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Abstract—We consider computing the QR factorization with
column pivoting (QRCP) for a tall and skinny matrix, which has
important applications including low-rank approximation and
rank determination. Motivated by recent progresses of Cholesky
QR type algorithms for tall-skinny QR factorization (without
pivoting), we propose a new Cholesky QR type algorithm for tall-
skinny QRCP, which we call Iterative Cholesky QR with Column
Pivoting (Ite-CholQR-CP). Through performance evaluation, it
is confirmed that Ite-CholQR-CP provides a solution as accurate
as that by Householder QR with column pivoting (HQR-CP),
which is a widely-used conventional algorithm. In addition, Ite-
CholQR-CP outperforms HQR-CP in execution time in single
node and distributed parallel computations: up to 45x (single
node computation) and 27x (distributed parallel computation)
speedup.

I. INTRODUCTION

Numerical algorithms for computing various kinds of matrix
factorizations such as LU and QR play an important role
in scientific computing. While the peak performance of a
computational system is still increasing, its architecture has
been getting more and more complicated at the same time. In
this situation, it is usually not easy to fully exploit the potential
of the system by naively implementing a traditional algorithm,
and it is thus vital to develop a new algorithm that is suitable
for the architecture of a target system.

In this paper, we consider computing the QR factorization
with column pivoting (QRCP), whose details are given in
Section II-B. QRCP is among the practical methods to obtain
a rank-revealing QR factorization (RRQR) [1] in a broad
sense. RRQR has many applications [2]–[4]; for example, the
(numerical) rank, range space, and null space of a matrix can
be approximately obtained by RRQR.

This work focuses on a special case where a target matrix is
tall and skinny, which means that the number of rows is much
larger than that of columns. The computation of a tall-skinny
QRCP has as application the computation of an orthogonal
basis in many numerical methods, e.g., those for solving linear
systems and eigenvalue problems. Compared with normal
QR (without pivoting), QRCP tends to be more stable when
an input matrix (a set of vectors) is close to numerically
rank deficient. Another application is the computation of a
low-rank approximation of tall-skinny matrix, which often
appears in numerical methods related to hierarchical or non-
hierarchical matrix approximation techniques such as H or

H2-matrix [5] and tensor computations such as the tensor train
decomposition [6]; these methods require the computation of
a low-rank approximation of a tall-skinny matrix many times.

Recently, for the tall-skinny QR factorization without piv-
oting, the effectiveness of Cholesky QR type algorithms
have been reported [7]–[11] together with related theoreti-
cal results [12]. Their effectiveness in the development of
scientific libraries has also been presented [13]. The struc-
ture of Cholesky QR type algorithms is quite suitable for
high-performance computing in recent computational systems,
which motivates us to aim for developing a new Cholesky QR
type algorithm for computing a tall-skinny QR factorization
with column pivoting. Mathematically, i.e., if there is no
rounding error, it is trivial to construct a Cholesky QR type
algorithm for QRCP, however, we cannot ignore the effect
of rounding error in practice, which makes the algorithm
development non-trivial.

In this research, we first conduct preliminary numerical
experiments, whose results guide the algorithm development.
The key ideas in our algorithm development are 1) mod-
ification of Cholesky factorization with complete pivoting,
and 2) algorithm design based on an iterative process in
which the correct pivot selections are made step by step. The
resulting algorithm, which we call Iterative Cholesky QR with
column pivoting (Ite-CholQR-CP), has a similar structure as
existing Cholesky QR type algorithms; advantages for high-
performance computing are still preserved in Ite-CholQR-
CP. Through numerical experiments, the performance of Ite-
CholQR-CP is evaluated. It is confirmed that Ite-CholQR-
CP provides a QRCP as accurate as that by a conventional
algorithm, namely Householder QR with column pivoting
(HQR-CP). In addition, Ite-CholQR-CP is faster than HQR-CP
in both single node and distributed parallel computations; up
to 45 times speedup (single node computation) and 27 times
speedup (distributed parallel computation) are obtained.

The rest of the paper is organized as follows: in Section II,
we give a brief overview of QRCP including the problem set-
tings. In Section III, we explain an algorithm proposed in this
research together with ideas for the algorithm development. In
Section IV, we present the results of performance evaluation.
After referring to related work in Section V, we conclude in
Section VI.



II. QR FACTORIZATION WITH COLUMN PIVOTING

A. Notations

Throughout the paper, we use the following notation:

• In: the n-dimensional identity matrix,
• P(i,j): an elementary permutation matrix that swaps the

i-th and j-th columns of A by AP(i,j),
• κ2(A): the 2-norm condition number of A, which is

defined as σmax/σmin, where σmax, σmin are the maximum
and minimum singular values of A, respectively,

• u: the unit roundoff, e.g., u ≃ 10−16 in double-precision
floating point number,

• MATLAB notation is used for representing a submatrix,
e.g., A(:, i : j) represents a submatrix that consists of the
columns of A from the i-th to j-th columns.

B. Problem Settings

Let A be an m × n (m ≥ n) matrix with numerical rank
r (≤ n). This means that there is a sufficient gap between σr

and σr+1 and σi/σ1 (i = r + 1, . . . , n) are sufficient small,
e.g., O(u), where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular
values of A.

For this matrix A, we consider computing the factorization

AP = QR =
(
Q1 Q2

)(R11 R12

O R22

)
, (1)

where P ∈ Rn×n is a permutation matrix, Q ∈ Rm×n is an
orthogonal matrix (i.e., Q⊤Q = In), R ∈ Rn×n ia an upper
triangular matrix. Let R11 be k×k (and Q1 be m×k), then the
permutation matrix P and the integer k are determined so as
to make κ2(R11) as small (i.e., well conditioned) as possible
and to make ∥R22∥2 as small as possible. Ideally, k = r and
κ2(R11) ≃ σ1/σr.

The factorization (1) is called the QR factorization with
column pivoting (QRCP) for the matrix A, which can be
classified into rank revealing QR factorization (RRQR) in a
broad sense; for details of RRQR, for example, please see the
references [14].

