
 

Instructions for use

Title Influence of laminated random heterogeneity on surface wave dispersion and radial anisotropy

Author(s) 徐, 云遨

Citation 北海道大学. 博士(理学) 甲第15563号

Issue Date 2023-06-30

DOI 10.14943/doctoral.k15563

Doc URL http://hdl.handle.net/2115/92862

Type theses (doctoral)

File Information Yunao_Xu.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Doctoral Dissertation

Influence of laminated random
heterogeneity on surface wave

dispersion and radial anisotropy

Yunao Xu

A thesis submitted for
the degree of Doctor of Philosophy

Department of Natural History Sciences
Graduate School of Science

Hokkaido University

June 2023



Abstract

A series of numerical experiments are performed to evaluate the influence

of laminated stochastic heterogeneity on seismic surface waves and its po-

tential contribution to radial anisotropy. The information derived from such

numerical experiments can be the basis for interpreting real observations on

large-scale seismic anisotropy in the upper mantle that are generally derived

from surface wave tomography. Since the effects of such fine layering or lami-

nated heterogeneities on surface wave dispersion have rarely been considered

in tomographic studies when interpreting observed radial anisotropy, our re-

sults can provide insight into the possible cause of apparent radial anisotropy.

Recent studies on the high-frequency scattering of body waves have sug-

gested the existence of fine-scale elongated random heterogeneity in the up-

per mantle. Such finely-layered heterogeneity can cause ”apparent” radial

anisotropy (differences in the shear wave speeds between the horizontally-

polarized SH and vertically-polarized SV waves) when observed by seismic

surface waves with much longer wavelength than the characteristic scale of

such heterogeneity. In this study, we performed numerical experiments using

1-D and 2-D Earth models to investigate the influence of such layered or

laminated velocity fluctuations on generating ”apparent” radial anisotropy.

We first consider the 1-D cases, including the perturbed shear velocities

relative to an isotropic reference 1-D model. Using the normal mode method,

we compute the synthetic dispersion curves for the fluctuated isotropic ve-

locity profiles. The results suggest that such layered structures would make
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the effective shear modulus for SV waves smaller and that for SH waves al-

most unchanged from the average (or reference) model, resulting in slower

Rayleigh-wave phase speeds and almost unchanged Love-wave phase speeds

from the reference model, which leads to weak apparent radial anisotropy.

These results are mostly consistent with the theoretical estimations based

on the Backus average, which represents the long-wavelength equivalent of

a layered model. However, the discrepancy between the dispersion curves

from the normal-mode estimation and the Backus average becomes large for

strongly heterogeneous media with large velocity fluctuations.

We also perform 2-D simulations for various laminated stochastic hetero-

geneities using the finite difference method (FDM). The model space extends

2000 km horizontally and 360 km vertically with 0.05 km grid spacing to in-

corporate the fine-scale stochastic heterogeneity. We suppose 101 virtual

seismic stations located in the epicentral distances from 900 to 1900 km at a

10 km interval. 2-D simulations are performed independently for P-SV and

SH waves using the same heterogeneous models. The computed seismograms

in 2-D models are then used to measure single-station phase speeds of surface

waves.

To extract the surface-wave phase speeds, we employ the single-station

waveform fitting method for source-receiver paths based on a fully nonlinear

waveform fitting with global optimization. Despite the limitations in 2-D

FDM simulations, we could extract reliable average phase speed perturba-

tions in heterogeneous models relative to the homogeneous one for both the

fundamental-mode Rayleigh and Love waves in a period range from 30 to

100 s.

We investigate the influence of three main factors that control or affect the

character of stochastic heterogeneity in the upper mantle based on the von

Karman type distribution function; the strength of heterogeneity (the stan-
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dard deviation of velocity fluctuation, σ), the lateral scale of heterogeneity

(the horizontal correlation length, ax), and the thickness of the heteroge-

neous layer. To consider finely laminated heterogeneity in this study, the

vertical correlation length, az, is fixed at 0.5 km. We also consider the effec-

tive strength of velocity fluctuations, σeff , to quantify the realistic strength

of heterogeneity in each 2-D heterogeneous model.

The results indicate that the strength of heterogeneity σ (or σeff ) exhibits

noticeable influence on the perturbation of the fundamental-mode Rayleigh

wave phase speed; for models with random heterogeneity (ax = 5 km and

az = 0.5 km) in the depth range from 35 to 120 km, the Rayleigh-wave

phase speed drop reaches around 2.0 % for σ = 0.1 (σeff = 0.13), and

around 0.5 % for σ = 0.05 (σeff = 0.066), depending on periods. For weaker

heterogeneity, the influence on phase speed can be almost negligible. The

changes in the horizontal correlation length ax also show some influence;

for larger ax, phase speed reduction becomes greater, although we could

confirm it only for limited cases. The results of the varying thicknesses of the

heterogeneous layer suggest that their influence on phase speed perturbations

mostly reflects the vertical sensitivity of Rayleigh waves as a function of

periods. In all cases, the influence on the fundamental-mode Love waves is

insignificant. Through these numerical experiments, we could confirm how

laminated stochastic heterogeneity affects surface-wave dispersion.

We then invert for 1-D radially anisotropic S wave models using the phase

speed perturbations of the fundamental-mode Rayleigh and Love waves for

specific stochastic models. The results indicate that, for σeff = 0.1, the ex-

pected apparent radial anisotropy can be about ξ ≈ 1.04, which can be nearly

half of the observed radial anisotropy commonly seen in tomographic mod-

els. For a case with σeff = 0.05, apparent radial anisotropy can be about

ξ ≈ 1.01. The results obtained in this study suggest that the laminated
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heterogeneity with specific properties may generate a certain level of appar-

ent radial anisotropy, and the observed radial anisotropy could be partially

attributed to the existence of laminated random heterogeneity.
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Chapter 1

Introduction

Seismic anisotropy, which reflects the directional dependence of seismic wave

speeds, has been one of the major targets of extensive research in seismol-

ogy. It provides us with invaluable information on the internal structure and

dynamic processes of the Earth. Seismic surface waves (Love and Rayleigh

waves), which are sensitive to both heterogeneity and anisotropy, especially

in the crust and upper mantle, can be powerful tools in studying them. In

this chapter, we first briefly review the background of surface wave propa-

gation, seismic anisotropy, and heterogeneity. Then, we will overview the

contents and scope of this study.

1.1 Surface waves in heterogeneous and anisotropic
media

Seismic surface waves (Love and Rayleigh waves) have been used as an ef-

fective tool for investigating the large-scale spatial variations of both het-

erogeneity and anisotropy in the upper mantle. Surface waves are sensitive

to the shallow layers of the Earth, such as the crust and upper mantle, and

the arrival time anomalies of surface waves reflect the lateral heterogeneity

of velocity structure in general, which can be used to build surface-wave dis-

persion maps (e.g., Ekström et al., 1997; Ekström, 2011). The dispersive

1



1.1. Surface waves in heterogeneous and anisotropic media 2

Figure 1.1: Sensitivity kernels of the fundamental-mode phase speed to the
S-wave speed in a period range of 30 – 100 s. (a) Rayleigh wave, and (b)
Love wave.

character of surface waves enables us to investigate the vertical variation of

seismic velocity structure since surface waves at different periods are sensi-

tive to different depth ranges (e.g., Takeuchi & Saito, 1972). Fig. 1.1 shows

some examples of the vertical sensitivity kernels of the fundamental-mode

Rayleigh and Love waves to shear velocities in the period range from 30 to

100 s.

Surface waves have also been extensively used to retrieve the 3-D distri-

bution of radial and azimuthal anisotropy in the upper mantle. Azimuthal

anisotropy can be detected from the difference in phase speeds at different

propagation directions using surface waves. Radial anisotropy (or transverse

isotropy with a vertical symmetry axis; TIV or VTI) reflects wave speed

differences between horizontally-polarized SH waves (Vsh) and vertically-

polarized SV waves (Vsv), which is defined as ξ = (Vsh/Vsv)
2. Observations



1.2. Observations of seismic anisotropy in the upper mantle 3

of both Rayleigh (sensitive to SV) and Love (sensitive to SH) waves allow us

to map the 3-D variations of azimuthal and radial anisotropy in the Earth.

However, the resolution of surface wave studies is generally limited due

to the long-wavelength nature of surface waves. Seismic waves are essentially

insensitive to the details of smaller-scale structures than the wavelength,

and their propagation may depend on the spatial average structure (e.g.,

Capdeville et al., 2013; Fichtner et al., 2013; Jordan, 2015). Many studies

have been done on small-scale heterogeneities in the Earth, which will be

further discussed in the subsequent section 1.3, but most of them have focused

primarily on body waves at higher frequencies rather than surface waves at

lower frequencies.

Tomographic studies using surface waves generally aim to retrieve large-

scale deterministic heterogeneity in the mantle, and the smaller-scale struc-

ture relative to their wavelength is generally not considered (Fichtner et al.,

2013; Capdeville et al., 2013). Therefore, the effect of such small-scale het-

erogeneity on long-period surface waves and radial anisotropy has not been

studied well compared to the extensive research on body wave scattering.

1.2 Observations of seismic anisotropy in the upper
mantle

Recent seismic studies using long-period surface waves have revealed large-

scale radial anisotropy with Vsh>Vsv in the lithosphere and asthenosphere

both in oceanic and continental regions (e.g., Nettles & Dziewoński, 2008;

Yuan & Romanowicz, 2010; Yoshizawa, 2014; Isse et al., 2019). Yuan &

Romanowicz (2010) revealed the two-layer structure of North American cra-

ton, with vertical variations in azimuthal anisotropy. Nettles & Dziewoński

(2008) found strong lateral variations of radial anisotropy; e.g., continental

plates tend to have a thick and strongly anisotropic layer, and significant
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Figure 1.2: Radially anisotropic S-wave tomography model in Australia by
Yoshizawa (2014). (a) SV wave velocity, (b) SH wave velocity, and (c) Radial
Anisotropy ξ = (Vsh/Vsv)

2. (Top) map projections at 75 km depth, (bottom)
east-west cross sections at 22◦S, 25◦S, and 28◦S.

radial anisotropy with Vsh > Vsv beneath the Pacific plate, which has also

been confirmed by recent studies using ocean-bottom seismometers in the

Pacific (Isse et al., 2019).

Observed radial anisotropy can be explained by a combination of the ef-

fects from both the lattice-preferred orientation (LPO) and shape-preferred

orientation (SPO) (Magali et al., 2021), since it can arise either from intrin-

sically anisotropic media or isotropic layering. Thus, the lateral and vertical

variations in radial anisotropy may be partially attributed to the structural

variations in the Earth.

Recent studies in Australia using multi-mode surface wave tomography

(Fig. 1.2) have found that the strength of radial anisotropy drops rapidly

within the continental lithosphere near the depths of Mid-Lithosphere Dis-

continuity (MLD), while the shallow lithosphere and asthenosphere tend to
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show very strong radial anisotropy with Vsh > Vsv (e.g., Yoshizawa, 2014;

Yoshizawa & Kennett, 2015). The heterogeneity in the mantle has strong

spatial variations for both SV and SH wave speed structures, which leads to

changes in radial anisotropy at a certain depth in the lithosphere. Such a

rapid vertical change within the lithosphere can be related to the enigmatic

MLD (Kennett & Furumura, 2016; Sun et al., 2018), often observed in the

cratonic lithosphere from the receiver functions (Ford et al., 2010; Birkey

et al., 2021; Taira & Yoshizawa, 2020).

