents the lower bone region.

The transformation matrix of the upper region, denoted
as 𝑡0, and the lower region, denoted as 𝑡1, are generated based
on the parameter sets 𝑃0 or 𝑃1 obtained through the proposed
network, which is defined in Eq. 1.

𝑡=
⎛
⎜
⎜⎝

𝑑𝑧𝑐𝑜𝑠𝑑𝜃 −𝑑𝑧𝑠𝑖𝑛𝑑𝜃 𝑑𝑥𝑑𝑧𝑐𝑜𝑠𝑑𝜃−𝑑𝑦𝑑𝑧𝑠𝑖𝑛𝑑𝜃
𝑑𝑧𝑠𝑖𝑛𝑑𝜃 𝑑𝑧𝑐𝑜𝑠𝑑𝜃 𝑑𝑥𝑑𝑧𝑠𝑖𝑛𝑑𝜃+𝑑𝑦𝑑𝑧𝑐𝑜𝑠𝑑𝜃

0 0 1

⎞
⎟
⎟⎠

(1)

The transformation matrix 𝑡0 and 𝑡1 is subsequently
applied for the transformation function 𝑇 of the moving
image ðİŘž to transform the spatial position of each pixel
and generate the transformed image 𝐺0, 𝐺1, which can be
defined as shown in Eq. 2:

𝐺0 = 𝑇
󳳼
𝐺, 𝑡0

󳳽
𝐺1 = 𝑇

󳳼
𝐺, 𝑡1

󳳽
(2)

Thus, the upper region 𝐹0 and lower region 𝐹1 of the
fixed image, the upper region 𝐺󳶡

0 and lower region 𝐺󳶡
1 of the

transformed image can be expressed as follows:

𝐹0 = 𝐹 ∗ ¬𝑆 𝐹1 = 𝐹 ∗ 𝑆
𝐺󳶡
0 = 𝐺0 ∗ ¬𝑆 𝐺󳶡

1 = 𝐺1 ∗ 𝑆
(3)
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The transformed image 𝐺󳶡 can then be obtained by
combining its upper region 𝐺󳶡

0 and lower region 𝐺󳶡
1, as

shown in Eq. 4.

𝐺󳶡 = 𝐺󳶡
0 + 𝐺󳶡

1 (4)

In this registration network, the mean squared error
(MSE) of the Euclidean distance is used as the loss, as
defined in Eq. 5. 𝑚 and 𝑛 denote the width and height of
𝐹 (𝑥, 𝑦), respectively.

𝐿(𝐹 ,𝐺) =

󳴾󳴽󳴽󳴵 1
𝑚 × 𝑛

𝑛󳴇
𝑦=1

𝑚󳴇
𝑥=1

(𝐹 (𝑥, 𝑦) − 𝐺(𝑥, 𝑦))2 (5)

Here, 𝐿(𝐹 ,𝐺) represents the Euclidean distance loss
between image 𝐹 and image 𝐺. The loss in our registration
network includes both the upper and lower parts. For exam-
ple, given a fixed image 𝐹 and a transformed image 𝐺󳶡, the
transformed loss 𝐿(𝐹 ,𝐺󳶡) can be defined as follows:

𝐿(𝐹 ,𝐺󳶡) = 𝛼 × 𝐿(𝐹0,𝐺
󳶡
0) + 𝛽 × 𝐿(𝐹1,𝐺

󳶡
1) (6)

Here, 𝛼 and 𝛽 represent the weights used to balance the
loss of the upper and lower parts of the joint. They are set to
𝛼 = 𝛽 = 0.5. Then, the original loss 𝐿(𝐹 ,𝐺) of the moving
image 𝐺 can be similarly calculated.

