
 

Instructions for use

Title A Feedback Vertex Set-Based Approach to Simplifying Probabilistic Boolean Networks

Author(s) Kobayashi, Koichi

Citation IEICE transactions on fundamentals of electronics communications and computer sciences, E107A(5), 779-785
https://doi.org/10.1587/transfun.2023MAP0004

Issue Date 2024-05-01

Doc URL http://hdl.handle.net/2115/92833

Rights copyright©2024 IEICE

Type article

File Information E107.A_2023MAP0004.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.5 MAY 2024
779

PAPER Special Section on Mathematical Systems Science and its Applications

A Feedback Vertex Set-Based Approach to Simplifying Probabilistic
Boolean Networks

Koichi KOBAYASHI†a), Member

SUMMARY A PBN is well known as a mathematical model of complex
network systems such as gene regulatory networks. In Boolean networks,
interactions between nodes (e.g., genes) are modeled by Boolean functions.
In PBNs, Boolean functions are switched probabilistically. In this paper, for
a PBN, a simplified representation that is effective in analysis and control
is proposed. First, after a polynomial representation of a PBN is briefly
explained, a simplified representation is derived. Here, the steady-state
value of the expected value of the state is focused, and is characterized by
a minimum feedback vertex set of an interaction graph expressing interac-
tions between nodes. Next, using this representation, input selection and
stabilization are discussed. Finally, the proposed method is demonstrated
by a biological example.
key words: feedback vertex set, polynomial representation, probabilistic
Boolean network, simplified representation

1. Introduction

Control of complex network systems such as gene regulatory
networks is one of the central problems in control theory. To
simplify such systems, approximation by discrete models is
frequently effective. In analysis and control of gene regu-
latory networks, a Boolean network (BN) is well known as
one of the discrete models [1]. In a BN, expression of a gene
(node) is given by a binary value (ON/OFF), and interactions
between genes are modeled by Boolean functions. Further-
more, a BN is extended to a probabilistic Boolean network
(PBN). In a PBN, the candidates of Boolean functions are
given in advance, and one is probabilistically chosen from
the candidates [2].

In the last decade, several control methods for PBNs
have been developed (see, e.g., [3]–[11]). These methods
have drawbacks. For example, in both the Markov chain-
based method [7]–[9] and the semi-tensor product method
[5], [6], [11], 2n × 2n matrices must be manipulated, where
n is the number of nodes. In the methods of [3], [4], an
integer programming problem or a polynomial optimization
problem must be solved. It is important to develop a simple
and useful method for analysis and control of a PBN.

In this paper, we study a new approach to simplifying a
PBN focusing on interactions between nodes.

First, we propose a simplified representation, which can
be derived from the polynomial representation proposed in
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[4]. The polynomial representation represents the expected
value of the state of a given PBN.However, in [4], the optimal
control problem has been mainly focused, and simplification
of the polynomial representation has not been studied. To
analyze the behavior of a PBN, it is important to consider a
simplified representation that some properties are preserved.
The simplified representation proposed here preserves the
steady-state properties. To derive it, we use a minimum
feedback vertex set of an interaction graph expressing inter-
actions between nodes, where each vertex of an interaction
graph corresponds to each node (see Sect. 2 for further de-
tails). Using the proposed representation, the steady-state
value of the expected value of the state can be characterized
by only vertices in a minimum feedback vertex set. In gen-
eral, the number of vertices in a minimum feedback vertex
set is much smaller than the number of vertices in an in-
teraction graph. Hence, the dynamics of a given PBN can
be simplified. For a BN, such a method has been proposed
in e.g., [12], [13]. In addition, the significance of feedback
vertex sets in analysis of BNs has been pointed out in [14].
In [12]–[14], only a BN has been focused, and a PBN has
not been considered. The proposed method may be regarded
as an extension of these methods to a PBN.

Next, the simplified representation can be applied to
the input selection problem. In many cases, gene regulatory
networks have no (external) control inputs. As the first step
of studying control of such systems, it is important to choose
control nodes from nodes. In the control node, we assume
that the initial binary value can be arbitrarily set (i.e., we con-
sider the constant control input). In the proposed method,
the vertices in a minimum feedback vertex set are regarded
as control nodes (see also [15], [16]). By a simplified repre-
sentation, stability can be easily analyzed, and the constant
control inputs can be derived.

Finally, we demonstrate a derivationmethod of constant
control inputs by an example of a neurotransmitter signaling
pathway [17].

This paper is organized as follows. First, the outline
of PBNs is explained, and interaction graphs and minimum
feedback vertex sets are defined. Next, after a polynomial
representation of PBNs is summarized, a simplified repre-
sentation is proposed. The input selection problem using it
is also explained. Finally, a biological example is presented.

