HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Peer-reviewed Journal Articles, etc >

Differentiated phenotypic plasticity in larvae of the cannibalistic salamander Hynobius retardatus

Files in This Item:
BES60-2.pdf233.38 kBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/25170

Title: Differentiated phenotypic plasticity in larvae of the cannibalistic salamander Hynobius retardatus
Authors: Michimae, Hirofumi Browse this author →KAKEN DB
Keywords: Broad-headed morph
Cannibalistic polyphenism
Phenotypic plasticity
Reaction norm
Salamander
Issue Date: Jun-2006
Publisher: Springer
Journal Title: Behavioral Ecology and Sociobiology
Volume: 60
Issue: 2
Start Page: 205
End Page: 211
Publisher DOI: 10.1007/s00265-005-0157-x
Abstract: Alternative phenotypes in natural populations can arise from either genetic polymorphism or an environmentally induced phenotype, that is, polyphenism. Evolutionary models of polyphenism developed by theoretical studies predict that polyphenism is favored when there are environment-dependent fitness trade-offs between alternatives and that the threshold frequency for a facultative switch between alternative phenotypes is adjusted in accordance with different selection regimes. The broad-headed (alternative) larval morph of Hynobius retardatus, which is induced by crowding with conspecifics or heterospecific anuran (Rana pirica) larvae, is a representative example of cannibalistic polyphenism. Morph induction by such proximate factors must reflect evolutionary (conditional frequency-dependent) processes. To clarify the role of frequency-dependent processes in polyphenism, I investigated the occurrence rate of the broad-headed morph under experimental crowding conditions (low conspecific, high conspecific, and high heterospecific densities) using larvae from eight natural populations with different larval densities of conspecifics and heterospecifics, and found interpopulational differences in the expression of the morph. Thus, there is a larval density-dependent equilibrium frequency of the morph in each pond, suggesting that the local switch point for morph induction was modified by selection to produce evolved differences between ponds. The evolution of such interpond differences has three necessary conditions: (1) There are pond-dependent fitness trade-offs between alternatives, (2) The maintenance of the morph is costly, and (3) The presence of conspecific or, especially, heterospecific larvae provides a reliable cue to the receiver.
Rights: The original publication is available at www.springerlink.com
Type: article (author version)
URI: http://hdl.handle.net/2115/25170
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 道前 洋史

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University