The transformation parameters 𝑃0 and 𝑃1 obtained from
registering the upper and lower joint regions are used to
generate the final results. The vertical displacements 𝑑𝑦0 and
𝑑𝑦1 are used to calculate JSN progression. Thus, the joint
space difference between the fixed image 𝐹 and the moving
image 𝐺 can be described as follows:

JSN𝑓𝑔 = 𝑑𝑦0 − 𝑑𝑦1 (7)

2.2.3. Network architecture
The architecture of the proposed registration network is

illustrated in Fig. 4. This network is based on a residual
convolution module (He et al., 2016). It is implemented to
obtain transformation parameters between the fixed image
and the moving image. The network takes the moving image,
fixed image and their segmentation masks as input, which
are combined as four channels. To reduce noise interference
in the radiographic images of both fixed and moving images,
a single-layer convolution is applied before entering the
registration network. The network’s layer information and
the number of parameters are illustrated in Table. 2. After
feature extraction by the registration network, eight output
parameters are obtained through a fully connected layer.
These parameters include two sets of registration parameters
for the upper and lower bone regions of the joint, which are
the outputs of the network. These two sets of transformation
parameters are then used to transform the moving image
and its segmentation mask according to Eq. 2 and Eq. 3,
respectively, resulting in the transformed image. During the
training stage of the network, the loss function is the mean
squared error (MSE) of the distance between the fixed image
and the transformed image, as defined in Eq. 5.

Table 2
Layer types, output shapes, and the number of parameters of
the proposed ResNet-like network.

Layers Output shape Number of parameters

Conv2d+BN (1, 224, 224) 10+2
Conv2d+BN (1, 224, 224) 10+2
Conv2d+BN (64, 112, 112) 12,544+128

ReLU (64, 112, 112) 0
MaxPool2d (64, 56, 56) 0
Conv2d+BN (128, 56, 56) 73,728+256

ResidualBlock×3 (128, 56, 56) 747,008
Conv2d+BN (256, 28, 28) 294,912+512

ResidualBlock×4 (256, 28, 28) 4,165,632
Conv2d+BN (512, 14, 14) 1,179,648+1024

ResidualBlock×6 (512, 14, 14) 26,095,616
Conv2d+BN (512, 7, 7) 2,359,296+1024

ResidualBlock×3 (512, 7, 7) 12,064,768
Fully Connected (1, 8) 4,104

Tanh (1, 2) 0
Tanh (1, 2) 0
Linear (1, 4) 0
Total - 47,000,224

ResidualBlock: A Residual Block consists of the following
layers: Conv2d, BatchNorm2d, ReLU, Conv2d, Batch-
Norm2d, ReLU BN: BatchNorm2d

2.3. Implementation
The joint segmentation and registration networks were

trained and tested separately. The networks were imple-
mented using Python language and PyTorch package (Paszke
et al., 2019) on a workstation with a single GPU (NVIDIA
GeForce GTX 2080 Ti). The implementation details of the
networks are described as follows.

2.3.1. Segmentation network
The loss function of the segmentation network consisted

of sigmoid and binary cross entropy loss (BCELoss). It
was optimized using the RMSProp optimizer (Hinton et al.,
2012), with 𝜌 set to 0.9 and epsilon set to 0.0001. The initial
learning rate was 0.00001. Training was carried out over 150
epochs with a batch size of 30. The network was trained three
times. The results were the averaged to reduce the impact of
random initialization.

2.3.2. Registration network
The registration network was trained using the Adam

optimizer (Kingma and Ba, 2014) , with an initial learning
rate of 0.001. ReduceLROnPlateau was used for adaptive
learning rate reduction. The training process consisted of
500 epochs, with a batch size of 80. Furthermore, to mini-
mize the impact of random initialization during training, the
proposed registration network was trained three times. The
result was obtained by averaging the three runs.