1.3 Stochastic heterogeneity in the lithosphere

The Earth is heterogeneous at a variety of scales, and its physical proper-

ties vary at different locations. The difference between heterogeneity and

anisotropy is more of a problem in scale since every heterogeneous material

can also be, at some scale, anisotropic (Bodin et al., 2015; Maupin & Park,

2015).

Various geophysical observations, including high-frequency scattering and

P wave reflectivity, have suggested the existence of fine-scale quasi-laminar

structures in the continental and oceanic lithosphere. Nielsen et al. (2003)

suggested an inhomogeneous zone in the upper mantle that can be described

by random velocity fluctuations to explain the high-frequency signals that

propagate long distances (>2000 km) from PNE (peaceful nuclear explosion)

data in Russia. Furumura & Kennett (2005) and Kennett & Furumura (2008)

performed numerical simulations of seismic wavefields to explain the extended

coda after both P and S wave arrivals from a deep earthquake in the subduc-

tion zone. They have suggested that such coda waves can be generated by

the waveguide effect from quasi-laminated heterogeneity in the subducting

plate. Their results from the numerical simulations well represented actual

observations.
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Kennett et al. (2013) and Kennett & Furumura (2016) extended their

target to oceanic cases in the northeast Pacific and continental paths inside

Australia, respectively. These studies used stochastic heterogeneity with a

horizontal correlation length of 10–20 km in the lithospheric mantle and a

shorter horizontal correlation length for the crust of about 5 km. On the

other hand, P wave reflectivity studies in Australia using auto-correlograms

at seismic stations have also indicated the presence of strong heterogeneity

throughout the lithosphere and even in the upper asthenosphere, with a scale

length of 300–500 m in the uppermost mantle (Kennett, 2015). Their study

also found no clear tie for the patterns of reflectivity between closely spaced

stations (about 50 km interval), which is consistent with the horizontal cor-

relation length suggested by high-frequency observations.

While only relatively mild heterogeneity (about 1 % fluctuation) is re-

quired down to 100 km for generating the long P and S wave coda, P wave

reflectivity in some areas has suggested the existence of strong heterogeneity

near the lithosphere-asthenosphere transition (LAT) (Sun & Kennett, 2017;

Kennett et al., 2017).

The existence of such laminated heterogeneity would result in apparent

(or effective) radial anisotropy on a larger scale. Thus, it will be essential

to quantify the effect of such laminated heterogeneity on observed large-

scale anisotropy, primarily constrained by longer-period surface waves (e.g.,

Nishimura & Forsyth, 1989; Gung et al., 2003; Nettles & Dziewoński, 2008;

Yoshizawa, 2014).

1.4 Structure induced seismic anisotropy

Seismic anisotropy can be linked to the lattice-preferred orientations (LPO)

of intrinsically anisotropic crystals, providing valuable information about geo-

dynamic processes in the Earth. However, the effects of LPO are not the only
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cause of seismic anisotropy. It has been recognized that radial anisotropy can

also arise from structural characteristics of isotropic media, e.g., fine layer-

ing (Aki, 1968; Allegre & Turcotte, 1986), aligned cracks with fluid inclusion

(Thomsen, 1995; Hudson et al., 2001), or partial melting (Kawakatsu et al.,

2009; Hirschmann, 2010). This type of elastic anisotropy caused by inhomo-

geneities on a relatively small scale compared to the wavelength of seismic

waves is sometimes called the shape-preferred orientation (SPO), in contrast

to the LPO.

In the ideal case of SPO, a purely isotropic layered medium is equivalent

to a vertical transversely isotropic (VTI) medium in the long period, when

the wavelength employed is much longer than the average thickness of each

layer (Backus, 1962). The Backus theory, or the Backus average, tells us that

fine layering of isotropic materials can cause changes in the effective shear

modulus of the layered medium. The effective shear modulus is a measure of

the overall rigidity of the medium, as described using laminated alternating

layers of hard and soft materials Aki (1968).

Studies on this type of anisotropy used different epithets to describe it, for

example, shape-preferred orientation (SPO), apparent anisotropy (Fichtner

et al., 2013), extrinsic anisotropy (Wang et al., 2013; Faccenda et al., 2019),

geometric anisotropy (Jordan, 2015), and effective anisotropy (Maupin &

Park, 2015). In this paper, we use ”apparent anisotropy” to describe the

large-scale anisotropy that arises from the layered isotropic media or lam-

inated fine-scale heterogeneities that comprise isotropic materials. Some

earlier studies, such as Fichtner et al. (2013) and Wang et al. (2013), dis-

cussed the influence of intrinsic anisotropy from LPO and apparent (extrin-

sic) anisotropy from isotropic layering. Fichtner et al. (2013) concluded that

the observed seismic anisotropy could be explained by purely isotropic layer-

ing unless all anisotropic parameters are known well. Meanwhile, Wang et al.
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(2013) suggested that observed radial anisotropy can be a linear combina-

tion of LPO-induced intrinsic anisotropy and apparent (extrinsic) anisotropy

related to fine layering. They concluded that fine layering could be an impor-

tant contributor to explaining the observed seismic anisotropy in the upper

mantle. Thus, the observed radial anisotropy would be very unlikely to be

entirely intrinsic or apparent, but observed anisotropy is likely to be, in gen-

eral, a combination of the two causes.

It should be noted that most of the studies mentioned above considered

the body wave case. To our best knowledge, the discussion of such hetero-

geneity on surface wave dispersion has been considered only by a few authors

like Capdeville & Marigo (2007) and Dalton et al. (2019). Their earlier stud-

ies are of great importance in understanding this problem, but generally,

they considered simplified cases with isotropic alternating layers or stratified

models with inhomogeneities.

Therefore, more extensive studies are required to clarify the relationship

between layered random heterogeneity of isotropic materials inferred from

high-frequency body wave studies and observed radial anisotropy derived

from long-period surface wave studies.

1.5 The scope of this study

The aim of this study is to investigate the relationship between the lami-

nated random heterogeneity in 1-D and 2-D media and radial anisotropy ob-

served from seismic surface waves, through extensive numerical experiments

of normal-mode calculations and seismic wavefields of broad-band seismic

waves from the finite-difference method.

In chapter 2, we briefly review the effective medium theory originally de-

veloped by Backus (1962). By employing numerical experiments based on

normal mode calculations with isotropic 1-D layered models with velocity
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fluctuations in the uppermost mantle, we investigate how such layered media

would affect the surface wave phase speeds, compared with the theoretical

estimation from the Backus average for long-period surface waves. We con-

firm that such layered structures would make effective shear modulus for

vertically polarized SV waves smaller, while that for horizontally polarized

SH waves can be almost unchanged from the average (or reference) model.

This leads to the ”apparent radial anisotropy”, and results in slower Rayleigh

wave phase speeds, while the Love wave phase speeds are nearly unchanged

from the reference model.

In chapter 3, we perform a variety of 2-D forward modeling with the finite-

difference method (Furumura & Kennett, 2005; Kennett & Furumura, 2008)

to compute the seismic wavefields in homogeneous and heterogeneous media,

including various strengths and scales of stochastic heterogeneities. We em-

ploy a single-station waveform fitting method (Yoshizawa & Ekström, 2010)

to measure the phase speeds of surface waves propagating in these different

2-D models. The careful investigations of extracted dispersion curves allow

us to confirm their reliability. By taking the ensemble average of measured

phase speeds from finely laminated heterogeneous models, we can estimate

the average phase speed perturbations of the fundamental-mode Rayleigh and

Love waves relative to the homogeneous reference model, which represents

the effect of laminated stochastic heterogeneity on long-period surface waves.

We discuss the effect of a variety of stochastic heterogeneities, particularly

on Rayleigh wave phase speeds.

In chapter 4, based on the results derived from chapters 2 and 3, we dis-

cuss the plausible radial anisotropy that can be caused by laminated stochas-

tic heterogeneities, and how it could be related to actual observations. For

the quantitative interpretation of the apparent radial anisotropy, we perform

inversions of surface-wave phase speeds derived in the earlier chapter for the
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vertical 1-D profiles of radially anisotropic S-wave models. Based on the

retrieved anisotropic parameter ξ, we quantitatively evaluate the plausible

influence of laminated heterogeneity on apparent radial anisotropy.

In chapter 5, we summarize the work done in this thesis and discuss some

additional topics to be investigated in the future.



Chapter 2

Layered structure and radial anisotropy:
normal-mode approach with 1-D model

As discussed in the introduction, observed radial anisotropy in the Earth

is generally a combination of different causes of seismic anisotropy. In this

study, we mainly focus on radial anisotropy that can also be generated from

finely layered or quasi-laminated structures.

In this chapter, we will first review anisotropic properties in layered me-

dia following earlier studies of seismic wave propagation and how fine-scale

horizontal layering could induce apparent radial anisotropy. Then, a series of

numerical experiments using 1-D velocity models are performed to check the

effect of such layered structures on long-period surface wave phase dispersion.

2.1 Structure-induced radial anisotropy by horizontal
layering

The study of seismic wave propagation in layered media has a long history of

over a century (e.g., Voigt, 1928; Reuss, 1929; Backus, 1962; Aki, 1968). To

simplify the complexity of the problem, we start with an elastic medium with

transversely isotropic layers with a vertical symmetry axis (VTI medium).

Each layer can be described using density ρ and five elastic parameters a, c,

f , l and n (Love, 1927).

11
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Following the discussion given by Backus (1962), when the wavelength

employed is much longer than a certain distance over the heterogeneous layer,

wave propagation through a finely layered VTI medium can be described by

its long wavelength equivalent. The effective elastic parameters can thus be

calculated using upscaling functions (e.g., Bodin et al., 2015):

A = ⟨a− f 2c−1⟩+ ⟨c−1⟩−1⟨fc−1⟩2,

C = ⟨c−1⟩−1,

F = ⟨c−1⟩−1⟨fc−1⟩,

L = ⟨l−1⟩−1,

N = ⟨n⟩,

(2.1)

where the bracket ⟨⟩ represents the spatial average over a certain distance of

any given function. Supposing that each layer inside this medium is isotropic

(i.e., a = c = λ+ 2µ, f = λ, l = n = µ), the effective elastic parameters can

be given by:

A = ⟨4µ(λ+ µ)(λ+ 2µ)−1⟩+ ⟨(λ+ 2µ)−1⟩−1⟨(λ+ 2µ)−1⟩2,

C = ⟨(λ+ 2µ)−1⟩−1,

F = ⟨(λ+ 2µ)−1⟩−1⟨λ(λ+ 2µ)−1⟩,

L = ⟨µ−1⟩−1,

N = ⟨µ⟩.