Notation: Let {0,1}n denote the set of n-dimensional
vectors, which consists of elements 0 and 1. For the n-
dimensional vector x = [x1 x2 · · · xn]> and the index
set I = {i1, i2, . . . , im} ⊆ {1,2, . . . ,n}, define [xi]i∈I :=

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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[xi1 xi2 · · · xim ]
>.

2. Probabilistic Boolean Networks

In this section, first, a PBN is briefly explained.
In a PBN representing a complex network network with

n nodes, each node has a binary value xi ∈ {0,1}, i ∈
{1,2, . . . ,n}. The dynamics for xi are given by

xi(k + 1) = f (i)([xj(k)]j∈N(i) )

=



f (i)1 ([xj(k)]j∈N(i)1
), Prob. c(i)1 ,

f (i)2 ([xj(k)]j∈N(i)2
), Prob. c(i)2 ,

...

f (i)
q(i)
([xj(k)]j∈N(i)

q(i)

), Prob. c(i)
q(i)

,

(1)

where k = 0,1,2, . . . is the discrete time, the set N (i)
l
⊆

{1,2, . . . ,n}, l = 1,2, . . . ,q(i) is a given index set, and the
set N (i), i = 1,2, . . . ,n is defined by

N (i) :=
q(i)⋃
l=1
N
(i)
l
.

The function f (i)
l

: {0,1} |N
(i)
l
| → {0,1}1 is a given Boolean

function consisting of logical operators such as AND (∧),
OR (∨), and NOT (¬). If N (i)

l
= ∅ holds, then the value

(0 or 1) of the Boolean function f (i)
l

is uniquely determined
as 0 or 1. The probability c(i)

l
, l = 1,2, . . . ,q(i) is formally

defined by

c(i)
l

:= Prob
(

f (i) = f (i)
l

)
.

For c(i)
l
, the following relation:

q(i)∑
l=1

c(i)
l
= 1 (2)

must be satisfied. We define the state x(k) :=
[x1(k) x2(k) · · · xn(k)]> ∈ {0,1}n.

We present a simple example.

Example 1: Consider the PBN in which Boolean functions
and probabilities are given by

f (1) =

{
f (1)1 = x3(k), c(1)1 = 0.8,
f (1)2 = ¬x3(k), c(1)2 = 0.2,

f (2) = f (2)1 = x1(k) ∧ ¬x3(k), c(2)1 = 1.0,

f (3) =

{
f (3)1 = x1(k) ∧ ¬x2(k), c(3)1 = 0.7,
f (3)2 = x2(k), c(3)2 = 0.3,

where q(1) = 2, q(2) = 1 and q(3) = 2 hold, N (1) = {3},
N (2) = {1,3}, and N (3) = {1,2} hold, and we see that the
relation (2) is satisfied. Next, consider the state trajectory.

Fig. 1 State transition diagram of the PBN in Example 1. For simplicity,
the state transition fromonly x(k) = [0 0 0]>, [0 0 1]>, [0 1 0]>, [1 1 0]>
is illustrated.

Then, for x(0) = [0 0 0]>, we obtain

Prob
(
x(1) = [0 0 0]> | x(0) = [0 0 0]>

)
= 0.8,

Prob
(
x(1) = [1 0 0]> | x(0) = [0 0 0]>

)
= 0.2.

In this example, the cardinality of the finite state set {0,1}3
is given by 23 = 8, and we obtain the state transition
diagram of Fig. 1 by computing the transition from each
state. In Fig. 1, the number assigned to each node denotes
x1, x2, x3, and the number assigned to each arc denotes
the transition probability from some state to other state.
Note here that for simplicity, the state transition from only
x(k) = [0 0 0]>, [0 0 1]>, [0 1 0]>, [1 1 0]> is illustrated
in Fig. 1. 2

Next, we define an interaction graph for a given PBN
as follows.

Definition 1: An interaction graph of a given PBN is
defined by a directed graph G = (V,E), where V =

{1,2, . . . ,n} is the set of vertices corresponding to xi ,
i ∈ {1,2, . . . ,n}, and E = {( j, i) ∈ {1,2, . . . ,n} ×
{1,2, . . . ,n} | j ∈ N (i)} is the set of arcs.

For a given interaction graph, a feedback vertex set is
defined as follows (see, e.g., [18], [19]).

Definition 2: A set of vertices of an interaction graph is
called a feedback vertex set if removal of vertices results an
acyclic graph. In particular, a feedback vertex set is called a
minimum feedback vertex set if the number of its elements is
minimum.

The computational complexity of finding a minimum
feedback vertex set is NP-complete [19], but an approximate
algorithm of finding it has been developed (see, e.g., [18]).