2.4. Dataset
To evaluate the performance of our network, we pre-

pared a clinical dataset in compliance with the guidelines
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Table 3
Patient information in the clinical dataset

Mean ± SD Range

Age at enrollment (year) 56.11 ± 13.79 20.68 ∼ 88.00
Amount of radiography 4.30 ± 2.54 3 ∼ 17
Follow-up period (year) 4.04 ± 3.44 0.88 ∼ 12.10

Table 4
Configuration parameters for radiographic imaging

SARC HMCRD SCGH

Model DR-155HS2-5Radnext 32 KXO-50G
Manufacturer Hitachi Hitachi Toshiba

Aluminum filter (mm) 1.5 0.5 NO
Tube voltage (kV) 42 50 45
Tube current (mA) 100 100 250

Exposure time (mSec) 20 25 14
Source to image (cm) 100 100 100
Resolution (mm/pixel) 0.175 0.15 0.15

Image size (pixel) 2010×1490 2010×1490 2010×1490
Bit depth (bit) 12 10 10

SARC: Sagawa Akira Rheumatology Clinic.
HMCRD: Hokkaido Medical Center for Rheumatic
Diseases.
SCGH: Sapporo City General Hospital.

of the Declaration of Helsinki and obtained approval from
the Ethics Committee of the Faculty of Health Sciences,
Hokkaido University (approval number: 19 - 46). The dataset
used in this study consisted of 675 hand posteroanterior
projection (PA) radiographs from 80 patients with rheuma-
toid arthritis (RA). Among these patients, 88.5% were fe-
male. Detailed patient information is summarized in Ta-
ble 3. The images were obtained from three different institu-
tions: Sagawa Akira Rheumatology Clinic (Sapporo, Japan),
Hokkaido Medical Center for Rheumatic Diseases (Sapporo,
Japan), and Sapporo City General Hospital (Sapporo, Japan).
Each institution has its own X-ray systems, and the dataset is
managed using the digital imaging and communications in
medicine (DICOM) standard. For detailed information about
the imaging parameters, please refer to Table 4.

To extract finger joint images from the hand images, we
utilized the finger joint detection method described in (Ou
et al., 2022). The finger joints were scored by a radiologist
with extensive training. Only early-stage RA cases with a
SvdH hand score of 0 were included in the dataset. This
selection criterion was applied because narrowed joint space
can impact segmentation accuracy, and bone erosion can
cause damage to the bone margin in advanced RA cases.
Additionally, we retained only the images from patients who
underwent hand radiography at least three times to enable the
calculation of standard deviation. The distribution of data for
different joints is presented in Table 5.

For the segmentation task, we divided the dataset into an
80% training set, consisting of 4,854 finger joint images with

Table 5
The amount of finger joint images in our clinical dataset

IP PIP MCP OverAll

Thumb 561 N/A 569
Index N/A 636 672
Middle N/A 647 599
Ring N/A 514 626
Small N/A 560 683
Overall 561 2357 3149 6067

IP: Interphalangeal joint.
PIP: Proximal interphalangeal joint.
MCP: Metacarpophalangeal joint.

corresponding expert annotations, and a 20% testing set,
consisting of 1,213 finger joint images. For the registration
task, we needed paired images of fixed and moving joints. To
construct the dataset, we considered each joint with multiple
images. We created pairs by pairing up images smaller than
the middle index with images larger than the middle index
within each joint image set. The resulting dataset included
1,597 finger joint image pairs for training and 3,604 finger
joint image pairs for testing.

In the clinical assessment, we included 15 patients with
rheumatoid arthritis from Hokkaido Medical Center for
Rheumatic Diseases. Each patient had baseline and 52-week
follow-up radiographic images of both hands. The dataset
evaluated the five metacarpophalangeal (MCP) joints and
four proximal interphalangeal (PIP) joints of each hand
using the Genant-modified Sharp score (GSS) (Genant et al.,
1998).

3. Experiments and discussion
3.1. Segmentation experiments
3.1.1. Segmentation evaluation

The segmentation performance of U-net++ in this work
was quantitatively evaluated using manual annotations as
the ground truth. The evaluation employed the following six
metrics (Zhang, 1996):

• Mean Intersection over Union (mIoU): Measures
the ratio of the intersection to the union of the two
sets of ground truth and predicted results.

• Sensitivity (SEN): Represents the percentage of ground
truth regions that are correctly segmented.

• Specificity (SPC): Indicates the percentage of non-
ground truth regions that are correctly segmented.

• Dice Similarity Coefficient (DSC): Quantifies the
similarity between the prediction and the ground truth.