(2.2)

Note that N and L that are equivalent to the shear modulus for SH and

SV wave speeds can be given by the arithmetic mean and harmonic mean of

shear modulus µ, respectively. Unless µ remains constant among all layers,

N > L. This indicates that the layered medium is effectively anisotropic on

a long wavelength. The radial anisotropy parameter ξ can be represented as,

ξ = N/L = ⟨µ⟩/⟨µ−1⟩−1. (2.3)



2.1. Structure-induced radial anisotropy by horizontal layering 13

Thus, a 1-D model with fine-scale isotropic layers with fluctuated elastic prop-

erties would generally show radial anisotropy as VSH > VSV when observed

by long-wavelength seismic waves. This phenomenon is the well-known radial

anisotropy induced by horizontal layering (e.g., Backus, 1962; Aki, 1968).

With the analytical expressions for the effective elastic parameters in a

1-D stratified medium by Backus (1962), we can directly calculate the level

of radial anisotropy that can be caused by a 1-D structure with thin layers.

Consider a 1-D stratified model which has m isotropic layers. For i-th layer,

the thickness is hi and the shear modulus is µi. Then, the effective elastic

parameter N and L can be represented as follows,

N =
1

H

m∑
i=1

µihi, (2.4)

L = H/
m∑
i=1

hi

µi

, (2.5)

H =
m∑
i=1

hi, (2.6)

where H represents the total thickness.

Supposing that each layer has the same thickness, the above function can

be simplified as,

N =
1

m

m∑
i=1

µi, (2.7)

L = m/
m∑
i=1

1

µi

. (2.8)

Note that µ is the shear modulus for isotropic media (µ = ρβ2), where β

is shear velocity and ρ density. For any given 1-D isotropic model with fine

layers, we can numerically calculate its long wavelength equivalent, which

will be considered in the next section.

It should be noted that the Backus theory assumes seismic waves propa-

gating across the heterogeneous layer with fine layering, like near-vertically
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propagating body waves. Therefore, it may not necessarily work properly

for describing surface wave dispersion which propagates horizontally. Dal-

ton et al. (2019) have recently studied the limitations of the Backus average

on guided waves (or surface waves). While their studies mainly focused on

higher frequency ranges used in exploration seismology, their results showed

that the Backus average is insufficient to describe the surface wave disper-

sion in strongly heterogeneous non-alternating layers, and it works for limited

cases with weak inhomogeneity and lower frequency. Capdeville & Marigo

(2007) considered effective medium theory to avoid the high computational

cost of numerical approach with fine grids, and their result showed that, while

the Backus theory gives good estimation for body wave velocity, it cannot

provide a correct result for surface wave phase speeds. Therefore, there is

an intrinsic limitation of the Backus average when we study the effect of

fine-scale heterogeneity on surface wave propagation. Thus, a numerical ap-

proach taking account of fine girds can be a more direct way to solve this

issue, which is the main approach of this study.
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2.2 Numerical experiments using 1-D models

In this section, we performed a series of 1-D numerical experiments to com-

pute the phase speed anomalies of surface waves using 1-D S-velocity models

with fluctuating velocities at a certain depth range. We used a program pack-

age, MINEOS v1.0.2 (Masters et al., 2011) for the normal mode calculations

using 1-D Earth models.

We consider 1-D models with random fluctuations (at 35–120 km depth)

from the reference Earth model iasp91 (Kennett & Engdahl, 1991). For

simplicity, S-wave velocity at each depth is randomly fluctuated, while the

other parameters are unchanged from the reference model. Unlike the 2-D

random models discussed in the next chapter, here we do not consider any

particular spectral density distribution that represents the spectral power of

heterogeneity in the wavenumber domain.

The normal mode calculation has a limitation in incorporating extremely

thin layers with rapid velocity changes. Thus, we fixed the thickness of each

layer to 1 km, allowing enough randomness in the 1-D models while keeping

the stability of normal mode calculations. The shear velocity at each layer

is calculated by adding a random perturbation to the reference model. The

velocity perturbation at each layer is controlled by a random distribution of

Gaussian type. The average velocity perturbation is set to zero with a specific

standard deviation σ (strength of heterogeneity) to simulate the finely layered

model with stochastic velocity fluctuations. Fig. 2.1 shows some examples

of random models generated and the corresponding dispersion curves for the

fundamental-mode Rayleigh and Love waves in comparison with those for

the reference model iasp91.

Figs. 2.2 and 2.3 display the resultant Rayleigh and Love wave phase

speed perturbations for σ = 0.05 and σ = 0.1 cases, respectively. For each

case, we generated 1000 models in total and calculated Rayleigh and Love
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Figure 2.1: Examples of 1-D models with random velocity fluctuations from
a reference model iasp91 (the standard deviation of velocity fluctuation σ =
0.1) in the depth range from 35 to 120 km. (Top) 3 selected random models,
and (bottom) their corresponding dispersion curves for both Rayleigh and
Love waves.
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(a)

(b)

Figure 2.2: Phase speed perturbations relative to the reference model for 1000
1-D random models (thin solid line) with the standard deviation of velocity
fluctuations σ = 0.05, the average phase speed perturbation from the 1000
models (thick solid line), and theoretical estimation from the Backus-average
(the long wavelength equivalent) model (dotted line), for (a) Rayleigh wave
(red) and (b) Love wave (blue).
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(a)

(b)

Figure 2.3: Same as Fig. 2.2, but for σ = 1.0.
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wave phase speed perturbations relative to the reference model. Then, we

take the average of all models so that the average influence of the stochastic

model on surface wave dispersion can be extracted.

These results suggest that the surface wave phase speeds show large varia-

tions for individual random models. However, the ensemble average of phase

speed perturbations from a large number of models becomes closer to the

Backus average, in particular, for smaller velocity fluctuations (σ = 0.5).

For larger σ (= 1.0), the discrepancy between the ensemble average and

the Backus average becomes larger, which is consistent with earlier studies

(Capdeville & Marigo, 2007; Dalton et al., 2019).

In either case, the average phase speed for the Rayleigh waves tends

to be slower due to the S-wave velocity fluctuations in 1-D models. The

average phase speed for the Love waves shows a slightly positive anomaly

relative to the reference model due to the slight increment of effective shear

modulus with fluctuated S-wave velocity (with fixed density), although the

phase speed difference is much smaller than the Rayleigh wave case. These

results coincide well with theoretical predictions in the previous section for

layered medium, as the Rayleigh waves (sensitive to SV waves or L in (2.2))

show negative anomalies, while the Love waves (sensitive to SH waves or N

in (2.2)) remain less changed.

The current numerical experiments with 1-D models with a 1-km grid

suggest that the effect of fine layering on surface wave dispersion is not very

significant in general; with 10 % shear velocity fluctuations, it would gener-

ate about 0.5 – 0.7 % phase speed drop on average for Rayleigh waves, and

Love waves are less affected with little difference from the reference model

(less than 0.1 %). These 1-D numerical experiments are simple trial tests to

investigate how such layered structures would affect surface wave dispersion.

We have employed simplified 1-D models with a fixed layer thickness of 1
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km due to the limitations of normal mode calculation, which have difficulty

in incorporating thinner layers. Also, as explained earlier, the S-wave ve-

locity at each depth has randomly fluctuated, but the other parameters are

unchanged from the reference model for simplicity. Moreover, 1-D normal

mode computation does not directly reflect the process of surface wave prop-

agation in laterally heterogeneous media, including random heterogeneity,

which will be further discussed in detail in the next chapter.



Chapter 3

Influence of laminated random hetero-
geneity on surface wave phase speeds:
2-D FDM approach

In the previous chapter, we investigated how the 1-D layered models with

rapid velocity fluctuations affect the phase speeds of surface waves. Now in

this chapter, we will further investigate the influence of laminated random

heterogeneity on surface wave phase speeds based on the numerical waveform

simulations with the finite-difference method. The computed synthetic seis-

mograms are then used to measure single-station phase speeds to estimate

how such random heterogeneities will affect surface wave propagation, which

eventually generates apparent radial anisotropy.

3.1 Numerical waveform modeling in 2-D heteroge-
neous media

As discussed in Chapter 1.3, fine layering or horizontally elongated hetero-

geneity in the Earth would cause apparent seismic anisotropy, which can be

observed as anomalous phase speeds of long-period surface waves with re-

spect to the background isotropic models. Still, it is not a straightforward

issue to distinguish the cause of such anisotropy in actual seismic observa-

tions, since observed anisotropy is generally a combination of different causes;

21
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e.g., intrinsic anisotropy due to anisotropic materials and/or flow-induced

lattice-preferred orientation, and apparent anisotropy due to shape-preferred

orientation and/or fine layering (e.g., Babuska & Cara, 1991; Fichtner et al.,

2013). Numerical waveform modeling may provide us with a hint at the re-

lationship between the elongated heterogeneity in an isotropic medium and

apparent radial anisotropy due to the structural heterogeneities, which can

be observed as phase speed anomalies of long-period surface waves.

The 1-D numerical experiments in Chapter 2.2 help to understand the

fundamental aspects of the problem, but such analyses based on 1-D mod-

els alone are insufficient as heterogeneity in the real Earth varies in a 3-D

space. While it would be ideal for performing full 3-D forward simulations for

seismic wavefields, the high-resolution meshes (∼ 0.1 km) required to study

such fine-scale heterogeneity on a large-scale structure (over several thou-

sand kilometers laterally and several hundred kilometers vertically) make

such computations prohibitive even with the recent computing facilities. In

particular, we need to run such simulations repeatedly with a variety of pa-

rameter settings. Therefore, to investigate the effects of fine-scale laminated

heterogeneity on phase speeds of long-period surface waves, which propagate

over a long epicentral distance, we performed a series of numerical simula-

tions with the finite-difference method (FDM) with two-dimensional models

by Furumura & Kennett (2005) and Kennett & Furumura (2008) incorpo-

rating multiple combinations of different model parameters.

In this section, we summarize the method of waveform modeling in 2-D

media, including fine-scale laminated heterogeneity. The synthetic waveforms

generated from such numerical simulations will be utilized in the next sec-

tion to measure phase speeds of long-period surface waves, to quantitatively

evaluate the apparent radial anisotropy caused by a variety of laminated

heterogeneities.
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3.1.1 Model settings for 2-D wavefield simulations with FDM

The numerical modeling technique employed in this study is based on earlier

studies by Furumura & Kennett (2005) and Kennett & Furumura (2008).

Here we summarize the method and models used throughout this study. We

first consider a stratified model with a simulation domain of 2000 km horizon-

tally and 360 km vertically (Fig. 3.1). P-SV and SH wavefields are simulated

separately, using a uniform grid size of 0.05 km, so we have adequate spatial

sampling for the fine-scale heterogeneity. The source was placed at 100 km

from the left side of the model and at a shallow depth of 5 km. A total of

101 virtual stations were placed on the right half of the model with a sta-

tion interval of 10 km, so the longest epicentral distance is 1900 km, and

the shortest one is 900 km. We employed a conventional absorbing buffer

zone (Cerjan et al., 1985) of 20 grid-points width on both sides and bottom

of the model in order to minimize artificial reflections from the boundaries.

The simulation is performed for each model to compute the full wavefields

for P-SV and SH waves independently. This simulation takes a CPU time

of approximately 24 hours by parallel computing using 160 cores of the EIC

system (Earthquake Research Institute, The University of Tokyo) for P-SV

waves and around 12 hours for SH waves, respectively.

