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Magnetic instability under ferroaxial moment
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Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

(Received 4 December 2023; accepted 30 April 2024; published 13 May 2024)

Magnetic anisotropy is one of the important factors in determining magnetic structures. The type of magnetic
anisotropy is closely related to the symmetry of crystals. We theoretically investigate magnetic anisotropy and
its related magnetic instability arising from an electric axial moment, which appears under the breaking of
the mirror symmetry parallel to the moment but does not require the breakings of both spatial inversion and
time-reversal symmetries. By performing perturbation and mean-field calculations in a complementary way, we
show the appearance of the in-plane magnetic anisotropy when the electric axial moment occurs, which tends
to tilt in-plane spin moments from the crystal axes in collaboration with relativistic spin-orbit coupling. We
demonstrate such a tendency for single-sublattice and four-site cluster models. In the four-site cluster model, we
show that a spin configuration consisting of magnetic monopole and magnetic toroidal dipole tends to be realized
in the region where a spin vortex is stabilized by the exchange interactions.

DOI: 10.1103/PhysRevB.109.174424

I. INTRODUCTION

The stability of magnetic structures has long been studied
in lots of materials. Depending on the types of magnetic
interactions and anisotropy, noncollinear and noncoplanar
magnetic structures as well as collinear ferromagnetic and
antiferromagnetic structures can be realized. The appearance
of magnetic anisotropy is often related to the symmetry
of the crystal, where the interplay between the relativistic
spin-orbit coupling (SOC) and crystalline electric field plays
an important role. For example, the Dzyaloshinskii-Moriya
(DM) interaction is present when the spatial inversion sym-
metry at the bond center is lost [1,2], which favors a helical
spiral state and skyrmion crystal [3]. Another example is
the Kitaev-type exchange interaction that arises from the
strong SOC for the discrete rotational symmetry [4,5], which
induces noncoplanar spin textures [6–8]. The relation be-
tween magnetic interactions and crystal symmetry has been
so far classified in real space [9,10] and momentum space
[11]. The complicated magnetic textures induced by magnetic
anisotropy lead to unconventional physical phenomena, such
as the topological Hall effect under noncoplanar spin textures
[12–15] and nonlinear longitudinal/transverse transport under
noncollinear/noncoplanar spin textures [16–19].

In the present study, we investigate the origin and the role
of magnetic anisotropy under an electric axial moment, whose
uniform component is referred to as the ferroaxial (or ferro-
rotational) moment. The ferroaxial moment corresponds to a
time-reversal-even axial dipole moment, which appears when
the mirror symmetry parallel to the moment is lost but re-
mains spatial inversion (P) and time-reversal (T ) symmetries
[20]. The ordered state of such a ferroaxial moment has been
experimentally observed in materials like CaMn7O12 [21],
RbFe(MoO4)2 [22,23], NiTiO3 [24,25], Ca5Ir3O12 [26–29],
and BaCoSiO4 [30]. Although the ferroaxial moment does
not directly couple to neither electric field nor magnetic field
owing to the even parity in terms of the P and T symmetries,

recent studies clarified that it becomes the origin of rich trans-
verse responses of the conjugate physical quantities [31,32]
such as the spin current generation [32,33], antisymmetric
thermopolarization [34], nonlinear transverse magnetization
[35], unconventional Hall effect [36], and nonlinear magne-
tostriction [37]. Meanwhile, magnetic instability under the
ferroaxial ordering has not been fully clarified in spite of
the Kramers degeneracy owing to the T symmetry. Thus, it
is desirable to examine what types of magnetic instabilities
occur under the ferroaxial ordering. Especially, it is important
to understand how magnetic anisotropy is generated by the
onset of the ferroaxial ordering, which might be helpful for
understanding and exploring magnetic phase transitions in
ferroaxial materials.

For that purpose, we analyze a typical d-orbital model with
the d1 configuration based on the multipole representation
[38–46], where four types of multipoles with distinct P and
T parities, electric, magnetic, magnetic toroidal, and electric
toroidal, constitute a complete basis set in the low-energy
Hilbert space [38,43,44]. Since the dipole component of the
electric toroidal multipoles, i.e., the electric toroidal dipole
(ETD), corresponds to the ferroaxial moment, we examine
the magnetic instability in the presence of the ETD from
the microscopic point of view beyond the symmetry. First,
we perform perturbation and mean-field calculations for the
single-sublattice d-orbital model. As a result, we show that
the synergy between the molecular field arising from the ETD
moment and the SOC leads to single-ion magnetic anisotropy,
which tends to tilt the in-plane spin moments from the crystal
axis.

Then, we analyze the d-orbital model in a four-site cluster.
We find that the stability tendency of a vortex spin state ac-
companying both magnetic monopole and magnetic toroidal
dipole is enhanced by the magnetic anisotropy characteristic
of the ferroaxial moment. We show that the ratio of magnetic
monopole and magnetic toroidal dipole becomes comparable
to each other when the magnitude of the SOC is comparable
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to that of the ETD molecular field. Our results indicate that
the magnetic anisotropy arising from the ferroaxial moment
can be a source of intriguing magnetic phases, which might
exhibit a variety of cross-correlation phenomena.

