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Abstract

In this paper, we aim to tackle the problem of unsupervised domain adaptation (UDA)

of semantic segmentation and improve the UDA performance with a novel concep-

tion of learning intra-domain style-invariant representation. Previous UDA methods

focused on reducing the inter-domain inconsistency between the source domain and

the target domain. However, due to the different data distributions of the two do-

mains, reducing the inter-domain inconsistency cannot ensure the generalization abil-

ity of the trained model in the target domain. Therefore, to improve the UDA per-

formance, we take into consideration the intra-domain diversity of the target domain

for the first time in studies on UDA and aim to train the model to generalize well to

the diverse intra-domain styles. To achieve this, we propose a self-ensembling method

to learn the intra-domain style-invariant representation and we introduce a semantic-

aware multimodal image-to-image translation model to obtain images with diversi-

fied intra-domain styles. Our method achieves state-of-the-art performance on two

synthetic-to-real adaptation benchmarks, and we demonstrate the effectiveness of our

method by conducting extensive experiments.
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1. Introduction

Unsupervised domain adaptation (UDA) aims to transfer knowledge from a do-

main that is rich in ground truth labels to an unlabeled domain. UDA is especially

promising for tasks that have a shortage of ground truth labels such as semantic seg-

mentation. In recent years, synthetic data (e.g., GTA5 [1] and SYNTHIA [2]) have5

drawn researchers’ interest as an appropriate candidate for the source domain in UDA

of semantic segmentation. Labels of synthetic data can be produced automatically, and

thus leveraging those synthetic data may considerably alleviate the burden of human

annotation.

Unlike semi-supervised learning (SSL) in which labeled data and unlabeled data10

typically have the same distributions, distributions of the two domains in UDA are quite

different and the images have major visual differences. Therefore, aligning the feature

distributions of the two domains is considered the key to transferring the knowledge.

Researchers have tried to achieve this by using various approaches such as modifying

the images to make the two domains visually similar [3, 4, 5] and using adversarial15

learning to make the domain of the features or segmentation outputs indistinguish-

able [6, 7, 8]. Despite significant achievements, a problem that has not attracted suffi-

cient attention is that alignment of the feature distributions cannot ensure generalization

ability of the trained model in the target domain. Due to the different intrinsic data dis-

tributions and some nontransferable features, the two domains cannot be completely20

aligned, and a model trained with supervision signals from only the source domain

may therefore not generalize well in the target domain. Although pseudo labels can

provide supervision signals in the target domain [9, 10, 11], the final performance still

depends on the model that generates the pseudo labels.

In this study, to tackle the problem of generalization in the target domain, we fo-25

cused on learning intra-domain style-invariant representation for UDA of semantic seg-

mentation. The underlying concept is that if the learned representation is invariant to

the varied characteristics (e.g., brightness, saturation and texture, which are referred

to as intra-domain styles in this paper) of the target domain, the segmentation model

may perform well on the unknown samples in the target domain. This concept is some-30
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Original Image Results of MUNIT Results of ours

Figure 1: Inconsistent semantic contents (sky region) can be observed in the results of MUNIT, whereas the
semantic-aware MUNIT proposed in our method produced diversified results with consistent contents. 1st
row: GTA5-to-Cityscapes translation. 2nd row: diversification of the target domain image.

what similar to data augmentation, which is considered to be usually helpful for the

enhancement of convolutional neural networks’ (CNNs’) generalization ability in su-

pervised learning. However, in our study, the style of an image cannot be modified ap-

propriately by using usual augmentation techniques. In addition, more importantly, the

style-invariant representation is learned via not only supervised learning with labeled35

source domain samples but also unsupervised learning with unlabeled target domain

samples. Therefore, we propose a self-ensembling method to integrate the supervised

and unsupervised learning of intra-domain style-invariant representation and, addition-

ally, construct a multimodal unpaired image-to-image (I2I) translation model to obtain

images with diverse intra-domain styles.40

The idea of self-ensembling originated from studies of SSL [12, 13]. SSL was used

for UDA of semantic segmentation in a previous work [14] but only as a usual SSL

technology that does not consider the generalization problem and the intra-domain

styles. In this study, we used a self-ensembling architecture [13] that consists of a

student model trained with style-diversified images and a teacher model updated as45

the exponential moving average of the student model. By training with images with

diversified intra-domain styles, the learning of the intra-domain style-invariant repre-

sentation integrates into a supervised loss of the source domain and a teacher-student

consistency loss of the target domain. Moreover, pseudo labels are subsequently in-

volved in the training to further improve the UDA performance.50

As mentioned above, images with diversified intra-domain styles are indispensable

for the realization of our conception. In our method, we translate the source domain
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images to different target domain styles and meanwhile diversify the styles of the target

domain images. Such a task can be accomplished by an existing multimodal unpaired

I2I translation method [15] named multimodal unsupervised image- to-image transla-55

tion (MUNIT). However, we found that the existing method cannot meet an essential

requirement in our study, which is the consistency of semantic contents in the transla-

tion results. An example is shown in Fig. 1. The semantic contents in the sky region are

inconsistent in the translation results of MUNIT. To overcome this problem, we adapt

the MUNIT architecture to content-consistent translation by introducing pixel-level se-60

mantic information as additional guidance for the translation. As shown in Fig. 1, the

consistency of semantic contents in our translation results is enhanced compared to

that in the results of MUNIT, and learning the style-invariant representation therefore

becomes realizable.

In this paper, we make the following contributions.65

• We propose the conception of learning intra-domain style-invariant representa-

tion for UDA of semantic segmentation, which can make the trained model gen-

eralize better to the diverse intra-domain styles of the target domain.

• We propose a self-ensembling method for learning the intra-domain style-invariant

representation and construct a semantic-aware version of MUNIT for style diver-70

sification.