The velocity model is generated by adding stochastic heterogeneities into

the background model with homogeneous layers, introducing the fine-scale

random heterogeneities in the upper mantle. We perturbed P-wave velocity,

S-wave velocity, and density in the background model. The background

model is generated from the combination of different reference models, where

the VP and VS values are derived from the iasp91 model (Kennett & Engdahl,

1991), density ρ is taken from PREM (Preliminary Reference Earth Model)

(Dziewonski & Anderson, 1981) and Q is determined following Robertsson

et al. (1994). The finely laminated structure can be modeled by introducing
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Figure 3.1: Model configuration for the flat-layered model. The seismic
source is shown as a white star in the crust at 5 km depth. Selected locations
of the imaginary seismic stations (from 1000 km to 2000 km, 101 stations in
total) are shown in black inverse triangles.

the von Karman type stochastic heterogeneity (Frankel & Clayton, 1986)

with a relatively longer horizontal correlation length, which can be added to

each layer of the background model. Also, the Earth flattening correction is

applied to take account of the effect of Earth’s sphericity, which needs to be

considered on a large scale assumed in this study. The actual structure of the

Earth includes large-scale structural variations, such as the varying thickness

of the lithosphere and slab subduction. However, to simplify the problem and

focus on the influence of fine-scale random heterogeneity, we consider a flat

layered model with random heterogeneity confined in a specific depth range.

As an initial numerical experiment for 2-D forward modeling, we start

with a flat Earth model containing laminated heterogeneities with the von

Karman type random deviations from the background velocity in the depth

range of 35–120 km, representing horizontally elongated random hetero-

geneities in the mantle lithosphere. We first generated Gaussian random

numbers in the spatial domain with an average value of 0, then transferred

them into the wavenumber domain using the fast Fourier transform (FFT).

We employed a spatial filter in the wavenumber domain using the probability
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density function P based on the von Karman type distribution with a Hurst

number (κ) of 0.5, vertical correlation scale az as 0.5 km, and varying hor-

izontal correlation scale ax as we will discuss later. The probability density

distribution in terms of horizontal slowness p and vertical slowness q takes

the form (e.g., Kennett & Furumura, 2013, 2015, 2016):

P (p, q) =
4πκσ2axaz

(1 + ω2a2xp
2 + ω2a2zq

2)κ+1 , (3.1)

where σ controls the velocity fluctuation with respect to the reference (rep-

resenting the strength of heterogeneity). Then, we can obtain the random

heterogeneity model in the spatial domain by taking the inverse Fourier trans-

form. Generated heterogeneities are directly used as velocity perturbation

from the background model for P and S wave velocities, and multiplied by a

scaling factor of 0.8 for the perturbation of density ρ.

Fig. 3.2 shows an example of a 2-D heterogeneous model and selected

1-D profiles of shear velocity at different locations. This example model

incorporates horizontally elongated stochastic heterogeneity of σ = 0.05 ,

ax=5 km and az=0.5 km. It is obvious that the 1-D velocity profiles at these

different locations are not identical at 35 – 120 km depth due to the effect of

random heterogeneity.

According to Frankel & Clayton (1986), the actual velocity fluctuations

of heterogeneity in the 2-D von Karman type distribution in discrete random

media cannot be simply described with σ since the standard deviation is

undefined in such self-similar media. However, to discuss and compare the

influence of such heterogeneity on surface-wave phase speeds among differ-

ent heterogeneous models, we need to effectively describe the level of velocity

fluctuation in the stochastic heterogeneity models. In this study, instead of

applying the normalization with a converted standard deviation of hetero-

geneity strength for discrete media during the model construction (Frankel
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2000km

360km

Average 1-D model

Effective σ

Figure 3.2: An example of averaged 1-D S-wave model and effective velocity
fluctuation σeff . In this figure, heterogeneity with strength σ = 0.05, hori-
zontal and vertical correlation length ax=5 km, az=0.5 km is added to the
2-D homogeneous model in the 35 – 120 km depth. Selected 1-D velocity
profiles for 4 different locations are shown on top. The average 1-D S-wave
model and the corresponding effective strength of heterogeneity σeff com-
puted from 200 different locations are shown on the right column.
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& Clayton, 1986), we consider the effective velocity fluctuations in each het-

erogeneous model as follows.

We first calculated the average S-wave velocity at each depth in the 2-

D heterogeneous model by using 200 1-D vertical profiles at every 10 km

distance interval and obtained the average 1-D velocity profile. Then, at

each depth, we computed the standard deviation of shear velocity. Both 1-D

profiles of average velocity and standard deviations are then smoothed over

a 10-km vertical window (5 km above and below the target depth), which

is displayed in the right column of Fig. 3.2. The average value of these

standard deviations over the heterogeneous layer can be considered as an

effective strength of velocity fluctuation. We use a new variable σeff for this

effective velocity fluctuation to distinguish it from the original σ presumed

in the model construction. The relationship between σ and σeff for typical

2-D models used in this study is shown in Fig. 3.3.
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Figure 3.3: Relationship between original σ and its effective value σeff which
is the standard deviation of velocity fluctuations in the actual 2-D models
in the depth range of heterogeneous layer. The detail of computing σeff is
explained in the main text.
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3.1.2 Seismic wavefields and synthetic seismograms from the 2-D
FDM simulations

We performed a series of 2-D forward modeling to numerically simulate the

effect of laminated heterogeneities. Fig. 3.4 displays an example of a snap-

shot of P-SV wavefields in a 2-D heterogeneity model, and Figs. 3.5 and 3.6

displays the seismic record sections (vertical component) along a linear array

of stations for higher (0.5–10Hz) and lower (0.01–0.03Hz) frequency ranges,

respectively.

In the higher frequency range, we can clearly see the effects of fine-scale

heterogeneity produces strong coda waves after the P and S waves, indicating

the strong scattering effect as discussed in earlier studies (e.g., Kennett &

Furumura, 2008). In the lower frequency range, very clear arrivals of surface

waves (Rayleigh waves) can be traced. We can also see some artificial re-

flections from the sides and bottom of the 2-D structure domain, which may

have some influence on surface waves. Such limitations of the 2-D waveform

modeling will be further discussed in the next section.

The synthetic seismograms from the 2-D waveform modeling will be used

in the subsequent sections to measure surface wave phase speeds in the longer-

period range (30–100 s) displayed in Fig. 3.6, which will enable us to discuss

the influence of laminated random heterogeneity on surface wave phase dis-

persion in Chapter 3.3 and apparent radial anisotropy in Chapter 4.
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Figure 3.4: A snapshot of P-SV wavefield at an elapsed time of 120 s for a
heterogeneous model (with heterogeneity parameters of σ = 0.05, ax = 5 km,
az = 0.5 km in the depth range from 35 to 120 km). P waves in red and SV
waves in green.
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Figure 3.5: Vetical-component waveforms with a band-pass filter from 0.5
to 10 Hz, computed for the heterogeneous model shown in the snapshot of
P-SV wavefield in Fig. 3.4.
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Figure 3.6: Same as Fig. 3.5 but with a band-pass filter from 0.01 to 0.03
Hz.
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3.2 Phase speed measurements of surface waves

The main target of this study is to quantitatively estimate the influence

of laminated random heterogeneity on long-period surface wave dispersion,

which may eventually affect observed radial anisotropy. It is, therefore, nec-

essary to estimate the surface-wave phase speeds from the simulated seis-

mograms. In this study, we measure the phase speeds of fundamental-

mode Rayleigh and Love waves based on the single-station measurements be-

tween the source and receivers based on a nonlinear waveform fitting method

(Yoshizawa & Ekström, 2010), which enables us to measure phase speeds

even at relatively short epicentral distances less than 2000 km in the current

study. The details of the measurement procedure and the validity of the

measured phase speed data sets are discussed in this section.

3.2.1 Single-station waveform fitting

In this study, we performed the nonlinear waveform fitting method for single-

station phase speed measurements (Yoshizawa & Kennett, 2002; Yoshizawa

& Ekström, 2010). This method inverts a single-station seismogram for

path-specific 1-D profiles with a nonlinear model parameter search using the

Neighbourhood Algorithm (Sambridge, 1999) to find a 1-D S-wave profile

that provides the minimum misfit between the observed and synthetic seis-

mograms. The best-fit 1-D profile can then be used to compute path-average

multi-mode phase speeds for the source-receiver path. An example of the

waveform fitting procedure and measured phase speeds are summarized in

Fig. 3.7. We used the reliability parameter rj (j is the mode number) defined

by Yoshizawa & Ekström (2010) to evaluate the quality of waveform fitting.

The threshold value for the fundamental mode is set to 10 in this study. The

higher-mode amplitude is relatively weak in our numerical simulations since

we assumed a shallow source at 5 km depth. Thus, we do not employ higher
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Figure 3.7: An example of single-station waveform fitting and phase speed
measurements for Rayleigh waves. (a) Best-fit waveforms (color dashed lines)
and observed waveforms (black lines; simulated seismograms in this study).
(b) Measured phase speeds for the fundamental-mode Rayleigh waves. (c)
Reliability parameters that represent the quality of measurements as a func-
tion of periods. Measured phase speeds with a reliability greater than 10 are
used in the subsequent analysis.

modes in later processes and consider the fundamental mode only.

The 2-D models used in this study contain significant lateral variations

of random heterogeneity. Therefore, we take the average of all measure-

ments of single-station phase speeds for 101 stations distributed over a wide

epicentral distance range (from 900 to 1900 km), so that we can discuss

the average features of phase speed anomalies caused by the stochastic het-

erogeneity in each model. We also performed the dispersion measurements

for simulated seismograms in a background homogeneous model without the

stochastic random heterogeneity for comparison, which are then used as the
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reference phase speed in the later process. The average phase speed pertur-

bations computed for each heterogeneous model with respect to the common

homogeneous background model enable us to discuss the influence of the

random heterogeneity on surface wave dispersion. Note that we employed

high-quality measurements of phase speeds with a reliability parameter r0

>10.0 in this averaging process.

3.2.2 Quality check of phase speed measurements

Homogeneous layered model

A homogeneous layered model includes no lateral variation, so we can use

the background 2-D layered model (equivalent to a 1-D velocity structure) to

compute theoretical phase speeds for Rayleigh and Love waves based on the

normal-mode method with MINEOS (Masters et al., 2011). Note that the

2-D model used in this study does not have structural information below 360

km depth, so the deep structure below 360 km is added by using iasp91 and

PREM, following the description in Chapter 3.1.1. The comparisons between

the measured phase speeds from simulated seismograms and those from the

normal-mode theory are shown in Fig. 3.8 for both Rayleigh (P-SV) waves

and Love (SH) waves.