• Accuracy (ACC): Measures the percentage of cor-
rectly predicted pixels to the total number of pixels.
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IP MCP(Thumb) PIP MCP(Others)

Figure 5: Experiments of the proposed segmentation network. White lines represent the manual label of segmentation, and yellow
lines represent the predicted segmentation by using the network.

Table 6
The performance in different evaluation metrics

mIoU SEN SPC DSC ACC

IP 0.95900 0.97782 0.98292 0.97896 0.98028
PIP 0.96227 0.97115 0.99191 0.98056 0.98166
MCP 0.95396 0.96422 0.99094 0.97615 0.97821

Overall 0.95779 0.96835 0.99052 0.97819 0.97980

3.1.2. Segmentation results
Different evaluation metrics were employed to assess the

IP, PIP, and MCP joints individually. The results, shown in
Fig. 5 and Table 6 indicate that our automatic segmentation
method yields accurate and sensitive results compared to the
ground truth.

3.2. Registration experiments
3.2.1. Registration evaluation

In radiographic images, noise can greatly affect visual
measurements (Ou et al., 2023). Phantom experiments have
shown that manually annotated data can have sub-pixel mean
errors, leading to sub-pixel deviations in algorithm evalua-
tion. Hence, metrics that do not rely on manually annotated
data are used for evaluating algorithm performance. The
experiments conducted on our registration network are sum-
marized in Table 7 using four metrics: the standard deviation
𝜎 as defined in (Ou et al., 2019), the standard deviation 𝜎󳶡
as defined in (Langs et al., 2008), the mismatching ratio, and
the transformed loss.

• Standard deviation 𝜎: Evaluates the accuracy of JSN
progression quantification.

• Standard deviation 𝜎󳶡: Represents the percentage of
mismatching cases and measures the robustness of the
algorithm.

• Mismatching ratio: Represents the percentage of
mismatching cases and measures the robustness of the
algorithm.

• transformed loss: Quantifies the difference between
the transformed image and the fixed image, providing
an assessment of the registration network’s perfor-
mance.

The standard deviation 𝜎 is computed to assess the
reliability of the registration network without the ground
truth (Ou et al., 2023). The standard deviation represents the
variation among multiple measurements. For example, when
comparing images 𝐹 and 𝐺, the 𝐽𝑆𝑁𝐹𝐺−𝐼 between image
𝐹 and image 𝐺 can be indirectly calculated by introducing
intermediate image 𝐼 , as follows:

𝐽𝑆𝑁𝐹𝐺−𝐼 = 𝐽𝑆𝑁𝐹𝐼 + 𝐽𝑆𝑁𝐼𝐺 (8)

Considering a set of images, the 𝐽𝑆𝑁𝑓𝑔 can be obtained by
taking the average of multiple measurements.

𝐽𝑆𝑁𝐹𝐺 = 1
𝑛

𝑛󳴇
𝐼=1

𝐽𝑆𝑁𝐹𝐺−𝐼 (9)

Therefore, the standard deviation 𝜎𝑓𝑔 of 𝐽𝑆𝑁𝑓𝑔 can be
defined as follows:

𝜎𝐹𝐺 =

󳴾󳴽󳴽󳴽󳴵1
𝑛

󳴭 𝑛󳴇
𝐼=1

𝐽𝑆𝑁𝐹𝐺−𝐼 − 𝐽𝑆𝑁𝐹𝐺

󳴮2

(10)

We utilize the standard deviation introduced in (Langs
et al., 2008) to demonstrate the reliability of our method.
In the case of two images 𝐹 and 𝐺, we create image 𝐺𝑗 by
adding a random translation (-3, +3 pixels) to image 𝐺 along
the x-axis and y-axis. The standard deviation 𝜎󳶡𝐹𝐺 of images
𝐹 and 𝐺 can be defined by using the 𝐽𝑆𝑁𝐹𝐺−𝑗 between
image 𝐹 and image 𝐺𝑖.