• We achieved state-of-the-art UDA performance on GTA5-to-Cityscapes and SYNTHIA-

to-Cityscapes benchmarks and we conducted extensive experiments for further

analyses.

2. Related Work75

2.1. UDA of Semantic Segmentation

UDA of semantic segmentation is considered a challenging task due to the com-

plexity of transferring pixel-level semantic knowledge. There are generally three main

components in the technologies for UDA of semantic segmentation: I2I translation,

adversarial learning, and semi-supervised learning.80
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I2I translation technologies can modify some characteristics (e.g., color and tex-

ture) that are collectively called “styles” of an image, typically for reducing the visual

domain gap. Cycle-consistent generative adversarial network (CycleGAN) [16]-based

models were the most frequently used models in previous works [3, 17]. The gener-

ative adversarial network (GAN) [18]-based unpaired I2I translation method is used85

to transfer the visual style of the source domain images to that of the target domain.

The same goal was achieved in some works [19, 20] by using style transfer technol-

ogy [21, 22]. In addition to them, [14] trains a one-sided I2I translation model with

the GAN framework and the adaptive instance normalization (AdaIN) layer [23]. [24]

reduces the visual domain gap by swapping the low-frequency spectrum of the Fourier90

Transform of the images instead of training a neural network.

Adversarial learning is used to align the two domains in the feature space. The

adversarial loss derived from the domain discriminator can be imposed on either the

intermediate features [3] or final outputs [6] of the segmentation network. There are

also some more sophisticated methods based on adversarial learning. [25] explores95

local region-level consistency across domains with adversarial learning and further

integrates local region-level adversarial learning with global image-level adversarial

learning. [26] improves the feature alignment by separating the features into differ-

ent semantic groups and performing class-wise adversarial learning. [27] weights the

adversarial loss based on the alignment score produced by two classifiers.100

Semi-supervised learning is similar to UDA in terms of exploiting unlabeled data,

and thus some SSL technologies are useful for UDA of semantic segmentation. Pseudo

label is a widely used strategy that is powerful even in the simplest manner [17]. It

can be further improved by elaborate designs such as weighting the pseudo label with

estimated reliability [9]. Other useful SSL technologies include Entropy Minimiza-105

tion [28] used in [29, 30] and Self-Ensembling [13] used in [14]. Moreover, the scale-

invariance constraint in [31] can be interpreted as an SSL technology that makes use of

the information of semantic structures in the target domain.
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2.2. Unpaired I2I translation

Unpaired I2I translation learns a mapping between two domains without paired110

data. Due to the absence of direct supervision, most methods are constructed on the

basis of the GAN framework in which the distribution of each domain is learned by a

discriminator. Cycle-consistency [16] is also a crucial ingredient for mitigating the ill-

posedness of the unpaired translation. Some methods [32, 15] learn disentangled latent

representation and use normalization layers (e.g., conditional instance normalization115

(CIN) [33] and AdaIN [23]) with trainable parameters to realize the multimodal trans-

lation. In this study, we further introduced a semantic-aware architecture to enhance

the consistency of semantic contents in the multimodal results.

2.3. Self-Ensembling

Self-ensembling minimizes the discrepancy between the predictions of the classifi-120

cation network and its ensemble. The ensemble can be an exponential moving average

(EMA) of the network [13, 34] or the prediction [12]. Perturbations to the inputs are

important for the self-ensembling. Instead of random perturbations such as Gaussian

noise, [35, 36] propose perturbations based on adversarial training to improve the gen-

eralization performance. We consider the perturbation from a totally different perspec-125

tive, i.e., diversification of the intra-domain style rather than addition of trivial noise.

3. Proposed Method

First, we provide the problem setting. Given a source domain dataset S comprised

of image-label pairs {xs, ys} ∈ S and a target domain dataset T comprised of unla-

beled images {xt} ∈ T , we aim to transfer the semantic knowledge from S to T at130

the pixel level. Our method for learning intra-domain style-invariant representation is

presented in Section 3.1. The I2I translation model that generates the style-diversified

images used in the method presented in Section 3.1 is described in Section 3.2. All of

the implementation details are provided in Section 3.3.
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Figure 2: Proposed self-ensembling method for learning intra-domain style-invariant representation. In our
method, we first feed a source domain image xs and a target domain image xt into the multimodal I2I
translation model (not shown in this figure) and obtain the images xs

1, xs
2 and xt

1, xt
2 with diversified intra-

domain styles. To train the student model M , xs
1 and xs

2 are fed into M along with the source domain
label ys to calculate the supervised learning loss Lsup. Next, the unsupervised consistency loss Lcon is
calculated with the outputs of feeding xt

1, xt
2 into the student model M and xt into the teacher model M �.

After updating M at each training step, M � is updated as the exponential moving average of M .

3.1. UDA by Learning Intra-Domain Style-Invariant Representation135

3.1.1. Overview of the self-ensembling architecture

In our method, we employ a self-ensembling architecture to learn the intra-domain

style-invariant representation for UDA. The self-ensembling architecture consists of

a student model M and a teacher model M � with the same structures. The student

model is trained with the labeled data from S and with the unlabeled data from T140

simultaneously. Meanwhile, the teacher model is updated as the EMA of the student

model as the following equation:

θ�k = αθ�k−1 + (1− α)θk, (1)

where α is the EMA weight parameter, θ�k is the weight of M � at training step k, θ�k−1 at

step k−1, and θk is the weights of M at training step k. The student model and teacher
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model are updated alternately. Fig. 2 illustrates the training of the self-ensembling145

architecture. The training consists of three components: supervised learning with S,

unsupervised learning with T , and pseudo-label learning with T , which is not included

in Fig. 2.