Measured phase speeds for the fundamental-mode Rayleigh waves from

the single-station method (Fig. 3.8 a) exhibit smaller errors in the period

range from 30 – 60 s, matching well with the theoretical phase speeds for the

1-D background model from the normal mode theory. In a longer period, the

single-station phase speeds become slower than the theoretical ones due to

the limited model space in the 2-D simulation, which includes only the top

360 km, while the full Earth model is used in the normal mode calculation,

which includes faster S velocity below 360 km depth. Also, the epicentral

distance range (900 – 1900 km) used in our phase speed measurements is
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Figure 3.8: Dispersion curves for the fundamental-mode surface wave phase
speeds in the homogeneous model measured by the single-station waveform
fitting. (a) Rayleigh wave phase dispersion curves. Thin red lines: single-
station measurements for 101 stations. A thick red line: ensemble average of
101 stations using selected measurements with higher reliability parameter
r0 >10. Error bars are the standard deviations at each period. Grey dotted
line: the theoretical phase dispersion curve computed from the background
2-D homogeneous model (1-D profile) using the normal-mode theory. (b)
Same as (a) but for Love wave with blue lines.
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relatively short compared to the wavelength of surface waves at 100 s (over

400 km wavelength), which also makes the measurements somewhat unstable

in the longer period. Thus, the standard deviation of measurements tends

to be greater in the longer period range.

For the Love wave case (Fig. 3.8 b), the average phase speeds from the

single-station measurements are almost equal to the theoretical phase speeds

from the normal-mode calculation since the fundamental-mode Love waves

are essentially less sensitive to the structure below 360 km in the current

period range (30 – 100 s). Still, the standard deviations of Love wave phase

speeds tend to be larger than those of Rayleigh waves. This can be at-

tributed to the well-known contamination of the fundamental-mode Love

waves (at relatively short epicentral distances) by the preceding body waves

(such as multiply reverberated S waves) and higher modes (e.g., Nettles &

Dziewoński, 2008; Foster et al., 2014; Matsuzawa & Yoshizawa, 2019), since

the higher-modes and fundamental-mode share similar group speeds. De-

spite such limitations, we could extract the stable average phase speeds by

taking the average of all the reliable measurements, which is very close to

the theoretical velocities in the period range of 30 – 100 s.

Heterogeneous layered model

Now we consider our main target of 2-D models with random heterogeneities.

Here we performed FDM simulations for heterogeneous models incorporating

stochastic laminated heterogeneity with the strength of heterogeneity σ =

0.1 (σeff = 0.132), the horizontal correlation length ax = 5 km and the

vertical correlation length az = 0.5 km in the depth range of 35–120 km.

Fig. 3.9 compares the average phase dispersion curves measured from the

single-station method using the simulated seismograms for the heterogeneous

and homogeneous background models.
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Figure 3.9: Average phase dispersion curves of (a) Rayleigh wave and (b)
Love wave, measured with the single-station method using the simulated
seismograms for the heterogeneous model (brown) and for the homogeneous
model (green) shown in Fig. 3.8. Colored envelopes show the standard devi-
ation of all measurements with reliability r0 >10.
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For Rayleigh waves (Fig. 3.9 a), we can see apparent differences in the

average phase speeds between the heterogeneous and homogeneous models,

especially in the shorter period range (30 – 70 s), which represents the influ-

ence of laminated random heterogeneity. This discrepancy becomes smaller

in the longer periods since the depth range of stochastic heterogeneity in our

model is confined in the depth range of 35 – 120 km. The standard deviations

(colored envelopes in Fig. 3.9) of phase speed measurements from the het-

erogeneous model are generally at the same level as the homogeneous case,

indicating that the quality of phase speed measurements has been unaffected

even in the heterogeneous models.

For Love waves (Fig. 3.9 b), the difference between the average phase

speeds for the heterogeneous model and the homogeneous model is very

small. As discussed in Chapter 2, the effective shear modulus for a hori-

zontally polarized SH wave can be derived from the arithmetic average of

the horizontally layered model over depth, which is equivalent to the ho-

mogeneous background model. Thus, the horizontally laminated random

heterogeneity should have little impact on the Love wave phase speed on

average. Therefore, in the subsequent sections, our discussion mainly focuses

on the phase speed changes of Rayleigh waves in the 2-D random models,

which eventually represent the structure-induced apparent radial anisotropy

that will be treated in Chapter 4.

It should be noted that the velocity structure of the heterogeneous model

can be affected by the specific random seeds used for generating stochastic

heterogeneity during the model construction. Fig. 3.10 shows the average

phase speeds of Rayleigh wave for 5 different heterogeneous models with

different random seeds, using the same model parameter sets used in Fig. 3.9.

The variations between models with different random seeds are relatively

small but may need to be carefully considered when we discuss the structural
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Figure 3.10: Average phase speed perturbations of Rayleigh waves for the
heterogeneous models (measured with the single-station methods) relative
to the average phase speed for the homogeneous models. Laminated het-
erogeneities with the standard deviation σ=0.1 (σeff = 0.132) are imposed
in the depth range between 35 – 120 km, with the horizontal and vertical
correlation lengths ax = 5 km and az = 0.5 km, respectively. Colored lines:
Average phase speed perturbations estimated from each of 5 models with
different random seeds, using measured phase speeds with the reliability r0
>10.

influence on surface wave dispersion.

Fig. 3.11 displays 1-D profiles of average S-wave models and the cor-

responding effective velocity fluctuations σeff for each case of 5 different

random-seed models. The σeff is essentially the same for all models, but the

average S-wave profile tends to show slight differences, which may have more

impact than σeff on the differences of phase speed perturbations shown in

Fig. 3.10.

Fig. 3.12 shows the ensemble average of the Rayleigh wave phase speed

perturbations for 5 different random-seed models shown in Fig. 3.10. All of

the average phase speeds for each random seed model are within the range of
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Figure 3.11: Vertically-smoothed average 1-D S-wave models and effective
velocity fluctuations σeff for 5 random models used in Fig. 3.10 with dif-
ferent random seeds. Top: average 1-D S-wave model calculated from 1-D
vertical profiles at various locations. Bottom: corresponding σeff for the
heterogeneity in the depth range of 35–120 km.
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Figure 3.12: Same as Fig. 3.10, but also shows the average values and stan-
dard deviations calculated from 5 different random-seed models (black dots
and error bars).

the standard deviation of the ensemble phase speed perturbations. Thus, the

ensemble-averaged phase-velocity perturbations from 5 random-seed models

can be a good representation of the mean feature of the heterogeneity model

with the specific model parameter sets (ax = 5 km, az = 0.5 km, and σ = 0.1

in this case). It may be better to use more different random seed models,

but it is prohibitive considering the computational costs. In the subsequent

sections, unless otherwise specified, phase speeds and their perturbations

from the homogeneous models are the ensemble average value from 5 distinct

models with identical parameter sets, but with different random seeds, to

suppress the uncertainties in the random models.

3.2.3 Numerical effects and limitations in the 2-D FDM simula-
tions

In the previous sections, we investigated the validity of synthetic seismograms

from the 2-D FDM simulations and the measured phase speeds using those
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seismograms with the single-station waveform fitting. When we use this kind

of numerical approach for surface wave modeling and analysis, we cannot

avoid the intrinsic numerical limitations, such as the free-surface treatment,

a half-grid shift in the staggered grid, numerical dispersion, and absorbing

boundary conditions (e.g., Igel, 2016). In fact, the absorbing boundary at

both sides and bottom of the 2-D model cannot perfectly eliminate boundary

reflections, as shown in the waveform traces in Figs. 3.5 and 3.6, which would

have some influence on our synthetic seismograms.

Moreover, in this study, we have to limit the model space to 2000 km

horizontally and 360 km vertically, which is a relatively small size for the

propagation of long-period surface waves. This requirement is due to the

practical limit of computational resources to incorporate very small grids of

0.05 km to properly model the fine-scale laminated heterogeneity. The 2-D

flat models used in this study require a proper treatment of Earth flatten-

ing corrections, which have been handled properly within the limited depth

range. Such limited model size may affect the absolute Rayleigh wave phase

speeds to some extent, as we have discussed in the previous section.

However, all the above numerical issues can be assumed to be common

in all of our simulated seismograms for both 2-D heterogeneous and homoge-

neous models. Therefore, by taking the difference between the phase speeds

measured for the heterogeneous and homogeneous models, the majority of

the intrinsic numerical effects can be canceled out. Thus, we can extract ro-

bust information on surface wave phase speed changes due to the laminated

random heterogeneity. This assumption will be employed in the subsequent

sections, and we will discuss the phase speed perturbations in heterogeneous

media relative to the average phase speed in the homogeneous model.
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3.3 Phase speed anomalies caused by laminated ran-
dom heterogeneity

In this section, we discuss the effect of laminated heterogeneity with various

parameter sets for stochastic random media on the surface-wave phase dis-

persion based on the phase speed measurements using the methods described

in the previous section.

3.3.1 Effects of the strength of heterogeneity

We considered a series of 2-D simulations with the same heterogeneity param-

eter sets (ax = 5 km, az = 0.5 km) except for the strength of heterogeneity σ,

varying from 0.01 to 0.1 (Fig. 3.13 and Table 3.1). The resultant phase speed

perturbations from the average phase speeds in the homogeneous model are

shown in Fig. 3.14 for Rayleigh waves and Fig. 3.15 for Love waves.

We can clearly see that larger σ causes larger negative phase speed per-

turbations for the fundamental-mode Rayleigh waves, while the difference

for Love waves are not very significant. The case with σ=0.1 (σeff ≈ 0.13,

equivalent to S-wave velocity fluctuations of about ± 13 %) resulted in a

largest phase speed perturbation of about 2 – 2.5 % velocity drop for the

fundamental-mode Rayleigh wave at 30 – 60 s period, relative to the homo-

geneous case (no heterogeneity in all layers). Although such a very strong

Depth range ax az σ σeff

Model 1 35 – 120 km 5 km 0.5 km 0.01 0.0131
Model 2 35 – 120 km 5 km 0.5 km 0.02 0.263
Model 3 35 – 120 km 5 km 0.5 km 0.05 0.659
Model 4 35 – 120 km 5 km 0.5 km 0.10 0.132

Table 3.1: Model parameters for stochastic random heterogeneity with fixed
ax and az, and varying σ used in Figs. 3.13 – 3.15.



3.3. Phase speed anomalies caused by laminated random heterogeneity 44

Figure 3.13: Examples of 2-D heterogeneous models used to estimate average
phase speeds in Figs. 3.14 and 3.15. Laminated heterogeneities are confined in
the depth range between 35 – 120 km, and horizontal and vertical correlation
lengths are fixed with ax = 5 km and az = 0.5 km, respectively. The strengths
of heterogeneity σ are (a) σ = 0.01, (b) σ = 0.02, (c) σ = 0.05, and (d)
σ = 0.10.



3.3. Phase speed anomalies caused by laminated random heterogeneity 45

Figure 3.14: Average phase speed perturbations for the fundamental-mode
Rayleigh wave relative to the average phase speed in the homogeneous model
(a dashed horizontal line at 0 %), estimated from the ensemble average of
single-station measurements (with reliability parameter r0 >10). The stan-
dard deviation from the ensemble average of measurements is calculated and
displayed as colored envelopes around the average. The horizontal and ver-
tical correlation lengths are fixed (ax = 5 km, az = 0.5 km), while σ varies
from 0.01 to 0.1. Laminated random heterogeneities are confined in the depth
range between 35 and 120 km of the 2-D model as shown in Fig. 3.13.
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Figure 3.15: Same as Fig. 3.14 but for Love wave.

heterogeneity may locally exist in certain areas of the Earth, it may be some-

what unlikely to occur continuously over a large horizontal scale (>1000

km). Still, even in a more practical case with σ=0.05 (σeff ≈ 0.066), we can

see non-negligible influences of such heterogeneity on Rayleigh wave phase

speeds, which drops about 0.6 % in a period range of 30 – 55 s.