The remaining part of this paper is organized as follows:
In Sec. II C, we briefly introduce the ferroaxial moments
based on the multipole representation. Then, we present a
single-sublattice d-orbital model, and we show the role of
the ferroaxial moment on the magnetic anisotropy through
the second-order perturbative analysis. We also numerically
evaluate the magnetic anisotropy by performing the mean-
field calculations. Then, we show the stable magnetic textures
under ETD moments in a four-site tetragonal cluster within
the mean-field approximation in Sec. III. We show that the
SOC under the ETD moment leads to a spin vortex phase
accompanying both the magnetic monopole and magnetic
toroidal dipole. Lastly, we summarize the results in Sec. IV.
In Appendix A, we show the CEF dependence of the magnetic
anisotropy. In Appendix B, we show the finite-temperature
phase diagram when the exchange interaction for the ETD is
considered. In Appendix C, we briefly show the result under
the electric hexadecapole moment, which is another candidate
hosting the ferroaxial moment in some crystals.

II. MAGNETIC ANISOTROPY UNDER FERROAXIAL
MOMENT

We discuss the role of the ETD moment on magnetic
anisotropy beyond the symmetry argument. In Sec. II A, we
introduce the ETD moment, which corresponds to a ferroaxial
moment. We also show when the ETD degree of freedom is
activated in the Hilbert space. In Sec. II B, we introduce a
single-sublattice five d-orbital model. Then, we perform the
second-order perturbation theory by focusing on the role of
the ETD moment in Sec. II C. Finally, we show the magnetic
anisotropy within the mean-field calculations in Sec. II D.

A. Microscopic description of ferroaxial moment

The ferroaxial moment can appear when the mirror sym-
metry parallel to the moment direction is lost; the symmetry
breakings in terms of P and T are not necessary. It is micro-
scopically characterized by a ferroic alignment of a T -even
axial vector, which is referred to as the ETD G. Based on the
multipole description [43,44], the atomic-scale G operator is
represented as the outer product of the spin operator s = σ/2
and orbital angular momentum operator l as follows:

G = l × σ, (1)

where the schematic picture of G is shown in Fig. 1(a). It
is noted that G can appear when the expectation values of
l and σ are zero. Since both l and σ are axial vectors, the
mirror symmetry parallel to G is broken, as shown in Fig. 1(b).
Therefore, G can be activated in subspace with nonzero orbital
angular moment, such as the p, d , and f orbitals. It is noted
that the quantity r × P, where r and P represent the position
vector and the electric polarization, respectively, identically
vanishes in an atomic wave function, although such a quantity
has often been used to describe the ferroaxial moment in
materials.

Among them, we consider five d orbitals in the low-energy
Hilbert space in the following analysis. In this situation, G is

FIG. 1. (a) The representation of the atomic-scale ETD moment
G = l × σ, which is denoted by the green arrow. The orange (blue)
arrow represents the orbital (spin) angular momentum l (σ ). (b) The
symmetry of the atomic ETD moment; the mirror symmetry parallel
to the ETD moment σv is lost. Meanwhile, time-reversal (T ) and
spatial inversion (P) symmetries are retained.

defined in the off-diagonal space between two orbitals with
different total angular momenta J = 3/2 and J = 5/2.

B. Single-sublattice d-orbital model

In order to investigate the role of the ETD moment on
the magnetic anisotropy, we introduce a single-sublattice five
d-orbital model with (du, dv, dyz, dzx, dxy) for u = 3z2 − r2

and v = x2 − y2 on a simple square lattice. In the following
analysis, we suppose the d1 configuration and neglect the
intra-atomic Coulomb interactions, with the transition metal
magnetic ions in mind. The model Hamiltonian is given by

H = Hloc + Hex, (2)

Hloc = HCEF + λl · s − hGGz, (3)

Hex = −J0
(
s2

x + s2
y

)
, (4)

where the first term in Eq. (2) represents the one-body
Hamiltonian, while the second term represents the two-body
Hamiltonian. In Hloc, HCEF is the crystalline electric filed
(CEF) Hamiltonian. We consider the five CEF parameters
by supposing the D2h symmetry: �1 = 0.400, �2 � 1.448,
�3 = 2.200, �4 � 2.552, α � 0.572, and β = √

1 − α2, as
schematically shown in Fig. 2(a); �1–�4 denote the atomic
energy levels for dxy, −αdu + βdv , dzx, and βdu + αdv or-
bitals measured from that for the dyz orbital, where α and β

stand for the numerical coefficients; see Appendix A for the
detailed definition of HCEF. We suppose that the ground-state
energy level is the dyz orbital. We also consider other CEF
parameters, which is shown in Appendix D. We take the
principal axis along the z direction, as shown in Fig. 2(b).
The second term in Eq. (3) represents the atomic SOC. The
third term in Eq. (3) represents the molecular field that arises
from the ETD moment, which lowers the symmetry from D2h

to C2h. One of the microscopic origins is the coupling to the
rotational distortion of the lattice structure belonging to the
same irreducible representation. Although we phenomeno-
logically deal with such a molecular field, it is possible to
evaluate hG from the ab initio calculations. Hex in Eq. (4)
represents the ferromagnetic exchange interaction within the
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Principal
axis

(a) (b) (c)

FIG. 2. (a) A schematic picture of the CEF levels for the single-
sublattice five d-orbital model under the D2h symmetry. (b) The
coordinate axes for the single site, where the z axis is taken as
the principal axis. (c) Four-site tetragonal cluster under the C4h

symmetry, where the site symmetry is C2v. The global coordinate
(x, y, z) and the local coordinate for sublattice i (Xi,Yi, Zi ) are also
shown. J1 and J2 represent the exchange interactions between the
nearest-neighbor and next-nearest-neighbor sites, respectively. Yel-
low arrows represent the electric polarization P, which originates
from the potential gradient at each site. Green (red) circles represent
ETD moments (DM vectors) along the z direction.

single-sublattice unit cell. We ignore other multipole interac-
tions in order to focus on the magnetic instability under the
ferroaxial moment.