3.1.2. Supervised learning with the source domain

Given an image-label pair {xs, ys} from the source domain S , we use a multimodal150

I2I translation model to translate xs into the target domain and sample two translation

results xs
1 and xs

2 with different intra-domain styles. Then, with the images xs
1, xs

2 and

label ys, we calculate the cross-entropy loss:

Lsup = Exs,ys [− 1

2HW

�

k

�

h,w,c

ys(h,w,c)logM(xs
k)

(h,w,c)], (2)

where M(xs
k) is the probability predicted by the model M for the image xs

k, (h,w, c)

means the element of the channel c at the spatial position (h,w), and H and W denote155

the height and width of the image, respectively.

Since the domain translation can hardly be perfect, the student model learns the

semantic knowledge partly in the target domain with the above supervised loss. On

the other hand, the intra-domain style-invariant representation is also motivated by

the supervised learning. Due to the presence of the ground truth label, there is no160

need to enforce an additional constraint and the supervised loss implicitly encourages

consistent predictions of xs
1 and xs

2.

3.1.3. Unsupervised learning with the target domain

Given a target domain image xt, we again use the multimodal I2I translation model

to obtain two style-diversified copies xt
1 and xt

2 of xt. But this time, the translation165

does not change the image domain and only diversifies the intra-domain style of xt.

Due to the absence of the ground truth label, the prediction of the teacher model M � is

used to calculate an unsupervised consistency loss:

Lcon = Ext [
1

2

�

k

||M(xt
k)−M �(xt)||2]. (3)
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This consistency loss is twofold: one is the consistency between M(xt
k) and M �(xt),

and the other is the consistency between M(xt
1) and M(xt

2). The former is a consis-170

tency term of SSL, which forces the student model to make predictions that are con-

sistent with those by the teacher model. The teacher model aggregates information of

the consecutive student models and consequently tends to be more accurate than the

student model. Therefore, the prediction of the teacher model can be used as targets

for training the student model. Moreover, considering that the teacher model can be re-175

garded as an aggregate of the student models, the consistency constraint encourages the

student model to be smooth in the vicinity of xt and yields a movement of the decision

boundary towards low-density regions so that the model becomes more reliable for the

target domain according to the “smoothness assumption” of SSL. However, different

from the traditional consistency term in the SSL methods [12, 13], we sample from the180

vicinity of xt by changing its intra-domain style instead of adding trivial noise.

The latter consistency is similar to that between xs
1 and xs

2 in the supervised learn-

ing with the source domain. Although there are no ground truth supervision signals

in the consistency loss, the predictions of xt
1 and xt

2 are both encouraged to be consis-

tent with the teacher model’s prediction M �(xt) so that the intra-domain style-invariant185

representation learning is enforced.

3.1.4. Pseudo-label learning with the target domain

Like many previous methods, we use pseudo labels of the target domain images to

further improve the UDA performance. Inspired by [9] that estimates the prediction

uncertainty to rectify the learning with pseudo labels, we adopt a similar rectification190

strategy for the pseudo-label learning. Different from the uncertainty estimation by

using two classifiers in [9], we take advantage of the style-diversified images xt
1 and

xt
2 to estimate the prediction uncertainty. The pseudo-label loss is defined as follows:

Lpsl = Exp(−KLD(xt
1, x

t
2))L�

sup +KLD(xt
1, x

t
2), (4)

where KLD(xt
1, x

t
2) is the Kullback–Leibler (KL) divergence between M(xt

1) and

M(xt
2), and L�

sup is the cross-entropy loss using pseudo labels with the same form195
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as Lsup.

In Eq. (4), KLD(xt
1, x

t
2) measures the inconsistency between the predictions of

model M for the style-diversified copies xt
1 and xt

2. If M produces predictions with

a large divergence for a pixel of xt
1 and xt

2, the predictions are considered ambiguous

and the model is considered to be unreliable for the pixel in light of the ambiguous200

predictions. The pseudo labels of such pixels are also more noisy, and hence we assign

the pixels small weights in the form of Exp(−KLD(xt
1, x

t
2)) for the cross-entropy loss

L�
sup using pseudo labels. Meanwhile, to compensate for the training for the pixels

with small weights, we train the student model M to minimize also the KL divergence

term KLD(xt
1, x

t
2) to make the predictions for xt

1 and xt
2 consistent. As a result, model205

M is trained under less effects of the unreliable pseudo labels compared to the normal

pseudo-label learning without the rectification, and the minimization of both L�
sup and

KLD(xt
1, x

t
2) leads to the learning of the intra-domain style-invariant representation.

3.1.5. Training procedure

The training of the self-ensembling architecture is multi-step. The model is first210

trained without pseudo-label learning as the following loss function:

Linit = Lsup + ωλconLcon, (5)

where λcon is the loss weight of Lcon, and ω is a weight rising from zero to one at the

beginning of the training. Then pseudo labels are produced with the trained model, and

pseudo-label learning is involved in the training with the following loss function:

Lfinal = Lsup + Lpsl + ωλconLcon. (6)

The production of pseudo labels and training with Lfinal are performed twice iteratively215

in our method.

3.2. Multimodal Unpaired I2I Translation

To obtain style-diversified images for the intra-domain style-invariant representa-

tion learning described in Section 3.1, we construct an unpaired multimodal I2I trans-
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lation model based on the MUNIT [15] architecture. Despite the success in domain220

transfer, some semantic contents are inconsistent in the translation results of MUNIT

as shown in Fig. 1. Such inconsistency can disturb the learning since the style-invariant

representation should be learned for the same semantic contents. Therefore, we adapt

the architecture of MUNIT to introduce pixel-level semantic information into the trans-

lation. The semantic information can serve as additional guidance for the translation225

to preserve the original contents better. We describe the MUNIT architecture and the

modification in our semantic-aware MUNIT as follows.