Earlier studies on scattering of higher-frequency body waves in a stochas-

tic heterogeneity prefer relatively smaller values for σ since the observations

of high-frequency body waves or P wave reflectivity suggest that the realistic

fluctuation would be about 2 % or even smaller (Kennett, 2015). However,

the laminated heterogeneity with σ = 0.02 (σeff ≈ 0.026) only shows mild

phase speed deviations (about 0.2 %) for the fundamental-mode Rayleigh

waves. Another case with σ=0.01 (σeff ≈ 0.013) shows almost no difference

in the wide period range, suggesting that the weak laminated heterogeneity

has essentially no influence on the long-period surface waves.

Fig. 3.16 is a summary diagram showing the relationship between the

average phase speed perturbation and the effective strength of heterogeneity



3.3. Phase speed anomalies caused by laminated random heterogeneity 47

Figure 3.16: Average phase speed perturbations for Rayleigh waves relative
to the homogeneous model as a function of effective velocity fluctuations σeff

(colored dots) for four periods from 40 to 70 s. The relationship between σ
and σeff is shown in Fig. 3.3. Dashed lines are the best-fit curve for each
period, using a second-order (quadratic) polynomial.

σeff . Although we have only four selected samples, the relationship between

these two parameters is clearly not on a linear trend, as the phase speed

perturbation changes rapidly with increasing σeff .
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3.3.2 Effects of the horizontal correlation length of heterogeneity

Here we consider the effect of varying horizontal correlation length ax, which

controls the characteristic horizontal size of heterogeneity. Since our main

target is to consider the elongated (finely layered) random heterogeneity, we

consider stochastic heterogeneity with fixed vertical correlation length az (=

0.5 km), representing the varying aspect ratios of heterogeneity (Fig. 3.17).

Stochastic model parameter sets with varying ax used in this section are sum-

marized in Table 3.2. Note that, in this case, the effective velocity fluctua-

tions σeff tend to be greater as ax becomes large (see, Fig. 3.3 and Table 3.2),

which needs to be considered in the following discussion.

Average phase speed perturbations from models with varying ax are

shown in Fig. 3.18 for the Rayleigh wave and Fig. 3.19 for the Love wave. We

used 3 different values for ax from medium scale (ax = 50 km) to fine-scale

isotropic heterogeneity (ax = az = 0.5 km). As in the previous example of

varying σ, Love waves are essentially less affected even in this case. The

varying ax exhibits a stronger influence on the phase speed perturbation of

the fundamental-mode Rayleigh wave for larger ax. This is partly because

the effective velocity fluctuations σeff becomes greater for larger ax as in

Table 3.2.

To distinguish the effects of correlation length ax from the varying ef-

Depth range ax az σ σeff

Model 1 35 – 120 km 0.5 km 0.5 km 0.05 0.0548
Model 2 35 – 120 km 5 km 0.5 km 0.05 0.0659
Model 3 35 – 120 km 50 km 0.5 km 0.05 0.0736

Table 3.2: Model parameters for random heterogeneity with fixed az and σ,
and varying ax used in Figs. 3.17 – 3.19.
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Figure 3.17: Examples of 2-D heterogeneous models used to estimate average
phase speeds in Figs. 3.18 and 3.19. Laminated heterogeneities are confined
in the depth range between 35 – 120 km, with fixed parameters of the vertical
correlation length az = 0.5 km and the strength of heterogeneity σ = 0.05.
The horizontal correlation lengths ax are (a) 0.5 km, (b) 5 km, and (c) 50
km.
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Figure 3.18: Same as Fig. 3.14 (average phase speed perturbations for the
Rayleigh wave, relative to the homogeneous model), but for the 2-D models
in Fig. 3.17 with fixed az = 0.5 km and σ = 0.05, and varying ax from 0.5 to
50 km.

Figure 3.19: Same as Fig. 3.18 but for the Love wave.
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Figure 3.20: Same as Fig. 3.16 but for varying ax. Dashed lines show the
best fit curves with the varying σeff case shown in Fig. 3.16

fective velocity fluctuations σeff , we consider the diagram of average phase

speed perturbation as a function of σeff in Fig. 3.20. Considering the relative

differences from the best-fit curves derived from the previous experiments in

section 3.3.1 for fixed ax (= 5 km) and az (= 0.5 km), we can discuss the

realistic influence of varying ax on the phase speed perturbation of Rayleigh

waves. Although our current sample is only limited to three cases, we can

see that as the ax becomes greater, the average phase speed perturbations of

Rayleigh waves tend to be slower (Fig. 3.20).
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3.3.3 Effects of the thickness of heterogeneous layer

The thickness of the heterogeneous layer in the lithosphere is another prop-

erty to be considered in our model. To simplify the problem, here we consider

2-D models in which the laminated stochastic heterogeneity exists throughout

the lithosphere with varying thickness. In the actual Earth, the lithosphere

thickness varies from place to place. Stable Archean and Proterozoic cratons

generally have thick lithosphere over 200 km (e.g., Yuan & Romanowicz,

2010; Yoshizawa, 2014), while the lithosphere under the Phanerozoic base-

ments (e.g., in eastern Australia) tends to be thinner than 100 km (e.g.,

Fishwick et al., 2008; Yoshizawa, 2014). Kennett et al. (2013) have also used

several different models with varying lithosphere thickness to investigate its

influence, although they focused on the oceanic region with a very thin crust

and lithospheric mantle (<100 km).

Here we primarily consider the continental case with a fixed crustal thick-

ness of 35 km, with varying thickness of lithosphere between 100 km (rep-

resenting thinner lithosphere equivalent to the relatively young continental

area) and 250 km (representing thick lithosphere in stable continental re-

gions or cratons). Such spatial variations of the lithosphere thickness can

be commonly observed in a large single continent (e.g., in Australia, North

Depth range ax az σ σeff

Model 1 35 – 100 km 5 km 0.5 km 0.05 0.0659
Model 2 35 – 150 km 5 km 0.5 km 0.05 0.0659
Model 3 35 – 200 km 5 km 0.5 km 0.05 0.0659
Model 4 35 – 250 km 5 km 0.5 km 0.05 0.0659

Table 3.3: Model parameters for stochastic random heterogeneity with fixed
σ, ax and az with varying depth range of heterogeneous layer used in
Figs. 3.21 – 3.23.
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Figure 3.21: Example of 2-D heterogeneous models used to estimate average
phase speeds in Fig. 3.22 for the Rayleigh wave and Fig. 3.23 for the Love
wave, with the varying thickness of the heterogeneous layer. Three param-
eters to control the laminated heterogeneity (i.e., ax, az, and σ) are fixed
as ax = 5 km, az = 0.5 km, and σ = 0.05. The depth ranges of laminated
heterogeneities are (a) 35 – 100 km, (b) 35 – 150 km, (c) 35 – 200 km, and
(d) 35 – 250 km.
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America, etc).

Fig. 3.21 displays the laminated heterogeneous models with varying thick-

nesses of the heterogeneous layer. Fig. 3.22 and Fig. 3.23 show the phase

speed perturbations of the fundamental-mode Rayleigh and Love waves, re-

spectively, for the models in Fig. 3.21. The employed stochastic parameters

are summarized in Table 3.3.

The phase speed perturbations of Rayleigh waves in the longer period

gradually increase as the heterogeneous layer becomes thicker, while those

in the shorter period are similar. In the period shorter than 50 s, all models

exhibit similar phase speed perturbations as the fundamental-mode Rayleigh

wave in this period range are mostly sensitive to the shallow structure above

80 km, where all of the 2-D models in Fig. 3.21 includes the stochastic het-

erogeneity. Longer-period Rayleigh waves are more sensitive to the deeper

structure below 100 km, where some of the models do not include stochas-

tic heterogeneity. Meanwhile, the Love-wave phase speed perturbations are

not very significant also in this case, with nearly the same patterns of veloc-

ity perturbations for all cases of the varying thickness of the heterogeneous

layer. These results suggest that the effects of varying thicknesses of the

heterogeneous layer on phase speed perturbations mostly reflect the vertical

sensitivity of Rayleigh waves as a function of periods.
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Figure 3.22: Same as Fig. 3.14 (average phase speed perturbations for the
Rayleigh wave, relative to the homogeneous model), but for the models in
Fig. 3.21 with varying thickness of the heterogeneous layer. The thickness of
the heterogeneous lithosphere varies from 35 – 100 km to 35 – 250 km, while
other parameters are fixed (σ = 0.05, az = 0.5 km, and ax = 5 km).

Figure 3.23: Same as Fig. 3.22 but for the Love wave.



Chapter 4

Estimation of apparent radial anisotropy
induced by laminated heterogeneity

In the previous chapter, we measured the average phase speeds for the

fundamental-mode Rayleigh and Love waves for 2-D heterogeneity mod-

els and calculated the perturbations from the homogeneous case to discuss

the effects of stochastic heterogeneity on surface wave dispersion. These

phase speed perturbations caused by the stochastic distributions of lami-

nated heterogeneity indicate apparent radial anisotropy generated from the

quasi-layered structure. To investigate the direct link of such phase speed

perturbations with the radial anisotropy, we invert the estimated phase speed

perturbations for 1-D shear wave models, including both SV and SH waves.

4.1 Inversions for radially anisotropic S wave models

4.1.1 Method of inversions

In this study, the average single-station phase speeds for both Rayleigh and

Love waves in a period range from 30 to 100 s are simultaneously inverted for

1-D VSV and VSH models using an iterative non-linear least-square inversion

method by Tarantola & Valette (1982). The practical application of this

inversion method for radially anisotropic S wave models has been described

in detail by Yoshizawa (2002) and Yoshizawa (2014).

56
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In this study, we consider the set of six model parameters (ρ, αH , αV , βV ,

βH , η), where ρ is density, αH and αV are PH and PV wave velocities, βV

and βH are SV and SH wave velocities, and η is the dimensionless anisotropic

parameter. Following Yoshizawa (2014), βV and βH are used as independent

model parameters of our inversions, and we employ the conventional scaling

relationship for other parameters to shear wave velocity (e.g., Panning &

Romanowicz, 2006) based on the earlier work by Montagner & Anderson

(1989). Radial anisotropy parameter ξ for shear wave is then computed as

ξ = (βH/βV )
2

In our inverse problem, we suppose that the observed data d can be

expressed as a function of model parameters p as, d = g(p). The model

parameter vector at the (k + 1)th iteration can then be given as follows

(Tarantola & Valette, 1982),

pk+1 = p0 +CppG
T
k

(
Cdd +GkCppG

T
k

)−1
[d− g (pk) +Gk (pk − p0)] ,

(4.1)

where pk is the model vector at the k-th iteration, p0 is a reference model

vector, Cdd is the a priori data covariance matrix, and Cpp is the a priori

model covariance matrix. Gk is the kernel matrix that consists of the partial

derivatives of the data with respect to the model parameters. For the i-th

data and j-th model parameter, the kernel matrix component can be repre-

sented as, Gij = ∂di/∂pj. In this study, the elements of the kernel matrix are

the partial derivatives (or vertical sensitivity kernels) of phase speeds with

respect to anisotropic S-wave speeds, including the scaled sensitivity kernels

for other parameters, including P-wave speeds and density.