We give other settings in this work. First, we consider the
case where A is tall and skinny, i.e., m ≫ n. Next, we assume
that Q is explicitly formed. Finally, we discuss not only
single node (shared memory) computation but also distributed
parallel (MPI parallel) computation, and the following settings
are assumed in the latter case: let

A = (A⊤
1 · · ·A⊤

p )
⊤, (2)

and the p-th process has Ap ∈ R(m/P )×n (p = 1, . . . , P ),
where P is the number of MPI processes. This is the so-called
one-dimensional block row layout. For simplicity, we assume
that m can be divided by P . For Q, we assume the same data
distribution as that for A, on the other hand, we accept any
data distributions for P and R.

Algorithm 1 HQR-CP: Householder QR with Column Pivot-
ing

Input: A ∈ Rm×n

1: P := In
2: c(j) := ∥A(:, j)∥22 (j = 1, . . . , n)
3: for j = 1 to n do
4: p = argmaxj≤l≤n c(l)
5: A := AP(j,p) // swap columns
6: c(j) ↔ c(p) // swap values
7: generate a Householder matrix Hj ∈ Rm×m from A(:

, j)
8: A := HjA
9: R(j, j : n) := A(j, j : n)

10: c(l) := c(l)−R(j, l)2 (l = j + 1, . . . , n)
11: P := PP(j,p)

12: end for
13: Q := (Hn · · ·H1)

−1

(
In
O

)
= H1 · · ·Hn

(
In
O

)
Output: Q ∈ Rm×n, R ∈ Rn×n, P ∈ Rn×n

C. Conventional Algorithm

A conventional algorithm for computing QRCP is the
Householder QR algorithm with column pivoting (HQR-
CP) [2], [15], which is shown in Algorithm 1. HQR-CP is
a kind of greedy algorithm, in which the column with the
maximum 2-norm is selected among the remaining columns
step by step; the information of 2-norm is stored in the array
c(·). It is known that HQR-CP can provide an accurate result
in practice, which we regard as the baseline in this research.
It is worth noting that it is not necessary to form the explicit
Q matrix in some applications; in this case, one can skip the
line 13 in Algorithm 1.

For HQR-CP in real and double precision, LAPACK pro-
vides the DGEQPF and DGEQP3 routines, and ScaLAPACK
provides the PDGEQPF routine. Similar to the case of House-
holder QR without pivoting, blocking techniques for exploiting
Level-3 BLAS routines, e.g., DGEMM, were proposed [16],
and they are employed in DGEQP3. However, unlike the
case of Householder QR without pivoting, even if blocking
techniques are employed, half of the computations in HQR-
CP are still done by Level-2 BLAS operations. Another
difference is that the BLAS-3 version of parallel routine, i.e.,
PDGEQP3, has not been officially provided in ScaLAPACK.
It is worth mentioning that there is a possibility that a naive
implementation of Algorithm 1 fails to correctly select a good
pivot [17]; in Algorithm 1, instead of line 10, the explicit
recalculation of the values in the array c(·) is sometimes
needed during the algorithm.

D. Goal of this research

The goal of this research is to develop an algorithm that
computes the QRCP for a tall and skinny matrix, and ideally
the developed algorithm

• provides a solution as accurate as that by the conventional
HQR-CP algorithms; in addition to standard accuracy



metrics in QR factorization (i.e., orthogonality of Q and
residual), we require the algorithm to provide the same
pivot selection,

• is faster than DGEQP3 in single node computation and
PDGEQPF in distributed parallel computation.

III. DEVELOPMENT OF AN ALGORITHM BASED ON
CHOLESKY QR

A. The Cholesky QR algorithm

The Cholesky QR algorithm, which is shown in Algo-
rithm 2, is a simple algorithm based on triangular orthogo-
nalization [18], and it computes the (thin) QR factorization
of A via the Cholesky factorization of the Gram matrix
A⊤A [19, Thm. 5.2.3]. When A is tall and skinny, the cost
for computing A⊤A (line 1) and AR−1 (line 3) is dominant.
Since these computations can be done using Level-3 BLAS
routines (e.g., DGEMM), high effective performance (i.e.,
FLOPS) is expected in modern computer systems. In addition,
in the case of distributed parallel computation, only one global
collective communication (e.g., MPI Allreduce) is needed for
computing A⊤A (=

∑P
p=1 A

⊤
p Ap). This means that Cholesky

QR can be regarded as Communication-Avoiding (CA) [20],
[21], in which O(1) global collective communications are
needed instead of O(n) as in Householder QR.

While Cholesky QR has great advantages in high-
performance computing, it has serious issues in its numerical
aspect. First, the computed Q matrix loses orthogonality, as
κ2(A) grows. Second, when κ2(A) ≳ u−1/2, the algorithm
often breaks down due to the breakdown of the numerical
Cholesky factorization of A⊤A; the positive definiteness is lost
due to rounding errors. In order to remedy these issues, several
approaches have been proposed. For example, it was reported
that repeating Cholesky QR improves the orthogonality of the
computed Q factor [22], and it was shown that the Cholesky
QR algorithm with reorthogonalization (CholeskyQR2) can
provide a QR factorization as accurate as that by Householder
QR when κ2(A) ≲ u−1/2 [7], [12]. For ill-conditioned
(κ2(A) ≳ u−1/2) matrices, a preconditioning technique that
reduces κ2(A), the so-called shifted Cholesky QR algorithm,
was proposed [8], and the shifted CholeskyQR3 algorithm [8],
which combines shifted Cholesky QR and CholeskyQR2, can
compute an accurate QR factorization for an ill-conditioned
matrix with less execution time than Householder QR and
TSQR [21]. In addition to the above, other approaches that
aim at improving and exploiting Cholesky QR have also been
presented [9], [10], [23].

From performance results presented in the above previous
works (e.g., [7], [8]), we can confirm a remarkable perfor-
mance (i.e., an advantage in execution time) for computing a
tall-skinny QR factorization, which motivates us to develop a
Cholesky QR type algorithm for QRCP of a tall-skinny matrix.
What is important in the algorithm development is to preserve
the advantages in Cholesky QR; dominant computations are
done with Level-3 BLAS routines, and the algorithm is CA.

