
 

Instructions for use

Title Enhancing Precision in Antibody-Antigen Complex Structure Prediction Through Parametric Optimization of
RosettaAb Docking Scoring Function

Author(s) Sangeetha Udani Ratnayake, RATNAYAKE MUDIYANSELAGE

Citation 北海道大学. 博士(情報科学) 甲第16067号

Issue Date 2024-06-28

DOI 10.14943/doctoral.k16067

Doc URL http://hdl.handle.net/2115/92812

Type theses (doctoral)

File Information RATNAYAKE_MUDIYANSELAGE_Sangeeth.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


  
 

学位論文 

 

Enhancing Precision in Antibody-Antigen Complex 

Structure Prediction Through Parametric Optimization 

of RosettaAb Docking Scoring Function 
RosettaAb Docking スコアリング関数のパラメータ最適化を通じた抗体-

抗原複合体構造予測の精度向上  

 

 

  

Sangeetha Ratnayake  

Doctor of Philosophy 

Laboratory of Information Biology 

Department of Bioinformatics & Bioengineering 

Graduate School of Information Science & Technology 

Hokkaido University 

January 2024 



i 

 

Acknowledgment 

In my academic journey, profound thanks to Prof. Toshinori Endo for opening the door 

to the Laboratory of Information Biology, laying the foundation for today's milestone. 

Special appreciation to Assoc. Prof. Naoki Osada, a guiding compass in the research 

labyrinth. Dr. Axel Martinelli's unwavering belief and encouragement throughout my 

Ph.D. journey have been a guiding light, for which I'm truly grateful. 

Deepest gratitude to Prof. Luca Varani and Dr. Luca Simonelli of the Laboratory of 

Structural Biology for invaluable knowledge and mentorship. Heartfelt thanks to my 

boyfriend, Dr. Stefan Brennsteiner, for constant support and insightful critiques, crucial 

to this journey's success. 

In memory of my father, Gunapala Ratnayake, whose belief resonates even in his 

absence. To my mother and sisters, your unwavering encouragement nurtured my 

aspirations. 

Sincere thanks to Narisa Rojanamonthien for transcending distances, propelling me to 

complete this Ph.D. To the entire Hult Prize Family, your support orchestrated this 

success. Grateful for the symphony of love and support.  



ii 

 

Abstract 

Understanding the structure of antibody-antigen (Ab-Ag) interactions is crucial for 

various scientific applications. Computational methods have emerged as efficient tools 

for studying these interactions, offering advantages over traditional methods.  However, 

existing computational docking methods face challenges in accurately predicting Ab-Ag 

structures. One key limitation is the scoring function, designed for rigid and well-

characterized protein structures, which often falls short in practice despite optimizations 

for Ab-Ag in programs. Rosetta is a widely used program for Ab-Ag docking.  

To address this issue, a proposed solution involves using decoy distribution as a 

valuable indicator for assessing the goodness of fitting in docking simulations. A decoy, 

representing an alternative binding pose or conformation, is plotted on a distribution 

graph that showcases energy scores versus Root Mean Square Deviation (RMSD) values. 

This decoy distribution becomes crucial for evaluating existing scoring functions and 

seeking more optimized parameters, essential for accurately predicting Ab-Ag structures. 

The thesis comprises four chapters. The first chapter provides background information, 

while the second chapter evaluates specific parameters within Rosetta-derived scoring 

functions, focusing on the energy landscape of generated structures. The third chapter 

develops models within the Rosetta framework to optimize scoring function parameters, 

using quantitative evaluations of decoy distributions to refine parameters for each Ab-Ag 

complex. This chapter introduces a novel approach to customizing scoring functions, 

potentially advancing drug discovery and deepening our understanding of molecular-

level Ab-Ag interactions. The fourth chapter summarizes key findings, discusses further 

applications, and suggests areas for future investigation. 

The application of the decoy distribution revealed that the default Rosetta approach 

proved ineffectual in 88 out of 100 cases, showcasing the influence of particular amino 

acids within antibody binding sites on its performance. The removal of solvation 

parameters slightly improved Rosetta's performance, but not to a sufficient extent. A new 

method was developed to optimize scoring function parameters for each Ab-Ag complex, 

resulting in significantly reduced RMSD values and the identification of parameters 

effective for most complexes. 
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The research outcomes hold implications for drug development, protein engineering, 

and computational biology. This work serves as a catalyst for innovation in medical 

research and therapeutic development, shedding light on the complexities of Ab-Ag 

interactions at the molecular level.  



iv 

 

Table of Contents 

Acknowledgment .......................................................................................................................... i 

Abstract ........................................................................................................................................ ii 

Table of Contents ....................................................................................................................... iv 

List of Tables ............................................................................................................................... v 

List of Figures .............................................................................................................................. v 

List of Abbreviations .................................................................................................................. vi 

Introduction & Motivation ......................................................................................................... 1 

1.1. Studying Antibody-Antigen interactions ........................................................................ 1 

1.2. Computational Docking and their Scoring Functions .................................................. 1 

1.3. Challenges in Ab-Ag Modeling ..................................................................................... 5 

1.4. Goal of the Thesis .......................................................................................................... 7 

1.5. Thesis outline and main contribution ............................................................................ 8 

 The Interplay Between Scoring Functions and Physico-chemical Properties in Antibody-

Antigen Docking .......................................................................................................................... 9 

2.1. Methods ......................................................................................................................... 9 

2.1.1. Input Data Preparation .......................................................................................... 9 

2.1.2. Ab-Ag docking and generating decoys ............................................................... 10 

2.1.3. Energy scoring with customized weights ............................................................ 10 

2.1.4. Extracting Antibody CDR Loop and Antigen Features ...................................... 11 

2.1.5. Analyzing Ab-Ag Interface Properties ................................................................ 11 

2.1.6. Statistical Analysis .............................................................................................. 12 

2.2. Results ......................................................................................................................... 12 

2.2.1. Docking scoring functions and docking funnels ................................................. 12 

2.2.2. Amino acid composition in the Ab-Ag interface ................................................ 14 

2.2.3. Significance of physico-chemical properties....................................................... 15 

2.3. Discussion ................................................................................................................... 17 

2.3.1. Evaluation of docking scoring functions ............................................................. 17 

2.3.2. Influence of physico-chemical properties in CDR loops and epitopes on docking

 18 

2.3.3. Correlation between physico-chemical properties and decoy distribution .......... 19 

2.4. Conclusion ................................................................................................................... 20 

 Analysis in Docking Scoring Functions for Precision Docking Analysis ............................. 21 

3.1. Methods ....................................................................................................................... 21 

3.1.1. Identification of high predictive power parameters in Rosetta scoring function. 21 



v 

 

3.1.2. Classification of the decoy distribution ............................................................... 22 

3.1.3. Scoring function optimization models ................................................................ 23 

3.1.4. Qualitative and quantitative analysis of the optimization model performance ... 24 

3.2. Results ......................................................................................................................... 25 

3.2.1. Total energy score and the parametric contribution ............................................ 25 

3.2.2. Optimizing weight parameters by adjusting decoy distributions ........................ 26 

3.2.3. Performance of optimization models .................................................................. 29 

3.2.4. Efficacy of distinctive Parameters in Ab-Ag docking predictions ...................... 30 

3.3. Discussion ................................................................................................................... 31 

3.3.1. Influence of identified parameters on Rosetta docking scoring function ............ 32 

3.3.2. Optimization impact on lowest energy decoys .................................................... 32 

3.3.3. Evaluation of optimization models...................................................................... 33 

3.4. Conclusion ................................................................................................................... 34 

Conclusions ................................................................................................................................ 35 

4.1. Summary ........................................................................................................................... 35 

4.2. Topics for Future Research .............................................................................................. 36 

Reference .................................................................................................................................... 38 

Appendix .................................................................................................................................... 42 

List of Tables 

Table 1: Net Reclassification Improvement. .................................................................. 29 

List of Figures 

Figure 1: Types of Decoy Distributions. ........................................................................ 13 

Figure 2: Quantitative Representation of Decoy Distribution Goodness. ...................... 13 

Figure 3: Amino Acids Frequency comparison. ............................................................. 16 

Figure 4: Significance of independent parameters in Generalized Linear Regression 

(GLM). .................................................................................................................... 17 

Figure 5: Example of a decoy distribution and definition of parameters in Optimization 

Model 3. .................................................................................................................. 22 

Figure 6: Parametric Contributions to the Total Energy Score in Rosetta Scoring. ....... 26 

Figure 7: Optimization Model Performance Comparison. ............................................. 28 

Figure 8: Principal Component Analysis........................................................................ 30 

 

https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719483
https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719484
https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719485
https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719486
https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719486
https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719487
https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719487
https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719488
https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719489
https://efcom-my.sharepoint.com/personal/sangeetha_ratnayake_hultprize_org/Documents/Personal/PhD/Final%20Thesis/Manuscript_V2.docx#_Toc155719490


vi 

 

List of Abbreviations 

Ab Antibody 

Ag Antigen 

CDR Complementary-determining Region 

ELISA Enzyme-Linked Immunosorbent Assay 

Fab Fragment Antigen Binding 

ITC Isothermal Titration Calorimetry 

KNN K-Nearest Neighbor 

LLK Lazaridis-Karplus 

PCA Principal Component Analysis 

PCC Pearson’s Correlation Coefficient 

PPI Protein-protein Interactions 

RMSD Root Mean Squared Deviation 

SPR Surface Plasmon Resonance 

 



1 
 

Chapter 1 

 Introduction & Motivation 

1.1. Studying Antibody-Antigen interactions 

In recent years, the field of biological medicines, especially antibody-based therapy, 

has revolutionized the treatment of various disorders. Antibodies, crucial components of 

the immune system, possess the unique ability to identify and neutralize foreign entities, 

including bacteria and viruses. Understanding the intricate interactions between 

antibodies and antigens has become a central focus in the development of antibody-based 

treatments [1], [2], [3]. 

Traditional experimental techniques, like X-ray crystallography, have been 

fundamental in revealing the structures of Ab-Ag complexes. However, these methods 

have limitations in terms of their cost, throughput, and applicability to all proteins. This 

is where computational docking steps in—a technique in computational biology and drug 

discovery that predicts the binding orientation and affinity of small molecules (ligands) 

with target biomolecules.  