We present two examples.

Example 2: Consider the PBN in Example 1 again. From
N (1) = {3}, N (2) = {1,3}, and N (3) = {1,2}, its interaction
graph is given by Fig. 2. In addition, the minimum feedback
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Fig. 2 Interaction graph of the PBN in Example 1.

Fig. 3 Interaction graph of an apoptosis network [20] in Example 3.

vertex set is given by {3}. 2

Example 3: Consider the interaction graph of an apoptosis
network given by Fig. 3. See [20] for details. From Fig. 3,
we see that one of the minimum feedback vertex sets is given
by {NFκBnuc, C3a, TNF}. 2

3. Polynomial Representation of Probabilistic Boolean
Networks

In this section, we explain a polynomial representation of
a given PBN [4]. Using it, the expected value of the state
(E[xi(k)|∗]) can be represented by a polynomial system.

As a preparation, the following lemma [21] is intro-
duced.

Lemma 1: Consider two binary variables δ1 and δ2. Then
the following relations hold.
(i) ¬δ1 is equivalent to 1 − δ1.
(ii) δ1 ∧ δ2 is equivalent to δ1δ2.
(iii) δ1 ∨ δ2 is equivalent to δ1 + δ2 − δ1δ2.

By Lemma 1, a given Boolean function can be trans-
formed into a polynomial on the real number field. For exam-
ple, the logical formula δ1 ∨¬δ2 is equivalently transformed
into the polynomial δ1+ (1− δ2)− δ1(1− δ2) = 1− δ2+ δ1δ2.

Hereafter, we assume that the Boolean function f (i)j
is expressed as a polynomial with binary variables. For
simplicity of notation, the condition in E[xi(k)|∗] is omitted.
Then, the following result has been obtained in [4].

Theorem 1: Suppose that for the PBN (1), the initial state
x(0) = x0 is arbitrarily given. Then, the expected value
of the state, E[xi(k)] ∈ [0,1] is expressed as the following
polynomial system:

E[xi(k + 1)] = f̃ (i)(E[[xj(k)]j∈N(i) ]), (3)

f̃ (i) =
q(i)∑
l=1

c(i)
l

f (i)
l
(E[[xj(k)]j∈N(i)j

]).

We present a simple example.

Example 4: Consider the PBN in Example 1 again. Then,
the polynomial system for x1 is derived as

E[x1(k + 1)] = 0.8E[x3(k)] + 0.2(1 − E[x3(k)])
= 0.2 + 0.6E[x3(k)].

In a similar way, the polynomial system for x2 is derived as

E[x2(k + 1)] = E[x1(k)] − E[x1(k)]E[x3(k)].

Finally, the polynomial system for x3 is derived as

E[x3(k + 1)] = 0.7(E[x1(k)] − E[x1(k)]E[x2(k)])
+ 0.3E[x2(k)]
= 0.7E[x1(k)] + 0.3E[x2(k)]
− 0.7E[x1(k)]E[x2(k)].

2

We remark here that the polynomial system (3) is a class
of positive systems under a binary initial state.

4. Simplified Representation of Probabilistic Boolean
Networks

In this section, we consider simplifying the polynomial rep-
resentation (3) for a given PBN. Here, we focus on the steady
state of the system (3).

As a preparation, letW denote a minimum feedback
vertex set of the interaction graph G. Let GI = (V,EI ),
EI := {(i, j) | ( j, i) ∈ E} denote the directed graph obtained
by flipping the start and end nodes of the arc of the interaction
graph G. For GI , let di denote the length of the longest
path/cycle from the node i to one vertex ofW. For example,
in the case of the interaction graph in Fig. 2, since W is
given byW = {3}, d1 = 1 holds. For the node 2, there are
two paths (2 → 1 → 3 and 2 → 3), and d2 = 2 holds. For
the node 3, there are three paths (3 → 1 → 3, 3 → 2 → 3,
and 3 → 2 → 1 → 3), and d3 = 3 holds. We remark that
even if the node i is included inW, we must find paths.

In addition, letWi,l , l = 0,1, . . . , di − 1 denote a subset
of W such that there exist a path from its element to the
node i with the length l + 1 over the graph G. For example,
in the case of the interaction graph in Fig. 2 (W = {3}), we
can obtainW1,0 = {3},W2,0 =W2,1 = {3},W3,0 = ∅, and
W3,1 =W3,2 = {3}.

The proposed procedure is given as follows.