Algorithm 2 CholQR: Cholesky QR

Input: A ∈ Rm×n

1: W := A⊤A
2: R := Chol(W )
3: Q := AR−1

Output: Q ∈ Rm×n, R ∈ Rn×n

B. Application of Cholesky QR to QRCP

Mathematically – in other words, if there is no rounding
error – it is easy to design a Cholesky QR type algorithm for
QRCP; simply using the Cholesky factorization with complete
pivoting (Chol-CP) [24]

P⊤WP = R⊤R (3)

instead of the Cholesky factorization (without pivoting). In the
process of Chol-CP, the maximum diagonal element among
the remaining submatrix is selected step by step, which
corresponds to the selection of pivot columns in the HQR-
CP algorithm. Then, we can obtain QRCP as

Q := APR−1 ⇔ AP = QR. (4)

However, in practical numerical computations, we cannot
avoid the effect of rounding error, and it has to be taken into
account when developing a new algorithm.

C. Preliminary experiments for algorithm development

Here, we present the results of preliminary numerical ex-
periments on QRCP using Chol-CP, which guides us in our
algorithm development.

First, we examine the pivot selection by Chol-CP in Fig-
ure 1 (a); for a test matrix (generated as explained in Sec-
tion IV-A3 with m = 10000, n = 50, r = 40, σ = 10−12),
we compare the pivot selection between DGEQP3 (HQR-CP)
and Chol-CP for A⊤A. In Figure 1 (a), we encountered three
cases on pivot selection:

• 1st case (1st to 27th pivot): correctly selected (✓),
• 2nd case (28th to 31st): incorrectly selected (×),
• 3rd case (32nd to 40th): not computed (–).

The main reason for the 2nd case is the effect of rounding
error, and that for the 3rd case is the breakdown of Chol-CP
due to the appearance of a zero or negative diagonal. However,
it is an encouraging result that some of the obtained pivot
selections (i.e., the 1st case) are correct.

Second, for test matrices with different condition numbers
(m = 10000, n = r = 50, 100 ≤ κ2(A) = 1/σ ≤ 1016),
we apply Chol-CP to A⊤A. The results (correct, incorrect,
or not computed) are shown in Figure 1 (b), where the y-
axis gives the magnitude of |rii/r11| (rii: the i-th diagonal
element of R computed by DGEQP3). Figure 1 (b) clearly
shows the relation between the result of pivot selection and
the magnitude of |rii/r11|; if |rii/r11| is sufficiently larger, it
is expected that the i-th pivot is correctly selected.

Finally, we generate 1000 test matrices with varying condi-
tion numbers (κ2(A) = 1/σ = 10−γ , γ ∈ [1, 16], m = 10000,



n = r = 40) and investigate the distribution of incorrect pivot
selections. Figure 1 (c) presents the results with the same y-
axis as in Figure 1 (b). From Figure 1 (c), we see that the
pivot selections by Chol-CP is unreliable if |rii/r11| ≲ 10−6;
however, we can trust the obtained pivot selections until this
condition is satisfied.

From the above numerical results, we can summarize that
• there is a sufficient possibility of exploiting Chol-CP for

pivot selections,
• the quantity |rii/r11| provides an important guide to

judge the correctness of pivot selections.

D. Proposed algorithm

1) Modification of Chol-CP: The results presented in the
previous subsection indicates the necessity of monitoring the
magnitude of the diagonal elements in the process of Chol-CP.
Taking this into account, we modify the algorithm Chol-CP
to Algorithm 3, which hereafter we call the partial Cholesky
factorization with complete pivoting (P-Chol-CP). In this
algorithm, we introduce a tolerance, namely ϵ, into the original
algorithm of Chol-CP and stop the computation when

W (k, k)

W (1, 1)
< ϵ2 (⇔ R(k, k)

R(1, 1)
< ϵ). (5)

This algorithm provides an upper triangular matrix R that
satisfies

P⊤WP = R⊤R+W ′

=

(
R⊤

11 O
R⊤

12 In−n′

)(
R11 R12

O In−n′

)
+

(
O O
O W ′

22

)
,

(6)

where R11 ∈ Rn′×n′
is upper triangular and R12 ∈

Rn′×(n−n′) is rectangular. The stopping criterion (5) means
that all of the diagonal elements of (In−n′ + W ′

22) ∈
R(n−n′)×(n−n′) are smaller than (R11(1, 1) · ϵ)2. Here, from
the observations in the previous subsection, we expect that we
can obtain reliable pivot selections from the first n′ elements,
namely P used for determining R11. It is worth mentioning
that similar ideas were proposed for the Cholesky QR algo-
rithm for the normal QR factorization (without CP) [25], [26].

2) Whole algorithm for QRCP: Now, we develop an al-
gorithm for QRCP using P-Chol-CP; the key idea here is to
obtain correct pivot selections step by step by using P-Chol-CP
in an iterative manner.

Let A(0) := A, then
1) compute W (1) := A(0)⊤A(0),
2) apply P-Chol-CP to W (1) and obtain R(1), P (1), n(1),

where

R(1) =

(
R

(1)
11 R

(1)
12

O In−n(1)

)
,

3) compute A(1) := A(0)P (1)R(1)−1
.

These are the computations in the first stage in the algorithm.
After this, we expect that the first n(1) columns of A(1) are
correctly selected by P (1). Let A(1) = [A

(1)
1 A

(1)
2 ], where

Algorithm 3 P-Chol-CP: Partial Cholesky factorization with
Complete Pivoting

Input: W ∈ Rn×n, ϵ ∈ R
1: R := O, P := In, n′ := 0
2: for k = 1 to n do
3: p = argmaxk≤l≤n W (l, l)
4: if k > 1 and W (p, p) < W (1, 1) · ϵ2 then
5: break
6: end if
7: W := P⊤

(k,p)WP(k,p) // swap rows and columns
8: R := RP(k,p) // swap columns
9: R(k, k) :=

√
W (k, k)

10: R(k, k + 1 : n) := W (k, k + 1 : n)/R(k, k)
11: W (k + 1 : n, k + 1 : n) := W (k + 1 : n, k + 1 :

n)−R(k, k + 1 : n)⊤R(k, k + 1 : n)
12: P := PP(k,p), n′ := k
13: end for
14: R := R+

(
O

In−n′

)
Output: R ∈ Rn×n, P ∈ Rn×n, n′ ∈ Z

A
(1)
1 ∈ Rm×n(1)

and A
(1)
2 ∈ Rm×(n−n(1)), then it is worth

pointing out that κ2(A
(1)
1 ) ≃ O(1) (i.e., not orthonormal

but well conditioned [12]), A
(1)
1

⊤
A

(1)
2 ≃ O (i.e., close to

orthogonal), and κ2(A
(1)
2 ) ≪ κ2(A).