1.2. Computational Docking and their Scoring 

Functions 

Computational docking serves as a cost-effective and efficient means to predict the 

binding structures of Ab-Ag interactions. The primary goal of this approach is to simulate 

the interaction between antigens and antibodies, allowing for the prediction of their three-

dimensional structures upon binding [4]. This simulation facilitates the determination of 

binding affinity and interaction modes between the two proteins. Through the use of 

computational algorithms, researchers can analyze potential binding orientations and 

strengths among biomolecules, thereby enhancing the understanding of their interactions 

and enabling predictions about the binding outcomes. A prominent method for predicting 

protein-protein binding is the optimization of a "Scoring Function," specifically designed 

for rigid and well-characterized protein structures. These scoring functions, present in 

various systems [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], approximate the system's 

typical chemical potentials and are integrated into several docking software. The 
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following are some of commonly used computational docking software, along with the 

implemented scoring functions and included parameters. 

• The FlexX algorithm, introduced by Kramer, Rarey, and Lengauer in 1999, 

represents a significant advancement in the field of protein-ligand docking [5]. A 

key feature of FlexX is its utilization of an incremental construction approach, 

enhancing the efficiency of protein-ligand docking simulations. Notably, the 

algorithm incorporates a modified version of the scoring function initially 

developed by Böhm. This modified scoring function includes parameters such as 

the binding energy of rotatable bonds and pairwise interactions of hydrophobic 

atoms. By considering these factors, FlexX contributes to a more comprehensive 

and accurate assessment of protein-ligand binding interactions, thereby advancing 

the understanding of molecular interactions crucial for drug discovery and design. 

• The GOLD (Genetic Optimization for Ligand Docking) software stands out as a 

valuable tool in the realm of molecular docking simulations [6]. The key 

innovation lies in its Chemscore function, a scoring mechanism designed to 

enhance the accuracy of protein-ligand docking predictions. Chemscore takes into 

consideration crucial molecular interactions, including hydrophobic-hydrophobic 

contact area, hydrogen bonding, ligand flexibility, and metal interactions. By 

integrating these factors into the scoring function, GOLD provides a more 

comprehensive evaluation of the binding affinity between proteins and ligands. 

This approach contributes to improved precision in predicting ligand binding 

poses, offering valuable insights for drug discovery and design processes. 

• Glide represents a groundbreaking approach to molecular docking and scoring [7]. 

Central to Glide's success is its utilization of an empirical scoring function that 

approximates ligand binding free energy. This scoring function incorporates 

various terms, including contributions from force fields such as electrostatic and 

van der Waals forces. Additionally, it considers terms that either reward or 

penalize interactions known to influence ligand binding, especially in 

hydrophobic regions of the interaction surface. By encompassing these diverse 

factors, Glide provides a rapid and accurate means of predicting ligand binding 
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poses, making it a valuable tool in virtual screening for drug discovery 

applications. 

• AutoDock, is a notable software application in the field of molecular docking [8]. 

Central to AutoDock's capabilities is its utilization of an empirical free energy 

scoring function. Unlike some other scoring functions, AutoDock considers the 

intramolecular energetics of both unbound and bound conformations. This 

comprehensive approach allows AutoDock to provide a more nuanced assessment 

of ligand binding, incorporating the dynamic aspects of molecular interactions. 

By considering the energetic contributions from both the ligand and the receptor 

in various states, AutoDock contributes to a more accurate prediction of binding 

affinities and ligand binding poses, making it a valuable tool for computational 

studies in drug discovery and molecular biology. 

• AutoDock Vina [9] represents a significant advancement in molecular docking 

techniques. At its core, AutoDock Vina employs an empirical free energy scoring 

function that enhances the speed and accuracy of docking simulations. This 

scoring function is designed to extract empirical information from both the 

conformational preferences of receptor-ligand complexes and experimental 

affinity measurements. By combining these sources of information, AutoDock 

Vina provides a more comprehensive and refined assessment of ligand binding, 

contributing to improved accuracy in predicting binding poses and affinities. The 

incorporation of efficient optimization algorithms and multithreading further 

enhances the software's computational efficiency, making it a valuable tool for 

researchers in the field of drug discovery and molecular modeling. 

• Hex 8.0.0 [10], employs a Spherical Polar Fourier (SPF) correlation approach to 

calculate shape complementarity, coupled with an optimal in vacuo electrostatic 

contribution. This innovative technique enables Hex to assess the spatial 

arrangement of molecules, emphasizing excluded volume considerations and 

accounting for electrostatic interactions. The reliance on FFT-based algorithms 

and the utilization of graphics processors contribute to Hex's computational 

efficiency, making it a powerful tool for researchers engaged in protein-protein 

docking studies. The integration of these features underscores Hex's capability to 
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provide valuable insights into molecular interactions and contributes to the 

broader field of structural biology and drug discovery. 

• FRODOCK 2.0 stands out as a valuable tool in the realm of protein-protein 

docking simulations [11]. The software employs a coarse-grained knowledge-

based approach, combining both coarse-grained and atom-based potentials. 

FRODOCK 2.0 utilizes three key binding energies—van der Waals interactions, 

desolvation effects, and electrostatic interactions—to comprehensively assess the 

feasibility of protein-protein docking. By considering these crucial energy 

components, the software provides a nuanced perspective on the molecular 

interactions governing protein-protein binding. This coarse-grained knowledge-

based strategy enhances the accuracy and efficiency of protein-protein docking 

simulations, making FRODOCK 2.0 a valuable resource for researchers in the 

fields of structural biology and drug discovery. 

• Rosetta [12], [13], [15] employs an all-atom energy function to calculate the 

energy of all atomic interactions within a macromolecular structure. This energy 

calculation encompasses a combination of physical forces such as electrostatics 

and van der Waals interactions, as well as statistical terms like the probability of 

finding torsion angles in Ramachandran space. Rosetta's approach provides a 

comprehensive and detailed assessment of the energy landscape of 

macromolecules, facilitating molecular modeling and design studies. The 

software's accuracy and versatility make it a widely used resource in the scientific 

community for exploring the structural and energetic aspects of macromolecules, 

contributing significantly to the fields of structural biology and drug discovery. 

The scoring functions in these systems are designed based on known protein structures 

and aim to approximate the typical chemical potentials within a system [5], [6], [7], [8], 

[9], [10], [11], [14]. They are integrated into the above docking software, enabling 

researchers to assess potential binding affinities and interaction modes (Appendix A). 

However, when applied to Ab-Ag interfaces, these scoring functions can fall short due to 

the unique characteristics of such interactions. 

https://sangeetha-ratnayake.notion.site/Appendix-A-ca1a4c55cec84763878a60987100aae4?pvs=4
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1.3. Decoy Distribution and Numerical Optimization 

In this study, our evaluation and optimization methodology introduce a distinctive 

approach that centers around the use of decoy distributions as a critical indicator. This 

innovative method provides valuable insights into the accuracy and reliability of 

computational docking scoring functions, particularly in the context of Ab-Ag 

interactions. 

Decoy distributions, representing the ensemble of potential docking poses generated 

by the computational method, serve as a pivotal metric in our assessment. Unlike 

traditional evaluation methods, which may rely on individual docking poses, the analysis 

of decoy distributions offers a more comprehensive view of the conformational landscape 

explored during the docking process. This approach aligns with the dynamic nature of 

PPI, providing a nuanced understanding of the potential binding orientations. 

Numerical optimization plays a central role in fine-tuning the parameters of the Rosetta 

docking scoring function. The objective is to optimize the scoring function for improved 

accuracy in predicting Ab-Ag binding structures. By employing numerical optimization 

techniques, we navigate the complex parameter space with efficiency, addressing the 

challenges associated with manual tuning. This approach enhances the objectivity, 

robustness, and consistency of our analyses. 

The integration of decoy distribution analysis with numerical optimization represents 

a unique contribution to the field of computational biology and drug discovery. This 

methodology goes beyond traditional scoring function assessments, offering a more 

holistic perspective on the challenges posed by Ab-Ag interactions. Emphasizing the 

significance of decoy distributions as an indicator and the role of numerical optimization 

in refining the scoring function becomes paramount for advancing the precision of Ab-

Ag docking predictions. 

In the subsequent sections, we delve into the specific results and implications of our 

approach, shedding light on how this unique evaluation and optimization methodology 

contributes to the broader understanding of Ab-Ag interactions. 
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1.4. Challenges in Ab-Ag Modeling 

Protein-Protein Interactions (PPI) and Ab-Ag Interactions are fundamental processes 

that underpin various aspects of cellular function and immune responses. The realm of 

PPI, proteins engage in intricate associations, contributing to the formation of complexes, 

cellular signaling cascades, and the regulation of diverse biological pathways. These 

interactions can be transient or stable, playing essential roles in maintaining structural 

integrity and facilitating dynamic cellular processes. PPIs occur between different regions 

of proteins, involving domains, motifs, or active sites, and are subject to tight regulation 

influenced by cellular conditions, ligand binding, and post-translational modifications. 

On the other hand, Ab-Ag Interactions are pivotal components of the immune system's 

ability to recognize and neutralize foreign entities. Antibodies, produced by B cells, 

exhibit specificity in binding to antigens, marking them for destruction or neutralization. 

The interaction between antibodies and antigens is characterized by the complementarity 

between the antibody's paratope and the antigen's epitope. These interactions can be 

transient, especially in the initial stages of immune response, and play a crucial role in 

initiating downstream immune effector mechanisms. 

Studies in the field have uncovered intriguing details about the Ab-Ag interfaces. 

Notably, the Complementary-determined region (CDR) loops of antibodies, responsible 

for direct antigen interaction, exhibit peculiarities. Analyses have revealed an enrichment 

of aromatic and hydrophilic residues within these CDR loops [1], [2]. These peculiarities, 

especially the prevalence of aromatic residues like tyrosine (Tyr), have not been 

adequately incorporated into existing scoring functions designed for Ab-Ag interactions 

[3], [16], [17], [18]. This enrichment of specific amino acid residues enhances the binding 

affinity and specificity of antibodies to antigens, contributing to the effectiveness of the 

immune response. These structural features in the Ab-Ag interface underscore the 

intricate nature of immune recognition and highlight the selective pressure that has shaped 

the evolution of antibody molecules for efficient antigen binding. The distinct 

characteristics of Ab-Ag interactions further emphasize the specialized role of antibodies 

in recognizing and combating a diverse array of pathogens and foreign substances. 
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Another notable challenge in comprehending the performance of a docking scoring 

function arises from the subjective nature of selecting the decoy distribution's funnel-like 

shape. Historically, researchers have grappled with the interpretation of decoy 

distributions, often relying on visual assessments to identify funnel-like patterns. This 

subjective selection introduces a degree of ambiguity and potential bias in the evaluation 

process. The inherent complexity of protein-protein interactions, especially in the context 

of Ab-Ag complexes, necessitates a more objective and quantitative approach to assess 

the accuracy of docking predictions. Addressing this challenge requires methodologies 

that not only capture the nuanced features of decoy distributions but also provide a 

standardized and reproducible means of analyzing the intricate dynamics of molecular 

interactions.  

