HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Hokkaido University Preprint Series in Mathematics >

A skeleton structure of self-replicating dynamics

Files in This Item:
pre396.pdf1.32 MBPDFView/Open
Please use this identifier to cite or link to this item:http://doi.org/10.14943/83542

Title: A skeleton structure of self-replicating dynamics
Authors: Nishiura, Y. Browse this author
Ueyama, D. Browse this author
Keywords: self-replicating pattern
reaction diffusion system
pulse solution
Turing pattern
wave splitting
Bogdanov-Takens point
Issue Date: 1-Oct-1997
Journal Title: Hokkaido University Preprint Series in Mathematics
Volume: 396
Start Page: 1
End Page: 27
Abstract: A skeleton dynamics for the self-replicating patterns (SRP) of reaction diffusion system is presented. Self­replicating dynamics can be regarded as a transient process from a localized trigger to a stable Turing pattern or oscillatory Turing pattern. It looks like a reverse process of usual coarsening phenomena, i.e., the number of unit localized pattern increases until the domain is filled by them completely. SRP was found in several chemical reaction models, for instance, the Gray-Scott model as well as in real experi­ments. The most difficult point to describe SRP lies in the fact that it is truly a transient phenomenon in the sense that it can be captured neither as a definite object in dynamical system theory like an attractor nor an orbit itinerating among saddle points in the phase space. To our knowledge, it is not known that what kind of dynamical framework is suitable to clarify the behavior of SRP. The aim is to give a new point of view to describe such a transient dynamics of SRP on a finite interval. Especially we concen­trate on the basic mechanism causing SRP from a bifurcational view point by employing a new model system and its finite-dimensional con:.partment model which shares common qualitative features with the Gray-Scott model. By a careful anatomy of global bifurcation diagrams, the skeleton dynamics of SRP comes from a hierarchy structure of the subcritical bifurcating loops of oscillatory branches of pulse type. It should be noted that these loops themselves do not constitute the skeleton dynamics of SRP, but the ruins of them do it. In other words, the aftereffect of the hierarchy structure manifests the dynamics of SRP. The most important ingredient of an organizing center from which the whole hierarchy structure of SRP emerges is Bogdanov-Takens-Turing singularity as well as the existence of stable equilibrium point, which indicates universality of the above structure in the class of nonlinearities sharing this character.
Type: bulletin (article)
URI: http://hdl.handle.net/2115/69146
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > Hokkaido University Preprint Series in Mathematics

Submitter: 数学紀要登録作業用

Export metadata:

OAI-PMH ( junii2 , jpcoar )


 

Feedback - Hokkaido University