Procedure for deriving a simplified representation:
Step 1: For a given interaction graph, find a minimum feed-
back vertex setW.
Step 2: Using E[xi(k−l+1)] = f̃ (i)(E[[xj(k−l)]j∈N(i) ]), l =
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1,2, . . . , di − 1, rewrite the polynomial f̃ (i)(E[[xj(k)]j∈N(i) ])
as the following equivalent polynomial:

f̃ (i)(E[[xj(k)]j∈Wi ,0 ],E[[xj(k − 1)]j∈Wi ,1 ],

. . . ,E[[xj(k − di + 1)]j∈Wi ,di−1 ]). (4)

Step 3: For the obtained polynomial, replace E[[xj(k −
l)]j∈Wi ,l

], l = 1,2, . . . , di − 1 with E[[xj(k)]j∈Wi ,l
]. Let

f̂ (i)(E[[xj(k)]j∈Wi
]) denote the polynomial obtained, where

Wi = ∪lWi,l .
Step 4: Obtain the simplified representation as

E[x̂i(k + 1)] = f̂ (i)(E[[x̂j(k)]j∈Wi
]), (5)

where x̂i is newly defined as a binary variable.

In Step 2, f̃ (i)(E[[xj(k)]j∈N(i) ]) and (4) are equivalent.
Because the polynomial systems that time is shifted are sub-
stituted into f̃ (i)(E[[xj(k)]j∈N(i) ]). From the definition of
minimum feedback vertex sets, Step 2 can be necessarily
performed. In the proposed simplified representation, the
dynamics are expressed by only E[[x̂j(k)]j∈Wi

]. As was ex-
plained in Sect. 2, the computational complexity of finding
a minimum feedback vertex set is NP-complete. Hence, the
computational complexity of Step 1 is also NP-complete. In
Step 2, for each i, substitutions of polynomials to certain
terms of other polynomials are performed di − 1 times. In
Step 3, k − 1, k − 2, . . . , k − di + 1 are replaced with k. In
Step 4, the binary variable in the simplified representation
is newly defined to distinguish between the original PBN
and the simplified PBN. If a minimum feedback vertex set is
given, Steps 2–4 can be implemented by a suitable software
such as MATLAB and Mathematica.

We present a simple example.

Example 5: Consider the polynomial system obtained in
Example 4. In Example 2, the minimum feedback vertex set
is given by {3}. From Fig. 2, d1 = 1, d2 = 2, and d3 = 3
holds. First, consider the polynomial system for x1. In this
system, only E[x3(k)] is included as a state variable (this can
be confirmed from alsoW1,0 = {3}). Then, from d1 = 1, we
cannot simplify it, andwe can obtain the following simplified
representation:

E[x̂1(k + 1)] = f̂ (1)(E[x̂3(k)])
= 0.2 + 0.6E[x̂3(k)]. (6)

Next, consider the polynomial system for x2. From d2 = 2,
the dynamics at k + 1, k, and k − 1 can be derived as

E[x2(k + 1)] = E[x1(k)] − E[x1(k)]E[x3(k)].
= (0.2 + 0.6E[x3(k − 1)])
× (1 − E[x3(k)]).

From W2,0 = W2,1 = {3}, we see that the function f̃ (2)

can represented by E[x3(k − 1)] and E[x3(k)]. By replacing
E[x3(k −1)]with E[x3(k)], the following simplified polyno-
mial can be derived:

E[x̂2(k + 1)] = f̂ (2)(E[x̂3(k)])
= 0.2 + 0.4E[x̂3(k)]

− 0.6E[x̂3(k)]2. (7)

Finally, consider the polynomial system for x3. From d3 = 3,
the dynamics at k + 1, k, k − 1, and k − 2 can be derived as

E[x3(k + 1)] = 0.7(0.2 + 0.6E[x3(k − 1)])
+ 0.3(0.2 + 0.6E[x3(k − 2)])

× (1 − E[x3(k − 1)])
− 0.7(0.2 + 0.6E[x3(k − 1)])

× (0.2 + 0.6E[x3(k − 2)])
× (1 − E[x3(k − 1)]).

From W3,0 = ∅ and W3,1 = W3,2 = {3}, we see that
the function f̃ (3) can represented by E[x3(k − 2)] and
E[x3(k − 1)]. Then, the following simplified polynomial
can be derived:

E[x̂3(k + 1)] = f̂ (3)(E[x̂3(k)])
= 0.172 + 0.4E[x̂3(k)]

− 0.264E[x̂3(k)]2 + 0.252E[x̂3(k)]3.
(8)

From (6), (7), and (8), we see that E[x̂i(k+1)], i = 1,2,3 can
be expressed by a polynomial with respect to only E[x̂3(k)].

2

Next, we consider analyzing the simplified represen-
tation obtained. The notion of fixed points is defined as
follows.