𝐽𝑆𝑁𝐹𝐺 = 1
10

10󳴇
𝑗=1

𝐽𝑆𝑁𝐹𝐺−𝑗 (11)

𝜎󳶡𝐹𝐺 =

󳴾󳴽󳴽󳴽󳴵 1
10

󳴭 10󳴇
𝑗=1

𝐽𝑆𝑁𝐹𝐺−𝑗 − 𝐽𝑆𝑁𝐹𝐺

󳴮2

(12)

When calculating the standard deviation 𝜎󳶡𝐹𝐺, outliers
will be removed as mismatches.
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Figure 6: Experiments of the proposed registration network. Considering that the MCP joint of the thumb is different from the
other fingers, we have divided the finger joints into four categories; IP, MCP (thumb), PIP and MCP (others). The first three
columns on the left are inputs, the moving image 𝐺, the segmentation mask 𝑆 and the fixed image 𝐹 . The fourth column is the
transformed image 𝐺󳶡. The two columns on the right are the original Euclidean distance loss spectrum 𝐸𝐹𝐺 and the transformed
loss spectrum 𝐸𝐹𝐺󳶡 . The quantified transformation parameters 𝑃0, 𝑃1, the original loss 𝐿(𝐹 ,𝐺) and the transformed loss 𝐿(𝐹 ,𝐺󳶡)
are listed below the images.

3.2.2. Registration results
The experimental results of our registration network for

various finger joints are shown in Fig. 6. The finger joints
are divided into four categories: IP, MCP (thumb), PIP,
and MCP (others). In the original loss spectrums and the
transformed loss spectrums, the highlighted regions repre-
sent relative displacement between fixed image and mov-
ing/transformed image. As shown in Fig. 6, the proposed
registration network can effectively reduce the highlight re-
gions, especially around the bone margin. This is significant
as the bone margin information is crucial for determining
JSW or JSN progression in clinical data, rather than the bony
texture information, which can vary due to changes in bone
thickness or imaging angles. Therefore, the loss around bone
margin region is more important. These irregular variations

on bony texture are also the primary cause of loss in the rigid
registration network, as shown in Fig. 7. This demonstrates
that the proposed registration network can accurately quan-
tify the transformation parameters between the fixed image
and moving image.

Our experiments show that the standard deviation 𝜎,
the mismatching ratio, and the mean original loss of IP
joint images are much higher than other joints. There is
substantial evidence that thumb movements are more inde-
pendent compared to other fingers (Ingram et al., 2008). As
a result, the IP joint exhibits distinct characteristics when
the hand posture is altered. Inconsistent hand posture is
primarily shown radiographically as rotation or scaling in
PIP and MCP joints. However, the rotation of the thumb
MCP joint can lead to rolling in the thumb, thereby altering

Haolin Wang, et al.: Page 8 of 13



A Deep Registration Method for Accurate Quantification of JSN Progression in RA

%;#<'! ）

,"-'&'2()(40*/11

!"#$##*+, % %;#<'!$）

,"-'&'2()(40*/11

%;#<'!$='&'()((.44

Original Loss Spectrum Transformed Loss Spectrum

Figure 7: The bony texture varies as the bone thick-
ness/diameter varies (in response to muscle activity or weight)
or due to any changes in the imaging angle. Therefore, it is
difficult to reduce the loss on the bone surface region to 0, as
shown in the highlighted region. These irregular variations of
bony texture are also a major part of the transformed loss.

the projection angle of the IP joint. This can significantly
affect the IP joint characteristics, leading to decreased quan-
tification accuracy and potential mismatches. Improving the
robustness of algorithms and reducing mismatches in the IP
joints remains a challenge.

Figure 9 demonstrates the distribution and the relation-
ship between original loss and transformed loss in various
joint images. Due to the differing characteristics of various
joints, the distribution varies. As mentioned earlier, the mean
and variance of the original loss and the transformed loss
for IP joint images are higher compared to others. In all
three kinds of finger joint images, our proposed registration
network can effectively control the loss. In 94.6% of the
registration cases, the transformed loss is less than half
compared to the original loss.