1.5. Goal of the Study 

In this thesis, we employed the versatile Rosetta software, recognized for its 

capabilities in protein modeling and docking [19]. Our study aimed to evaluate diverse 

scoring functions' impact on Ab-Ag binding predictions and enhance the accuracy of the 

RosettaAb docking scoring function. Traditional assessments often involve a subjective 

selection of the decoy distribution's funnel-like shape, introducing potential bias. To 

address this, our unique approach utilizes rigorous numerical optimization techniques for 

a more objective and quantitative evaluation of molecular interactions. The primary focus 

is on optimizing the RosettaAb docking scoring function, ensuring a refined model for 

predicting Ab-Ag binding structures. This not only overcomes challenges related to 

subjective interpretation but also enhances precision and reliability in computational 

docking scoring functions for Ab-Ag complexes. 

Furthermore, our research demonstrates the applicability of numerical optimization to 

other Ab-Ag databases. Future investigations could delve into understanding the non-

critical parameters of the scoring function, thereby refining precision. By addressing these 

limitations and broadening the scope of applications, we aspire to unlock the full potential 

of this refined scoring function. Such advancements are crucial for advancing our 

comprehension of Ab-Ag interactions and their pivotal roles in medical science. 
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1.6. Thesis outline and main contribution 

Chapter 2 delves into the evaluation of decoy shape distribution within the RosettaAb 

docking scoring function. We assess the function's effectiveness in distinguishing 

favorable from unfavorable docking poses, aiming to identify critical parameters 

influencing its ability to locate high-quality docking positions. Our exploration not only 

unravels the intricacies of the docking scoring function but also sheds light on the concept 

of docking funnels, contributing to a nuanced understanding of molecular interactions in 

Ab-Ag complexes. 

In the subsequent phase, we thoroughly examined the physical and chemical aspects 

of the Ab-Ag interface, specifically focusing on the CDR loops and epitopes. This 

analysis provided key insights into the composition of these regions, enhancing our 

understanding of Ab-Ag recognition. Within this exploration, we investigated the amino 

acid composition in the Ab-Ag interface, identifying crucial residues. Additionally, we 

utilized a Generalized Linear Model to discern significant associations between scoring 

function performance and physico-chemical properties, contributing to a more nuanced 

understanding of the intricate dynamics governing Ab-Ag interactions. 

Chapter 3 focuses on the third analysis aimed at uncovering the critical factors 

influencing the accuracy of the RosettaAb docking scoring function for Ab-Ag complexes. 

The exploration involves assessing the correlation between specific properties and precise 

decoy distribution for predicting docking orientations. Additionally, the chapter includes 

supplementary investigations such as evaluating decoy shapes, optimizing parametric 

weights, and practically assessing assigned weights in the RosettaAb docking process. 

The study extends to scrutinizing the total energy score, parametric contributions, and 

optimizing weight parameters to identify universal parameters for the dataset. This 

comprehensive approach contributes to the ongoing refinement of the RosettaAb docking 

scoring function for improved predictions in Ab-Ag interactions. 

Chapter 4 concludes this work, summarizes the work, and gives suggestions for further 

research. 
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Chapter 2 

 The Interplay Between Scoring Functions and 

Physico-chemical Properties in Antibody-

Antigen Docking  

This chapter explores the complex molecular interactions between antibodies and 

antigens, focusing on the dynamic field of biological medicines, specifically antibody-

based therapies. This study investigates the performance of scoring functions and the 

intricate impact of physico-chemical properties on Ab-Ag interactions. By examining 

decoy distributions and conducting thorough analyses, our goal is to shed light on the 

intricate nature of Ab-Ag complexes. In this analysis, we will evaluate three scoring 

functions and highlight the significant influence of solvation parameters on docking 

performance. Furthermore, a detailed analysis of the amino acid composition in Ab-Ag 

interfaces highlights the presence of certain residues, emphasizing their association with 

high-affinity complexes. The chapter examines the relationship between physico-

chemical properties and decoy distribution through a Generalized Linear Model (GLM) 

analysis. This opening chapter offers valuable insights and acknowledges its limitations. 

It also emphasizes the need for further research to enhance our understanding of Ab-Ag 

interactions and improve predictive models in the ever-changing field of drug discovery 

and design. 

2.1. Methods 

2.1.1. Input Data Preparation 

We obtained the structures of Ab-Ag complexes from the SabDab Database and 

assembled a dataset comprising 100 such complexes. The structural resolution of these 

complexes is 5Å or lower, and the associated Ag sequences have a length of 25 amino 

acids or more (see Appendix B). Information regarding the CDR loops (L1, L2, L3, H1, 

H2, H3 fragments) was also extracted from the SabDab Database. The dataset exclusively 

includes antigens that are either peptides or proteins, while the antibody complexes are 

composed of human or mammalian protein sequences. Notably, our dataset is 

https://sangeetha-ratnayake.notion.site/Appendix-B-bcc2f9c529094981835c8d88e3fa31d0?pvs=4
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characterized by high-quality structures, exhibiting fewer than 10% missing residues and 

an R-factor of less than 0.4. 

2.1.2. Ab-Ag docking and generating decoys 

To produce alternative binding poses, we employed RosettaAb Docking, a specialized 

program for the Ab-Ag interface in computational docking [15]. In the case of 100 

selected Ab-Ag bound complexes, we generated 500 decoys for each complex, creating 

decoy distributions for every docking run. Subsequently, the overall energy score was 

computed using the Rosetta scoring function. 

2.1.3. Energy scoring with customized weights  

The Rosetta scoring function ref2015 is expressed as a linear equation with 

predetermined weights, based on positive interactions between docking partners. It 

operates under the assumption that the energetically favored configuration represents the 

correct biological structure and thus possesses the lowest energy [16]. The Rosetta energy 

function estimates the conformational energy of biomolecules, denoted as ∆𝐸𝑡𝑜𝑡𝑎𝑙 , 

derived through a linear combination of energy terms 𝐸𝑖 for the 𝑖-th parameter. These 

terms are functions of geometric degrees of freedom (𝜃), chemical identities (𝑎𝑎), and 

weights assigned to each term (𝑤), as illustrated below. 

∆𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑤𝑖𝐸𝑖(𝜃𝑖 , 𝑎𝑎𝑖)

𝑖

 
(1) 

The ref2015 comprises 20 default parameters, representing various free energy 

components (see Appendix C). Among these, Rosetta incorporates solvation-based 

parameters to enhance protein modeling. fa_sol evaluates solvation energy, fa_intra_rep 

assesses internal clashes, fa_intra_sol_xover4 combines solvation and repulsion terms, 

and lk_ball_wtd gauges ligand desolvation energy. We formulated three sets of weights 

based on the Rosetta scoring function: 1) The Rosetta default weights (𝑊𝑑𝑒𝑓) served as 

the reference; 2) all parametric weights (𝑤𝑖) were uniformly set to 1 (𝑊1); and 3) Rosetta 

energy scores were calculated by excluding four solvation-based parameters from the 

default scoring function (𝑊𝑛𝑜𝑛𝑠𝑜𝑙). Subsequently, using these three functions, the scoring 

energy for the generated decoys of each Ab-Ag complex was computed. 

https://sangeetha-ratnayake.notion.site/Appendix-C-5232f6012b1e483fb58f363e28916c42?pvs=4
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The assessment of the docking distribution’s funnel-like configuration encompassed 

two criteria: examining the decoy with the smallest Root Mean Square Deviation (RMSD) 

and Pearson's correlation coefficient (PCC). The smallest RMSD among decoys offers 

insights into their resemblance to the original complex. A well-structured docking funnel 

is indicated when the lowest RMSD decoys also exhibit the lowest energy among all 

alternatives. Conversely, if this criterion is unmet, the funnel is considered inadequately 

shaped. Concerning the PCC criterion, we categorized the funnel shape as favorable when 

the value equaled or exceeded 0.4, and unfavorable if the value was less than 0.4. A more 

detailed assessment of the decoy distribution will be conducted in the following chapter. 

2.1.4. Extracting Antibody CDR Loop and Antigen Features 

Information on antigens' epitopes was obtained from The Immune Epitope Database 

(IEDB), a publicly accessible resource funded by NIAID (www.iedb.org) [20]. The 

database compiles experimental data on antibodies and T cell epitopes researched in 

various species of infectious diseases, allergy, autoimmunity, and transplantation. To 

predict antibody epitopes, we utilized BepiPred-2.0 [21], a sequential B-cell epitope 

predictor employing a Random Forest algorithm trained on crystal structures. Sequential 

prediction smoothing followed, considering residues with scores above the threshold 

(default 0.5) as epitope components. 

2.1.5. Analyzing Ab-Ag Interface Properties 

The distribution of hydrophobic and hydrophilic residues in each CDR loop and 

epitope was assessed using Kyte and Doolittle's (1982) hydrophobicity scale [22]. To 

understand polarity in the Ab-Ag interface, Zimmerman, Eliezer, and Simha's (1968) 

polarity index [23] determined high- and low-polar amino acid distribution in CDR loops 

and Ag epitopes. 

Understanding the surface area of the Ab-Ag binding pocket is crucial. Therefore, we 

mathematically determined the area of the interacting interface. To understanding the Ab-

Ag binding pocket is determining its surface area, we derived the Ab-Ag interface area 

(𝐴𝐴𝑏−𝐴𝑔) by multiplying the surface area accessible to water in the unfolded state of each 

CDR loop, following Miller et al. (1987) [24], and the fraction of accessible area lost (𝐴𝑓) 

[30] during peptide folding.  
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In this calculation, we assumed the area lost upon folding contributes 100% to Ab-Ag 

binding. Antibody CDR loops typically feature enriched aromatic residues [25], and we 

computed their distribution in each Ab-Ag complex (Appendix D). 

2.1.6. Statistical Analysis 

The Generalized Linear Model (GLM) is a statistical tool known for its adaptability in 

analyzing non-normally distributed data, allowing the modeling of response variables 

with varied distributions and relationships. We employed the GLM function from the 

statsmodels.api Python library to identify explanatory variables strongly correlated with 

the response variable—the funnelness of decoy distributions, represented by PCC [26] of 

the 𝑊𝑑𝑒𝑓 and 𝑊𝑛𝑜𝑛𝑠𝑜𝑙 scoring functions (𝑊1 was excluded as all funnels were deemed 

inadequate). 

The input dataset encompasses the percentage occurrence of diverse explanatory 

variables, including hydrophilicity, polarity, the presence of aromatic residues, and the 

surface area of each CDR loop and antigen epitope. 