C. Perturbation analysis

We examine the magnetic anisotropy arising from the ETD
moment by performing the perturbation analysis. For that
purpose, we analyze Hloc in Eq. (3) by ignoring Hex in Eq. (4).
Within the second-order perturbation in terms of λ and hG, an
effective spin Hamiltonian is derived as

Hs = −
∑

μ,ν=x,y

�μνsμsν, (5)

� =
[

4h2
G�′

yy + λ2�′
xx −2hGλ(�′

xx − �′
yy)

−2hGλ(�′
xx − �′

yy) 4h2
G�′

xx + λ2�′
yy

]
, (6)

where

�′
μν =

∑
e

〈g|lμ|e〉〈e|lν |g〉
Ee − Eg

. (7)

�′
μν includes the contribution from the CEF, where |g〉 (|e〉) is

the ground state (excited state) and Eg(Ee) is the ground-state
(excited-state) energy. We here omit the z component of �μν ,
since the effect of the ETD does not appear in �zν and �μz.

There are three important observations in Eq. (6). One is
the emergence of the off-diagonal xy component in �μν . Thus,
the ferroaxial moment induced by hG tends to tilt the spin
moment from the crystal axis. In addition, it is noteworthy
that the SOC λ is necessary to induce the off-diagonal com-
ponent. The second is the importance of the low-symmetric
CEF to induce �xy, since it is proportional to �′

xx − �′
yy for

�′
xx �= �′

yy. In other words, the inequivalence between the x
and y directions is significant. This is why we consider the
orthorhombic CEF Hamiltonian under the D2h symmetry in
HCEF; �xy = 0 when the tetragonal and hexagonal CEFs are
considered. The last is the opposite tendency in the diagonal
component of �μν for μ = ν between the ETD moment and
the SOC; hG (λ) tends to favor the x (y) direction for �′

xx <

0.00

0.05

0.10

0.15

0.20
(a)

(b)

0.00 0.05 0.200.150.10

0.00 0.05 0.10 0.15 0.20

FIG. 3. (a) Contour plot of the tilt angle of a spin moment θ in
the plane of λ and hG, which is obtained by the mean-field calcula-
tions. (b) λ dependence of the numerical result (red circle) and the
perturbation result (blue-dashed line) at hG = 0.02. In both panels,
the data is calculated by changing λ and/or hG with the interval of
�λ/J0 = �hG/J0 = 0.002.

�′
yy. The qualitative tendencies for the above observations

remain robust even when quantum and thermal fluctuations
are introduced.

More specifically, one obtains the tilt angle θ from
the x axis by diagonalizing �, which is given by θ =
arctan[λ/(2hG)] for �′

xx < �′
yy or arctan(−2hG/λ) for �′

xx >

�′
yy. In the case of the CEF parameters in Fig. 2(a), �′

xx <

�′
yy. We discuss the magnetic anisotropy for the other CEF

levels in Appendix A.

D. Mean-field calculations

We numerically evaluate the tilt angle θ in the presence
of the two-body Hamiltonian Hex. In order to capture the
essence, we apply the mean-field approximation for Hex as

Hex
MF = −J0(〈sx〉 sx + 〈sy〉 sy) + (const.), (8)

where 〈· · ·〉 represents the statistical average in d1 configura-
tion. We ignore the effect of quantum and thermal fluctuations
beyond the mean-field approximation for simplicity, which
can be a source of nontrivial states such as valence-bond solid
states [47]. We set J0 to the energy unit of the single-sublattice
model (J0 = 1).

Figure 3(a) shows the angle θ of the spin moment mea-
sured from the x axis by changing λ and hG at temperature
T/J0 = 0.1. When either λ or hG becomes zero, the spin aligns
in the crystal axis. For λ/J0 = 0, the spin moment aligns in
the x direction, while it aligns in the y direction for hG/J0 = 0.
This feature is consistent with the perturbation analysis, where
�′

xx < �′
yy is satisfied.

Meanwhile, the spin tilts from the crystal axis when both
λ and hG are considered. One finds good agreement between
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numerical and perturbation results; see the λ dependence of
both results in the case of hG/J0 = 0.02 in Fig. 3(b). In
addition, the maximum tilt angle of θ = 45◦ is realized for
λ � 2hG, which is also consistent with the perturbation result
in Eq. (6); the feature holds when λ increases. These results
indicate that the interplay between λ and hG plays an impor-
tant role in inducing the magnetic anisotropy characteristic of
the ETD moment even beyond the perturbation regime.

III. MAGNETIC INSTABILITY IN A CLUSTER MODEL

A. Four-site cluster model

Next, let us consider the magnetic instability under the
ETD moment in a cluster system by extending the analysis
from the single-sublattice system. We consider a four-site
tetragonal cluster under the C4h symmetry, as shown in
Fig. 2(c). We suppose that the site symmetry is C2v so that the
off-diagonal component in �μν in Eq. (6) becomes nonzero.
We use the local Hamiltonian Hloc in Sec. II B by adding the
sublattice index i = A–D. We take the same CEF parameters
in Sec. II C, although α take opposite sign and dyz ↔ dzx

between (A, B) and (C, D) sublattices because the principal
axis for the A and B sublattices is different from that for the
C and D sublattices by 90◦.