It is important to note that the transformed loss is difficult
to decrease infinitely in rigid registration due to variations
in bone features, including bony texture, margin informa-
tion from finger bending, and bone erosion, across multiple
radiographic images. These variations pose significant ob-
stacles to achieving successful rigid registration. Moreover,
experiments involving these factors typically yield high orig-
inal loss, leading to a higher occurrence of mismatch cases
in the high original loss region. In contrast, our proposed
method, as shown in Fig.9, demonstrates high robustness
and a low mismatching ratio in this region. Table 7 further
highlights the effectiveness of our method in controlling the
mismatching ratio of various finger joint images, particularly
PIP and MCP joint images.

3.2.3. Clinical assessment
We conducted a statistical analysis to compare the results

obtained by our proposed method with the results of the GSS
(Genant et al., 1998) completed by a rheumatologist. This
analysis was performed on a clinical dataset consisting of
135 joints from 15 patients with RA. The dataset included
images of five MCP joints and four PIP joints. We analyzed
the differences and correlations separately.

For each patient, we obtained the GSS values for the
baseline and the follow-up at the 52nd week. The differ-
ence between these values was calculated and referred to

ΔGSS(–) ΔGSS(+)

-1.5

-0.5

0.5

1.5

JS
N

(m
m

)

p = 0.0067

Figure 8: Comparison of the JSN progression derived from the
proposed method in terms of radiographic JSN progression.
JSN(mm), the difference in joint space width at baseline and
the 52nd week. ΔGSS, the difference in GSS at baseline and
the 52nd week.

as ΔGSS. We categorized the joints based on the sign of
ΔGSS: ΔGSS(+) for joints with a positive ΔGSS according
to the GSS results (n = 41, 15.19%), and ΔGSS(-) for
the remaining joints (n = 229, 84.81%). Additionally, we
measured the joint space narrowing (JSN) at the baseline and
follow-up using our proposed method.

Firstly, we found that the JSN of the finger joints with
GSS progression [ΔGSS(+)] was significantly greater than
the JSN of the joints without GSS progression [ΔGSS(-)]
(Unpaired T test, p = 0.0067 (one-tail), 95% confidence
interval: 0.02143 to 0.1831). The mean JSN forΔGSS(-) and
ΔGSS(+) was -0.1079 mm and -0.005626 mm, respectively,
as shown in Fig. 8. The presence of individual outlier points
in the figure can be attributed to incorrect joint detection
results and cases of excessive narrowing or absence of joint
space.

Secondly, we observed a significant correlation between
the JSN of the finger joints measured by our proposed
method and the progression of ΔGSS (Pearson Correlation,
p = 0.0003, r = 0.2167).

3.2.4. Comparison with related works
During clinical radiographic imaging, inconsistent hand

posture of the patient or different imaging equipment can re-
sult in rotation or scaling of the bones. As the RA progresses,
bone erosion gradually destroys the margin information of
bones. These changes in bone margin information due to
rotation, scaling, or bone erosion pose a challenge for rigid
image registration based JSN progression quantification in
RA.

Based on experiments of PIPOC-based JSN progression
quantification in (Ou et al., 2023), PIPOC is susceptible
to noise, rotation, and scaling, making inconsistent hand
posture a major reason for mismatches. This inconsistency
can be broadly divided into two cases. (i) The inconsistent
angle between the upper and lower bones of the joint, as
show in the first row of Fig. 10. This inconsistent joint angle
is shown radiographically as a rotation. (ii) The bending of

Haolin Wang, et al.: Page 9 of 13



A Deep Registration Method for Accurate Quantification of JSN Progression in RA

Tr
an

sf
or

m
ed

 

Figure 9: Heat maps of the original loss 𝐿(𝐹 ,𝐺) and the transformed loss 𝐿(𝐹 ,𝐺󳶡). This set of heat maps demonstrate the
distribution and relationship between the original loss and the transformed loss.
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Figure 10: Experiments of the proposed registration network in specific cases. Those figures show the robustness of the proposed
registration network to rotation and scaling.

the fingers, as show in the second row of Fig. 10. In this
case, there will be obvious scale differences between the
upper and lower bones. In the paper (Ou et al., 2023), it
is reported that due to the characteristics and limitation of
PIPOC, the inconsistency of the angles or scales of upper
and lower bones can easily cause mismatches. As shown in
the transformed loss spectrums of Fig. 10, the registration
network proposed in this work can improve the robustness
for rotation and scaling, and it can accurately quantify the

angle and scale difference. This improvement can effectively
reduce the mismatching ratios when compared to PIPOC, as
shown in Table 8.