3.2.1. MUNIT architecture

MUNIT learns disentangled representations to create many-to-many mappings across

the two domains. It assumes that an image x can be decomposed into and generated230

from a content latent code fcont and a style latent code fsty. The content space is shared

by both domains, and the style space is specific to each domain. For each domain, two

encoders Econt and Esty are trained to extract the content code fcont = Econt(x) and

style code fsty = Esty(x), respectively, and a decoder G is trained to generate the

translated image x� = G(fcont, f
�
sty), where f �

sty is sampled from the normal distri-235

bution N (0, I). The encoders and decoders are denoted by {Es
cont, E

s
sty, Gs} for the

source domain and by {Et
cont, E

t
sty, Gt} for the target domain.

The loss function of MUNIT is comprised of an adversarial loss and several recon-

struction losses. Take the S-to-T translation as an example. Given a source domain

image xs, the image should be reconstructed by Gs from its latent codes fs
cont =240

Es
cont(x

s) and fs
sty = Es

sty(x
s), which is formulated by the following loss function:

Lx
recon = Exs [||xs −Gs(fs

cont, f
s
sty)||1]. (7)

In addition, after translating xs to the target domain as xs
s2t = Gt(fs

cont, f
�
sty), the

latent codes should be reconstructed by encoding xs
s2t with the encoders of the target

domain as follows:

Lcont
recon = Exs,xs

s2t
[||fs

cont − Et
cont(x

s
s2t)||2], (8)
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Lsty
recon = Exs,xs

s2t
[||f �

sty − Et
sty(x

s
s2t)||2]. (9)

To make xs
s2t realistic, the following adversarial loss derived from a domain-specific

discriminator Dt is imposed:

Ladv = Exs
s2t,x

t [log(1−Dt(xs
s2t)) + logDt(xt)]. (10)

The final objective function for the S-to-T translation is defined as follows:

min
E,G

max
D

L(E,G,D) = Ladv + λxLx
recon

+ λcLcont
recon + λsLsty

recon,

(11)

where λx, λc and λs are hyper-parameters. The learning of the opposite T -to-S trans-

lation is performed simultaneously in the same manner.250

3.2.2. Our semantic-aware MUNIT

MUNIT sometimes fails to preserve the original semantic contents because the

translation network can hardly understand the semantic meanings of the image con-

tents. Therefore, to solve this problem, we introduce pixel-level semantic information

of the image into the translation. Since the ground truth labels are accessible only255

in the source domain, we cannot use the labels as semantic information directly. We

found that an appropriate substitute for the labels is the prediction by a pre-trained seg-

mentation network that can make meaningful predictions for images of both domains.

Accordingly, we pre-train a segmentation network with a simple UDA method [6] and

12



introduce the network prediction as the semantic information. Some information may260

be misleading due to inaccurate predictions, while, on the other hand, the predicted

probability distribution can be richer with latent information than one-hot ground truth

labels.

MUNIT uses the AdaIN [23] layer, which is a normalization layer with trainable

parameters, to render the image with the style code in the decoder network. The style265

code and semantic information in our method are both supposed to guide the transla-

tion, and thus it is reasonable to introduce them together via the normalization layer.

However, the AdaIN layer takes only one-dimensional style codes and cannot deal

with pixel-level inputs. To tackle this problem, we replace the AdaIN layer with a

spatially-adaptive instance normalization layer inspired by [37]. As shown in Fig. 3,270

the concatenation of the style code and semantic information is processed by convolu-

tional layers and output as pixel-level affine parameters for the normalization. We use

this spatially-adaptive instance normalization layer as all normalization layers in the

decoders. By introducing the semantic information via the normalization layers, the

translation network becomes aware of the semantic meanings and thus can translate275

the image more appropriately.

The training of our semantic-aware MUNIT is the same as that of MUNIT. Besides

the loss items described in Section 3.2.1, we also use the cycle-consistency loss and

perceptual loss as in MUNIT but replace the VGG network with a segmentation net-

work pre-trained by a simple UDA method [6]. The pre-trained segmentation network280

is also used for acquiring semantic information.

During the training of the self-ensembling model, style-diversified images xs
k, xt

k

(k=1, 2) are dynamically generated by the target domain decoder Gt. Specifically, xs
k

are target-domain-like images generated as follows:

xs
k = Gt(Es

cont(x
s), fk,Mpre(x

s)), (12)

where fk are style codes randomly sampled from the normal distribution N (0, I), and285

Mpre is the pre-trained segmentation model for extracting semantic information. xt
k

13



Algorithm 1: Training procedure of the semantic-aware MUNIT.
Input: Labeled source domain dataset S, unlabeled target domain dataset T ,

segmentation model Mpre pre-trained with S and T .
Output: Optimal translation model composed of encoders Es

cont, E
s
sty, Et

cont,
Et

sty, and decoders Gs, Gt.