In the second stage,

1) compute W (2) := A(1)⊤A(1) and partition W (2) as

W (2) =

(
W

(2)
11 W

(2)
12

W
(2)
12

⊤
W

(2)
22

)
, W

(2)
11 ∈ Rn(1)×n(1)

,

2) compute W
(2)
11 = R

(2)
11

⊤
R

(2)
11 (normal Cholesky factor-

ization), R
(2)
12 := R

(2)
11

−⊤
W

(2)
12 , and W̃

(2)
22 := W

(2)
22 −

R
(2)
12

⊤
R

(2)
12 ,

3) apply P-Chol-CP to W̃
(2)
22 and obtain R

(2)
22 , P̃ (2), n(2),

where

R
(2)
22 =

(
R

(2)
22 11 R

(2)
22 12

O I(n−n(1))−n(2)

)
,

4) compute A(2) := A(1)P (2)R(2)−1
, where

R(2) :=

(
R

(2)
11 R

(2)
12

O R
(2)
22

)
, P (2) :=

(
In(1) O

O P̃ (2)

)
.

After the above process, we expect to obtain additional n(2)

pivot selections correctly; in total, we have n(1)+n(2) correct
pivot selections. It is worth noting that

A(2) := A(1)P (2)R(2)−1
= A(0)P (1)R(1)−1

P (2)R(2)−1
. (7)

Repeating the above process until n(1)+ · · ·+n(l) = n, we
then have

A(l) = A(0)P (1)R(1)−1
P (2)R(2)−1

· · ·P (l)R(l)−1
(8)

together with all of the correct pivot selections.
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(a) An example of the correctness of the obtained pivot (✓: correct, ×: incorrect, –: not computed)

(b) Dependency on κ2(A) (c) Distribution of incorrect pivot selections

Fig. 1: Results of preliminary numerical experiments on Chol-CP.

Now, we show that (8) can be written in the form of

A(l)R = A(0)P, (9)

where R is an upper triangular matrix and P is a permutation
matrix. Let P := P (1) · · ·P (l), then we can transform (8) into

A(l) = A(0)P (P (l)⊤ · · ·P (2)⊤)R(1)−1
P (2)R(2)−1

· · ·P (l)R(l)−1
.

(10)
Thus, it remains to show that(

(P (l)⊤ · · ·P (2)⊤)R(1)−1
P (2)R(2)−1

· · ·P (l)R(l)−1
)−1

=R(l)P (l)⊤ · · ·R(2)P (2)⊤R(1)P (2) · · ·P (l) (11)

is upper triangular.
Let n′(i) :=

∑i
k=1 n

(k), recall

R(i) =

(
R

(i)
11 R

(i)
12

O In−n′(i)

)
, R

(i)
11 ∈ Rn′(i)×n′(i)

, (12)

P (i+1) =

(
In′(i) O

O P̃ (i+1)

)
, P̃ (i+1) ∈ R(n−n′(i))×(n−n′(i)),

(13)
then we have

R̄(i) :=P (i+1)⊤R(i)P (i+1)

=

(
In′(i) O

O P̃ (i+1)⊤

)(
R

(i)
11 R

(i)
12

O In−n′(i)

)(
In′(i) O

O P̃ (i+1)

)
=

(
R

(i)
11 R

(i)
12 P̃

(i+1)

O In−n′(i)

)
=:

(
R

(i)
11 R̄

(i)
12

O In−n′(i)

)
, (14)

which means that the structure of R(i) is preserved; only
columns in R

(i)
12 are swapped. On the other hand, we have

R(i+1)R̄(i) =

(
R

(i+1)
11 R

(i)
12

O In−n′(i+1)

)(
R

(i)
11 R̄

(i)
12

O In−n′(i)

)
=

(
R̃

(i+1)
11 R̃

(i)
12

O In−n′(i+1)

)
, (15)

in which the structure of R(i+1) is still kept. Using these two
facts, we can easily show that (11) is upper triangular, which
derives the form of (9).

In the final l-th stage, in which n′(l) = n, R(l) is a complete
upper triangular matrix; there is no block of I . This means that
the computations in this stage is essentially equivalent to the
Cholesky QR algorithm except pivoting. By work [12], the
obtained matrix, namely A(l), is not necessary orthonormal
although κ2(A

(l)) ≃ O(1). Thus, it is required to apply
reorthogonalization to A(l), which means to apply normal
Cholesky QR to A(l), and finally we have an accurate QRCP
as

A(l)R−1
reortho = Q ⇔ Q(RreorthoR) = A(0)P. (16)

The whole procedure of the proposed algorithm is described
in Algorithm 4; we call the algorithm Iterative Cholesky
QR with Column Pivoting (Ite-CholQR-CP). Features of the
algorithm are summarized below:

• the main (essential) modification from a Cholesky QR
type algorithm without pivoting is only in P-Chol-CP; the
additional cost here is O(n3), which is generally much
smaller than the O(mn2) cost for the other parts when
m ≫ n,

• almost all of the computations can be done by using major
routines provided in BLAS and LAPACK libraries, which



Algorithm 4 Ite-CholQR-CP: Iterative Cholesky QR with
Column Pivoting

Input: A ∈ Rm×n, pivot tolerance ϵ ∈ R
1: k := 0, R := In, P := In
2: repeat

3: W =

(
W11 W12

W21 W22

)
:= A⊤A, where W11 ∈ Rk×k

4: W11 = R⊤
11R11 // normal Cholesky factorization

5: R12 := R−⊤
11 W12

6: W22 := W22 −R⊤
12R12

7: [R22, P
′, k′] := P-Chol-CP(W22, ϵ)