Table 8 summarizes the comparison with other joint
space quantification work in RA. We can observe that
the image registration-based JSN progression quantification
framework can achieve lower standard deviation 𝜎󳶡 when
compared to the margin detection-based JSW quantification
framework. This shows that the image registration-based

Table 7
Mean standard deviation in millimeters, the mismatching ratios and the transformed Euclidean distance loss for our image
registration network.

Standard Deviation 𝜎 Standard Deviation 𝜎󳶡 Mismatching Ratio (%) Transformed Loss
IP PIP MCP IP PIP MCP IP PIP MCP IP PIP MCP

Thumb 0.0864 N/A 0.0688 0.0415 N/A 0.0394 3.31 N/A 0.53 0.0049 N/A 0.0031
Index N/A 0.0496 0.0689 N/A 0.0354 0.0373 N/A 1.41 1.07 N/A 0.0031 0.0029
Middle N/A 0.0491 0.0571 N/A 0.0400 0.0331 N/A 0.65 0.01 N/A 0.0021 0.0028
Ring N/A 0.0423 0.0610 N/A 0.0358 0.0313 N/A 0.14 0.44 N/A 0.0020 0.0031
Small N/A 0.0410 0.0745 N/A 0.0294 0.0312 N/A 0.54 0.34 N/A 0.0023 0.0035
Overall 0.0864 0.0455 0.0661 0.0415 0.0351 0.0345 3.31 0.68 0.48 0.0049 0.0024 0.0031
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Table 8
Comparison with related works in algorithm accuracy. The mean standard deviation in millimeter and the mismatching ratios for
respective joints.

Method Dataset Resolution Output Standard Deviation 𝜎 Standard Deviation 𝜎󳶡 Mismatching Ratio (%)
(Images) (mm/pixel) Metric IP PIP MCP OverAll IP PIP MCP OverAll IP PIP MCP OverAll

Langs et al.TMI’08 ASM 160MCP 0.0846 JSW - - - - - - 0.0800 0.0800 - - - -
Ou et al. JBHI’23 PIPOC 549 0.175 JSN 0.093 0.053 0.050 0.056 - 0.0095 0.0061 0.0076 7.2 3.5 2.8 3.5

This work CNN 705 0.175/0.15 JSN 0.0860.0460.066 0.066 0.04150.03510.0345 0.0370 3.310.68 0.48 1.49

ASM: Active Shape Models. PIPOC: Partial image phase only correlation. CNN: Convolutional Neural Network.

Table 9
Comparison with related works in algorithm performance. The computational complex, the number of parameters, time required.

Method Dataset (images)† Input Size Output‡ Parameters Time Required (s)

Langs et al. TMI’08 ASM X-ray MCP joint(160) - JSW - -
Miao et al. TMI’16 CNN TKA(100)&VIPS(7)&XEF(94) 18×52×52 TP 642,019,500 0.1100(GTX 980)

Mahapatra et al. MLMI’18 GAN NIH ChestXray14(1087) 2×n×n Mask&DF - 0.5000(Tesla K40)
Miao et al. AAAI’18 CNN CBCT(116sets)&Clinical(28sets) 2×128×128 TP - 1.7666(Titan Xp)

Ou et al. JBHI’23 PIPOC X-ray hand(549) - JSN - 0.0121(CPU)
This work CNN X-ray hand(705) 4×224×224 TP&JSN 47,000,224 0.0280(GTX 2080Ti)

