HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Hokkaido University Preprint Series in Mathematics >

On the zeroes of solutions of an extremal problem in H1

Files in This Item:
pre378.pdf481.18 kBPDFView/Open
Please use this identifier to cite or link to this item:http://doi.org/10.14943/83524

Title: On the zeroes of solutions of an extremal problem in H1
Authors: Inoue, J. Browse this author
Nakazi, T. Browse this author
Issue Date: 1-May-1997
Journal Title: Hokkaido University Preprint Series in Mathematics
Volume: 378
Start Page: 1
End Page: 14
Abstract: For a non-zero function f in H1 , the classical Hardy space on the unit disc, we put Sf= {g E H1 : argf(i8 ) = argg(ei0) a.e. 0}. The intersection of Sf and the unit sphere in H1 is just a set of solutions of some extremal problem in H1 It is known that Sf can be represented in the form Sf = S x g0, where β is a Blaschke product and g0 is a function in H1 with S90 = {Λ· g0 : Λ> O}. Also it is known that the linear span of Sf is of finite dimensional if and only if β is a finite Blaschke product, and when β is a finite Blaschke product, we can describe completely the set Sβ and the zeros of functions in Sβ. In this paper, we study the set of zeros of functions in Sβ when β is an infinite Blaschke product whose set of singularities is not the whole circle. Especially we study the behavior of zeros of functions in Sβ in the sectors of the form: Δ = { reiQ : 0 < r <_ 1, c1 < 0 < c2} on which the zeros of B has no accumulation points, and establish a convergence order theorem of zeros in Δ of functions in Sβ .
Type: bulletin (article)
URI: http://hdl.handle.net/2115/69128
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > Hokkaido University Preprint Series in Mathematics

Submitter: 数学紀要登録作業用

Export metadata:

OAI-PMH ( junii2 , jpcoar )


 

Feedback - Hokkaido University