1 Initialize the encoders, the decoders, and discriminators Ds, Dt;
2 for each iteration with xs randomly drawn from S and xt from T do
3 Encode xs with Es

cont and Es
sty as content code fs

cont = Es
cont(x

s) and
style code fs

sty = Es
sty(x

s);
4 Reconstruct xs from fs

cont and fs
sty with Gs as Gs(fs

cont, f
s
sty,Mpre(x

s))
and calculate the loss of Eq. (7);

5 Sample style code f �
sty from N (0, I) and translate xs to the target domain

as xs
s2t = Gt(fs

cont, f
�
sty,Mpre(x

s));
6 Reconstruct fs

cont by encoding xs
s2t with Et

cont as Et
cont(x

s
s2t) and

calculate the loss of Eq. (8);
7 Reconstruct f �

sty by encoding xs
s2t with Et

sty as Et
sty(x

s
s2t) and calculate

the loss of Eq. (9);
8 Input xs

s2t and xt to Dt and calculate the loss of Eq.(10);
9 Repeat the procedure of lines 3-8 from encoding xt (changing the

encoders, decoders, and discriminator accordingly);
10 Update the encoders and decoders to minimize all the above losses;
11 Update Dt to maximize the loss of Eq. (10) with xt and xs

s2t;
12 Update Ds similarly with xs and xt

t2s;
13 end for

are generated similarly without changing the domain as follows:

xt
k = Gt(Et

cont(x
t), fk,Mpre(x

t)). (13)

3.3. Implementation Details

Algorithms 1 and 2 detail the training procedure of the semantic-aware MUNIT

and the self-ensembling method, respectively. The two algorithms are implemented in290

sequence to implement the whole proposed method. The network structures, training

parameters, and some other details in the implementation are as follows.
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Algorithm 2: Training procedure of the self-ensembling method.
Input: Labeled source domain dataset S, unlabeled target domain dataset T ,

segmentation model Mpre pre-trained with S and T , encoders Es
cont,

Et
cont and decoders Gs, Gt trained with Algorithm 1.

Output: Optimal segmentation model M in the target domain.

1 for k=0,1,2...(until 2 in our implementation) do
2 if k �= 0 then
3 Produce pseudo labels for each xt of T with model M ;
4 end if
5 Initialize student model M and make a copy of M as teacher model M �;
6 for each iteration with xs randomly drawn from S and xt from T do
7 Translate xs as xs

k = Gt(Es
cont(x

s), fk,Mpre(x
s)) (k = 1, 2) to the

target domain with style codes f1, f2 sampled from N (0, I);
8 Generate copies xt

k = Gt(Et
cont(x

t), fk,Mpre(x
t)) (k = 1, 2) for xt

with style codes f1, f2 sampled from N (0, I);
9 Input xs

1, xs
2 to M and calculate the cross-entropy loss of Eq. (2);

10 Input xt
1, xt

2 to M and xt to M �, and calculate the unsupervised
consistency loss of Eq. (3);

11 if k �= 0 then
12 Calculate the pseudo-label loss of Eq. (4) with the pseudo labels

newly produced at line 3;
13 end if
14 Update M to minimize all the above losses;
15 Update M � as Eq. (1);
16 end for
17 end for

3.3.1. Semantic-aware MUNIT

The network structures of the encoders and decoders in our semantic-aware MU-

NIT are the same as those of MUNIT [15] except for the normalization layers in the295

decoders. The spatially-adaptive instance normalization layers used in the decoders

consist of three convolutional layers with 128 filters of 3×3. The discriminator con-

sists of six convolutional layers with {64, 128, 256, 512, 512, 1} filters. The first five

layers have filters of 4×4 and a stride of 2, and the last layer has a 1×1 filter and a

stride of 1. We adopt the Adam optimizer with the same parameters as those in MU-300

NIT. The hyper-parameters λx, λc, λs and the weights of the cycle-consistency loss

and perceptual loss are set to 10, 1, 1, 10, 0.1, respectively. All of the input images are

resized to have a long side of 1,024 pixels and the original ratio is kept unchanged.
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3.3.2. Self-ensembling

We used two structures, Deeplab V2 [38] with ResNet101 [39] and FCN-8s [40]305

with VGG16 [41], for the segmentation network. We use the optimizer parameters

provided by [17]. The batch size is set to 1 for both structures. The EMA parameter α

and weight parameter λcon are set to 0.99 and 1, respectively. The ramp-up parameter ω

increases as ω = Exp(−5(1−k)2), where k increases linearly from zero to one during

the first 20,000 training iterations. The pseudo labels are selected with a probability310

threshold of 0.9 to be used in the pseudo-label learning. Only when the ratio of the

selected labels is less than 50%, the threshold is ignored to ensure that at least half of the

pseudo labels are used. In addition, color jitter transformation was found to be effective

as a supplementary intra-domain style augmenter in our experiments. Therefore, the

color jitter transformation is further imposed on the generated images.315

4. Experiments

We conducted experiments on two benchmarks GTA5-to-Cityscapes and SYNTHIA-

to-Cityscapes, both of which are synthetic-to-real adaptations. Datasets are first de-

scribed in Section 4.1. The main results for the benchmarks are presented and com-

pared to results of state-of-the-art methods in Section 4.2. Finally, results of exten-320

sive supplementary experiments to further analyze and validate the effectiveness of our

method are shown in Section 4.3.

4.1. Datasets

The Cityscapes dataset [42] is a real-world dataset consisting of urban scene im-

ages with resolutions of 2,048×1,024. It contains a training set of 2,975 images and a325

validation set of 500 images. The validation set was used as the test data in the experi-

ments. The images were resized to a resolution of 1,024×512 pixels to be fed into the

segmentation network.