Definition 3: For the system (3), xF := [xF1 xF2 · · · xFn ]
>

is called a fixed point if xFi = E[xi(k + 1)] = E[xi(k)],
i ∈ {1,2, . . . ,n} hold. In a similar way, for the system (5),
x̂F := [x̂F1 x̂F2 · · · x̂Fn ]

> is called a fixed point if x̂Fi =
E[x̂i(k + 1)] = E[x̂i(k)], i ∈ {1,2, . . . ,n} hold.

We remark that xF and x̂F are not uniquely determined
in general. Then, we have the following theorem.

Theorem 2: The fixed point xF for the system (3) is in a
one-to-one correspondence with the fixed point x̂F for the
system (5).

Proof : When xF is calculated, the polynomial (4) may be
used. The fixed point xF can be derived from (4) and xFi =
E[xi(k + 1)] = E[xi(k)] = E[xi(k − 1)] = · · · = E[xi(k −
di + 1)], i ∈ {1,2, . . . ,n}. In the derivation of the simplified
representation (5), the polynomial (4) is simplified based on
E[xi(k)] = E[xi(k − 1)] = · · · = E[xi(k − di + 1)], i ∈
{1,2, . . . ,n}. Hence, there is a one-to-one correspondence
between xF and x̂F . 2

From this theorem, we see that the simplified repre-
sentation 5 can be used for analysis and control of PBNs
focusing on the fixed point (i.e., the long-time behavior).
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5. Discussion on Input Selection and Stabilization

In this section, we discuss input selection and stabilization as
one of the methods for utilization of the simplified represen-
tation (5). In [15], [16], a control method using a minimum
feedback vertex set has been proposed for the system repre-
sented by ordinary differential equations. In this method, it
has been shown that stabilization or destabilization can be
achieved by controlling nodes in a minimum feedback vertex
set. Motivated by this method, in this paper, the following
assumption, in which only the initial value is focused for
simplicity, is imposed for (5).

Assumption 1: The polynomial system E[x̂i(k + 1)] =
f̂ (i)(·), i ∈ W in (5) can be replaced with

x̂i(k + 1) = x̂i(k) = x̂0
i , i ∈ W,

where the initial value x̂0
i ∈ {0,1}

|W | can be arbitrarily
given.

In this paper, a vertex included inW is called a control
node. This assumption implies that binary values in control
nodes are regarded as constant control inputs. In otherwords,
finding a minimum feedback vertex set of an interaction
graph implies selecting of constant control inputs. Using the
simplified representation (5), the value of constant control
inputs can be easily determined.

We present a simple example.

Example 6: Consider the PBN in Example 1 again. Under
Assumption 1, its simplified representation is given by (6),
(7), and x̂3(k + 1) = x̂3(k) = x̂0

3 ∈ {0,1}. In the case of x̂0
3 =

0, we can obtain E[x̂1(k + 1)] = E[x̂2(k + 1)] = 0.2. In the
case of x̂0

3 = 1, we can obtain E[x̂1(k+1)] = 0.8 and E[x̂2(k+
1)] = 0. Figures 4 and 5 show the simulation results using the
PBN in Example 1, where the initial state is given by x1(0) =
x2(0) = 1, and the simulation was repeated 10000 times.
From these figures, we see that the simplified representation
expresses the long-time behavior. Furthermore, in the case
of x̂0

3 = 1, we guarantee that x2(k) = 0, k ≥ 1 holds with
the probability 1. We can confirm this fact from both the
simplified representation and the simulation result. 2

In stability analysis and stabilization of PBNs, a semi-
tensor product (STP) method is well known as one of the
typical methods (see, e.g., [5]). In the STP method, a PBN
with n nodes and m control nodes is represented by a matrix
with the size of 2n × 2n+m. Hence, calculations on stabil-
ity analysis and stabilization may be difficult for large-scale
PBNs.

The proposed simplified representation can express the
behavior by using fewer variables, and can be used in stability
analysis and stabilization of PBNs. A PBN is complex, and
there may be the case that the control input is not given ex-
plicitly. In such cases, the simplified representation provides
us useful information on input selection. If stabilization can-
not be performed under Assumption 1, then the nodes that

Fig. 4 Time response of the average of 10000 samples for the PBN in
Example 1, where x3(k) = 0. Solid line: x1. Broken line: x2.

Fig. 5 Time response of the average of 10000 samples for the PBN in
Example 1, where x3(k) = 1. Solid line: x1. Broken line: x2.

do not converge to the origin must be controlled directly.
The value x̂0

i of constant control inputs such that a given
PBN satisfies a certain specification can be easily calculated
by using e.g., MATLAB and Mathematica.