2.2. Results 

2.2.1. Docking scoring functions and docking funnels 

The performance of a scoring function on an Ab-Ag complex can be explained in terms 

of the distribution of the docking decoys. We evaluated three different scoring functions: 

a function with the Rosetta default weights (𝑊𝑑𝑒𝑓), a function with all changeable weights 

set to 1 (𝑊1), and a function with Rosetta default weights except for the solvation-based 

weights set to 0 (𝑊𝑛𝑜𝑛𝑠𝑜𝑙). In molecular docking simulations of Ab-Ag binding, a decoy 

distribution illustrates the range of potential binding configurations. For every Ab-Ag 

complex in our dataset, we generated decoy distributions by mapping the RMSD value 

on the x-axis and the total energy score on the y-axis and for each scoring function, the 

respective docking distributions were created by plotting the generated decoys. As 

depicted in Figure 1, certain decoy distributions clearly display a funnel-like structure 

with low decoy energies, whereas others lack any unambiguous structure. When studying 

𝐴𝐴𝑏−𝐴𝑔 = 𝐴𝑠𝐴𝑓 (2) 

https://sangeetha-ratnayake.notion.site/Appendix-D-fb09d07d72414ae8833e5284f207aedc?pvs=4
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the accuracy of the decoy distribution we identified four characteristics that distinguish a 

good decoy distribution from a poor one.  

Theoretically, a good distribution consists of decoys displaying both the lowest RMSD 

and the lowest energy scores. Figures 1a and 1b represent two distinctive representations 

of relatively bad decoy distribution which lack a funnel-like decoy distribution shape. 

Figure 1c is an example of a good distribution. The decoy distribution in Figure 1c is an 

excellent example of a “funnel” with a distinct form and low energy and RMSD decoys 

at its tip. 

Namely, 𝑊𝑑𝑒𝑓 , 𝑊1 , and 𝑊𝑛𝑜𝑛𝑠𝑜𝑙 , we counted the number of good and bad decoy 

distributions docking funnels (Figure 2b & 2c). We revealed the impact of different 

scoring functions on the decoy distributions for Ab-Ag complexes. Specifically, we 

observed that the 𝑊1  scoring function yielded 100 percent poor decoy distributions, 

whereas the 𝑊𝑛𝑜𝑛𝑠𝑜𝑙 scoring function achieved a success rate of 25 percent (Appendix E).  

Figure 1: Types of Decoy Distributions.  a) and b) examples of bad decoy 

distributions. c) An example of good funnel-like decoy distribution in scoring function. 

Figure 2: Quantitative Representation of Decoy Distribution Goodness. a) 

Distribution of good (blue) and bad (orange) funnels in all three scoring functions. b) 

and c) Counts of funnel-like shape improvement of two example structures 

respectively. 

 

https://sangeetha-ratnayake.notion.site/Appendix-E-385342ac93744ecb947113be0687052c?pvs=4
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To assess the relationship between accurate decoy distribution (a funnel-like 

distribution) and the scoring function, we conducted a chi-square test of independence. 

The obtained chi-square value of 11.544 exceeded the critical value of 3.841, rejecting 

the null hypothesis that the decoy distribution's accuracy is unrelated to the exclusion of 

solvation parameters from the default Rosetta scoring function (p<0.05). Excluding 

solvation parameters from the scoring function significantly influences the outcome, 

resulting in a more funnel-like decoy distribution. The analysis of three scoring functions 

highlights the significance of considering solvation effects to enhance protein-protein 

docking accuracy.  

2.2.2. Amino acid composition in the Ab-Ag interface 

The amino acid properties of the 100 Ab-Ag complexes in our dataset were analyzed, 

and the findings are depicted in Figure 3. A comparison between the amino acid 

frequencies observed in our study and those in the genome revealed three notable 

discoveries. 

Firstly, serine (Ser) emerged as the most prevalent amino acid in antibodies, 

particularly in the light chains CDR loops, constituting 21.8% of the total composition. 

Interestingly, serine was completely absent in the heavy chains of antibodies. It was 

consistently present in the light chains of all 100 complexes but not observed in the heavy 

chains. 

Secondly, despite being generally infrequent in eukaryotes, our study demonstrated a 

strong presence of tyrosine (Tyr) in antibody-heavy chain CDR loops, accounting for 

15.6% of the total composition. Tyr residues were found in the light chain fragments of 

97 complexes, the heavy chain fragments of 97 complexes, and 84 epitopes in our dataset. 

Notably, Tyr residues were more abundant in the heavy chain CDR loops compared to 

the epitope regions and the light chain. 

Lastly, aromatic amino acids such as phenylalanine (Phe) and threonine (Thr) 

exhibited higher frequencies in the heavy chain CDR loops compared to their relatively 

low occurrence in eukaryotic genomes. 
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2.2.3. Significance of physico-chemical properties 

To assess the impact of different explanatory variables on the accuracy of the decoy 

distribution, logistic regression with a generalized linear model (GLM) was performed 

on both the 𝑊𝑑𝑒𝑓, and 𝑊𝑛𝑜𝑛𝑠𝑜𝑙scoring functions. Figure 3 illustrates the results, indicating 

that three variables demonstrated significant associations (p<0.05) with the predictive 

power of decoy distribution. These variables include the presence of non-aromatic 

residues in the L3 and H1 regions (0.016 and 0.044, respectively) in the 𝑊𝑛𝑜𝑛𝑠𝑜𝑙 scoring 

function, as well as the surface area of the Ab-Ag binding interface in the L2 region 

(0.047) in the 𝑊𝑑𝑒𝑓 scoring function [Appendix F]. 

https://sangeetha-ratnayake.notion.site/Appendix-F-ccbf15568bd540819bdd57f64bc64936?pvs=4
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Figure 3: Amino Acids Frequency comparison. a) Amino acid frequency encoded in the genome of eukaryotes and viruses [41]. 

Yellow: Viruses and green: Eukaryotes. b) Amino acid frequencies of antibody CDR loops and Antigen epitope. Blue, orange, and gray 

bars reflect the frequency of residues on CDR loops (heavy chain, and light chain) and Ag, respectively. *Aromatic amino acids. 
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2.3. Discussion 

Ab-Ag interactions play a crucial role in various biological processes, including 

immune response modulation, disease diagnosis, and therapeutic interventions. 

Understanding the physico-chemical properties underlying these interactions is essential 

for evaluating their specificity, affinity, and overall stability. This study aims to delve 

deeply into the exploration of these physico-chemical properties involved in Ab-Ag 

interactions, shedding light on their significance in the realm of drug discovery and design. 

2.3.1. Evaluation of docking scoring functions 

This research represents an initial effort to assess the efficacy of Rosetta scoring 

functions in handling Ab-Ag complexes, employing both quantitative and qualitative 

measures through the practical use of decoy distributions, a common practice among 

scientists. The performance of scoring functions in Ab-Ag complex docking was 

Figure 4: Significance of independent parameters in Generalized Linear 

Regression (GLM). 1.0 < (P > | z |) < 0.05 Green, and yellow colors reflect the 

positive and negative correlation of significant parameters respectively. 
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evaluated based on the distribution of docking decoys. The analysis of three scoring 

functions (𝑊𝑑𝑒𝑓, 𝑊1, and 𝑊𝑛𝑜𝑛𝑠𝑜𝑙) revealed that the removal of solvation parameters had 

a significant impact on the quality of docking performance, highlighting the need to 

account for solvation effects to improve the accuracy of Ab-Ag docking predictions.  

While the results indicate that excluding solvation parameters affects the quality of 

docking performance, they do not provide a comprehensive understanding of all factors 

that influence the precision of docking scoring functions. Other factors influencing 

docking accuracy, such as hidden scoring terms, energy functions, and additional factors, 

were not directly addressed in this study. There is a need for additional research and 

investigation into the broader landscape of docking scoring functions and their overall 

performance in various docking scenarios, but it is beyond the goal of this research. 

2.3.2. Influence of physico-chemical properties in CDR loops and 

epitopes on docking 

In analyzing 100 datasets comprising Ab-Ag bound complexes, we identified a 

conspicuous predominance of Tyr residues in the heavy chain CDR loops of antibodies, 

particularly enriched in the paratope regions. Conversely, Ser residues were completely 

absent from these heavy chain CDR loops, and cystine (Cys) residues were notably sparse 

in both heavy and light chain CDR loops. 

Previous studies have underscored the integral roles of Tyr, Ser, and Cys in antibodies 

[27], [28], [29], [30], [31]; however, they have predominantly done so within the confines 

of controlled environments, involving mutations in the epitope interacting regions of 

nonhuman immunoglobulins [27], [28], [29], and have not provided CDR location-

specific insights into amino acid composition. Furthermore, these investigations were 

performed on unbound immunoglobulins, leaving the stability of Ab-Ag interactions 

uncertain and suggesting that the molecular recognition mechanisms of naïve or unbound 

antibodies differ from those of co-evolved or affinity-matured complexes [32], [33], [34], 

[35], [36], [37], [38]. 

Our research conclusively demonstrates the significant correlation of Tyr, Ser, and Cys 

with high-affinity, specific in-situ Ab-Ag complexes. The distinct positioning of these 

amino acids within the CDR loops of engaged Ab-Ag pairs is pivotal, highlighting an 
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area that requires meticulous attention in the refinement of docking scoring algorithms 

for enhanced precision. 

While the analysis provides valuable insights into the distribution and prevalence of 

specific amino acids within ab-ag complexes, there are limitations to consider. The results 

are confined to the specific dataset and conditions of the study and may not fully represent 

the entire population of ab-ag complexes or account for potential variations due to 

experimental setups, antibody types, antigen characteristics, or other factors. The 

observed variations in amino acid composition do not necessarily provide mechanistic 

insights into the functional implications or reasons for their presence or absence in CDR 

loops. Therefore, further research is necessary to explore the broader context, underlying 

mechanisms, functional implications, and generalizability of these findings. 

2.3.3. Correlation between physico-chemical properties and 

decoy distribution 

Through GLM analysis, we identified three critical variables impacting the predictive 

accuracy of decoy distribution within CDR segments: 1) the prevalence of non-aromatic 

residues in L3; 2) the scarcity of non-aromatic residues in H1; and 3) a smaller Ab-Ag 

binding interface in the L2 region. These findings highlight how the scoring function's 

accuracy fluctuates based on the abundance of non-aromatic residues and the interaction's 

surface area. Notably, the influence of aromatic residues persists even in scoring functions 

devoid of solvation parameters. While omitting solvation parameters can enhance 

Rosetta's performance with Ab-Ag structures, this alone doesn't fully negate the effects 

of irregular amino acids. Therefore, the development of scoring functions specialized for 

Ab-Ag interfaces is essential for more precise future Ab-Ag structural predictions. 

