HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Environmental Science / Faculty of Environmental Earth Science >
Peer-reviewed Journal Articles, etc >

Performance of the Vaisala RS80A/H and RS90 Humicap Sensors and the Meteolabor “Snow White” Chilled-Mirror Hygrometer in Paramaribo, Suriname

Files in This Item:
JTECH1941.1.pdf1.56 MBPDFView/Open
Please use this identifier to cite or link to this item:

Title: Performance of the Vaisala RS80A/H and RS90 Humicap Sensors and the Meteolabor “Snow White” Chilled-Mirror Hygrometer in Paramaribo, Suriname
Authors: Verver, Gé Browse this author
Fujiwara, Masatomo Browse this author →KAKEN DB
Dolmans, Pier Browse this author
Becker, Cor Browse this author
Fortuin, Paul Browse this author
Miloshevich, Larry Browse this author
Issue Date: Nov-2006
Publisher: American Meteorological Society
Journal Title: Journal of Atmospheric and Oceanic Technology
Volume: 23
Issue: 11
Start Page: 1506
End Page: 1518
Publisher DOI: 10.1175/JTECH1941.1
Abstract: In climate research there is a strong need for accurate observations of water vapor in the upper atmosphere. Radiosoundings provide relative humidity profiles but the accuracy of many routine instruments is notoriously inadequate in the cold upper troposphere. In this study results from a soundings program executed in Paramaribo, Suriname (5.8°N, 55.2°W), are presented. The aim of this program was to compare the performance of different humidity sensors in the upper troposphere in the Tropics and to test different bias corrections suggested in the literature. The payload of each sounding consisted of a chilled-mirror “Snow White” sensor from Meteolabor AG, which was used as a reference, and two additional sensors from Vaisala, that is, either the RS80A, the RS80H, or the RS90. In total 37 separate soundings were made. For the RS80A a clear, dry bias of between 4% and 8% RH is found in the lower troposphere compared to the Snow White observation, confirming the findings in previous studies. A mean dry bias was found in the upper troposphere, which could be effectively corrected. The RS80H sensor shows a significant wet bias of 2%–5% in RH in the middle and upper troposphere, which has not been reported before. Comparing observations with RS80H sensors of different ages gives no indication of sensor aging or sensor contamination. It is therefore concluded that the plastic cover introduced by Vaisala to avoid sensor contamination is effective. Finally, the RS90 sensor yields a small but significant wet bias of 2%–3% below 7-km altitude. The time-lag error correction from Miloshevich et al. was applied to the Vaisala data, which resulted in an increased variability in the relative humidity profile above 9- (RS80A), 8- (RS80H), and 11-km (RS90) altitude, respectively, which is in better agreement with the Snow White data. The averaged Snow White profile is compared with the average profiles of relative humidity from the European Centre for Medium-Range Weather Forecasts (ECMWF). No significant bias is found in either the analyses or the forecasts. The correlation coefficient for the Snow White and ECMWF data between 200 and 800 hPa was 0.66 for the 36-h forecast and 0.77 for the analysis.
Rights: © Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at ( or from the AMS at 617-227-2425 or
Type: article
Appears in Collections:環境科学院・地球環境科学研究院 (Graduate School of Environmental Science / Faculty of Environmental Earth Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 藤原 正智

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University