The a priori model covariance matrix, Cpp, can be represented by a Gaus-

sian distribution as follows,

Cpp (ri, rj) = σm (ri)σm (rj) exp

{
−1

2

(ri − rj)
2

L2

}
, (4.2)
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where ri is the depth of the i-th model parameter, σm (ri) is the standard

deviation for the i-th model parameter and L is the average correlation length

between the model parameters ri and rj.

The standard deviation, σm(ri) (hereafter, σ
i
m), controls the amplitude of

variations in model parameters for each iteration, and the correlation length

L constrains the smoothness of model variations in the depth range, which

controls how rapidly the model can vary as a function of depth. The values

of these parameters are determined empirically with a priori knowledge of

the Earth structure.

In this study, we employ the homogeneous background Earth model as

the reference structure for the inversion. Following the convention used in

the inversion for actual Earth, we set the a priori parameters to be σi = 0.015

km/s and L = 5 km in the crust (down to 35 km depth), and σi = 0.025

km/s with L = 20 km between Moho and 120 km depth, where stochastic

heterogeneity is added in most cases of this study. Then, we gradually reduce

σi and increase L for deeper structure, as σi = 0.02 km/s and L = 20 km at

150 – 200 km depth, σi = 0.015 km/s, and L = 30 km at 200 – 300 km depth.

The maximum depth for the model parameter is set to 400 km since our 2-D

models vertically extend down to the 360 km depth only. The parameters at

the bottom layer of 300 – 400 km depth are set to σi = 0.01 km/s and L =

40 km.

4.1.2 Surface-wave dispersion data for inversions

As discussed in Chapter 3, the absolute values of phase speeds derived from

the single-station measurements using the waveforms from the 2-D FDM sim-

ulations are affected by the intrinsic limitations of the 2-D FDM approach,

especially for long-period Rayleigh waves. However, such numerical effects

are expected to commonly affect all the 2-D simulations for both homoge-
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neous and heterogeneous models. Thus, by simply taking the difference of

measured phase speeds between the heterogeneous and homogeneous mod-

els, such numerical effects can be canceled out, and the resultant phase speed

perturbations should keep only the influence from the stochastic random het-

erogeneity.

In this chapter, we employ the phase speed perturbations of the Rayleigh

and Love waves measured for the 2-D heterogeneous models with respect to

the 2-D homogeneous model, explained in Chapter 3.2.1 for varying strength

of heterogeneity. These perturbations are added to the reference phase speeds

for the 1-D spherical earth model calculated using MINEOS (Masters et al.,

2011) and used as synthetic dispersion data of the inversions for radially

anisotropic S-wave models.

4.1.3 Results of inversions

Figs. 4.1 - 4.4 displays the results of inversions for SV and SH velocities (βV

and βH), and the corresponding radial anisotropy parameter ξ = (βH/βV )
2,

using the phase speed perturbations in Chapter 3.2.1 for the four models with

different strength of heterogeneities. The results of dispersion curve fitting

are also shown in each figure.

In these inversions, we used the phase speeds of the fundamental-mode

Love and Rayleigh waves for the period range from 30 to 100 s. Therefore,

the vertical resolution for deeper structures is limited since the fundamental-

mode Love waves in this period range have limited sensitivity to structures

below 100 km depth (Fig. 1.1). Note that Rayleigh waves have sufficient sen-

sitivities to the deeper structures below 150 km, but as discussed in Chapter

3.2, our Rayleigh wave measurements in the longer period are somewhat

affected by the intrinsic limitations of our 2-D FDM modeling, since we con-

sidered the depth range above 360 km in our 2-D models. Therefore, in the
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subsequent discussion, we will focus on the shallower structure above 100

km depth, for which our dispersion data sets have sufficient resolving power

to estimate the radial anisotropy. To discuss the average radial anisotropy

in a certain heterogeneous model, we compute the average value of radial

anisotropy ξ in the depth range from 35 to 100 km, which will be discussed

in the next section.

The results of inversions show that, in the depth range of the hetero-

geneous layer (35 – 120 km), the retrieved SV-wave velocity is slower than

the reference S-wave velocity, while the SH wave generally remains the same

as the reference. The strength of radial anisotropy for the case σ = 0.1

(σeff ≈ 0.13) in Fig. 4.1 is the largest with the average value of ξ ∼ 1.07 in

the depth range of 35 – 100 km, which corresponds to about 3.5 % velocity

differences between SH and SV wave velocities. For the smaller values of σ,

the radial anisotropy becomes significantly weaker; for example, for σ = 0.05

(σeff ≈ 0.066) case in Fig. 4.2, the average ξ in the depth range of 35 – 100

km is about 1.02, which is equivalent to about 1 % differences between SH

and SV velocities. The model with σ = 0.02 (σeff ≈ 0.026) in Fig. 4.3 and

σ = 0.01 (σeff ≈ 0.013) in Fig. 4.4 shows much weaker radial anisotropy of

about 1.007 and 1.003, respectively.

Among all these retrieved models, the peak value for radial anisotropy

ξ appears at around 60 km depth, which is in the mid-depth range of the

stochastic heterogeneity layer of our 2-D simulations used in Chapter 3.3.

These results reflect the character of phase speed perturbations in Fig. 3.14

that indicates the largest perturbation at around 40 s period, for which the

fundamental-mode Rayleigh wave has a peak sensitivity at around the 60 km

depth.
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Figure 4.1: Inversion result using the average phase speed perturbations of
Rayleigh and Love waves for the heterogeneous model with ax = 5 km, az
= 0.5 km, σ = 0.1 (σeff = 0.13) in Chap. 3.3.1. (a) Retrieved SV (red) and
SH (blue) velocities. A dashed grey line shows the isotropic reference S-wave
model. (b) Radial anisotropy parameter ξ = (βH/βV )

2. A dashed line shows
the isotropic case with ξ = 1. The depth range of laminated heterogeneities
is 35 – 120 km, shown with horizontal dotted lines. Average radial anisotropy
in the 35 – 100 km depth range is ξ = 1.0698. (c) Results of dispersion curve
fitting for the fundamental-mode Rayleigh and Love waves.
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Figure 4.2: Same as Fig. 4.1, but for the heterogeneous model with σ = 0.05
(σeff = 0.0659). Average radial anisotropy in the 35 – 100 km depth range
is ξ = 1.0181.
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Figure 4.3: Same as Fig. 4.1, but for the heterogeneous model with σ = 0.02
(σeff = 0.0263). Average radial anisotropy in the 35 – 100 km depth range
is ξ = 1.0066.
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Figure 4.4: Same as Fig.4.3, but for the heterogeneous model with σ = 0.01
(σeff = 0.0131). Average radial anisotropy in the 35 – 100 km depth range
is ξ = 1.0025.
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4.2 Radial anisotropy induced by laminated stochastic
heterogeneity

The relationship between the effective velocity fluctuation σeff and radial

anisotropy ξ derived from our inversions in the previous section is summa-

rized in Fig. 4.5. The best-fit curve with the third-degree polynomial is also

displayed. Although our data set is limited to only 4 cases of different σeff ,

this summary diagram indicates how much of the apparent radial anisotropy

ξ can be caused by the effective velocity fluctuations σeff in 2-D hetero-

geneous media. Apparently, radial anisotropy ξ increases rapidly as σeff

becomes large.

Figure 4.5: Relationship between the effective velocity fluctuations σeff and
resultant radial anisotropy ξ. We incorporated inversion results for four
heterogeneous models shown in Figs. 4.1 - 4.4 with ax = 5 km and az = 0.5
km. Black dots represent the average radial anisotropy ξ in the depth range
from 35 to 100 km of the inverted radial anisotropy model. A dashed line is
a best-fit curve with the third-degree polynomial.
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In this chapter, we have considered the selected cases for varying σeff

with fixed ax (= 5 km) and az (= 0.5 km). However, as shown in Fig. 3.20,

the changes in horizontal correlation length ax also have some influence on

phase speed perturbations, although such effects can be relatively weaker

compared with the varying σeff case. Such an effect of changing horizontal

scales may partly contribute to the generation of apparent radial anisotropy

from finely laminated heterogeneity.

As we reviewed in Chapter 1, some earlier seismological studies suggested

the existence of about 1–2 % velocity fluctuations for the quasi-laminar het-

erogeneity in the lithosphere (e.g., Nielsen et al., 2003; Kennett, 2015; Ken-

nett et al., 2017). From our results summarized in Fig. 3.16 and Fig. 4.5,

such weak velocity fluctuations of 1–2 % would cause only a minor effect on

surface-wave phase speeds, and the resultant apparent radial anisotropy is

almost negligible (0.3–0.7 %).

On the other hand, some theoretical studies expected somewhat greater

apparent radial anisotropy of about 3 % (e.g., Fichtner et al., 2013; Ken-

nett & Furumura, 2016) in the lithospheric mantle. From our estimation

in Fig. 4.5, in order to create 3 % apparent radial anisotropy, we may need

approximately 8 % of velocity fluctuations of laminated heterogeneity, which

seems somewhat unlikely over a greater scale but may be possible locally.

Note that a greater correlation length of ax would require somewhat milder

velocity fluctuations to generate a similar level of radial anisotropy, as dis-

cussed above.

There are some other causes of apparent anisotropy, such as aligned cracks

(Thomsen, 1995; Hudson et al., 2001) and/or partial melts (Kawakatsu et al.,

2009; Hirschmann, 2010). They can cause relatively larger velocity fluctua-

tions, especially under the existence of melts or fluids. If they exist over wide

areas, like melt layers under the oceanic lithosphere (Kawakatsu et al., 2009),
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they may generate non-negligible influence on surface-wave dispersion and

may induce a certain amount of apparent radial anisotropy in the astheno-

sphere as observed beneath the Pacific ocean (e.g., Nettles & Dziewoński,

2008; Isse et al., 2019).

Although it is not straightforward to separate the influence from the in-

trinsic and apparent (or extrinsic) anisotropy in observed radial anisotropy,

our numerical approach may be of help in understanding such an issue. Ob-

served radial anisotropy in the upper mantle tomography can reach about

8 %, which is commonly seen in recent tomographic models (e.g., Yoshizawa,

2014; Isse et al., 2019). Our result in Fig. 4.5 indicates that half of such ob-

served radial anisotropy (i.e., about 4 %) may arise from the fine-scale lami-

nated heterogeneities when such stochastic heterogeneities with σeff = 0.1 ex-

ist in certain areas in the Earth. The effect of laminated random heterogene-

ity on apparent radial anisotropy can be quantitatively estimated through

our numerical approach to waveform modeling, incorporating stochastic het-

erogeneity. This may not be discussed based solely on the effective medium

theory (such as the Backus average in Chapter 2.1) since it tends to have lim-

itations in treating the influence of strong random heterogeneity on surface-

wave dispersion (e.g, Capdeville & Marigo, 2007; Dalton et al., 2019).