For the exchange interaction, we consider the following
Hamiltonian, which is given by

H′ex = −J1

n.n∑
〈i, j〉

(
si

xs j
x + si

ys j
y

) − J2

n.n.n∑
〈i, j〉

(
si

xs j
x + si

ys j
y

)
, (9)

where J1 and J2 correspond to the coupling constants for
the nearest-neighbor (n.n.) and next-nearest-neighbor (n.n.n)
sites, respectively. We here consider the situation where mag-
netic ordering with the in-plane spin modulations occurs
rather than the out-of-plane ones. In addition, we consider the
DM interaction D = (Dx, Dy, Dz ). From the symmetry view-
point, only the z component between the nearest-neighbor
sites becomes finite, as shown in Fig. 2(c). The DM Hamil-
tonian is given by

HDM = −
n.n∑
〈i, j〉

Di j
z (si × s j )z, (10)

where DAD
z = −DDA

z = DDB
z = −DBD

z = DBC
z = −DCB

z =
DCA

z = −DAC
z ≡ D. It is noted that we phenomenologically

introduce the DM interaction from the symmetry while
keeping the SOC term in Hloc; the double counting of the
SOC for the DM interaction and Hloc does not affect the
following qualitative results. By adopting the mean-field
approximation, H′ex and HDM are represented as

H′ex
MF � −J1

A,B,C,D∑
i

n.n∑
j

(〈
si

x

〉
s j

x + 〈
si

y

〉
s j

y

)

− J2

A,B,C,D∑
i

n.n.n∑
j

(〈
si

x

〉
s j

x + 〈
si

y

〉
s j

y

)
, (11)

HDM
MF � −

A,B,C,D∑
i

n·n∑
j

Di j
z [〈si〉 × s j]z, (12)

where we omit the constant term for notational simplicity. We
set J1 to the energy unit of the four-site cluster model (J1 = 1).
Although we treat the effect of the ETD as the one-body mean
field hG for simplicity, a qualitatively similar result can be
obtained even when the ETD moment is induced through the
two-body exchange interaction, as discussed in Appendix B.

B. Spin configurations

We consider the magnetic instability in the four-site clus-
ter model within the mean-field approximation. Since we
suppose the in-plane magnetic anisotropy, the four-sublattice
magnetic structures are expressed as a linear combination
of eight independent spin configurations. Based on the clus-
ter multipole theory [48], they are classified into magnetic
and magnetic toroidal multipoles: magnetic monopole (M (c)

0 ),
magnetic dipole (M (c)

x , M (c)
y ), magnetic toroidal dipole (T (c)

z ),
magnetic quadrupole (M (c)

xy , M (c)
v ), and magnetic toroidal

quadrupole (T (c)
yz , T (c)

zx ). Specifically, their spin configurations
denoted as (σ A

x , σ A
y , σ B

x , σ B
y , σ C

x , σ C
y , σ D

x , σ D
y ) are given by

M (c)
0 = (0, 1, 0,−1, 1, 0,−1, 0), (13)

M (c)
x = (1, 0, 1, 0, 1, 0, 1, 0), (14)

M (c)
y = (0, 1, 0, 1, 0, 1, 0, 1), (15)

T (c)
z = (1, 0,−1, 0, 0,−1, 0, 1), (16)

M (c)
xy = (1, 0,−1, 0, 0, 1, 0,−1), (17)

M (c)
v = (0,−1, 0, 1, 1, 0,−1, 0), (18)

T (c)
yz = (1, 0, 1, 0,−1, 0,−1, 0), (19)

T (c)
zx = (0, 1, 0, 1, 0,−1, 0,−1). (20)

The lowest-energy spin configuration depends on the mag-
netic interactions (J1, J2, D) as well as Hloc. When D/J1 =
0, |J1| < |J2|, J2 < 0, and Hloc is negligible, the energy by
the exchange interactions becomes the lowest for any of
M (c)

0 , T (c)
z , M (c)

v , and M (c)
xy . In this situation, by introducing

D > 0, the energy for M (c)
0 and T (c)

z is smaller than that for
M (c)

v and M (c)
xy . With this tendency in mind, we take |J1| ∼ |J2|,

J2 < 0, and D/J1 = 0.05 > 0. Although the energy for M (c)
0

and T (c)
z is degenerate with each other, it splits by taking into

account the effect of the Hloc.

C. Magnetic phase diagram

We perform the self-consistent mean-field calculations for
the four-site cluster model by setting hG/J1 = 0.2 and the
temperature as T/J1 = 0.1. Figure 5(a) shows the magnetic
phase diagram by changing λ and J2. There are mainly two
phases in the phase diagram: Phase I and Phase II.

The spin configuration of Phase I is expressed as the linear
combination of M (c)

x , M (c)
y , T (c)

yz , and T (c)
zx ; the spin moments

tilt from the crystal axis owing to the magnetic anisotropy
arising from hG. Although Phase I is almost characterized
by the ferromagnetic spin configuration, i.e., M (c)

x and M (c)
y ,

it includes the small contribution from T (c)
yz and T (c)

zx . This is
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FIG. 4. Eight independent spin configurations in the four-site
cluster: magnetic monopole (M (c)

0 ), magnetic dipole (M (c)
x , M (c)

y ),
magnetic toroidal dipole (T (c)

z ), magnetic quadrupole (M (c)
xy , M (c)

v ),
and magnetic toroidal quadrupole (T (c)

yz , T (c)
zx ). Blue arrows represent

the spin moments at each site.

because the C2 axis for the A and B sublattices in the local
coordinate [yellow arrows in Fig. 2(c)] is different from that
for the C and D sublattices by 90◦, which means that x and
y axes in the global coordinate are inequivalent for the (A,
B) and (C, D) sublattices, and hence, the spin lengths between
them are different from each other when the in-plane moments
are parallel/antiparallel to each other.

