HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Peer-reviewed Journal Articles, etc >

Variety and sustainability of volcanic lakes : Response to subaqueous thermal activity predicted by a numerical model

Files in This Item:
JGRSE122 6108-6130.pdf1.73 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/68310

Title: Variety and sustainability of volcanic lakes : Response to subaqueous thermal activity predicted by a numerical model
Authors: Terada, Akihiko Browse this author
Hashimoto, Takeshi Browse this author →KAKEN DB
Issue Date: 14-Aug-2017
Publisher: American Geophysical Union
Journal Title: Journal of geophysical research. Solid earth
Volume: 122
Issue: 8
Start Page: 6108
End Page: 6130
Publisher DOI: 10.1002/2017JB014387
Abstract: We use a numerical model to investigate the factors that control the presence or absence of a hot crater lake at an active volcano. We find that given a suitable pair of parameters (e.g., the enthalpy of subaqueous fumaroles and the ratio of mass flux of the fluid input at the lake bottom to lake surface area), hot crater lakes can be sustained on relatively long timescales. Neither a high rate of precipitation nor an impermeable layer beneath the lake bottom are always necessary for long-term sustainability. The two controlling parameters affect various hydrological properties of crater lakes, including temperature, chemical concentrations, and temporal variations in water levels. In the case of low-temperature crater lakes, increases in flux and enthalpy, which are a common precursor to phreatic or phreatomagmatic eruptions, result in an increase in both temperature and water level. In contrast, a decrease in water level accompanied by a rise in temperature occurs at high-temperature lakes. Furthermore, our model suggests that crater geometry is a key control on water temperature. For lakes with a conical topography, a perturbation in the water level due to trivial nonvolcanic activity, such as low levels of precipitation, can cause persistent increases in water temperature and chemical concentrations, and a decrease in the water level, even though subaqueous fumarolic activity does not change. Such changes in hot crater lakes which are not caused by changes in volcanic activity resemble the volcanic unrest that precedes eruptions. Plain Language Summary The existence of a volcanic crater lake can increase volcanic hazard. Volcanic explosions at crater lakes can be accompanied by tsunamis or base surges. In this study, we develop a numerical model to investigate the factors that control the presence or absence of a hot crater lake at an active volcano. Neither a high rate of precipitation nor an impermeable layer beneath the lake bottom is always necessary for long-term sustainability. Our model predicts two types of a hot crater lake: in the case of low-temperature crater lakes, increases in subaqueous fumarolic activity, which are a common precursor to eruptions, result in an increase in both temperature and water level. In contrast, boiling dry occurs at high-temperature lakes. Furthermore, our model predicts that crater geometry is a key control on water temperature. For lakes with a conical topography, a perturbation in the water level due to trivial nonvolcanic activity, such as low levels of precipitation, can cause persistent increases in water temperature and chemical concentrations. Such changes in hot crater lakes resemble the volcanic unrest that precedes eruptions, referred to as "apparent volcanic unrest.
Rights: Copyright 2017 American Geophysical Union
Type: article
URI: http://hdl.handle.net/2115/68310
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 橋本 武志

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University