8: A(:, k + 1 : n) := A(:, k + 1 : n)P ′

9: R12 := R12P
′

10: R′ :=

(
R11 R12

O R22

)
11: A := A(R′)−1

12: R := R′R

13: P ′′ :=

(
Ik O
O P ′

)
14: P := PP ′

15: k := k + k′

16: until k = n
17: [Q,R′] := CholQR(A) // reorthogonalization
18: R := R′R
Output: Q ∈ Rm×n, R ∈ Rn×n, P ∈ Rn×n

enables us to benefit from the optimizations by hardware
vendors,

• if a target matrix is tall and skinny (i.e., m ≫ n), the
computations for A⊤A (line 3) and A(R′)−1 (line 11)
are dominant, which can be done with Level-3 BLAS
routines as in CholQR,

• in distributed parallel computation, the required commu-
nication is the reduction (e.g., MPI Allreduce) for A⊤A
(line 3), whose number does not depend on n as in
CholQR; O(1) communications are needed, which means
that Ite-CholQR-CP is CA,

• if l iterations are required for satisfying k = n (line 16),
both the total computation and communication costs are
(l + 1) times larger than that in CholQR.

A key point to use Ite-CholQR-CP correctly is set an
appropriate tolerance ϵ. Theoretical derivation of an optimal
ϵ is one of our future works. In this research, by taking the
experimental results shown in Figure 1 (c), we recommend
setting ϵ ≃ 10−5. Under this setting, we expect that l = 4
(or 3) because ϵl ≲ 10−16 will be required, in which the
cost is roughly 5 (or 4) times larger than CholQR. It is worth
mentioning that there is room for optimizing the computations
in Algorithm 4; we give priority to simplicity in the current
procedure shown in Algorithm 4. For example, we have
possibilities of making computations in lines 3 to 6 and
lines 11 more efficient, which is also a future work.

IV. PERFORMANCE EVALUATION

A. Settings

1) Program implementation: All program code is written
in Fortran90 with double-precision floating-point. BLAS and
LAPACK routines are used as much as possible; thread
parallelized BLAS and LAPACK routines are employed, and
manual thread parallelization by OpenMP is not done. In
distributed parallel computation, program code is parallelized
with MPI routines.

We give a brief description on the implementation of Ite-
CholQR-CP. In the program code for single node computation,
we use DGEMM for computing W := A⊤A; we do not
use the symmetric property of W due to the low effective
performance of the DSYRK routine in the computational
environments used in the evaluation. It is worth mentioning
that it will be better to optimize this part depending on a
target environment including a BLAS library. P-Chol-CP (Al-
gorithm 3) is implemented using the DSYR routines. Lines 4,
5, and 6 in Algorithm 4 is computed by the DPOTRF, DTRSM,
and DSYRK routines, respectively. In our implementation of
Ite-CholQR-CP, we use the DTRSM (line 11) and DTRMM
(line 12) routines, which is no different from the case of
CholQR.

In the program code for distributed parallel computation,
we employ the one-dimensional block row layout for A
and Q as already explained in Section II-B. The essential
difference from the single node computation is issuing the
MPI Allreduce routine in the computation of W := A⊤A;
each process first computes Wp := A⊤

p Ap (p = 1, . . . , P ),
and then by MPI Allreduce, all processes have W .

In the performance evaluation, we compare Ite-CholQR-CP
with HQR-CP. In single node computation, we employ the
DGEQP3 routine in LAPACK; for explicitly constructing the
Q matrix, we execute the DORGQR routine after DGEQP3. In
distributed parallel computation, we simply implement HQR-
CP shown in Algorithm 1. This is because ScaLAPACK is not
suitable for a tall and skinny matrix 1. As already mentioned in
Section II-C, a naive implementation of Algorithm 1 may fail
to find pivots [17]. Thus, in order to provide accurate results, it
is sometimes needed to explicitly compute 2-norm of columns,
which requires additional communication costs. Considering
this fact, we regard the performance of our naive HQR-CP
implementation as a rough baseline of HQR-CP in distributed
parallel computation. The computation of explicitly forming
Q is also an in-house implementation, in which a blocking
technique based on the compact WY representation [27] is
employed for using DGEMM.

2) Computational environments: Table I lists the specifica-
tions of the computational systems used in the evaluation. The
settings in each evaluation are shown in Table II, and they are
used as follows:

• accuracy: Single node on Grand,

1In our understanding, blocking techniques employed in the ScaLAPACK
routine works well for a matrix with sufficient number of columns and are not
suitable for a tall-skinny matrix, we we use the 1-dimentional process grid.



• execution time in single node computation: Single node
on Grand, OBCX, and BDEC-O,

• execution time in distributed parallel computation: Paral-
lel on OBCX and BDEC-O.

These settings are basically determined according to those
recommended in the manual and guide of each system.

3) Generation of test matrices: Throughout the experi-
ments, we generate test matrices in the following way: given
m, n (≤ m), r (≤ n), and σ (0 < σ < 1), set

σi =

{
σ

i−1
r−1 (1 ≤ i ≤ r),

10−16 (r + 1 ≤ i ≤ n),
(17)

and generate a test matrix as

A := UΣV, (18)

where U ∈ Rm×n, V ∈ Rn×n are randomly generated
orthogonal matrices, and Σ := diag(σ1, . . . , σn).

B. Results on accuracy

We compare the accuracy of computed results by Ite-
CholQR-CP and HQR-CP; we use the program code of Ite-
CholQR-CP in single node computation. Let m = 10000,
n = 50, and r = 40, we change σ from 10−2 to 10−14

and generate test matrices. Then we compute their QRCP by
DGEQP3, Ite-CholQR-CP with ϵ = 10−5 and ϵ = 0, which
considers only avoiding breakdown. For the computed results,
we evaluate the following metrics:

• orthogonality of Q: ∥Q⊤Q− In∥F /
√
n,

• residual: ∥AΠ−QR∥F /∥A∥F ,
• condition number of R11: κ2(R11),
• 2-norm of R22: ∥R22∥2.