Meanwhile, Phase II is characterized by the spin configu-
ration to possess the fourfold rotational symmetry in order to
gain the energy by the CEF. For J2/J1 < −0.9 and λ/J1 = 0,

FIG. 5. (a) λ–J2 phase diagram obtained at hG/J1 = 0.2 and
D/J1 = 0.05. The data is calculated by changing λ and hG with the
interval of �λ/J1 = �J2/J1 = 0.003. Phase I (II) represents the spin
configuration consisting of the linear combination of M (c)

x , M (c)
y , T (c)

yz ,

and T (c)
zx (M (c)

0 and T (c)
z ) in Fig. 4. At λ/J1 = 0 for J2/J1 < −0.9,

the T (c)
z state is stabilized. (b) Contour plot of the tilt angle of

spin moments at A sublattice θA for −1.1 � J2/J1 � −0.9. (c) λ

dependence of the numerical result (red circle) and the perturbation
result (blue dashed line) in terms of θA at J2/J1 = −1.1.

the spin configuration in Phase II corresponds to T (c)
z . By

introducing λ, the spins at four sublattices tilt in the same
manner so as to keep the fourfold rotational symmetry, which
indicates that the spin configuration is expressed as the linear
combination of M (c)

0 and T (c)
z , as schematically shown in the

inset of Fig. 5(a).
We discuss the effect of Hloc including the ETD molecular

field hG and the SOC λ for J2/J1 < −0.9. In the case of
Hloc = 0, the phase boundary between Phase I and Phase II is
given by J2/J1 = −0.95. Thus, Hloc tends to favor the region
for Phase II. This is understood from the fact that Hloc, which
becomes the origin of the magnetic anisotropy, favors the spin
configuration satisfying the fourfold rotational symmetry that
the four-site cluster possesses in order to gain the energy by
the magnetic anisotropy. Such a tendency holds for nonzero λ,
which enhances the magnetic anisotropy; the phase boundary
moves upward by increasing λ. Thus, both hG and λ tend
to favor the vortex spin configuration retaining the fourfold
rotational symmetry compared to the uniform one breaking
the fourfold rotational symmetry.

Figure 5(b) shows the tilt angle of spin moments at A sub-
lattice θA in Phase II for −1.1 � J2/J1 � −0.9. The behavior
is similar to that in the single-sublattice model; the tilt angle
increases as λ increases. Furthermore, we confirmed that such
behavior is understood from the perturbation calculations, as
shown in Fig. 5(c); both data are well consistent.

Finally, we discuss the relationship between the ETD
moment and vortex magnetic structures from the symmetry
viewpoint. Since M0 corresponds to a time-reversal-odd axial
scalar and Tz corresponds to a time-reversal-odd polar vector,
their product M0Tz corresponds to a time-reversal-even axial
vector, i.e., the ETD Gz [49]. In this sense, the appearance of
Phase II, which is expressed as the linear combination of M0

and Tz in the presence of Gz, is natural. In a similar context, it
was shown that the skyrmion crystal accompanying both M0

(Néel type) and Tz (Bloch type) is realized by considering the
magnetic anisotropy that originates from the mirror symmetry
breaking [50]. Since M0 and Tz lead to similar but different
physical phenomena, the coexisting state can give rise to fur-
ther intriguing cross-correlation responses and transports. The
electric axial moment Gz plays an important role in inducing
such an effective coupling of M0 and Tz.

IV. SUMMARY

To summarize, we have investigated the magnetic single-
ion anisotropy and its associated magnetic instability driven
by the ETD moments based on the perturbation and mean-
field calculations for the five d-orbital models in the
single-sublattice system and four-site cluster system. We show
that the synergy between the molecular field arising from the
ETD moment and the SOC is essential to induce the in-plane
magnetic anisotropy so that the spin tilts from the crystal
axis beyond the symmetry viewpoint. We also show that the
tendency to tilt the spin moments is enhanced when the ETD
molecular field and SOC are comparable to each other. We
discuss that the ferroaxial system might become a prototype
to realize the vortex spin texture with both the nature of the
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magnetic monopole and magnetic toroidal dipole in collabo-
ration with the exchange interactions.

The present tendency in terms of magnetic anisotropy is
also expected for other ferroaxial materials. Since the fer-
roaxial moment can appear in crystallographic point groups
without mirror symmetry parallel to the electric axial mo-
ment, C6h,C6,C3h,C4h,C4, S4,C3i,C3,C2h,C2,Cs,Ci, and C1,
the materials with these crystal structures can exhibit similar
vortex spin configurations when the magnetic phase transition
occurs.

Let us comment on the difference between the ETD
and other multipole degrees of freedom, which might also
correspond to the electric axial moments in some crystals.
Although the ETD and other multipoles are independent of
each other in the rotational group, they often belong to the
same irreducible representation according to the symmetry
lowering. In the cases of the C2h and C4h symmetries discussed
in Secs. II C and III, respectively, the xy(x2 − y2) type of the
electric hexadecapole also leads to similar mirror symmetry
breaking. Thus, the electric hexadecapole is another candidate
to describe the ferroaxial ordering. Indeed, we find that the
electric hexadecapole also leads to the tilt of spin moments,
although its behavior against the model parameters is differ-
ent. We discuss the difference between the ETD and electric
hexadecapole in Appendix C.
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APPENDIX A: CEF DEPENDENCE OF MAGNETIC
ANISOTROPY

In this Appendix, we show the relation between CEF pa-
rameters and the magnetic anisotropy. As shown in Eq. (7), the
CEF energy levels and the matrix elements of orbital angular
momentum lx, ly affect the magnitude of anisotropy �′

xx,�
′
yy.