The GTA5 dataset [1] consists of 24,966 synthesized urban scene images with res-

olutions of 1,914×1,052. The images are rendered from the GTA5 video game. Nine-330

teen common categories are shared by GTA5 and Cityscapes. In the self-ensembling

training, the images were resized to a resolution of 1,280×720 pixels.
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Table 1: Results of mean intersection over union (IoU) and per-category IoUs for GTA5-to-Cityscapes bench-
mark.
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BDL [17]

ResNet101

91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
CAG-UDA [43] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
RectPLL [9] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
FDA [24] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
SIM [44] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
PIT [45] 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6
LTIR [46] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
PCEDA [47] 91.0 49.2 85.6 37.2 29.7 33.7 38.1 39.2 85.4 35.4 85.1 61.1 32.8 84.1 45.6 46.9 0.0 34.2 44.5 50.5
Ours 93.0 54.0 86.6 42.6 34.7 35.9 40.8 43.3 86.0 43.2 85.4 61.5 34.4 83.7 29.2 50.1 4.0 36.5 50.9 52.4
BDL [17]

VGG16

89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3
FDA [24] 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2
SIM [44] 88.1 35.8 83.1 25.8 23.9 29.2 28.8 28.6 83.0 36.7 82.3 53.7 22.8 82.3 26.4 38.6 0.0 19.6 17.1 42.4
PIT [45] 86.2 35.0 82.1 31.1 22.1 23.2 29.4 28.5 79.3 31.8 81.9 52.1 23.2 80.4 29.5 26.9 30.7 20.5 1.2 41.8
LTIR [46] 92.5 54.5 83.9 34.5 25.5 31.0 30.4 18.0 84.1 39.6 83.9 53.6 19.3 81.7 21.1 13.6 17.7 12.3 6.5 42.3
PCEDA [47] 90.2 44.7 82.0 28.4 28.4 24.4 33.7 35.6 83.7 40.5 75.1 54.4 28.2 80.3 23.8 39.4 0.0 22.8 30.8 44.6
Ours 93.7 53.6 83.5 35.1 21.1 28.6 36.2 42.0 82.2 32.4 86.5 47.3 19.4 83.8 26.0 30.7 30.2 13.1 32.1 46.2

Table 2: Results of mean IoU and per-category IoUs for SYNTHIA-to-Cityscapes benchmark. “mIoU” is
the mean IoU over all of the 16 categories, and “mIoU*” is that over 13 categories excluding 3 categories
marked by “*”. Results of “-” were not reported in the papers.
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BDL [17]

ResNet101

86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
CAG-UDA [43] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 52.6
RectPLL [9] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 54.9
FDA [24] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5
SIM [44] 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1
PIT [45] 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 78.8 64.2 27.6 79.6 31.2 31.0 31.3 44.0 51.8
LTIR [46] 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3
PCEDA [47] 85.9 44.6 80.8 9.0 0.8 32.1 24.8 23.1 79.5 83.1 57.2 29.3 73.5 34.8 32.4 48.2 46.2 53.6
Ours 91.9 54.6 81.3 7.2 1.1 33.8 29.6 30.0 78.5 80.0 61.6 28.9 82.4 32.8 37.3 52.6 49.0 57.1
BDL [17]

VGG16

72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0 46.1
FDA [24] 84.2 35.1 78.0 6.1 0.4 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 40.5 47.3
PIT [45] 81.7 26.9 78.4 6.3 0.2 19.8 13.4 17.4 76.7 74.1 47.5 22.4 76.0 21.7 19.6 27.7 38.1 44.9
LTIR [46] 89.8 48.6 78.9 - - - 0.0 4.7 80.6 81.7 36.2 13.0 74.4 22.5 6.5 32.8 - 43.8
PCEDA [47] 79.7 35.2 78.7 1.4 0.6 23.1 10.0 28.9 79.6 81.2 51.2 25.1 72.2 24.1 16.7 50.4 41.1 48.7
Ours 84.6 40.3 74.5 0.5 0.1 27.7 25.4 25.1 78.0 81.8 58.0 19.4 70.5 24.3 17.7 41.5 41.8 49.3

The SYNTHIA dataset [2] is a synthetic dataset consisting of photo-realistic images

of driving scenarios rendered from a virtual city. We used the SYNTHIA-RAND-

CITYSCAPES subset that contains 9,400 images with resolutions of 1,280×760. It335

shares 16 common categories with Cityscapes.

4.2. Main Results and Comparison with Results of State-of-the-art Methods

The results obtained by of our method and eight recent state-of-the-art methods are

shown in Table 1 and Table 2. Here we summarize the common ideas in the previous

methods. Pseudo labels were used in most methods except PIT and PCEDA. BDL [17],340
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FDA [24], LTIR [46] and PCEDA [47] perform I2I translation to reduce the visual do-

main gap, and FDA uniquely uses a translation approach based on Fourier Transform.

BDL, RectPLL [9], SIM [44] and LTIR share a similar component of the output-space

adversarial learning. PIT [45] is a distinctive method that explores the domain-invariant

interactive relation between the image-level information and pixel-level information.345

Table 1 shows the results for the GTA5-to-Cityscapes benchmark. As shown in Ta-

ble 1, our method achieved the best performance with both base structures. Our mean

IoUs were 1.8 and 1.6 higher than the second best ones, respectively. Moreover, our

method performed best in 7 categories in both structure settings, which is superior to

all of the most competitive methods. For the more challenging benchmark SYNTHIA-350

to-Cityscapes shown in Table 2, mean IoUs were calculated over 13 categories and 16

categories respectively following some previous works. In the ResNet101 setting, our

method outperformed the second best one by 2.2 and 1.1 over 13 categories and 16 cat-

egories, respectively. In the VGG16 setting, our method showed slight superiority over

the second best one by 0.6 and 0.7 over 13 categories and 16 categories, respectively.355

In conclusion, our method achieved state-of-the-art results for the two benchmarks.

From Table 1 and Table 2, better adaptation performance was achieved with GTA5

than with SYNTHIA as the source domain, which we attribute to the following fac-

tors: dataset size and domain gap. The GTA5 dataset has a larger size (24,966 training

images) than that of the SYNTHIA dataset (9,400 training images). And more im-360

portantly, the domain gap between GTA5 and Cityscapes is less than that between

SYNTHIA and Cityscapes. For example, images of GTA5 and Cityscapes are all ob-

tained with an inside car view, while SYNTHIA is composed of images with different

views and angles such as a bird’s-eye view. Such differences make the adaptation from

SYNTHIA harder than that from GTA5 and consequently lead to inferior performance.365

4.3. Supplementary Results and Analyses

4.3.1. Ablation study

The results of an ablation study for analyzing the contribution of each component

in our method are shown in Table 3. First, training with only the original source domain

images in which no adaptation was performed was set as a baseline with mean IoUs of370
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Table 3: Ablation study for the components in our method with the ResNet101 structure. Lsup, Lcon and
Lpsl are defined in Section 3.1.