We use the information that r = 40 when determining R11 and
R22; how to determine the numerical rank from the computed
R factor is not trivial, however, it is outside the scope and we
do not discuss it here.

The obtained results are shown in Figure 2. We observe
that Ite-CholQR-CP (ϵ = 10−5) provides solutions better than
((a), (b)) or as accurate as ((c), (d)) those by DGEPQ3. In
addition, it is also found that when κ2(A) ≳ 108, Ite-CholQR-
CP (ϵ = 0) is unstable in terms of κ2(R11) and ∥R22∥2 ((c),
(d)).

Figure 3 illustrates the correctness of the pivot selection
in Ite-CholQR-CP with ϵ = 10−5 and ϵ = 0; since we set
r = 40, selections for the 1st to the 40th columns are essential
here. From Figure 3 (a), we can find that regardless of κ2(A)
(σ), Ite-CholQR-CP with ϵ = 10−5 correctly selects pivot
through its iterative procedure. On the other hand, as shown
in Figure 3 (b), in the cases that κ2(A) > 108 (σ < 10−8),
Ite-CholQR-CP with ϵ = 0 fails to select the correct pivot,
which seems to be a main reason for the instability observed
in the evaluation of κ2(R11) (Figure 2 (c)) and ∥R22∥2
(Figure 2 (d)).

From the above results, we expect that Ite-CholQR-CP with
an appropriate tolerance ϵ (e.g., 10−5) can compute a QRCP
of a tall and skinny matrix as accurate as that by HQR-CP

(e.g., DGEQP3). It is worth mentioning that we focus on
the equivalence of the pivot selection due to the simplicity
in this study, however, there are other metrics for evaluating
the accuracy of the factorization.

C. Execution time in single node computation

We next examine the execution time in single node compu-
tation. The evaluation settings are as follows:

• m = 10000, 50000, and 100000,
• (n, r) = (16, 13), (32, 26), (64, 51), (128, 102),

(256, 205), (512, 410), and (1024, 820),
• σ = 10−12,
• for each test case, we run each method 5 times and

evaluate the best results.

Figure 4 provides the speedup ratio of Ite-CholQR-CP
(ϵ = 10−5) over DGEQP3 on each system. It is worth noting
that the number of iterations in Ite-CholQR-CP is 4 in all
cases; in the first 3 iterations, pivot selections are completed
(as shown in Figure 3 (a)), and the 4th iteration is done for the
reorthogonalization. In Figure 4, we see remarkable speedup
of Ite-CholQR-CP for several problem settings; the best result
is 45 times speedup for m = 100000, n = 32 on Grand. On
the systems with Intel CPUs (i.e., Grand and OBCX), it is
clear that as the shape of a matrix becomes closer to tall and
skinny (i.e., larger m and smaller n), the speedup ratio tends
to be larger. On the other hand, on BDEC-O, the speedup ratio
is large when n is not small excepting m = 10000.

To better understand the results in Figure 4, we provide the
obtained FLOPS in Figure 5. Here, we calculate the FLOPS
value 2 as

(FLOPS) :=
4mn2 − 4n3/3

(exe. time)
. (19)

As shown in Figure 5, FLOPS of DGEQP3 increases as n be-
comes larger on Grand and OBCX, on the other hand, FLOPS
of Ite-CholQR-CP stagnates or decreases. These behaviors of
the FLOPS values are consistent with the speedup ratio shown
in Figure 4. On BDEC-O, FLOPS of both DGEQP3 and Ite-
CholQR-CP increase as n grows, and we guess that this is due
to the difference in BLAS library (i.e., Fujitsu BLAS or Intel
MKL). We guess that the difference in memory subsystem
(i.e., HBM2 or DDR4) is another reason for the different
performance between BDEC-O and the other two systems with
Intel CPUs.

In total, from the above results, we can confirm the ad-
vantage of Ite-CholQR-CP over DGEQP3 in the computation
time of QRCP of a tall and skinny matrix in single node
computation. Especially on a system with Intel CPUs, Ite-
CholQR-C has a remarkable potential of outperforming the
DGEQP3 routines provided in the Intel MKL library if a
matrix is sufficiently tall and skinny.

2This is a kind of “effective” FLOPS for comparing the performance, and
the actual number of floating-point operations in each algorithm is different.



TABLE I: Systems used in the performance evaluation.

Name Grand OBCX BDEC-O
(Grand Chariot) (Oakbridge-CX) (Wisteria/BDEC-01, Odyssey)

Site IIC, Hokkaido Univ. ITC, The Univ. of Tokyo ITC, The Univ. of Tokyo
#nodes 1,024 1,368 7,680
Interconnect Intel Omni-Path Intel Omni-Path Tofu Interconnect D

(Full-bisection Fat Tree) (Full-bisection Fat Tree) (6D mesh / torus)
Node config. 2 CPUs, 384 GiB DDR4 2 CPUs, 128 GiB DDR4 1 CPU, 32 GiB HBM2
CPU Intel Xeon Gold 6148 Intel Xeon Platinum 8280 Fujitsu A64FX

(Skylake, 2.4 GHz, 20 cores) (Cascade Lake, 2.7 GHz, 28 cores) (2.2 GHz, 48 cores, 2 or 4 assistant cores)

TABLE II: Settings in each evaluation.