The matrix elements of lx and ly are given by

lx =

⎛
⎜⎜⎜⎜⎝

0 0 i
√

3 0 0
0 0 i 0 0

−i
√

3 −i 0 0 0
0 0 0 0 i
0 0 0 −i 0

⎞
⎟⎟⎟⎟⎠, (A1)

ly =

⎛
⎜⎜⎜⎜⎝

0 0 0 −i
√

3 0
0 0 0 i 0
0 0 0 0 −i

i
√

3 −i 0 0 0
0 0 i 0 0

⎞
⎟⎟⎟⎟⎠, (A2)

where the basis is given by five d orbitals:
|du〉 , |dv〉 , |dyz〉 , |dzx〉 , |dxy〉. lx(ly) has the matrix elements
between du and dyz, dv and dyz, and dzx and dxy (du and dzx, dv

and dzx, and dyz and dxy). To investigate the relation between
CEF levels and magnetic anisotropy, we rewrite the local CEF
Hamiltonian as

Hloc =
5∑
k

BkOk, (A3)

where

O1 = 1√
2

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, O2 = 1√

2

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠,

O3 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, O4 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠, O5 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠. (A4)

We take the principal axis as the y direction by supposing
the cartesian coordinate for the A sublattice in Fig. 2(c). B1,
B3, B4, and B5 represent the parameters for the atomic-energy
level, while B2 represents the parameter for the hybridization
between the du and dv orbitals.

Figures 6(a), 6(c), and 6(e) [6(b), 6(d), and 6(f)] repre-
sent the B2 dependencies of CEF energy levels (�′

xx,�
′
yy

and �′
xx − �′

yy) by setting B1 = 0.5, B3 = −2.0, and B5 =
0.2. We set B4 = −2.5 for Figs. 6(a) and 6(b), B4 = −1.6
for Figs. 6(c) and 6(d), and B4 = −1.3 for Figs. 6(e)
and 6(f).

In the case of Figs. 6(a) and 6(b), the ground state is
occupied by the dxy orbital, which leads to nonzero matrix

elements 〈e| lx |g〉 (〈e| ly |g〉) for 〈e| = 〈dzx| (〈dyz|). Thus, B2

does not affect both �′
xx and �′

yy.
On the other hand, when the ground state is occupied

by the dyz orbital, the anisotropy depends on B2, as shown
in Figs. 6(c)–6(f), since 〈e| lx |g〉 (〈e| ly |g〉) becomes nonzero
for 〈e| = 〈du| , 〈dv| (〈dxy|). In such a situation, energy levels
of −αdu + βdv (βdu + αdv ) and the ratio of du in the lower
eigenstate affect �′

xx. When B2 becomes larger, |α| becomes
smaller as shown in the insets of Figs. 6(c) and 6(e), thereby
�′

xx decreases because of | 〈du|lx|dyz〉 | > | 〈dv|lx|dyz〉 |. On the
other hand, �′

yy is independent of B2 as the energy of dxy is
constant against B2. Depending on the CEF parameters, the
sign change of �′

xx − �′
yy occurs, as shown in Fig. 6(f).
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(f)(e)

0.0
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Energy level

(b)(a) Energy level

0.0

Matrix 
elements

(c) (d)Energy level

0.0
0.0

0.4

0.8

0.0

0.0

FIG. 6. B2 dependence of (a), (c), (e) energy levels and (b),
(d), (f) �′

μν (μ, ν = x, y) at B4 = −2.5 in (a), (b), B4 = −1.6 in
(c), (d), and B4 = −1.3 in (e), (f) for the single-sublattice sys-
tem. The red(blue) line represents the CEF energy level −αdu +
βdv (βdu + αdv ). The insets of (c) and (e) show B2 dependence of |α|.
The ground-state energy level is characterized by the dxy (dyz) orbital
for (a) and (b) [(c), (d), (e), and (f)]. The other model parameters are
chosen as B1 = 0.5, B3 = −2, and B5 = 0.2.

APPENDIX B: FINITE-TEMPERATURE PHASE DIAGRAM
IN THE PRESENCE OF THE EXCHANGE INTERACTION

BETWEEN THE ELECTRIC TOROIDAL DIPOLES

In the main text, we deal with the effect of the ETD
moment as the one-body molecular-field term hG. In this
Appendix, we introduce the two-body exchange interaction
between the ETD moments instead of hG, which is given by

HG = −
∑
〈i j〉

Ji j
G Gi

zG
j
z , (B1)

where Ji j
G is the coupling constant for the nearest-neighbor

sites, i.e., Ji j
G = JG. The microscopic origin of this interaction

might be attributed to the multiorbital Coulomb interactions,
such as the interorbital Coulomb interaction and pair-hopping
interaction. We apply the mean-field approximation as

HG
MF = −JG

A,B,C,D∑
i

n.n∑
j

〈
Gi

z

〉
Gj

z + (const.). (B2)

0.0
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0.2

0.0 0.1 0.2 0.3 0.4 0.5

(a)

-0.5

0.0

0.5

0.0 0.1 0.2 0.3 0.4 0.5

0.0
0.5
1.0
1.5
2.0

0.0 0.1 0.2 0.3 0.4 0.5

(c)

(b)

FIG. 7. (a) T –JG phase diagram at λ/J1 = 0.1. The T
dependence of (b) 〈Gz〉 and (c) 〈sA

x 〉 , 〈sA
y 〉 , 〈sB

x 〉 , 〈sB
y 〉 , 〈sC

x 〉 ,

〈sC
y 〉 , 〈sD

x 〉 , 〈sD
y 〉 at JG/J1 = 0.12. The data is calculated by changing

T and JG with the interval of �T/J1 = 0.02, �JG/J1 = 0.01. The
other parameters are the same as those used in Fig. 5.