The study offers important insights but is limited by its specific dataset and conditions, 

not fully encompassing the diversity of Ab-Ag complexes. A comprehensive 

understanding of the mechanisms dictating amino acid presence in CDR loops is missing, 

underscoring the need for broader research. This should include how amino acids 

influence the Rosetta scoring function, deeper exploration of Ab-Ag interactions, and 

enhancements in bio medicinal prediction models for wider applicability. 
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2.4. Conclusion 

In this chapter we have found that omitting a specific parameter in Rosetta scoring 

function enhances performance, but we must carefully consider other factors for accurate 

predictions. 

A deeper exploration of physicochemical characteristics, including hydrophilicity, 

hydrophobicity, polar versus nonpolar interactions, and specific amino acid residues, 

provides valuable insights into the stability, specificity, and efficacy of Ab-Ag complexes. 

The synthesis of these methodologies enhances the sophistication of computational 

techniques, advancing our ability to forecast and improve Ab-Ag interactions—a crucial 

aspect in drug innovation and formulation. These insights hold substantial promise for 

driving advancements in drug development, potentially leading to more effective 

therapeutic strategies and improved patient prognoses. 

Exploring the chemical attributes of potential substitutes sheds light on the stability 

and effectiveness of these interactions. This knowledge improves our ability to forecast 

and enhance antibody interactions, crucial for drug development. While promising, 

further research is needed to fully grasp these interactions and improve therapeutic 

antibody production for better, targeted treatments.  
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Chapter 3 

 Analysis in Docking Scoring Functions for 

Precision Docking 

In this chapter, we explore the details of the Rosetta scoring function and its influence 

on the prediction of Ab-Ag binding structures. The scoring function involves 20 weighted 

parameters, each with a distinct role in determining the overall energy score. A thorough 

analysis is conducted to understand the importance of these parameters. This involves 

carefully examining the weights and comparing the energy scores with and without 

specific parameters. An important aspect of this investigation involves categorizing decoy 

distributions and determining their quality based on Pearson's correlation coefficient and 

RMSD values. Next, three optimization models are presented to improve the shape of 

decoy distributions, highlighting the significance of specific parametric weights. The 

performance of these models is thoroughly evaluated, using both qualitative and 

quantitative measures. This study aims to identify and optimize key parameters that 

influence the Rosetta scoring function, with the goal of improving Ab-Ag docking 

predictions. This chapter presents a detailed analysis of the relationship between 

parameter weights, decoy distributions, and the accuracy of computational docking 

models. By doing so, it establishes a foundation for future advancements in therapeutic 

interventions and structural biology. 

3.1. Methods 

3.1.1. Identification of high predictive power parameters in 

Rosetta scoring function 

The Rosetta scoring function incorporates 20 weighted parameters, as detailed in 

Appendix C. To assess the individual impact of each parameter on the ultimate energy 

score, a comprehensive analysis is conducted. Initially, all parameter weights are 

normalized to a value of one, and the total energy score is calculated for each structural 

configuration. Through the comparison of the overall energy score achieved with all 

parameters to that attained when a particular parameter is excluded, the importance of 

each variable is determined. This methodology is systematically applied to all 100 

https://sangeetha-ratnayake.notion.site/Appendix-C-5232f6012b1e483fb58f363e28916c42?pvs=4


22 

 

complexes stored in the database, resulting in the calculation of the average proportional 

contribution of each parameter. 

3.1.2. Classification of the decoy distribution  

An example of good decoy distribution is shown in Figure 5. We defined two 

qualitative criteria to define a good or bad decoy distribution; 1) a Pearson’s correlation 

coefficient (P) [26] between RMSD and energy scores must be positive, and 2) The 

RMSD values of the lowest energy decoy should be at least 5Å smaller than the mean 

RMSD value of the distribution. This is an indication of the left skewness in the 

distribution.   

If both conditions were met, the decoy distribution was classified as "Good" (Funnel-

like). If either condition was unsatisfied, the decoy distribution was classified as "Bad" 

(not Funnel-like).  

Figure 5: Example of a decoy distribution and definition of parameters in 

Optimization Model 3. The decoy distribution was separated to two clusters A (decoys 

with RMSD < 5Å) and B (decoys with RMSD > 5Å). 5Å is considered as the threshold 

for near-nativeness of a decoy. Green line vertical line represents the 5Å cluster 

threshold line. : Decoy with the lowest energy score of the Cluster A. : Decoy with 

the lowest energy score of the cluster B.  Green horizontal line is to separate the decoys 

with low energy score than , and the number of decoys in the yellow area is counted 

and accounted for in the M3 as denoted by 𝐷. 
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3.1.3. Scoring function optimization models 

Three selection scores were developed to assess the quality of decoy distribution shape. 

These scores were then used to determine the optimal weights for each parameter in the 

dataset. Models were created to focus on the two key characteristics of a funnel-like decoy 

distribution.  

The parameter space was explored using Nelder-Mead optimization [39] to find local 

optima of weights for all three models. The process will iterate through weight values 

from 0 to 1.05 with an increment of 0.01.  

Optimization Model 1 (M1): This model is based on the first characteristic of a good 

decoy distribution, which is the positive Pearson’s correlation coefficient between the 

total energy score and RMSD of decoys. Parameters were optimized to maximize the 

selection score (𝑆1), which equals to Pearson’s correlation coefficient (𝑃) 

𝑆1 = 𝑃 (1) 

Optimization Model 2 (M2): This optimization model is based on the fact that the 

decoy with the lowest RMSD should also have the lowest energy score among all the 

decoys. The selection score (𝑆2) for a given Ab-Ag complex is determined by subtracting 

the total energy score of the decoy with the lowest energy (𝐸𝐿) from the total energy score 

of the decoy with the lowest RMSD value (𝐸𝑅). S would be 0 if a decoy with the lowest 

energy also has the lowest RSMD. 

𝑆2 = 𝐸𝐿 − 𝐸𝑅 (2) 

 Weight sets with smaller 𝑆2 values are considered optimal. 

Optimization Model 3 (M3): In this model we execute a combined model of M1 and 

M3 with additional features of a decoy distribution (Figure 5).  

The decoy distribution was divided into two clusters: A (decoys with RMSD < 5Å) 

and B (decoys with RMSD > 5Å), with the 5Å threshold indicating near-nativeness. The 

green vertical line represents the 5Å cluster threshold. 
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The selection score (𝑆3) is determined for a given Ab-Ag complex. 

where, 𝐸𝐴  denotes the decoy with the lowest energy score in cluster A, and 𝐸𝐵 

represents the lowest energy score decoy in cluster B. 𝐷 is the count of decoys (yellow 

highlighted area in Figure 1) in cluster A with lower energy than the lowest energy decoy 

in cluster B.  

The statistics E, D, and P were individually normalized to their respective Z-scores. 

Normalizing the contribution of each parameter ensured that they all had an equal impact 

on the overall score. In this model, weight sets with the highest 𝑆3 value is considered 

optimal. 

3.1.4. Qualitative and quantitative analysis of the optimization 

model performance  

To re-estimate the Rosetta total energy score with the identified weights, we applied 

the determined optimal weight parameters for the RosettaAb docking scoring function, 

and re-regenerated 500 decoys for each Ab-Ag complex in the dataset. We constructed 

the respective distributions for these decoys. We re-categorized the decoy distributions 

as “Good” and “Bad” based on the same classification method explained in method 3.1.3.  

Net Reclassification Improvement ( 𝑁𝑅𝐼𝑛𝑒𝑡 ) [40] gauges the improvement in 

classifying decoy distributions as "Good" or "Bad" when using optimized weight 

parameters compared to default parameters in Rosetta Performance.  

𝑁𝑅𝐼𝑛𝑒𝑡 =  𝑁𝑅𝐼𝑔𝑜𝑜𝑑 − 𝑁𝑅𝐼𝑏𝑎𝑑 (5) 

𝑁𝑅𝐼𝑛𝑒𝑡 =
(𝑎 − 𝑏)

(𝑎 + 𝑏)
−  

(𝑐 − 𝑑)

(𝑐 + 𝑑)
 (6) 

𝑆3 = 𝐸 + 𝐷 + 𝑃 (3) 

where,  

𝐸 = 𝐸𝐴 − 𝐸𝐵 (4) 
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where, 𝑁𝑅𝐼𝑔𝑜𝑜𝑑  as represents in Table 1, the difference between the probability of 

“Good” decoy distribution predicted by the optimization model and the probability 

predicted by Rosetta, and 𝑁𝑅𝐼𝑏𝑎𝑑 represents the difference between the probability of 

“Bad” decoy distributions predicted by the Rosetta and the probability predicted by the 

optimization model for individuals without events. It quantifies the net enhancement in 

classification accuracy provided by the optimization models. 

In order to obtain a the parameter set that can be applied to majority of the Ab-Ag 

complexes in our dataset, Principal Component Analysis (PCA) [41] and the k-means 

clustering algorithm [42] were applied to the set of parameters estimated in the 100 Ab-

Ag complexes.  

3.2. Results 

3.2.1. Total energy score and the parametric contribution  

We first identified weight parameters with high contribution to output in the Rossetta 

scoring function. Parameters contributing more than 5% to the total energy score were 

selected (Figure 6). The six parameters are: Lennard-Jones attractive between atoms in 

different residues (fa_atr), Lennard-Jones repulsive between at oms in different residues 

(fa_rep), Lazaridis-Karplus solvation energy (fa_sol), Intra-residue Lazaridis-Karplus 

solvation energy (fa_intra_rep), Coulombic electrostatic potential with a distance-

dependent dielectric   (fa_elec), and Probability of amino acid, given torsion values for 

phi and psi (fa_dun). They respectively have Rosetta ref2015 model predefined weights 

of 1.0, 0.55, 0.9375, 0.005, 0.875, and 0.7 [12] (Appendix C). 

https://sangeetha-ratnayake.notion.site/Appendix-C-5232f6012b1e483fb58f363e28916c42?pvs=4


26 

 

3.2.2. Optimizing weight parameters by adjusting decoy 

distributions 

We assumed that an ideal scoring function with optimal weight parameters can 

produce a good pattern of decoy distributions. We classified a good or bad decoy 

distribution using conditional judgment of the following two criteria. 1) Pearson’s 

Correlation Coefficient of the distribution must be positive, 2) RMSD values were 

considered relative by subtracting the lowest energy decoy's RMSD from the mean 

RMSD, with a ≤5Å difference criterion.  

Figure 7 (a-d) shows graphs depicting different patterns of decoy distributions. During 

the initial decoy generation with Rosetta default weight parameters, we obtained 37 good 

Figure 6: Parametric Contributions to the Total Energy Score in Rosetta Scoring. 