Name Grand OBCX BDEC-O
Case Single node Single node Parallel Single node Parallel

Compiler Intel ifort Intel ifort Intel mpiifort Fujitsu frtpx Fujitsu mpifrtpx
ver. 2021.7.1 ver. 2021.7.1 ver. 19.1.3.304 ver. 4.8.1 ver. 4.8.1

Options -O3 -qopenmp -ipo -O3 -qopenmp -ipo -O3 -qopenmp -Kfast -Kopenmp -Kfast -Kopenmp
-xCORE-AVX512 -axCORE-AVX512 -axCORE-AVX512 -Nfjomplib -Nfjomplib

BLAS/ Intel MKL Intel MKL Intel MKL Fujitsu BLAS/LAPACK Fujitsu BLAS/LAPACK
LAPACK ver. 2022.2 ver. 2022.2 ver. 2020.0.4 ver. 1.2.36 ver. 1.2.36

-mkl=parallel -mkl=parallel -mkl=parallel -SSL2BLAMP -SSL2BLAMP
MPI Intel MPI Intel MPI Intel MPI Fujitsu MPI Fujitsu MPI
Assignment 40 threads / process 56 threads / process 28 threads / process 48 threads / process 12 threads / process

1 process / node 1 process / node 2 processes / node 1 process / node 4 processes / node
#nodes 1 1 8 to 1,024 1 8 to 4,096

D. Execution time in distributed parallel computation

Finally, we evaluate the performance in distributed parallel
computation. The experimental settings are as follows:

• m = 16, 777, 216(= 224),
• (n, r) = (16, 13), (32, 26), (64, 51), (128, 102),

(256, 205), (512, 410), and (1024, 820),
• σ = 10−12,
• P = 16, 32, . . . , 1024, 2048 on OBCX (2 processes per

node) and P = 32, 64, . . . , 8192, 16384 on BDEC-O (4
processes per node),

• for each test case, we run each method 5 times and
evaluate the best results,

• we evaluate the performance in the strong scaling regime.

Figure 6 gives the results on OBCX, namely the execution
time of HQR-CP and Ite-CholQR-CP (ϵ = 10−5), and the
speedup ratio of Ite-CholQR-CP over HQR-CP. Those on
BDEC-O are provided in Figure 7.

From Figure 6 (c), we can find that Ite-CholQR-CP is faster
than HQR-CP in all cases (P and n) and that the best is more
than 25 times speedup when P = 1024 and n = 128. As
shown in Figure 6 (b), although the reduction of the execution
time by increasing the number of nodes is limited in the case
of n = 16, 32, and 64, the time itself is still shorter than
that of HQR-CP in these cases. Figure 7 (c) shows different
performance behaviors from Figure 6 (c); the range of n
in which Ite-CholQR-CP is efficient is different between the
cases where the number of nodes is small and large. Although
Ite-CholQR-CP outperforms HQR-CP in many cases, the
obtained speedup ratio is less than that in OBCX.

To better understand the performance of each method, we
provide the breakdown of the execution time in Table III

together with the percentage of the communication time; we
present the cases where the number of nodes is small and
large. From Table III, we see that the main reason that Ite-
CholQR-CP is faster than HQR-CP lies in the difference of the
computational time when the number of nodes is small. These
results are consistent with the results shown in Figures 4 (b)
and (c); for example, there is no advantage of Ite-CholQR-CP
on BDEC-O when m = 100000 and n = 16 (Figure 4 (c)). On
the other hand, from Table III, we can find the differences in
the communication cost between Ite-CholQR-CP and HQR-CP
when the number of nodes is large; especially in the case of
1024 nodes on OBCX, we can confirm the advantage that Ite-
CholQR-CP is CA; the communication cost in Ite-CholQR-CP
is much smaller than that in HQR-CP. In order to discuss the
communication cost in more detail, we give the behavior of
the communication cost on OBCX (1024 nodes) and BDEC-O
(4096 nodes) in Figure 8. There is a clear gap in the behavior
of the communication cost of Ite-CholQR-CP on BDEC-O; it
exists between n = 64 and 128. The reasons for this gap
is currently not clear, and we guess that it is due to the
implementation of the Fujitsu MPI library and/or configuration
of the interconnect on BDEC-O.

In conclusion, it can be confirmed that Ite-CholQR-CP is
generally faster than HQR-CP in distributed parallel computa-
tion. Especially on a system based on Intel CPUs, Ite-CholQR-
CP provides more than 25 time speedup over HQR-CP when
the number of nodes is sufficiently large, which is due to the
feature of CA, i.e., the advantage in the communication cost.

V. RELATED WORK

The main issue in QRCP is how to select pivot correctly
and efficiently. In usual, the selection of pivot is step by step,



(a) ∥Q⊤Q− In∥F /
√
n (b) ∥AΠ−QR∥F /∥A∥F

(c) κ2(R11)/κ2(A) (d) ∥R22∥2

Fig. 2: Evaluation of the accuracy of the computed results: m = 10000, n = 50, and r = 40.

which makes efficient parallel computation difficult. An early
contribution for parallel QRCP is that by Bischof [28], in
which an alternative strategy of pivot selection suitable for
parallel computation was proposed. Another important study
is that provided blocking techniques for using Level-3 BLAS
routines [16], as mentioned in Section II-C.

As the size of distributed parallel systems increases, the
reduction of the communication cost, i.e., the feature of CA,
becomes more important. Under this situation, a CA type
RRQR algorithm was proposed [29], in which the so-called
tournament pivoting strategy is employed for reducing the
communication cost and increasing the efficiency of parallel
computation. However, it is reported that the accuracy and
stability of QRCP by tournament pivoting are often less than
those by the traditional HQR-CP.

An important approach for computing tall-skinny QRCP
was presented by Cunha and Patterson [30]. It is shown that
one can effectively compute QRCP for a tall and skinny matrix

by combining a fast and accurate (normal) QR factorization
and the QRCP for the obtained R factor. If one will use
TSQR [21] for normal QR factorization, based on the existing
performance results [8], [11], we expect that Ite-CholQR-CP
will be faster. However, if a Cholesky QR type algorithm
(e.g., Shifted CholeskyQR3) will be used, it is not clear which
algorithm will be faster. Because the number of iterations in
both algorithms depends on the condition number of an input
matrix and parameters in each algorithm, general predictions
are difficult. It is worth mentioning that our approach is suit-
able for stopping the computation by monitoring the diagonal
of the R factor (i.e., truncation or partial QRCP). In the above
approach that combines normal QR and QRCP for R, whole
of the normal QR factorization is required. In this situation,
our algorithm has a remarkable advantage. It is clear that
performance comparisons between the above approach and our
approach should be conducted, however, the presented results
in this paper show that our approach will be competitive, and it
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Fig. 3: Correctness of the pivot selection in Ite-CholQR-CP (✓: correct, ×: incorrect): m = 10000, n = 50, and r = 40.