By performing the self-consistent calculations for the four-
site cluster model

∑
i Hloc

i + H′ex
MF + HDM

MF + HG
MF, we obtain

the finite-temperature phase diagram against JG in Fig. 7. We
choose the same model parameters as those in Sec. III except
for hG = 0.

Similarly to the results in Sec. III in the main text, one finds
that a sequence of the phase transition occurs for JG/J1 �
0.1; in the case of JG/J1 = 0.12, the paramagnetic state with
〈Gz〉 = 0 turns into the ferroaxial state with 〈Gz〉 �= 0 at
T/J1 � 0.4, and this state shows a further transition to Phase
II at T/J1 � 0.24 by decreasing the temperature. Here, the
spin configuration in Phase II is characterized by the linear
combination of the magnetic monopole and magnetic toroidal
dipole, as discussed in the main text. We show the behavior
of 〈Gz〉 and spin moments 〈si

μ〉 for i = A–D and μ = x, y in
Figs. 7(b) and 7(c), respectively. Thus, the phase transition
from the ferroaxial state to the vortex spin state occurs in a
unified way once the ferroaxial moment is induced.

APPENDIX C: RESULT FOR ELECTRIC HEXADECAPOLE

Although we have investigated the ferroaxial ordering un-
der the ETD moment in the main text, other multipoles
also lead to the ferroaxial ordering when their irreducible
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FIG. 8. Contour plot of the tilt angle θ of the spin moments under
the Qα

4z molecular field. The other parameters are the same as those
used in Fig. 3. It is noted that θ is indeterminate for λ/J0 = 0 owing
to no magnetic anisotropy in the xy plane.

representations are the same as each other. In the d-orbital
space, the electric hexadecapole Qα

4z[∝ xy(x2 − y2)] is an-
other degree of freedom related to the ferroaxial moments,
since Qα

4z belongs to the same irreducible representation as
Gz under the D2h symmetry. In this Appendix, we briefly
discuss the result for the Qα

4z ordered phase. We analyze the
single-sublattice model, where we replace the mean-field term
−hGGz to −hQQα

4z in Eq. (3). The other model parameters are
the same as those used in Sec. II C

Figure 8 shows the contour plot of the tilt angle θ by
changing λ and hQ, which is obtained by the self-consistent
mean-field calculations. In contrast to the result in Fig. 3 in
Sec. II C in the main text, θ does not depend on λ, while hQ

tilts the spin moments from the crystal axis. This behavior is
attributed to the anisotropic form factor of �′

μν . In the pres-
ence of Qα

4z without the spin component, the spin Hamiltonian
in terms of the x and y spin components is represented as

H′
s = −λ2

∑
μ,ν=x,y

�′
μνsμsν, (C1)

where �′
xx, �′

yy, and �′
xy can become nonzero in the presence

of hQ in contrast to �xy in Sec. II C.
By diagonalizing �′ in Eq. (C1), one obtains θ as follows:

θ = arctan

⎡
⎢⎣ 2�′

xy√
(�′

xx − �′
yy)2 + 4�′2

xy + �′
xx − �′

yy

⎤
⎥⎦. (C2)

Thus, one finds that θ has no λ dependence, which is consis-
tent with the numerical results in Fig. 8.

APPENDIX D: RESULT FOR DIFFERENT CEF
PARAMETERS

In this Appendix, we show the result for a different choice
of the CEF levels. We adopt the situation where the CEF
levels for the dyz, dzx, and dxy orbitals are apart from the du

and dv orbitals, as often found in transition-metal oxides; we
set �1 = 0.5, �2 = 1, �3 � 2.13944, �4 � 2.86056, α �
0.812542, and β = √

1 − α2. The CEF levels are shown in
Fig. 9(a).

0.00 0.05 0.10 0.15 0.200.00

0.05

0.10

0.15

0.20
(b)(a)

FIG. 9. (a) A schematic picture of the CEF levels for the single-
sublattice five d-orbital model under the D2h symmetry. (b) Contour
plot of the tilt angle of a spin moment θ in the plane of λ and hG,
which is obtained by the mean-field calculations for �1 = 0.5, �2 =
1, �3 � 2.13944, �4 � 2.86056, α � 0.812542, and β = √

1 − α2.

Figure 9(b) shows the tilt angle of a spin moment θ for a
single-sublattice model. Compared with the results in Fig. 3,
one finds a similar tendency; the tilt angle becomes the max-
imum when the SOC λ is comparable to the ETD molecular
field hG. This result indicates that our qualitative argument
in the main text holds irrespective of a sequence of the CEF
levels.

APPENDIX E: THREE-SITE CLUSTER MODEL

In order to show that the magnetic behavior in a four-site
cluster in Sec. III is expected to happen for other clusters,
we consider the magnetic instability for a three-site triangle
cluster model, as shown in Fig. 10(a). Similar to the proce-
dure in Sec. III B, the independent six magnetic structures are
classified into the cluster multipole orderings as follows: mag-
netic monopole (M (c)

0 ), magnetic dipole (M (c)
x , M (c)

y ), magnetic
toroidal dipole (T (c)

z ), and magnetic quadrupole (M (c)
xy , M (c)

v ).