We identified six crucial parameters, including Lennard-Jones Attractive Forces 

(fa_atr), Dihedral Angle Energy (fa_dun), Electrostatic Energy (fa_elec), Lennard-

Jones Repulsion (fa_rep), Intra-residue Solvation Energy (fa_intra_rep), and 

Solvation Energy (fa_sol), with specific predefined weights of Rosetta ref2015 as 

specified within parentheses, that greatly impact the total energy score. 
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(funnel-like) decoy distributions and 63 bad (non-funnel like) distributions among 100 

Ab-Ag complexes. We calculated the frequency of decoy distribution goodness change 

compared to the Rosetta initial decoy distributions. As presented in Figure 8 a-b, the 

frequencies were calculated for both post optimization and after validation.  

We optimized the six key weight parameters discovered in Result section 3.2.1, using 

the three different optimization models (M1, M2, and M3), each capturing different 

aspects of the goodness of decoy distribution, using a numerical optimization method (see 

methods). Note that, in this analysis, we keep using the same predicted structures as the 

initial prediction, which means the value of RMSD for each decoy is invariant while the 

total energy score changes depending on parameters. A smaller energy score indicates a 

stronger binding affinity.  

Using default parameters in Rosetta, we found that 37 complexes had good decoy 

distributions, while 63 complexes had bad decoy distributions. We examined a total of 

one hundred complexes using RosettaAb Docking after assigning specific weights to 

them. 55 complexes in Model M1 had favorable decoy distributions (Appendix G). Model 

M2 generated 40 complexes with good decoy distributions, while Model M3 produced 

50 complexes with favorable decoy distributions.  

While the optimized parameters did not uniformly enhance the shape of decoy 

distributions in certain structures, the three methods, namely M1, M2, and M3, generally 

improved the overall shape of distributions across the dataset. To evaluate the 

improvement, we calculated NRI (Table 1) between default parameters and each of three 

models. All three models demonstrated a substantial improvement with a positive NRI 

value of 0.941. 

https://sangeetha-ratnayake.notion.site/Appendix-G-657829c5cb50443d9bfdae166c01e087?pvs=4


28 

 

Figure 7: Optimization Model Performance Comparison. On decoy distributions, x-axis represents decoy RMSD values and y-

axis represents decoy energy scores. The decoy distributions were classified as, Good: Funnel-like and Bad: not funnel like 

distributions. a-d decoy distributions represent examples of Rosetta Default decoy distributions and post validation decoy 

distributions. a) Good – Good; b) Good – Bad; c) Bad – Good; d) Bad – Bad. e) Frequency of Ab-Ag complexes in each category 

respective to each selection optimization model after optimization; f) Frequency of complexes in each category after validation. 
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3.2.3. Performance of optimization models 

We subsequently re-generated decoys using the optimized parameters for each Ab-Ag 

complex. We assumed that, if the optimized parameters improve the performance of 

RossettaAb, the shape of decoy distributions would become better and generated decoys 

should be close to the real structure hence showing overall small RMSD. Although we 

used the former criteria for optimization and evaluation in the previous analyses, the latter 

results directly show the improvement of RossettaAb docking performance. 

Figure 7 e and f display the performance of optimization for M1, M2, and M3 decoys. 

The bars indicate the change in the decoy distribution after optimization, showing 

whether it improved (Bad to Good), deteriorate (Good to Bad), or unchanged (Good to 

Good and Bad to Bad). The numerical optimization resulted in improvements in "Good-

Good" distributions: 32 in M1, 23 in M2, and 25 in M3. There were 40 "Bad-Bad" 

distributions in M1, 46 in M2, and 38 in M3.  

Figure 7.f summarizes the frequency distributions post-validation. M1 had the highest 

number of "Good-Good" distributions with 36, followed by M2 with 31, and M3 with 24. 

M1 had 1 distribution, M2 had 6 distributions, and M3 had 13 distributions for "Good-

Bad." The "Bad-Good" had 52 in M1, 37 in M2, and 26 in M3. In the song "Bad-Bad," 

M1, M2, and M3 had 11, 26, and 37 distributions, respectively. 

We compared the mean RMSD values of the lowest energy decoys between the default 

and optimized models, and the mean values decreased in the 87%, 79%, and 69% of cases 

Table 1: Net Reclassification Improvement. Post-optimization analyses for the three 

models (M1, M2, and M3) demonstrated considerable enhancements in predicting the 

goodness of decoy distributions. The positive Net Reclassification Improvement (NRI) 

values underscored the effectiveness of the optimization process. 

Model 
Good-Good  

(a) 

Good-Bad  

(b) 

Bad-Good  

(c) 

Bad-Bad  

(d) 
NRI 

M1 32 23 5 38 0.941 

M2 23 14 14 46 0.683 

M3 25 25 12 40 0.52 

Post 

Validation 
33 26 4 37 0.924 
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with models M1, M2, and M3, respectively, indicating significant improvements in all 

three optimization models. The level of improvement was also assessed by conducting a 

paired t-test [15], where the mean RMSD value for each structure of the default model 

and the optimized model were paired. The highest t statistics and the lowest p-values were 

observed for M1 (t = 10.79, p = 2.06×10−18), followed by M3 (t = 9.92, p = 1.60×10−16), 

and M2 (t = 7.85, p = 5.00×10−12). 

3.2.4. Efficacy of distinctive Parameters in Ab-Ag docking 

predictions 

We finally sought the possibility of finding a distinctive parameter set that potentially 

improves the prediction accuracy of Ab-Ag complex structures using RossettaAb. To this 

end, we first visualized the pattern of parameter sets that were individually optimized for 

100 Ab-Ag complexes and performed clustering. Figure 8 illustrates the results of PCA 

with k-means clustering, yielding six distinct clusters. The six clusters consist of 2 outlier 

clusters (marked in red) and 4 closely related clusters that could be merged into one large 

cluster (marked in blue circle). We therefore expected the parameter sets shared with the 

large cluster would perform generally well for most of our dataset. The mean of the 

parametric weight parameters of the remaining complexes was calculated; the mean 

parameters for the fa_atr, fa_dun, fa_elec, fa_rep, fa_intra_rep, and fa_sol is 0.997, 0.331, 

Figure 8: Principal Component Analysis. 6 clusters were identified using K-means 

clustering. 2 clusters (marked in red) were considered as outliers. These datapoints 

(complexes) were excluded from the database during the calculation of mean values of 

parametric weights. Four remaining clusters seems closely related and together they 

create one big cluster (blue circle). 
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0.428, 0.831, 0.55, and 0.098, respectively. We employed Rosetta to reevaluate the 

overall performance of our 100 Ab-Ag complex dataset by applying mean weights.  

Applying the mean weight parameters among the large cluster, out of the 100 

complexes analyzed, 91 complexes exhibited improvement as indicated by a smaller 

mean RMSD compared to the Rosetta default. On the other hand, 6 complexes showed 

an increase in mean RMSD, while 3 complexes did not show any change in RMSD when 

compared to the Rosetta default. The level of improvement was also assessed using a 

paired t-test. The results showed a t-statistic of 8.924 and a p-value of 2.43×10-14. The 

NRI value between the Rosetta default and the distinctive weights was 0.924.  

The identified through PCA (Figure 8) were applied to a randomly selected 

independent dataset of 10 Ab-Ag complexes (Appendix I) from the SabDab database 

using Rosetta. Out of the 10 complexes analyzed, default decoy distributions from Rosetta 

were unfavorable in 8 cases, showing only 2 instances with funnel-like patterns. Upon 

further assessment, it was found that 2 complexes displayed favorable distributions, while 

4 consistently exhibited unfavorable patterns using both Rosetta Default and different 

parametric weights. Four complexes that had unfavorable distributions when 

characterized with Rosetta default weights showed improvement when using the new 

weights, resulting in favorable distributions. Mean RMSD values consistently decreased 

for all 10 complexes. Parametric weights can have different effects on energy scoring for 

datasets. However, numerical optimization models can help identify more appropriate 

weights for Ab-Ag datasets. 

3.3. Discussion 

Computational docking scoring functions are essential in modeling the interaction Ab-

Ag. The accuracy of these models relies on specific weight parameters within the scoring 

function. It's important to grasp the significance of these parameters in achieving accurate 

predictions for Ab-Ag binding, which, in turn, impacts binding affinity, specificity, and 

stability. This study delves into an in-depth exploration of these critical parameters, 

shedding light on their importance in the field of Ab-Ag modeling and design. 

https://sangeetha-ratnayake.notion.site/Appendix-H-f795e860abf14d519e40f4fcd6d0ff73?pvs=4
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3.3.1. Influence of identified parameters on Rosetta docking 

scoring function 

In analyzing the Rosetta energy scores for 100 datasets, we identified a dominance of 

six parameters in the Rosetta scoring function that particularly contributed to the energy 

score. The set includes parameters for fa_atr, fa_dun, fa_elec, fa_rep, fa_intra_rep, and 

fa_sol. Previous studies have underscored the importance of identifying the influential 

variables and adjusting their weights is crucial for accurately predicting binding affinity, 

stability, and other important attributes in this system [19], [43], [44], [45], [46], [47]. We 

have already shown that there was a significant improvement in scoring energy in the 

absence of the solvation parameter, fa_sol in the previous chapter. The absence or 

presence of these parameters can affect the overall binding affinity during the docking 

process.  

This chapter highlights the importance of the six found criteria but also acknowledges 

the possibility of additional factors that may affect the accuracy of the scoring function, 

which have not yet been explored. Specifically, the complexity associated with solvation 

parameters necessitates a thorough investigation to fully comprehend the holistic nature 

of docking scoring functions and to determine their adaptability in various situations. The 

extraction of valuable knowledge from vast research is crucial for advancing drug 

development efforts and enhancing our understanding of biomolecular interactions, 

particularly within the field of molecular medicine.  

3.3.2. Optimization impact on lowest energy decoys 

Mathematical optimization is a powerful tool that enhances decision-making in a data-

driven, objective manner while reducing bias and subjectivity. It ensures consistency 

across analyses by consistently applying the same algorithm to diverse datasets. This 

approach improves reliability by promoting objectivity, efficiency, and robustness. 

In our analysis, we employed numerical optimization for several reasons. It offers 

significant advantages when fine-tuning six weights using three different statistics (M1, 

M2, and M3) to assess various aspects of decoy distribution quality. This process occurs 

in a complex parameter space, where manual tuning becomes impractical due to the 

multitude of possible combinations.  
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Applying the identified distinct parametric weights to any dataset may yield variable 

effects on energy scoring. Nonetheless, the numerical optimization models introduced in 

this study offer a means to identify more suitable parametric weights for any Ab-Ag 

dataset. Numerical optimization is indispensable for determining the optimal weight 

configuration, whether for minimizing or maximizing an objective function.  