Method Components Mean IoU
Lsup Lcon Lpsl GTA5 SYNTHIA

Source only (non-adaptation) 35.1 33.8
Source only (style-diversified) � 46.9 40.5
Self-ensembling � � 48.1 42.1
Self-ensembling + pseudo-label learning � � � 52.4 49.0

Table 4: Comparison of style diversification measures with the ResNet101 structure. The results were ob-
tained using the self-ensembling architecture without pseudo-label learning. “PM” denotes the measure used
in the proposed method.

Style diversification measure Mean IoU
GTA5 SYNTHIA

Color jitter 43.5 40.1
CycleGAN + color jitter 46.5 39.5
MUNIT 43.9 40.6
MUNIT + color jitter 43.2 40.7
Semantic-aware MUNIT 47.8 41.4
Semantic-aware MUNIT + color jitter (PM) 48.1 42.1

35.1 and 33.8 for GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes, respectively. The

use of style-diversified source domain images without the self-ensembling architecture

greatly improved the mean IoUs to 46.9 and 40.5 owing to the domain transfer and

intra-domain style diversification. By using the target domain images together with the

self-ensembling architecture, the mean IoUs were further improved to 48.1 and 42.1.375

Finally, the enhancement with pseudo-label learning raised the mean IoUs to 52.4 and

49.0.

4.3.2. Measures of style diversification

The intra-domain style diversification plays a key role in our method. Therefore,

we compared several different style diversification measures and the results are shown380

in Table 4. Color jitter simply modifies the brightness, contrast, saturation and hue

of an image without transferring its domain. It contributed to the intra-domain style-

invariant representation learning, whereas by using solely the color jitter, the UDA

performance was not satisfactory. By using CycleGAN [16], the one-to-one translation

model, to translate the source domain images to the target domain before imposing385
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Table 5: Study on the influence of the number of sampled styles for one image with the ResNet101 structure.

Number of sampled styles Mean IoU
GTA5 SYNTHIA

1 42.4 38.6
2 48.1 42.1
4 48.0 41.9
8 48.1 42.0

the color jitter, the performance was improved for GTA-to-Cityscapes but not for the

other benchmark. MUNIT, the base model of our I2I translation model, had slightly

better performance than the color jitter. In addition, imposing the color jitter following

the translation with MUNIT did not achieve further improvement. Our I2I translation

model, the semantic-aware version of MUNIT, outperformed its original version and390

also all of the other above-mentioned measures. Moreover, slight improvement was

achieved by combining it with the color jitter, which was adopted in the proposed

method.

4.3.3. Number of sampled styles

It may be conjectured that sampling more than two style-diversified copies for each395

image could further improve the performance. To verify this, we did a study on the

influence of the number of sampled intra-domain styles for one image. However, as

shown in Table 5, our method failed unexpectedly to gain further improvement by in-

creasing the number of sampled styles. According to the results, sampling two styles is

sufficient for the style-invariant representation learning. On the other hand, the results400

also suggest that the improvement by sampling two styles was due to the proposed

intra-domain style-invariant representation learning, not to the double copies in a mini-

batch, because the performance should have been further improved by sampling four

and eight styles if the number of copies in a mini-batch is the reason.

For the reason why the performance was not in proportion to the number of sampled405

styles, our explanation is as follows. First, the Cityscapes target domain has a relatively

consistent global style since the images were all collected in the same country and in

similar weather and illumination conditions. Moreover, the camera used for collecting

the images was also the same one and positioned with the same angle. Consequently,
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Figure 4: Influence of hyper-parameters λcon and α on mean IoU. The experiments were conducted without
pseudo-label learning on GTA5-to-Cityscapes with the ResNet101 structure.

the slight variance of the intra-domain styles in the target domain made it redundant to410

sample more styles. However, for applying our method to a target domain with highly

diverse intra-domain styles, the influence of the number of sampled styles should be

studied again. Another possible reason is that the style sampling for each image is

random and independent so that the insufficiency of the sampled styles for one image

can be remedied to some extent by the style sampling for the other images. In other415

words, the diverse intra-domain styles may not necessarily be covered by the style

sampling for each single image. Since we trained the model for a large number of

iterations, a wide range of styles were sampled with different images to learn the style-

invariant representation, and the need of sampling a large number of styles for one

image was thus reduced.420

4.3.4. Hyper-parameter analyses

Results of analyses for hyper-parameters λcon and α are shown in Fig. 4. λcon is

the weight parameter for the consistency loss in the self-ensembling architecture, and

α is the EMA updating parameter for the teacher model. Our method achieved the best

performance at λcon = 1.0 and α = 0.99 without pseudo-label learning. As shown in425

Fig. 4, a small λcon = 0.2 and a large λcon ≥ 2.0 clearly reduced the performance, and

α had only a slight effect on the performance.
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Figure 5: Examples of our I2I translation results for GTA5-to-Cityscapes. The 1st row: original GTA5
images. The 2nd to 5th rows: style-diversified translation results to Cityscapes.