FIG. 10. (a) Three-site triangle cluster under the D3h symmetry,
where the site symmetry is C2v. J1 represents the exchange interac-
tions between the nearest-neighbor sites. Yellow arrows represent the
electric polarization P, which originates from the potential gradient
at each site. Green circles represent ETD moments along the z direc-
tion. (b) Six independent spin configurations in the three-site cluster:
magnetic monopole (M (c)

0 ), magnetic dipole (M (c)
x , M (c)

y ), magnetic
toroidal dipole (T (c)

z ), and magnetic quadrupole (M (c)
xy , M (c)

v ). Blue
arrows represent the spin moments at each site.
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FIG. 11. SOC dependence of (a) spin moments on A, B, and C
sublattices and (b) the ratio of M (c)

0 and T (c)
z in the three-site model.

The spin configurations in each state are given by

M (c)
0 = (1, 0,−1/2,

√
3/2,−1/2,−

√
3/2), (E1)

M (c)
x = (1, 0, 1, 0, 1, 0), (E2)

M (c)
y = (0, 1, 0, 1, 0, 1), (E3)

T (c)
z = (0,−1,

√
3/2, 1/2,−

√
3/2, 1/2), (E4)

M (c)
xy = (0, 1,

√
3/2,−1/2,−

√
3/2,−1/2), (E5)

M (c)
v = (1, 0,−1/2,−

√
3/2,−1/2,

√
3/2), (E6)

where the basis is represented by (σ A
x , σ A

y , σ B
x , σ B

y , σ C
x , σ C

y ).
The real-space spin configurations in each case are shown in
Fig. 10(b).

Figures 11(a) and 11(b) represent the spin moments at each
site and the ratio of the spin configuration in the three-site
triangle cluster for the nearest-neighbor antiferromagnetic ex-
change interaction J1 = −1 and hG = 0.5, respectively. We
use the same CEF parameters for the A sublattice as those
for the C sublattice in Appendix D. It is noted that the effect
of the DM interaction is omitted. The CEF parameters in other
sublattices are set to satisfy the C3 symmetry. The results show
a similar tendency as that of the four-site cluster in Sec. III.
For λ = 0, the spin configuration is characterized by T (c)

z .
With the increase of λ, the spin moments gradually tilt, and
the spin configuration is represented as a linear combination
of M (c)

0 and T (c)
z . Thus, the effect of the ferroaxial moments on

the magnetic instability is qualitatively similar to tetragonal
and triangle models to each other, which implies the general
aspect in terms of the magnetic instability under the ferroaxial
moment.
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Mater. 6, 045004 (2022).

[34] J. Nasu and S. Hayami, Phys. Rev. B 105, 245125
(2022).

[35] A. Inda and S. Hayami, J. Phys. Soc. Jpn. 92, 043701
(2023).

[36] S. Hayami, R. Oiwa, and H. Kusunose, Phys. Rev. B 108,
085124 (2023).

[37] A. Kirikoshi and S. Hayami, J. Phys. Soc. Jpn. 92, 123703
(2023).

[38] S. Hayami and H. Kusunose, J. Phys. Soc. Jpn. 87, 033709
(2018).

[39] H. Watanabe and Y. Yanase, Phys. Rev. B 98, 220412(R)
(2018).

[40] H. Watanabe and Y. Yanase, Phys. Rev. B 98, 245129 (2018).

[41] N. A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys.: Condens.
Matter 20, 434203 (2008).

[42] J. Hlinka, Phys. Rev. Lett. 113, 165502 (2014).
[43] S. Hayami, M. Yatsushiro, Y. Yanagi, and H. Kusunose, Phys.

Rev. B 98, 165110 (2018).
[44] H. Kusunose, R. Oiwa, and S. Hayami, J. Phys. Soc. Jpn. 89,

104704 (2020).
[45] M. Yatsushiro, H. Kusunose, and S. Hayami, Phys. Rev. B 104,

054412 (2021).
[46] H. Kusunose and S. Hayami, J. Phys.: Condens. Matter 34,

464002 (2022).
[47] G. Chen, R. Pereira, and L. Balents, Phys. Rev. B 82, 174440

(2010).
[48] M.-T. Suzuki, T. Nomoto, R. Arita, Y. Yanagi, S. Hayami, and

H. Kusunose, Phys. Rev. B 99, 174407 (2019).
[49] S. Hayami, Phys. Rev. B 106, 144402 (2022).
[50] S. Hayami and R. Yambe, Phys. Rev. B 105, 104428 (2022).

174424-10

https://doi.org/10.7566/JPSJ.91.113702
https://doi.org/10.1103/PhysRevMaterials.6.045004
https://doi.org/10.1103/PhysRevB.105.245125
https://doi.org/10.7566/JPSJ.92.043701
https://doi.org/10.1103/PhysRevB.108.085124
https://doi.org/10.7566/JPSJ.92.123703
https://doi.org/10.7566/JPSJ.87.033709
https://doi.org/10.1103/PhysRevB.98.220412
https://doi.org/10.1103/PhysRevB.98.245129
https://doi.org/10.1088/0953-8984/20/43/434203
https://doi.org/10.1103/PhysRevLett.113.165502
https://doi.org/10.1103/PhysRevB.98.165110
https://doi.org/10.7566/JPSJ.89.104704
https://doi.org/10.1103/PhysRevB.104.054412
https://doi.org/10.1088/1361-648X/ac9209
https://doi.org/10.1103/PhysRevB.82.174440
https://doi.org/10.1103/PhysRevB.99.174407
https://doi.org/10.1103/PhysRevB.106.144402
https://doi.org/10.1103/PhysRevB.105.104428