6. Biological Example

In this section, we present a biological example. Consider
the BN model of a neurotransmitter signaling pathway [17].
This model expresses an interaction pathway between the
glutamatergic and dopaminergic receptors. The BN model
of this system is given by

x1(k + 1) = x1(k),
x2(k + 1) = x1(k) ∧ ¬x3(k),
x3(k + 1) = x2(k),
x4(k + 1) = x2(k),
x5(k + 1) = x2(k),
x6(k + 1) = x4(k) ∧ ¬x5(k),
x7(k + 1) = x6(k),
x8(k + 1) = x5(k),
x9(k + 1) = x8(k) ∨ x14(k),

x10(k + 1) = x9(k),
x11(k + 1) = x7(k) ∧ ¬x10(k),
x12(k + 1) = ¬x11(k),
x13(k + 1) = x13(k),
x14(k + 1) = x7(k) ∧ ¬x12(k) ∧ x13(k),
x15(k + 1) = x14(k),
x16(k + 1) = x15(k).
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Fig. 6 Interaction graph of the Boolean network model of a neurotrans-
mitter signaling pathway [17].

The interaction graph is given by Fig. 6. Here, to add prob-
abilistic behavior, the dynamics of x6 is artificially changed
to

x6(k + 1) =

{
x4(k) ∧ ¬x5(k), Prob. 0.7,
x4(k), Prob. 0.3.

Consider deriving the simplified representation. One
of the minimum feedback vertex sets is given by W =

{1,2,10,13}. Then, under Assumption 1, we can obtain
the following simplified representation:

x̂1(k + 1) = x̂1(k),
x̂2(k + 1) = x̂2(k),
x̂3(k + 1) = x̂2(k),
x̂4(k + 1) = x̂2(k),
x̂5(k + 1) = x̂2(k),

E[x̂6(k + 1)] = 0.3x̂2(k),
E[x̂7(k + 1)] = 0.3x̂2(k),

x̂8(k + 1) = x̂2(k),
x̂9(k + 1) = x̂2(k),

x̂10(k + 1) = x̂10(k),
E[x̂11(k + 1)] = 0.3x̂2(k) − 0.3x̂2(k)x̂10(k),
E[x̂12(k + 1)] = 1 − 0.3x̂2(k) + 0.3x̂2(k)x̂10(k),

x̂13(k + 1) = x̂13(k),
E[x̂14(k + 1)] = 0.09x̂2(k)x̂13(k),

− 0.09x̂2(k)x̂10(k)x̂13(k),
x̂15(k + 1) = x̂2(k),

Fig. 7 Time response of the average of 10000 samples for the PBN in
Sect. 6 (Case 1). Green line: x12.

Fig. 8 Time response of the average of 10000 samples for the PBN in
Sect. 6 (Case 2). Green line: x12.

x̂16(k + 1) = x̂2(k).

We remark that the dynamics of some nodes except for nodes
inW are deterministic. From this representation, the fol-
lowing two facts for the original system can be obtained.

(i) By setting x1(0) = x2(0) = x10(0) = x13(0) = 0, xi ,
i , 12 converge to 0, but only x12 converges to 1.

(ii) If it is desirable that x12 converges to a smaller value,
then we must set x2(0) = 1 and x10(0) = 0.

We validate these facts by a numerical simulation. We
consider the following two cases.

Case 1: xi(0) = 0, i ∈ {1,2,10,13} and xj(0) = 1, j , i.

Case 2: x10(0) = 0 and xj(0) = 1, j , 10.

Figure 7 shows the simulation result in Case 1. From this
figure, we see that xi , i , 12 converge to 0, and x12 converges
to 1. That is, to stabilize this system at the origin, x12 must be
also controlled directly. From each sample, we see also that
all xi converge to either 0 or 1with the probability 1. Figure 8
shows the simulation result in Case 2. From this figure, we
see that the average of x12 converges to 0.7. This fact can
also be obtained from the simplified representation. Thus,
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using the simplified representation, we can obtain useful
information for controlling the long-time behavior of a given
PBN.

7. Conclusion

In this paper, we proposed a simplified representation based
on the steady value of the expected value of the state. In the
proposed simplified representation, the behavior of a given
PBN is characterized by some nodes determined by a mini-
mum feedback vertex set of an interaction graph. In numeri-
cal simulations, we used the BNmodel of a neurotransmitter
signaling pathway. Through numerical simulations, we clar-
ified that the simplified representation with four nodes can
be obtained from the PBN with sixteen nodes. In addition,
the obtained representation was applied to the input selection
problem. By the proposed method, the behavior of complex
network systems can be represented by amathematicalmodel
with a smaller number of nodes. Hence, it is expected that
we can consider the analysis/control problems for large-scale
systems such that handling has been difficult.

