HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Institute of Low Temperature Science >
Peer-reviewed Journal Articles, etc >

Predictability of the Barents Sea Ice in Early Winter: Remote Effects of Oceanic and Atmospheric Thermal Conditions from the North Atlantic

Files in This Item:
jcli-d-14-00125.1(2).pdf2.37 MBPDFView/Open
Please use this identifier to cite or link to this item:

Title: Predictability of the Barents Sea Ice in Early Winter: Remote Effects of Oceanic and Atmospheric Thermal Conditions from the North Atlantic
Authors: Nakanowatari, Takuya Browse this author →KAKEN DB
Sato, Kazutoshi Browse this author
Inoue, Jun Browse this author
Issue Date: 1-Dec-2014
Publisher: American Meteorological Society
Journal Title: Journal of Climate
Volume: 27
Issue: 23
Start Page: 8884
End Page: 8901
Publisher DOI: 10.1175/JCLI-D-14-00125.1
Abstract: Predictability of sea ice concentrations (SICs) in the Barents Sea in early winter (November–December) is studied using canonical correlation analysis with atmospheric and ocean anomalies from the NCEP Climate Forecast SystemReanalysis (CFSR) data. It is found that the highest prediction skill for a single-predictormodel is obtained from the 13-month lead subsurface temperature at 200-m depth (T200) and the in-phase meridional surface wind (Vsfc). T200 skillfully predicts SIC variability in 35% of the Barents Sea, mainly in the eastern side. The T200 for negative sea ice anomalies exhibits warm anomalies in the subsurface ocean temperature downstream of the Norwegian Atlantic Slope Current (NwASC) on a decadal time scale. The diagnostic analysis of NCEP CFSR data suggests that the subsurface temperature anomaly stored below the thermocline during summer reemerges in late autumn by atmospheric cooling and affects the sea ice. The subsurface temperature anomaly of the NwASC is advected from the North Atlantic subpolar gyre over ;3 years. Also, Vsfc skillfully predicts SIC variability in 32% of the Barents Sea, mainly in the western side. The Vsfc for the negative sea ice anomalies exhibits southerly wind anomalies; Vsfc is related to the large-scale atmospheric circulation patterns from the subtropical North Atlantic to the Eurasian continent. This study suggests that both atmospheric and oceanic remote effects have a potential impact on the forecasting accuracy of SIC.
Rights: © Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at ( or from the AMS at 617-227-2425 or
Type: article
Appears in Collections:低温科学研究所 (Institute of Low Temperature Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 中野渡 拓也

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University