† TKA: Total Knee Arthroplasty Kinematics. VIPS: Virtual Implant Planning System. XEF: X-ray Echo Fusion.
‡ DF: Deformation field. TP: Transformation parameters

framework has lower uncertainty and greater potential for
accuracy and sensitivity. Neural network is a non-linear
function (Gawlikowski et al., 2021), which can lead to higher
uncertainty when compared to traditional image processing
algorithms. The major uncertainty in this work is aleatoric
uncertainty, that exist due to noise, and is irreducible by
improving the quality or quantity of data (Indrayan and
Malhotra, 2017; Mehrtash et al., 2020). As the standard
deviations 𝜎 shown in the Table 8, the impact of aleatoric
uncertainty can be controlled, and can attain the standard
deviation 𝜎 close to the PIPOC-based JSN progression
quantification work in (Ou et al., 2023). This demonstrates
that our proposed network can achieve lower mismatching
ratio while ensuring similar accuracy to previous studies.

Furthermore, considering the specific focus of our reg-
istration method on image registration in this domain and
the abundance of related studies addressing various tasks,
we conducted a comparative analysis with other models
(including both rigid and non-rigid registration models) in
terms of model parameters and time consuming. Table. 9 re-
veals that our method exhibits fewer model parameters than
other models, particularly with larger input data. Moreover,
while our time required is higher compared to CPU-based
registration method PIPOC, it is slightly lower than other
deep learning-based registration methods using a GPU.

4. Conclusion and Future work
In this work, we propose a deep learning method for

joint space narrowing (JSN) progression quantification in
rheumatoid arthritis (RA). The proposed method includes
an image segmentation network based on U-net++, and a
ResNet-like deep intra-subject rigid registration network for
displacement quantification. Our experiments demonstrated

that image registration based JSN progression quantification
framework exhibits greater advantages and potential in terms
of accuracy and sensitivity compared to two other main-
stream frameworks for joint space quantification, namely
margin detection based joint space width (JSW) quantifica-
tion and machine learning classification-based scoring.

Image registration is a hot research topic in the field of
medical image analysis, particularly in recent years, where
non-rigid image registration algorithms have found exten-
sive application scenarios. However, considering the empha-
sis on the overall bone displacement during JSN progression
quantification in RA, this work utilized a rigid registration
network to calculate the relative bone displacement.

Compared to non-rigid registration networks, this net-
work has clear advantages in terms of computation time,
computational complexity, and parameter requirements. Com-
pared to existing image registration based JSN progression
quantification works, this work significantly improves the
robustness for scaling, rotation, and noise while main-
taining almost comparable accuracy and sensitivity. This
work can handle complex clinical situations and reduce
mismatches due to inconsistent angle and spatial resolution
of radiography images. Additionally, our approach provides
a misalignment visualization as a reliability indicator that
can be used by radiologists and rheumatologists to assess the
quantification reliability, thus, making it a promising tool for
future clinical applications.

The JSN progression measured in this work was ana-
lyzed in comparison to the GSS measured by rheumatolo-
gists. The results indicate that the JSN of the finger joints
with GSS progression [ΔGSS(+)] was significantly greater
than the JSN of the joints without GSS progression [ΔGSS(-
)] (Unpaired T test, p = 0.0067 (one-tail), 95% confidence
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interval: 0.02143 to 0.1831). And there is a positive correla-
tion between measured JSN progression and ΔGSS (Pearson
Correlation, p =0.0003, r=0.2167).

Our experimental results demonstrate that our proposed
rigid convolutional neural registration network can be used
for quantifying JSN progression in RA, offering advantages
of high accuracy, high sensitivity, and high robustness.

Recently, non-rigid registration network based on defor-
mation fields have received significant attention and devel-
opment. Our algorithmic process is a kind of regional im-
age registration. An interesting direction for future research
could be the incorporation of segmentation information to
immobilize the target region of the deformation field. This
approach draws on the advantages of the deformation field,
enabling the quantification of JSN progression in complex
joint regions, such as wrist joints. This could lead to more
comprehensive monitoring in the early stages of RA and
provide novel ideas for registration-based joint space mea-
surements.
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