Input selection was discussed based on the use of only
a constant control input. In complex network systems such
as gene regulatory networks, such an input is frequently
effective, because there is the case where frequent switching
a binary value of the control input is difficult. On the other
hand, to improve the behavior, there is a case that switching
a binary value of the control input depending on the state is
important. One of the future efforts is to develop a derivation
method of state-feedback controllers based on the proposed
method.

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant
Numbers JP21H04558, JP22K04163, JP23H01430.

References

[1] S.A. Kauffman, “Metabolic stability and epigenesis in randomly
constructed genetic nets,” Journal of Theoretical Biology, vol.22,
pp.437–467, 1969.

[2] I. Shmulevich, E.R. Dougherty, S. Kim, andW. Zhang, “Probabilistic
Boolean networks: A rule-based uncertainty model for gene regula-
tory networks,” Bioinformatics, vol.18, no.2, pp.261–274, 2002.

[3] K. Kobayashi and K. Hiraishi, “An integer programming approach to
optimal control problems in context-sensitive probabilistic Boolean
networks,” Automatica, vol.47, no.6, pp.1260–1264, 2011.

[4] K. Kobayashi and K. Hiraishi, “Optimal control of probabilistic
Boolean networks using polynomial optimization,” IEICE Trans.
Fundamentals, vol.E95-A, no.9, pp.1512–1517, Sept. 2012.

[5] R. Li, M. Yang, and T. Chu, “State feedback stabilization for proba-
bilistic Boolean networks,” Automatica, vol.50, no.4, pp.1272–1278,
2014.

[6] H. Li, Y. Wang, and P. Guo, “State feedback based output tracking
control of probabilistic Boolean networks,” Information Sciences,
vols.349–380, pp.1–11, 2016.

[7] R. Pal, A. Datta, M.L. Bittner, and E.R. Dougherty, “Intervention in
context-sensitive probabilistic Boolean networks,” Bioinformatics,
vol.21, pp.1211–1218, 2005.

[8] R. Pal, A.Datta, M.L. Bittner, and E.R.Dougherty, “Optimal infinite-
horizon control for probabilistic Boolean networks,” IEEE Trans.
Signal Process., vol.54, no.6, pp.2375–2387, 2006.

[9] I. Shmulevich and E.R. Dougherty, Probabilistic Boolean Networks:
The Modeling and Control of Gene Regulatory Networks, Society
for Industrial and Applied Mathematics, 2010.

[10] P. Trairatphisan, A. Mizera, J. Pang, A.A. Tantar, J. Schneider, and T.
Sauter, “Recent development and biomedical applications of proba-
bilistic Boolean networks,” Cell Commun. Signal., vol.11, no.46, 25
pages, 2013.

[11] S. Zhu, J. Lu, Y. Liu, T. Huang, and J. Kurths, “Output tracking of
probabilistic Boolean networks by output feedback control,” Infor-
mation Sciences, vol.483, pp.96–105, 2019.

[12] A. Veliz-Cuba, “Reduction of Boolean network models,” Journal of
Theoretical Biology, vol.289, pp.167–172, 2011.

[13] K. Kobayashi, “Design of fixed points in Boolean networks using
feedback vertex sets and model reduction,” Complexity, vol.2019,
article ID 9261793, 9 pages, 2019.

[14] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano, “A system
for identifying genetic networks from gene expression patterns pro-
duced by gene disruptions and overexpressions,” Genome Informat-
ics, vol.9, pp.151–160, 1998.

[15] B. Fiedler, A. Mochizuki, G. Kurosawa, and D. Saito, “Dynamics
and control at feedback vertex sets. I: Informative and determining
nodes in regulatory networks,” J. Dyn. Diff. Equat., vol.25, no.3,
pp.563–604, 2013.

[16] A.Mochizuki, B. Fiedler, G. Kurosawa, andD. Saito, “Dynamics and
control at feedback vertex sets. II: A faithful monitor to determine
the diversity of molecular activities in regulatory networks,” Journal
of Theoretical Biology, vol.335, pp.130–146, 2013.

[17] S. Gupta, S.S. Bisht, R. Kukreti, S. Jain, and S.K. Brahmachari,
“Boolean network analysis of a neurotransmitter signaling pathway,”
Journal of Theoretical Biology, vol.244, pp.469–469, 2007.

[18] G. Even, J. Naor, B. Schieber, and M. Suden, “Approximating mini-
mum feedback sets and multicuts in directed graphs,” Algorithmica,
vol.20, no.2, pp.151–174, 1998.

[19] R.M. Karp, “Reducibility among combinatorial problems,” Proc
Symp. on Complexity of Computer Computations, pp.85–103, 1972.