4.3.5. Examples of our I2I translation results

Examples of the two domain translations and the target domain diversification are

shown in Fig. 5, Fig. 6, and Fig. 7, respectively. In the translation results for GTA5-430

to-Cityscapes of Fig. 5, diversified intra-domain styles appeared in the surface texture

of roads, buildings and terrains. In the translation results for SYNTHIA-to-Cityscapes

of Fig. 6, color temperature appeared diverse as well as the texture of roads and veg-

etation. In the diversification results for Cityscapes of Fig. 7, image contrast and light

intensity showed diversified characteristics. The above-mentioned varied characteris-435

tics are abstracted as the intra-domain styles and underlie the proposed method.
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Figure 6: Examples of our I2I translation results for SYNTHIA-to-Cityscapes. The 1st row: original SYN-
THIA images. The 2nd to 5th rows: style-diversified translation results to Cityscapes.

5. Conclusion

In this paper, we have proposed a novel concept of learning intra-domain style-

invariant representation for UDA of semantic segmentation, and we constructed a

method based on the proposed concept. Learning representation invariant to the di-440

versified intra-domain styles contributes to the generalization in the target domain. To

realize this, we first trained a semantic-aware multimodal I2I translation model to ob-

tain images with diversified intra-domain styles and consistent semantic contents. Then

we used the generated images to train the segmentation model with the self-ensembling

architecture. By further employing pseudo-label learning, our method achieved state-445

of-the-art performance for two benchmarks. Moreover, we demonstrated the effective-

ness of our method by conducting elaborate experiments and analyses.

In future researches, we think that the clearest direction for improving our work is
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Figure 7: Examples of our I2I translation results for diversifying Cityscapes. The 1st row: original
Cityscapes images. The 2nd to 5th rows: style-diversified translation results.

the I2I translation for diversifying the intra-domain styles. Specifically, although our

semantic-aware MUNIT succeeded in diversifying the intra-domain styles of the im-450

ages with preservation of most contents, some objects that are hard to recognize for

the pre-trained segmentation model were still prone to be translated inappropriately,

possibly resulting in misleading the training of the UDA model. Therefore, how to

mitigate the influence of the misleading semantic information is a key to improve the

image translation and accordingly improve the final UDA performance. Moreover, it455

may limit the training of the semantic-aware MUNIT that the pre-trained segmentation

model is not updated during the training. Intuitively, more accurate semantic informa-

tion may improve the I2I translation, and hence we can consider an architecture that

combines the training of the semantic-aware MUNIT and the self-ensembling, for ex-

ample, in a collaborative manner. In conclusion, since the style-diversified images are460

essential for learning the intra-domain style-invariant representation, we believe that it
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is the most significant to improve the I2I translation in terms of the style-diversification

and the content preservation.
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minimization for domain adaptation in semantic segmentation, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.555

2517–2526.

[30] M. Chen, H. Xue, D. Cai, Domain adaptation for semantic segmentation with

maximum squares loss, in: Proceedings of the IEEE International Conference on

Computer Vision, 2019, pp. 2090–2099.

[31] D. Guan, J. Huang, S. Lu, A. Xiao, Scale variance minimization for unsuper-560

vised domain adaptation in image segmentation, Pattern Recognition 112 (2021)

107764.

[32] A. Almahairi, S. Rajeshwar, A. Sordoni, P. Bachman, A. Courville, Augmented

cyclegan: Learning many-to-many mappings from unpaired data, in: Proceedings

of International Conference on Machine Learning, PMLR, 2018, pp. 195–204.565

[33] V. Dumoulin, J. Shlens, M. Kudlur, A learned representation for artistic style,

arXiv preprint arXiv:1610.07629.

28



[34] Y. Luo, J. Zhu, M. Li, Y. Ren, B. Zhang, Smooth neighbors on teacher graphs for

semi-supervised learning, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 8896–8905.570

[35] S. Park, J. Park, S.-J. Shin, I.-C. Moon, Adversarial dropout for supervised and

semi-supervised learning, in: Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 32, 2018.

[36] T. Miyato, S.-i. Maeda, M. Koyama, S. Ishii, Virtual adversarial training: a reg-

ularization method for supervised and semi-supervised learning, IEEE Transac-575

tions on Pattern Analysis and Machine Intelligence 41 (8) (2018) 1979–1993.

[37] T. Park, M.-Y. Liu, T.-C. Wang, J.-Y. Zhu, Semantic image synthesis with

spatially-adaptive normalization, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 2337–2346.

[38] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille, Deeplab: Se-580

mantic image segmentation with deep convolutional nets, atrous convolution, and

fully connected crfs, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 40 (4) (2017) 834–848.

[39] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-585

nition, 2016, pp. 770–778.

[40] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic seg-

mentation, in: Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2015, pp. 3431–3440.

[41] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale590

image recognition, arXiv preprint arXiv:1409.1556.

[42] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene

understanding, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 3213–3223.595

29



[43] Q. Zhang, J. Zhang, W. Liu, D. Tao, Category anchor-guided unsupervised do-

main adaptation for semantic segmentation, in: Advances in Neural Information

Processing Systems, 2019, pp. 435–445.

[44] Z. Wang, M. Yu, Y. Wei, R. Feris, J. Xiong, W.-m. Hwu, T. S. Huang, H. Shi, Dif-

ferential treatment for stuff and things: A simple unsupervised domain adaptation600

method for semantic segmentation, in: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020, pp. 12635–12644.

[45] F. Lv, T. Liang, X. Chen, G. Lin, Cross-domain semantic segmentation via

domain-invariant interactive relation transfer, in: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020, pp. 4334–4343.605

[46] M. Kim, H. Byun, Learning texture invariant representation for domain adapta-

tion of semantic segmentation, in: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 12975–12984.

[47] Y. Yang, D. Lao, G. Sundaramoorthi, S. Soatto, Phase consistent ecological do-

main adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vi-610

sion and Pattern Recognition, 2020, pp. 9011–9020.

30