Chapter 5

Conclusions and future directions

5.1 Summary of the thesis

In this study, we performed a series of 1-D and 2-D numerical experiments

to investigate the influence of layered or laminated stochastic heterogeneity

on surface-wave phase speeds, which can be a partial cause of the observed

radial anisotropy on a large scale. The results from 1-D layered models have

suggested that the fluctuations in isotropic shear velocity profiles indeed gen-

erate the Rayleigh wave phase speed reduction while Love waves are nearly

unaffected, which leads to the apparent radial anisotropy.

Using the 2-D FDM simulations of seismic wavefields in laminated het-

erogeneous models, we measured the surface-wave phase speeds using the

single-station method (Yoshizawa & Kennett, 2002; Yoshizawa & Ekström,

2010). We calculated the ensemble average of reliable single-station mea-

surements from all virtual stations in the epicentral distance range of 900

– 1900 km. Although there are some intrinsic limitations in the 2-D FDM

waveform modeling, such as the limited model space, numerical dispersion,

and boundary reflections, these numerical effects can be common in both

homogeneous and heterogeneous 2-D models. By taking the difference be-

tween average phase speeds for the homogeneous and heterogeneous models,

such numerical effects can be canceled out. Hence we can extract the aver-
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age phase speed perturbations in the period range from 30 to 100 s, caused

purely by the laminated random heterogeneity.

Multiple models with heterogeneity with different stochastic parameters

were used to quantify the effects on the Rayleigh wave phase speeds. By fixing

all the other parameters and allowing only one parameter to change at a time,

we found that both the strength (i.e., the standard deviation σ of velocity

fluctuation) and shape (the horizontal correlation length ax) of heterogeneity

could have a non-negligible influence on the average velocity perturbation

of the fundamental-mode Rayleigh waves. Changing the thickness of the

heterogeneous layer causes minor variations of phase speed perturbations,

simply reflecting the period-dependent vertical sensitivities of surface waves.

For heterogeneous models with fixed σ, we could extract the relationship

between the phase speed perturbations and the effective velocity fluctuations

σeff of the 2-D models, suggesting that the Rayleigh wave phase speed tends

to decrease rapidly as σeff becomes greater.

The measured phase speed perturbations (30–100 s) in heterogeneous

media were then used to invert for the radially anisotropic 1-D S-velocity

profiles. The retrieved vertical profiles of radial anisotropy ξ showed a peak

anomaly at around 60 km depth, near the middle depth of the heterogeneous

layer (35 – 120 km). Using the average ξ value derived from the retrieved

1-D profiles, we could finally derive a diagram between ξ and σeff for the

stochastic heterogeneity model with ax = 5 km and az = 0.5 km. This

diagram suggests that 5 % velocity fluctuations would cause positive radial

anisotropy of over 1 %.

In this study, we have considered the influence of fine-scale heterogeneity

with stochastic velocity fluctuations and how they can affect the surface-

wave phase speeds and apparent (or structure-induced) radial anisotropy.

These stochastic models may not perfectly represent the actual structure
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of the Earth. Nevertheless, we could obtain potentially useful information

about the effects of horizontally elongated stochastic heterogeneity on long-

period surface waves, which can be the basis for interpreting observed seismic

anisotropy from surface wave tomography.

5.2 Future directions

To further improve the current study, we summarize several topics to be

tackled in the future.

5.2.1 Incorporating realistic 3-D waveform modeling

Incorporating the realistic Earth model and actual events would allow us

to directly compare our simulation results with observed data, which may

be useful for further discussion. As discussed in Chapter 3.2.3, the results

from 2-D FDM simulation contain some numerical effects, which could be

improved by constructing a full 3-D spherical Earth model to avoid such in-

fluences of limited model space in 2-D, boundary reflections, or Earth flatten-

ing approximation. Besides, it is also preferable to perform a 3-D simulation

in which the effects of both vertical and horizontal variations can be fully

considered.

5.2.2 Model parameters and numerical considerations

We have not carefully considered the effect of density and anelasticicy (Q) due

to the lack of sufficient constraints, but they may also have some influence on

surface wave dispersion. Moreover, to properly consider the effects of random

heterogeneity generated from certain random seeds, the 2-D simulation needs

to be repeatedly performed with more different random seeds, although we

have employed only 5 models to extract the ensemble average. Incorporating

a large number of models with different random seeds would allow us to
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achieve a more precise estimation of the ensemble average for a variety of

stochastic model parameter sets.

5.2.3 Higher modes and measurement techniques

Although the current measurement technique for surface-wave dispersion has

provided us with reliable estimations of the fundamental-mode Rayleigh and

Love wave phase speeds, it could be more helpful if we could retrieve multi-

mode phase speeds. In particular, the higher-mode information can be of

help in improving the inversions for radial anisotropy over a wide depth

range (e.g., Yoshizawa, 2014; Taira & Yoshizawa, 2020).

Also, in this study, we used the single-station measurements, which reflect

the path-averaged phase speeds between the source and receiver. However,

it may also be useful to incorporate multiple types of phase speed measure-

ments, such as the inter-station methods (e.g., Hamada & Yoshizawa, 2015)

and the array analysis (e.g., Matsuzawa & Yoshizawa, 2019), which can pro-

vide more localized information within the model.

5.2.4 Multi-scale heterogeneity

Kennett & Furumura (2016) have suggested that the real Earth structure

should include both fine-scale (<10 km) and medium-scale (10 – 100 km)

heterogeneities, which may cause significant radial anisotropy in the lower

frequency while creating the waveguide effects required for the extended

coda observed. We have also performed numerical simulations for seismic

wavefields with such multi-scale heterogeneity (see Appendix A). However,

considering the correlation length of medium-scale heterogeneity, it tends to

cause biased models (i.e., generating large-scale deterministic structural vari-

ations rather than fine-scale stochastic heterogeneity), which would largely

affect surface wave propagation. Therefore, the current approach for wave-
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form modeling with limited numbers of random seed models, in combination

with the waveform analysis for dispersion measurements, may not be suf-

ficient to deal with the medium-scale heterogeneity properly. Thus, more

extensive numerical experiments incorporating many different types of ran-

dom models will be required for further investigation.



Appendix A

Effects of the multi-scale heterogeneity

The actual heterogeneity in the Earth can be represented by significantly

varying stochastic parameters both vertically and horizontally, and its ex-

istence is unlikely to be limited inside the lithosphere. P wave reflectivity

studies (Kennett, 2015) have suggested the existence of strong heterogene-

ity (about 4 % deviation) with longer horizontal correlation length (>20

km) near the LAT (Lithosphere-Asthenosphere Transition) by Yoshizawa

(2014). Kennett et al. (2017) used a multi-scale model with both fine-scale

and medium-scale heterogeneities to simulate seismic wave propagation of

high-frequency signals and suggested that such multi-scale heterogeneity may

contribute to the wide range of structural features such as apparent discon-

tinuity and effective radial anisotropy.

Here we employ similar parameters to Kennett et al. (2017) for con-

structing models with multi-scale heterogeneities, allowing them to vary in a

reasonable range. We combined fine-scale heterogeneity (ax1 = 5 km, az1 =

0.5 km, σ1 = 0.02) in the depth range from 35 km to 120 km), and medium-

scale heterogeneity (ax2 = 100 km, az2 = 24 km, σ2 varies from 0.005 to

0.02) in the depth range from 0 km to 300 km (Table A.1). Here we only

allow the strength of medium-scale heterogeneity (σ2) to vary, so we can di-

rectly investigate the effects of medium-scale heterogeneity. Note that, in

this appendix, we omit the considerations of the effective strength of velocity
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fluctuations (σeff ) for simplicity. We used different random seeds for gen-

erating medium-scale and fine-scale heterogeneities. However, the results of

phase speed measurements shown here are not the ensemble average of 5

models with different random seeds (like the results in Chapter 3) but from

a single model.

The resultant phase speed perturbations are shown in Figs. A.1. The re-

sults show that medium-scale heterogeneity significantly influences Rayleigh

wave dispersion. For the case with σ2=0.005, it generates a maximum phase

speed drop of about 0.6 %, while the earlier model with fine-scale hetero-

geneity (σ1=0.02) only exhibits less than 0.2 % difference (see, Fig. 3.14).

For the model with σ2=0.01, the phase speed perturbation becomes almost

double with the maximum phase speed drop of about 1.2 %. When we use

the same level of medium and fine-scale heterogeneities (σ2=0.02), the phase

speed perturbation becomes over 2 %, which is close to the case only with

unrealistically strong fine-scale heterogeneity (σ = 0.1).

These experiments suggest that the medium-scale heterogeneity in the

model with multi-scale heterogeneity may have much stronger effects on

Rayleigh-wave dispersion curves compared with a similar level of fine-scale

heterogeneity. Introducing such multi-scale stochastic heterogeneity to the

background velocity structure would generate a non-negligible phase speed

drop (over 2 %) for the fundamental-mode Rayleigh wave, even with a rea-

sonable size of velocity fluctuations.

However, considering the correlation length used for medium-scale het-

erogeneity (ax2 = 100 km, az2 = 24 km), it may no longer be considered as

a ”fine scale”. This means that the phase speed perturbations of the funda-

mental mode Rayleigh waves may not simply be arisen from the laminated

structure but simply from the large-scale random fluctuation in the model

(e.g., slow velocity anomaly in the shallower part and fast velocity anomaly
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in the deeper part in the average or effective heterogeneity model). There-

fore, the current result may be insufficient to conclude that the medium-scale

heterogeneity would have more influence on the apparent radial anisotropy.

Additional numerical experiments with many different random models would

be required to fully take account of such effects of multi-scale heterogeneities.
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Depth range ax az σ1

Model 1 35 – 120 km 5 km 0.5 km 0.02
Model 2 35 – 120 km 5 km 0.5 km 0.02
Model 3 35 – 120 km 5 km 0.5 km 0.02

Depth range ax az σ2

Model 1 0 – 300 km 100 km 24 km 0.005
Model 2 0 – 300 km 100 km 24 km 0.01
Model 3 0 – 300 km 100 km 24 km 0.02

Table A.1: Model parameters for multi-scale stochastic heterogeneity includ-
ing both fine (top) and medium (bottom) scale parameters used in Fig. A.1
– A.2. Only σ2 is allowed to vary, and other parameters are fixed.
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(b)

(a)

(c)

Figure A.1: 2-D heterogeneous models with multi-scale stochastic hetero-
geneity. We used both fine-scale heterogeneity (ax1 = 5 km, az1 = 0.5 km, σ1

= 0.02, depth range from 35 km to 120 km) and medium-scale heterogeneity
(ax2 = 100 km, az2 = 24 km, σ2 varies from 0.005 to 0.02, depth range from
0 km to 300 km).
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Figure A.2: Same as Fig. 3.14 (average phase speed perturbations for the
Rayleigh wave relative to the homogeneous case), but for the multi-scale
heterogeneous model in Fig. A.1.
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