[20] L. Tournier and M. Chaves, “Uncovering operational interactions in
genetic networks using asynchronous Boolean dynamics,” Journal of
Theoretical Biology, vol.260, no.2, pp.196–209, 2009.

[21] H.P. Williams, Model Building in Mathematical Programming, 5th
ed., Wiley, 2013.

Koichi Kobayashi received the B.E. degree
in 1998 and the M.E. degree in 2000 from Ho-
sei University, and the D.E. degree in 2007 from
Tokyo Institute of Technology. From 2000 to
2004, he worked at Nippon Steel Corporation.
From 2007 to 2015, he was an Assistant Profes-
sor at Japan Advanced Institute of Science and
Technology. From 2015 to 2022, he was an As-
sociate Professor at Hokkaido University. Since
2023, he has been a Professor at the Faculty of
Information Science and Technology, Hokkaido

University. His research interests include discrete event and hybrid systems.
He is a member of IEEE, IEEJ, IEICE, ISCIE, and SICE.

http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1093/bioinformatics/18.2.261
http://dx.doi.org/10.1093/bioinformatics/18.2.261
http://dx.doi.org/10.1093/bioinformatics/18.2.261
http://dx.doi.org/10.1016/j.automatica.2011.01.035
http://dx.doi.org/10.1016/j.automatica.2011.01.035
http://dx.doi.org/10.1016/j.automatica.2011.01.035
http://dx.doi.org/10.1587/transfun.e95.a.1512
http://dx.doi.org/10.1587/transfun.e95.a.1512
http://dx.doi.org/10.1587/transfun.e95.a.1512
http://dx.doi.org/10.1016/j.automatica.2014.02.034
http://dx.doi.org/10.1016/j.automatica.2014.02.034
http://dx.doi.org/10.1016/j.automatica.2014.02.034
http://dx.doi.org/10.1016/j.ins.2016.02.035
http://dx.doi.org/10.1016/j.ins.2016.02.035
http://dx.doi.org/10.1016/j.ins.2016.02.035
http://dx.doi.org/10.1093/bioinformatics/bti131
http://dx.doi.org/10.1093/bioinformatics/bti131
http://dx.doi.org/10.1093/bioinformatics/bti131
http://dx.doi.org/10.1109/tsp.2006.873740
http://dx.doi.org/10.1109/tsp.2006.873740
http://dx.doi.org/10.1109/tsp.2006.873740
http://dx.doi.org/10.1137/1.9780898717631
http://dx.doi.org/10.1137/1.9780898717631
http://dx.doi.org/10.1137/1.9780898717631
http://dx.doi.org/10.1186/1478-811x-11-46
http://dx.doi.org/10.1186/1478-811x-11-46
http://dx.doi.org/10.1186/1478-811x-11-46
http://dx.doi.org/10.1186/1478-811x-11-46
http://dx.doi.org/10.1016/j.ins.2018.12.087
http://dx.doi.org/10.1016/j.ins.2018.12.087
http://dx.doi.org/10.1016/j.ins.2018.12.087
http://dx.doi.org/10.1016/j.jtbi.2011.08.042
http://dx.doi.org/10.1016/j.jtbi.2011.08.042
http://dx.doi.org/10.1155/2019/9261793
http://dx.doi.org/10.1155/2019/9261793
http://dx.doi.org/10.1155/2019/9261793
https://doi.org/10.11234/gi1990.9.151
https://doi.org/10.11234/gi1990.9.151
https://doi.org/10.11234/gi1990.9.151
https://doi.org/10.11234/gi1990.9.151
http://dx.doi.org/10.1007/s10884-013-9312-7
http://dx.doi.org/10.1007/s10884-013-9312-7
http://dx.doi.org/10.1007/s10884-013-9312-7
http://dx.doi.org/10.1007/s10884-013-9312-7
http://dx.doi.org/10.1016/j.jtbi.2013.06.009
http://dx.doi.org/10.1016/j.jtbi.2013.06.009
http://dx.doi.org/10.1016/j.jtbi.2013.06.009
http://dx.doi.org/10.1016/j.jtbi.2013.06.009
http://dx.doi.org/10.1016/j.jtbi.2006.08.014
http://dx.doi.org/10.1016/j.jtbi.2006.08.014
http://dx.doi.org/10.1016/j.jtbi.2006.08.014
http://dx.doi.org/10.1007/pl00009191
http://dx.doi.org/10.1007/pl00009191
http://dx.doi.org/10.1007/pl00009191
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1016/j.jtbi.2009.06.006
http://dx.doi.org/10.1016/j.jtbi.2009.06.006
http://dx.doi.org/10.1016/j.jtbi.2009.06.006