Despite the advantages of using robust numerical optimization methods shown in this 

study, it has limitations in scope and assumptions. The analysis is narrow, overlooking 

broader optimization challenges and assuming resistance to data noise and uncertainties. 

Future work should validate these results across various settings, explore broader 

applications, and consider the ethical implications of these methods. 

3.3.3. Evaluation of optimization models 

This study aims to find an optimization model for determining the best parametric 

weights of the Rosetta scoring function in analyzing Ab-Ag complexes. It uses qualitative 

and quantitative methods, specifically by analyzing decoy distributions. Optimization 

model performance was evaluated using docking decoy distribution. The analysis of 

models M1, M2, and M3 showed that all three models can enhance docking accuracy. 

This emphasizes the importance of identifying specific distinct parametric weights for the 

dataset being studied, to improve the accuracy of Ab-Ag docking prediction. 

The Paired t-test revealed that the M1 model outperformed M2 and M3. The M1 

model's unique parametric weights improved the docking simulation's performance by 

4%. The results suggest that the simple PCC can be used to assess the accuracy of a 

scoring function and determine the optimal parametric weights for a specific Ab-Ag 

complex using only six selected parameters from the Rosetta scoring function. However, 

it does not provide a complete understanding of all the other parameters and their 

reliability.  

The study provides valuable insights but is constrained by its narrow dataset and 

conditions, which do not fully represent the range of Ab-Ag complexes. Further research 

is needed to fully understand the relationship between the parameters of the scoring 

function and their reliability. This study examines the impact of various parameters on 
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the Rosetta scoring function, investigates the influence of Ab-Ag interaction on decoy 

distributions, and proposes improvements to docking scoring models for broader use. 

3.4. Conclusion 

In conclusion, a deep understanding of the pivotal variables shaping computational 

docking scoring functions is imperative. The enhancement achieved through the fine-

tuning of six key parameters within the Rosetta docking scoring function underscores 

their critical role in influencing the stability and energetics of Antibody-Antigen (Ab-Ag) 

interactions. This study illuminates the potential for optimizing parameters, including 

binding affinity and stability, to revolutionize therapeutic interventions in conditions like 

cancer and autoimmune diseases. 

The significance of ongoing exploration into factors affecting scoring function 

precision cannot be overstated. The research outcomes carry profound implications across 

diverse domains, including structural biology, drug discovery, protein engineering, and 

computational biology. The accurate portrayal of protein-protein interactions emerges as 

a cornerstone for advancing scientific knowledge and forging effective therapies in these 

multifaceted fields. As we continue to unravel the intricacies of scoring functions, this 

knowledge serves as a catalyst for innovation, pushing the boundaries of what is 

achievable in the realms of medical research and therapeutic development. 

  



35 

 

Chapter 4 

 Conclusions 

4.1. Summary 

Recent years have seen a revolution in treating disorders through antibody-based 

therapy. Antibodies, pivotal in the immune system, play a crucial role in identifying and 

neutralizing foreign entities. Understanding these interactions is vital for developing 

effective treatments. Traditional methods like X-ray crystallography have limitations, 

leading to the importance of computational docking in predicting how small molecules 

bind to biomolecules. 

This work is motivated by the understudied intricacies of Ab-Ag interactions and the 

imperative need to bridge the gap between traditional experimental techniques and 

computational approaches, particularly in the context of drug discovery and design. The 

revolutionary advancements in antibody-based therapy underscore the significance of 

comprehending the physico-chemical properties governing these interactions. By 

exploring the efficacy of Rosetta scoring functions, uncovering the prevalence of specific 

amino acids in CDR loops, and evaluating critical variables influencing decoy distribution, 

this study aims to contribute valuable insights to enhance our understanding of Ab-Ag 

complexes. The motivation lies in addressing the limitations of existing methodologies, 

propelling the field towards more accurate predictions and broader applicability in the 

realm of molecular medicine.  

This study proposes enhanced scoring functions, targeting specific parameters in the 

Rosetta scoring function, to improve accuracy in predicting Ab-Ag complexes. It 

introduces numerical optimization methods, including models (M1, M2, and M3), for 

fine-tuning these functions. The following are the main conclusions of this thesis: 

1. Efficacy of Rosetta Scoring Functions: 

   - Solvation parameters significantly impact docking performance in Ab-Ag 

complexes. 

   - Factors beyond solvation, such as hidden scoring terms and energy functions, 

require further investigation for improved accuracy. 
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2. Amino Acid Correlation in CDR Loops: 

   - Specific amino acids (Tyr, Ser, and Cys) in heavy chain CDR loops correlate with 

high-affinity Ab-Ag complexes. 

3. Critical Variables Influencing Decoy Distribution: 

   - GLM analysis identifies key factors (abundance of non-aromatic residues in L3, 

scarcity in H1, and smaller Ab-Ag binding interface in L2) influencing predictive 

accuracy. 

4. Persistent Influence of Aromatic Residues: 

   - Aromatic residues continue to influence scoring functions, even in the absence of 

solvation parameters, highlighting the need for specialized Ab-Ag interfaces. 

5. Optimization Impact on Docking Accuracy: 

   - Numerical optimization methods, specifically models M1, M2, and M3, enhance 

docking accuracy with the M1 model showing a 4% improvement. 

   - Identified parametric weights and the Pearson correlation coefficient (PCC) serve 

as tools for assessing scoring function accuracy, necessitating further parameter 

exploration for reliability. 

4.2. Topics for Future Research 

Although the findings of the research have significant consequences across a variety 

of fields, there are still many aspects that need further investigations. 

• Comprehensive Exploration of Hidden Scoring Terms: Investigate and uncover 

additional hidden scoring terms and energy functions influencing the accuracy of 

Rosetta scoring functions in Ab-Ag complexes. 

• In-Depth Analysis of Amino Acid Presence in CDR Loops: Conduct a broader 

study to understand the mechanistic implications of specific amino acids (Tyr, Ser, 

and Cys) in heavy chain CDR loops, exploring their functional roles and reasons 

for presence or absence. 

• Enhancement of Numerical Optimization Methods: Further refine and expand 

numerical optimization methods for determining optimal parametric weights, 
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considering broader applications and potential challenges, such as resistance to 

data noise and uncertainties. 

• Validation of Findings Across Diverse Settings: Validate research results across 

various experimental settings, including different Ab-Ag complexes, 

experimental setups, antibody types, and antigen characteristics, to assess the 

generalizability of the identified parameters and their impact on scoring functions. 

• Ethical Implications of Computational Models in Drug Development: Investigate 

the ethical implications of using computational models, such as Rosetta scoring 

functions, in drug development, particularly in terms of their reliability, potential 

biases, and implications for decision-making in the development of antibody-

based therapies. 

  



38 

 

 Reference 

[1] J. V. Kringelum, M. Nielsen, S. B. Padkjær, and O. Lund, “Structural analysis of 

B-cell epitopes in antibody:protein complexes,” Mol Immunol, vol. 53, no. 1–2, pp. 

24–34, Jan. 2013, doi: 10.1016/j.molimm.2012.06.001. 

[2] T. Ramaraj, T. Angel, E. A. Dratz, A. J. Jesaitis, and B. Mumey, “Antigen–

antibody interface properties: Composition, residue interactions, and features of 53 

non-redundant structures,” Biochim Biophys Acta, vol. 1824, no. 3, pp. 520–532, 

Mar. 2012, doi: 10.1016/j.bbapap.2011.12.007. 

[3] I. S. Mian, A. R. Bradwell, and A. J. Olson, “Structure, function and properties of 

antibody binding sites,” Journal of Molecular Biology, vol. 217, no. 1, pp. 133–

151, Jan. 1991, doi: 10.1016/0022-2836(91)90617-F. 

[4] G. M. Morris and M. Lim-Wilby, “Molecular Docking,” in Molecular Modeling of 

Proteins, vol. 443, Humana Press, 2008. Accessed: Nov. 29, 2023. [Online]. 

Available: https://link.springer.com/protocol/10.1007/978-1-59745-177-2_19 

[5] B. Kramer, M. Rarey, and T. Lengauer, “Evaluation of the FLEXX incremental 

construction algorithm for protein-ligand docking,” Proteins, vol. 37, no. 2, pp. 

228–241, Nov. 1999, doi: 10.1002/(sici)1097-0134(19991101)37:2<228::aid-

prot8>3.0.co;2-8. 

[6] M. L. Verdonk, J. C. Cole, M. J. Hartshorn, C. W. Murray, and R. D. Taylor, 

“Improved protein-ligand docking using GOLD,” Proteins, vol. 52, no. 4, pp. 609–

623, Sep. 2003, doi: 10.1002/prot.10465. 

[7] T. A. Halgren et al., “Glide: a new approach for rapid, accurate docking and 

scoring. 2. Enrichment factors in database screening,” J Med Chem, vol. 47, no. 7, 

pp. 1750–1759, Mar. 2004, doi: 10.1021/jm030644s. 

[8] A. D. Hill and P. J. Reilly, “Scoring functions for AutoDock,” Methods Mol Biol, 

vol. 1273, pp. 467–474, 2015, doi: 10.1007/978-1-4939-2343-4_27. 

[9] O. Trott and A. J. Olson, “AutoDock Vina: improving the speed and accuracy of 

docking with a new scoring function, efficient optimization and multithreading,” J 

Comput Chem, vol. 31, no. 2, pp. 455–461, Jan. 2010, doi: 10.1002/jcc.21334. 

[10] G. Macindoe, L. Mavridis, V. Venkatraman, M.-D. Devignes, and D. W. Ritchie, 

“HexServer: an FFT-based protein docking server powered by graphics 

processors,” Nucleic Acids Res, vol. 38, no. Web Server issue, pp. W445–W449, 

Jul. 2010, doi: 10.1093/nar/gkq311. 

[11] D. Tobi, “Designing coarse grained-and atom based-potentials for protein-protein 

docking,” BMC Structural Biology, vol. 10, no. 1, p. 40, Nov. 2010, doi: 

10.1186/1472-6807-10-40. 

[12] R. F. Alford et al., “The Rosetta All-Atom Energy Function for Macromolecular 

Modeling and Design,” J. Chem. Theory Comput., vol. 13, no. 6, pp. 3031–3048, 

Jun. 2017, doi: 10.1021/acs.jctc.7b00125. 

[13] P. Agrawal, H. Singh, H. K. Srivastava, S. Singh, G. Kishore, and G. P. S. 

Raghava, “Benchmarking of different molecular docking methods for protein-

peptide docking,” BMC Bioinformatics, vol. 19, no. 13, p. 426, Feb. 2019, doi: 

10.1186/s12859-018-2449-y. 