(a) Grand (Skylake) (b) OBCX (Cascade Lake) (c) BDEC-O (A64FX)

Fig. 4: Speedup of Ite-CholQR-CP (ϵ = 10−5) over DGEQP3 on single node.

is worth reporting the idea behind our algorithm, namely, how
to extend normal Cholesky QR algorithms to QRCP without
losing advantages in high performance computing.

Recently, algorithms based on randomization has attracted
much attention in the community of numerical linear alge-
bra [31]. The paper by Duersch and Gu [32] provides a good
survey on randomized techniques for rank-revealing matrix
factorization including QRCP. The main idea in randomized
QRCP algorithms is first obtaining appropriate pivot selec-
tions, namely P , via the random sketching with a small cost.
Then, by using the information, swap the columns at one
time, and apply an algorithm of normal QR factorization to
the swapped matrix. Based on this idea, Rokhlin and Tygert
proposed a randomized algorithm for overdetermined linear
least-squares regression [33]. Although the target problem is
not QRCP, the proposed algorithm is essentially equivalent
to randomized algorithms for computing QRCP. Furthermore,
several algorithms for QRCP based on Householder QR were
presented [34]–[36]. An algorithm based on Cholesky QR was

also presented [37] and discussed in detail [38].

Many of the above studies [28], [29], [34]–[36] are based
on Householder QR and consider the case m ≃ n, which
is quite different from the problem setting assumed in this
work. The papers by Rokhlin and Tygert [33], Balabanov
and Grigori [37], and Balabanov [38] consider tall-skinny
matrices and are highly relevant to this research. It is clear that
comparing the performance of Ite-CholQR-CP with that of an
algorithm based on randomization will be important for users
with practical applications. However, algorithm development
based on randomization is a recent research direction, and al-
gorithms, implementations, and evaluation metrics (especially
on accuracy) have not been standardized yet. On the other
hand, routines provided in LAPACK (ScaLAPACK) has a
long history and has been widely used in various application
programs. This is the reason we give a much higher priority
to the comparison with HQR-CP than that with recently
presented randomized algorithms.



(a) Grand (Skylake) (b) OBCX (Cascade Lake) (c) BDEC-O (A64FX)

Fig. 5: Obtained FLOPS.

(a) HQR-CP (b) Ite-CholQR-CP (ϵ = 10−5) (c) Speedup: Ite-CholQR-CP over HQR-CP

Fig. 6: Performance results in distributed parallel computation on OBCX: m = 16, 777, 216, in the strong scaling regime.

TABLE III: Breakdown of the execution time (in sec.).

(a) OBCX

#nodes n HQR-CP Ite-CholQR-CP
comp. comm. comp. comm.

8 16 1.7E-01 5.5E-03 ( 3%) 2.3E-02 1.7E-03 ( 7%)
128 7.3E+00 1.4E-01 ( 2%) 4.0E-01 5.6E-02 (12%)

1024 1.6E+02 1.3E+01 ( 7%) 1.2E+01 8.4E-01 ( 6%)

1024 16 2.3E-03 7.6E-03 (22%) 6.4E-04 6.7E-04 (49%)
128 9.9E-02 6.3E-02 (61%) 4.0E-03 2.0E-03 (66%)

1024 7.7E-01 7.3E-01 (52%) 6.8E-01 4.8E-02 (93%)

(b) BDEC-O

#nodes n HQR-CP Ite-CholQR-CP
comp. comm. comp. comm.

16 16 1.2E-02 1.2E-03 ( 9%) 2.8E-02 1.2E-03 ( 4%)
128 5.2E-01 1.4E-02 ( 3%) 3.6E-01 6.2E-03 ( 2%)

1024 3.0E+01 3.9E-01 ( 1%) 7.9E+00 2.2E-01 ( 3%)

4096 16 2.3E-04 1.7E-03 (88%) 2.4E-04 5.6E-04 (71%)
128 3.7E-03 6.3E-02 (94%) 3.0E-03 1.2E-01 (98%)

1024 2.1E-01 3.6E-01 (63%) 1.8E-01 5.1E-01 (74%)

VI. CONCLUSION

The main contribution of the paper is to propose a new
Cholesky QR type algorithm for computing tall-skinny QRCP,

namely Ite-CholQR-CP. The algorithm is based on the ideas
of modifying Cholesky factorization with complete pivoting
and employing an iterative structure in which pivot selec-
tions are made step by step. Ite-CholQR-CP has a similar
structure as Cholesky QR type algorithms for normal QR
(without pivoting), which preserves the advantages suitable for
high-performance computing in recent computational systems.
Through the performance evaluation, it is confirmed that Ite-
CholQR-CP provides a QRCP as accurate as that by HQR-
CP. In addition, in both single node and distributed parallel
computations, Ite-CholQR-CP is generally faster than HQR-
CP, e.g., DGEPQ3 in LAPACK.

As a next step, a theoretical analysis of Ite-CholQR-CP is
needed, which will strengthen the accuracy of solutions com-
puted by Ite-CholQR-CP. It will be also helpful to determine
an optimal tolerance ϵ in Ite-CholQR-CP. Another important
task is to optimize the algorithm of Ite-CholQR-CP; there is
room to reduce the computational cost and to optimize the
implementation. To compare Ite-CholQR-CP with randomized
algorithms, as mentioned in Section V, is also required;
from the viewpoints of both accuracy and execution time,
detailed performance tests should be conducted. In addition, as
mentioned in Section V, conducting performance comparison
with the approach that combines a fast and accurate normal
QR factorization and QRCP of the R factor is also impor-



(a) HQR-CP (b) Ite-CholQR-CP (ϵ = 10−5) (c) Speedup

Fig. 7: Performance results in distributed parallel computation on BDEC-O: m = 16, 777, 216, in the strong scaling regime.

Fig. 8: Behavior of communication time: #nodes is 1024 on
OBCX and 4096 on BDEC-O.

tant. Compared with these two approaches, Ite-CholQR-CP, is
competitive, however, further detailed performance evaluation
will be required for selecting an appropriate algorithm in
each application. Finally, it will be of interest to demonstrate
the effectiveness of Ite-CholQR-CP in practical applications,
which will make the advantages of Ite-CholQR-CP clearer and
clarify issues for further performance improvement.
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