[14] H.-J. Böhm, “The development of a simple empirical scoring function to estimate 

the binding constant for a protein-ligand complex of known three-dimensional 



39 

 

structure,” J Computer-Aided Mol Des, vol. 8, no. 3, pp. 243–256, Jun. 1994, doi: 

10.1007/BF00126743. 

[15] C. T. Schoeder et al., “Modeling Immunity with Rosetta: Methods for Antibody 

and Antigen Design,” Biochemistry, vol. 60, no. 11, pp. 825–846, Mar. 2021, doi: 

10.1021/acs.biochem.0c00912. 

[16] Y. Ofran, A. Schlessinger, and B. Rost, “Automated identification of 

complementarity determining regions (CDRs) reveals peculiar characteristics of 

CDRs and B cell epitopes,” J Immunol, vol. 181, no. 9, pp. 6230–6235, Nov. 2008, 

doi: 10.4049/jimmunol.181.9.6230. 

[17] C.-M. Yu et al., “Rationalization and Design of the Complementarity Determining 

Region Sequences in an Antibody-Antigen Recognition Interface,” PLOS ONE, 

vol. 7, no. 3, p. e33340, Mar. 2012, doi: 10.1371/journal.pone.0033340. 

[18] H.-P. Peng et al., “Antibody CDR amino acids underlying the functionality of 

antibody repertoires in recognizing diverse protein antigens,” Sci Rep, vol. 12, no. 

1, Art. no. 1, Jul. 2022, doi: 10.1038/s41598-022-16841-9. 

[19] J. K. Leman et al., “Better together: Elements of successful scientific software 

development in a distributed collaborative community,” PLOS Computational 

Biology, vol. 16, no. 5, p. e1007507, May 2020, doi: 

10.1371/journal.pcbi.1007507. 

[20] R. Vita et al., “The Immune Epitope Database (IEDB): 2018 update,” Nucleic 

Acids Res, vol. 47, no. D1, pp. D339–D343, Jan. 2019, doi: 10.1093/nar/gky1006. 

[21] M. C. Jespersen, B. Peters, M. Nielsen, and P. Marcatili, “BepiPred-2.0: improving 

sequence-based B-cell epitope prediction using conformational epitopes,” Nucleic 

Acids Res, vol. 45, no. Web Server issue, pp. W24–W29, Jul. 2017, doi: 

10.1093/nar/gkx346. 

[22] J. KYTE and R. DOOLITTLE, “A simple method for displaying the hydropathic 

character of a protein - PubMed,” Journal of Molecular Biology, vol. Volume 157, 

no. Issue 1, p. Pages 105-132, Jan. 1982, doi: https://doi.org/10.1016/0022-

2836(82)90515-0. 

[23] J. M. Zimmerman, Eliezer, and R. Simha, “The characterization of amino acid 

sequences in proteins by statistical methods - ScienceDirect,” Journal of 

Theoretical Biology, vol. 21, no. 2, pp. 170–201, 1968, doi: 

https://doi.org/10.1016/0022-5193(68)90069-6. 

[24] S. Miller, J. Janin, A. M. Lesk, and C. Chothia, “Interior and surface of monomeric 

proteins,” Journal of Molecular Biology, vol. 196, no. 3, pp. 641–656, Aug. 1987, 

doi: 10.1016/0022-2836(87)90038-6. 

[25] G. Rose, A. Geselowitz, Lesser, R. Lee, and M. Zehfus, “Hydrophobicity of amino 

acid residues in globular proteins.,” Science, vol. 229(4716), no. 834, p. 8, Aug. 

1985, doi: 10.1126/science.4023714. 

[26] P. Sedgwick, “Pearson’s correlation coefficient,” BMJ, vol. 345, p. e4483, Jul. 

2012, doi: 10.1136/bmj.e4483. 

[27] E. A. Padlan, “On the nature of antibody combining sites: unusual structural 

features that may confer on these sites an enhanced capacity for binding ligands,” 

Proteins, vol. 7, no. 2, pp. 112–124, 1990, doi: 10.1002/prot.340070203. 

[28] K. Tsumoto, K. Ogasahara, Y. Ueda, K. Watanabe, K. Yutani, and I. Kumagai, 

“Role of Tyr Residues in the Contact Region of Anti-lysozyme Monoclonal 



40 

 

Antibody HyHEL10 for Antigen Binding (∗),” Journal of Biological Chemistry, 

vol. 270, no. 31, pp. 18551–18557, Aug. 1995, doi: 10.1074/jbc.270.31.18551. 

[29] M. Shiroishi et al., “Structural Consequences of Mutations in Interfacial Tyr 

Residues of a Protein Antigen-Antibody Complex: THE CASE OF HyHEL-10-

HEL*,” Journal of Biological Chemistry, vol. 282, no. 9, pp. 6783–6791, Mar. 

2007, doi: 10.1074/jbc.M605197200. 

[30] A. Steinmaurer, I. Wimmer, T. Berger, P. S. Rommer, and J. Sellner, “Bruton’s 

Tyrosine Kinase Inhibition in the Treatment of Preclinical Models and Multiple 

Sclerosis,” Current Pharmaceutical Design, vol. 28, no. 6, pp. 437–444. 

[31] S. Koide and S. S. Sidhu, “The Importance of Being Tyrosine: Lessons in 

Molecular Recognition from Minimalist Synthetic Binding Proteins,” ACS Chem 

Biol, vol. 4, no. 5, pp. 325–334, May 2009, doi: 10.1021/cb800314v. 

[32] Y. Hagihara and D. Saerens, “Engineering disulfide bonds within an antibody,” 

Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1844, no. 

11, pp. 2016–2023, Nov. 2014, doi: 10.1016/j.bbapap.2014.07.005. 

[33] S. Birtalan, Y. Zhang, F. A. Fellouse, L. Shao, G. Schaefer, and S. S. Sidhu, “The 

Intrinsic Contributions of Tyrosine, Serine, Glycine and Arginine to the Affinity 

and Specificity of Antibodies,” Journal of Molecular Biology, vol. 377, no. 5, pp. 

1518–1528, Apr. 2008, doi: 10.1016/j.jmb.2008.01.093. 

[34] F. A. Fellouse, C. Wiesmann, and S. S. Sidhu, “Synthetic antibodies from a four-

amino-acid code: A dominant role for tyrosine in antigen recognition,” 

Proceedings of the National Academy of Sciences, vol. 101, no. 34, pp. 12467–

12472, Aug. 2004, doi: 10.1073/pnas.0401786101. 

[35] J. N. Martins, J. C. Lima, and N. Basílio, “Selective Recognition of Amino Acids 

and Peptides by Small Supramolecular Receptors,” Molecules, vol. 26, no. 1, Art. 

no. 1, Jan. 2021, doi: 10.3390/molecules26010106. 

[36] J. Janin, “Wet and dry interfaces: the role of solvent in protein–protein and 

protein–DNA recognition,” Structure, vol. 7, no. 12, pp. R277–R279, Jan. 1999, 

doi: 10.1016/S0969-2126(00)88333-1. 

[37] H. Ma, C. Ó’Fágáin, and R. O’Kennedy, “Antibody stability: A key to 

performance - Analysis, influences and improvement,” Biochimie, vol. 177, pp. 

213–225, Oct. 2020, doi: 10.1016/j.biochi.2020.08.019. 

[38] T. Lazaridis and M. Karplus, “Effective energy function for proteins in solution,” 

Proteins: Structure, Function, and Bioinformatics, vol. 35, no. 2, pp. 133–152, 

1999, doi: 10.1002/(SICI)1097-0134(19990501)35:2<133::AID-

PROT1>3.0.CO;2-N. 

[39] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” The 

Computer Journal, vol. 7, no. 4, pp. 308–313, Jan. 1965, doi: 

10.1093/comjnl/7.4.308. 

[40] M. J. G. Leening, M. M. Vedder, J. C. M. Witteman, M. J. Pencina, and E. W. 

Steyerberg, “Net reclassification improvement: computation, interpretation, and 

controversies: a literature review and clinician’s guide,” Ann Intern Med, vol. 160, 

no. 2, pp. 122–131, Jan. 2014, doi: 10.7326/M13-1522. 

[41] A. Maćkiewicz and W. Ratajczak, “Principal components analysis (PCA),” 

Computers & Geosciences, vol. 19, no. 3, pp. 303–342, Mar. 1993, doi: 

10.1016/0098-3004(93)90090-R. 



41 

 

[42] M. J, “Some methods for classification and analysis of multivariate observations,” 

in Proceedings of the fifth Berkeley symposium on mathematical statistics and 

probability, 1967, University of California Press, Berkeley: University of 

California Press, 1967, pp. 281–297. Accessed: Nov. 30, 2023. [Online]. 

Available: https://cir.nii.ac.jp/crid/1572261550390329472 

[43] E. Krieger, G. Koraimann, and G. Vriend, “Increasing the precision of 

comparative models with YASARA NOVA—a self-parameterizing force field,” 

Proteins: Structure, Function, and Bioinformatics, vol. 47, no. 3, pp. 393–402, 

2002, doi: 10.1002/prot.10104. 

[44] Z. Zhang, U. Ehmann, and M. Zacharias, “Monte Carlo replica-exchange based 

ensemble docking of protein conformations,” Proteins: Structure, Function, and 

Bioinformatics, vol. 85, no. 5, pp. 924–937, 2017, doi: 10.1002/prot.25262. 

[45] I. Aier, P. K. Varadwaj, and U. Raj, “Structural insights into conformational 

stability of both wild-type and mutant EZH2 receptor,” Sci Rep, vol. 6, p. 34984, 

Oct. 2016, doi: 10.1038/srep34984. 

[46] A. Glielmo, B. E. Husic, A. Rodriguez, C. Clementi, F. Noé, and A. Laio, 

“Unsupervised Learning Methods for Molecular Simulation Data,” Chem. Rev., 

vol. 121, no. 16, pp. 9722–9758, Aug. 2021, doi: 10.1021/acs.chemrev.0c01195. 

[47] J. J. Gray et al., “Protein–Protein Docking with Simultaneous Optimization of 

Rigid-body Displacement and Side-chain Conformations,” Journal of Molecular 

Biology, vol. 331, no. 1, pp. 281–299, Aug. 2003, doi: 10.1016/S0022-

2836(03)00670-3. 
 

 

 

  



42 

 

 Appendices 

The QR code provided below contains additional materials 

that play a significant role in our academic work. These 

appendices are carefully put together to give a deep 

understanding of different aspects of our study: 

Through the given QR code, you will be able to access the following appendices: 
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• Appendix B: The dataset of 100 antibody-antigen complexes used in the 

study - https://sangeetha-ratnayake.notion.site/Appendix-B-
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